JP2010129379A - Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same - Google Patents

Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same Download PDF

Info

Publication number
JP2010129379A
JP2010129379A JP2008302927A JP2008302927A JP2010129379A JP 2010129379 A JP2010129379 A JP 2010129379A JP 2008302927 A JP2008302927 A JP 2008302927A JP 2008302927 A JP2008302927 A JP 2008302927A JP 2010129379 A JP2010129379 A JP 2010129379A
Authority
JP
Japan
Prior art keywords
film
conductive film
network structure
transparent conductive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008302927A
Other languages
Japanese (ja)
Inventor
Yasuo Kakihara
康男 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008302927A priority Critical patent/JP2010129379A/en
Publication of JP2010129379A publication Critical patent/JP2010129379A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent and conductive film, having high transmittance and high conductivity and containing a network structure comprising metal fine particles that are flat in surface and excelling in heat resistance, a transparent and conductive film laminated substrate, and a method for manufacturing the same. <P>SOLUTION: The transparent and conductive film, and the transparent and conductive film laminated substrate include an oxide having silica obtained by drying and heating to calcine a wetting gel film which is a metal selected from among a group, consisting of metals Au, Ag, Cu, Pt, Pd, Fe, Co, Ni and Al in the metal fine particles, or an alloy containing two kinds or more of the metals as main components; and the network structure constituting the metal fine particles capsulated in the oxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属微粒子で構成される網目状構造物を内包するシリカを主成分とした酸化物膜が積層した透明導電性膜および透明導電性膜積層基板と製造方法を提供する。 The present invention provides a transparent conductive film, a transparent conductive film laminated substrate, and a manufacturing method thereof, in which an oxide film mainly composed of silica enclosing a network structure composed of metal fine particles is laminated.

プラズマディスプレイや有機ELなどの表示デバイス、タッチパネルなどの入力センサー、薄膜型アモルファスSi太陽電池や色素増感太陽電池などの太陽光を利用した太陽電池などの電極には透明性を有した導電性膜が使用されている。   Transparent conductive films for electrodes such as display devices such as plasma displays and organic EL, input sensors such as touch panels, solar cells such as thin-film amorphous Si solar cells and dye-sensitized solar cells Is used.

中でも透明酸化物であるITO(InとSnの酸化物)やZnOを主成分とした薄膜が主に用いられており、微粒子分散溶液の塗布法により作製される場合もあるが、高い透明性と高い導電性を得るために一般的にはスパッタ装置や蒸着装置により気相法により作製されている。 In particular, thin films mainly composed of ITO (In and Sn oxides) and ZnO, which are transparent oxides, are mainly used and may be produced by a coating method of a fine particle dispersion solution. In order to obtain high conductivity, it is generally produced by a vapor phase method using a sputtering apparatus or a vapor deposition apparatus.

一方、前記のような気相法による連続膜の透明導電性膜のかわりに、金属膜を格子状や網目状に形成し、金属膜部が導電性を担い、空孔部が光透過性を担う形の透明導電性膜が開示されている。例えば、Cu膜の連続膜を製膜した後に格子状にCu膜をエッチングしたプラズマディスプレイ用のEMIシールド膜は実際に採用されており、また、同目的のために金属微粒子分散溶液を塗布あるいは印刷することで網目状構造を持つ導電性部を形成させ、さらにめっきを施す方法が検討されている。いずれの手法も気相法に必要な真空装置が不要であり、透明酸化物に比べ透明性を維持したまま導電性を向上させることが可能な方法である。   On the other hand, instead of the continuous transparent conductive film by the vapor phase method as described above, the metal film is formed in a lattice shape or a mesh shape, the metal film portion is responsible for conductivity, and the pore portion is light transmissive. A transparent conductive film in a form to bear is disclosed. For example, an EMI shield film for plasma displays in which a Cu film is etched after being formed into a lattice after forming a continuous film of Cu film is actually employed, and a metal fine particle dispersion solution is applied or printed for the same purpose. Thus, a method of forming a conductive portion having a network structure and performing plating has been studied. Any of these methods does not require a vacuum apparatus necessary for the vapor phase method, and can improve conductivity while maintaining transparency as compared with a transparent oxide.

従来より、金属微粒子ペーストを基板上に網目状にスクリーン印刷し、加熱焼成することで網目状構造物を有する透明導電性膜積層基板とその製造法が知られている(特許文献1)。また金属微粒子分散溶液よりW/O型エマルジョンを調製し、基板上に塗布・乾燥させることで金属微粒子が網目状構造を形成し、透明導電性膜を基板上に形成する方法が知られている(特許文献2及び3)。 2. Description of the Related Art Conventionally, a transparent conductive film laminated substrate having a network structure by screen printing a metal fine particle paste on a substrate in a mesh shape and heating and firing is known (Patent Document 1). Also known is a method in which a W / O type emulsion is prepared from a metal fine particle dispersion solution, and the fine metal particles form a network structure by coating and drying on the substrate, thereby forming a transparent conductive film on the substrate. (Patent Documents 2 and 3).

特開2007−227906号公報JP 2007-227906 A 特表2005−530005号公報JP 2005-530005 Gazette 特開2007−234299号公報JP 2007-234299 A

高透過率、高導電性であり、しかも平坦性を有し、且つ、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板は、現在最も要求されているところであるが、未だ得られていない。 Transparent conductive films and transparent conductive film laminated substrates composed of materials having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are currently most demanded. Although it is, it has not been obtained yet.

即ち、上述したいずれの方法も透明導電性膜として重要な高透過率と高導電性を有した透明導電性膜積層基板を得ることができるが、これらの透明導電性膜積層基板では、その製法から必然的に透明導電性膜の上面は導電性部が凸状になってしまい、平坦性が十分ではない。そのため上部に別の機能性薄膜を積層させる場合、例えば有機EL用の電極や薄膜型太陽電池の電極に用いた場合には発光効率や発電効率の低下が懸念される。   That is, any of the above-described methods can obtain a transparent conductive film laminated substrate having high transmittance and high conductivity which are important as a transparent conductive film. Therefore, the upper surface of the transparent conductive film inevitably has a convex conductive portion, and the flatness is not sufficient. Therefore, when another functional thin film is laminated on the upper part, for example, when used for an electrode for organic EL or an electrode of a thin film type solar cell, there is a concern that the light emission efficiency and the power generation efficiency are lowered.

また、機能性薄膜を積層する場合には、現在のところ気相法プロセスに頼らざるを得ないところが多く、製膜時あるいは製膜前後に基板あるいは機能性薄膜積層基板を加熱する必要があるなど透明導電性膜積層基板に十分な耐熱性が要求される。   In addition, when laminating functional thin films, there are many places where it is currently necessary to rely on a vapor phase process, and it is necessary to heat a substrate or a functional thin film laminated substrate before or after film formation. Sufficient heat resistance is required for the transparent conductive film laminated substrate.

さらに、室外での長期間の使用に対して十分な耐候性と性能維持が要求される太陽電池に用いられる透明導電性膜積層基板では、時間の経過とともに内部に含まれる有機物などが分解析出すると発電効率の低下を招く恐れがあるため、長期間安定した材料で構成された透明導電性膜が望まれる。   Furthermore, in transparent conductive film laminated substrates used in solar cells that require sufficient weather resistance and performance maintenance for long-term outdoor use, organic substances contained inside decompose and precipitate over time. Then, since there exists a possibility of causing the fall of electric power generation efficiency, the transparent conductive film comprised with the material stable for a long period of time is desired.

そこで、本発明では、高透過率、高導電性であり、平坦性が改善され、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板を提供することとする。   Accordingly, the present invention provides a transparent conductive film and a transparent conductive film laminated substrate that are made of a material having high transmittance, high conductivity, improved flatness, and excellent heat resistance and weather resistance. And

前記技術課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、金属微粒子で構成される網目状構造物を内包し、シロキサンを主成分とすることを特徴とする湿潤ゲル体膜である(本発明1)。   That is, the present invention is a wet gel film characterized by including a network structure composed of metal fine particles and containing siloxane as a main component (Invention 1).

また、本発明は、前記金属微粒子がAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Alから選ばれた金属あるいは前記金属の2種類以上を含む合金である湿潤ゲル体膜である(本発明2)。   Further, the present invention is a wet gel film in which the metal fine particles are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, and Al or an alloy containing two or more of the metals. (Invention 2).

また、本発明は、前記湿潤ゲル体膜において、シリコンの金属アルコキシドから生成したシロキサンである湿潤ゲル体膜である(本発明3)。   Further, the present invention is a wet gel body film which is a siloxane generated from a metal alkoxide of silicon in the wet gel body film (Invention 3).

また、本発明は、前記いずれかに記載の湿潤ゲル体膜を加熱処理して得られる透明導電性膜であって、該透明導電性膜はシリカを主成分とする酸化物中に金属微粒子で構成される網目状構造物が内包されていることを特徴とする透明導電性膜である(本発明4)。   Further, the present invention is a transparent conductive film obtained by heat-treating any of the wet gel bodies described above, wherein the transparent conductive film is made of metal fine particles in an oxide mainly composed of silica. A transparent conductive film characterized in that a structured network structure is included (present invention 4).

また、本発明は、前記透明導電性膜をガラス基板に積層した透明導電性膜積層基板である(本発明5)。   Moreover, this invention is a transparent conductive film laminated substrate which laminated | stacked the said transparent conductive film on the glass substrate (this invention 5).

また、本発明は、前記いずれかに記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製することを特徴とする湿潤ゲル体膜の製造方法である(本発明6)。   In the present invention, a network structure composed of the metal fine particles described above is formed on a substrate, and then a solution of a metal alkoxide mainly composed of silicon is applied to the network structure. This is a wet gel body manufacturing method characterized in that a wet gel body film mainly composed of siloxane is prepared by hydrolysis (Invention 6).

また、本発明は、前記記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製した後、当該湿潤ゲル体膜を加熱処理することを特徴とする透明導電性膜の製造方法である(本発明7)。   In the present invention, a network structure composed of the metal fine particles described above is formed on a substrate, and then a solution of a metal alkoxide containing silicon as a main component is applied to the network structure to perform hydrolysis. And preparing a wet gel body film containing siloxane as a main component, followed by heat-treating the wet gel body film (Invention 7).

また、本発明は、前記記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製した後、当該湿潤ゲル体膜を接着層としてガラス基板に接着した後、前記ガラス基板を取り除き、続いて加熱処理することを特徴とする透明導電性膜の製造方法である(本発明8)。   In the present invention, a network structure composed of the metal fine particles described above is formed on a substrate, and then a solution of a metal alkoxide containing silicon as a main component is applied to the network structure to perform hydrolysis. And preparing a wet gel body film mainly composed of siloxane, adhering the wet gel body film to a glass substrate as an adhesive layer, removing the glass substrate, and subsequently performing a heat treatment This is a method for producing a conductive film (Invention 8).

本発明に係る金属微粒子で構成される網目状構造物を内包するシリカを主成分とした酸化物膜が積層した透明導電性基板は、高透過率、低抵抗(高導電性)であり、表面の平坦性が改善され、耐熱性と耐候性に優れるため、有機ELや薄膜型太陽電池などの透明導電性膜積層基板として用いることが出来る。   A transparent conductive substrate in which an oxide film mainly composed of silica enclosing a network structure composed of fine metal particles according to the present invention is laminated, has a high transmittance and a low resistance (high conductivity), and has a surface. Can be used as a transparent conductive film laminated substrate such as an organic EL or a thin film solar cell.

本発明の構成を図1に示す製造工程に従って、より詳しく説明すれば次の通りである。   The configuration of the present invention will be described in detail according to the manufacturing process shown in FIG.

最初に、基板(10)上に金属微粒子分散溶液あるいは金属微粒子を含有するインキを塗布あるいは印刷し、その後に加熱及び/又は化学処理により金属微粒子で構成される網目状構造物からなる導電性部を形成させる(図1の(A))。   First, a conductive part comprising a network structure composed of metal fine particles by applying or printing a metal fine particle dispersion solution or ink containing metal fine particles on a substrate (10) and then heating and / or chemical treatment. Is formed (FIG. 1A).

次に、シリコンの金属アルコキシドを含んだ溶液(2)を、最終的に生成するシリカを主成分とする酸化物が前記網目状構造物を有する導電性部を覆う膜厚になるように調製するよう塗布する(図1の(B))。その後、金属アルコキシドを酸およびあるいは塩基触媒による加水分解し、金属微粒子で構成された網目状構造物を有する導電性部を含む湿潤ゲル体膜(3)を基板上に作製する(図1の(C))。   Next, a solution (2) containing a metal alkoxide of silicon is prepared so that the oxide mainly composed of silica finally formed has a film thickness covering the conductive portion having the network structure. (B in FIG. 1). Thereafter, the metal alkoxide is hydrolyzed with an acid and / or base catalyst, and a wet gel body film (3) including a conductive portion having a network structure composed of metal fine particles is produced on the substrate ((( C)).

次に、ガラス基板(11)上面あるいは前記湿潤ゲル体膜の上面に上述したシリコンを主成分とする金属アルコキシドと同様の金属アルコキシドを含む溶液(2)を塗布した後、ガラス基板上面と前記ゲル体上面を向かい合わせるように貼り合わせ(図1の(D))、加圧及び/又は加熱しながら、再度、前記金属アルコキシド(2)を酸およびあるいは塩基触媒による加水分解を生じさせることでガラス基板と湿潤ゲル体膜(3)を接着する(図1の(E))。   Next, after applying a solution (2) containing a metal alkoxide similar to the above-mentioned metal alkoxide mainly composed of silicon to the upper surface of the glass substrate (11) or the upper surface of the wet gel body film, the upper surface of the glass substrate and the gel are applied. Glass is produced by laminating the metal alkoxide (2) again with an acid and / or base catalyst while applying pressure and / or heating while bonding so that the upper surface of the body faces each other ((D) in FIG. 1). The substrate and the wet gel body film (3) are bonded (FIG. 1E).

金属微粒子で構成される網目状構造物を有する導電性部を含む湿潤ゲル体膜とガラス基板を接着させた後に、基板(10)を取り除く(図1の(F))。さらに、乾燥と加熱焼成を行い未反応物や溶媒を取り除くとともに湿潤ゲル体膜を乾燥ゲルさらにガラス化へと転換することで、本発明の金属微粒子で構成される網目状構造物を有する透明導電性膜積層基板(5)を得ることができる(図1の(G))。   After the wet gel body film including the conductive portion having a network structure composed of metal fine particles and the glass substrate are bonded, the substrate (10) is removed ((F) of FIG. 1). Further, the transparent conductive material having a network structure composed of the metal fine particles of the present invention is obtained by drying and heating and baking to remove unreacted substances and solvent and converting the wet gel body film into dry gel and vitrification. Can be obtained (G) in FIG. 1.

金属微粒子で構成される網目状構造物を有する導電性部を含有する湿潤ゲル体膜とガラス基板とを接着する方法は、上述した方法以外でも良い。例えば、金属微粒子で構成された網目状構造物を有する導電性部を含有する湿潤ゲル体膜の生成とガラス基板への接着を同時に進行させる場合には、基板上に金属微粒子で構成された網目状構造物を有する導電性部を形成させた後、ガラス基板と対面させ、基板とガラス基板の間にシリコンを主成分とする金属アルコキシドを含む溶液を挿入した後、酸およびあるいは塩基触媒による加水分解を行うことで湿潤ゲル体膜を生成させた後に基板を取り除いても良い。   The method of adhering the wet gel body film containing a conductive part having a network structure composed of metal fine particles and the glass substrate may be other than the method described above. For example, in the case where the generation of a wet gel body film containing a conductive portion having a network structure composed of metal fine particles and the adhesion to a glass substrate proceed simultaneously, the network composed of metal fine particles on the substrate After forming a conductive portion having a structure, it is made to face a glass substrate, a solution containing a metal alkoxide containing silicon as a main component is inserted between the substrate and the glass substrate, and then hydrolyzed with an acid and / or base catalyst. The substrate may be removed after the wet gel body film is formed by decomposition.

上述した手法により得られる透明導電性基板は、金属微粒子で構成される網目状構造物を有する導電性部により高導電性を有し、さらにシリカを主成分とする酸化物が導電性部の網目部分を充填した構造となり、上面の平坦性が改善されるとともに高透過率であり、さらにシリカを主成分とする酸化物のため耐熱性に優れる透明導電性膜積層基板である。   The transparent conductive substrate obtained by the above-described method has high conductivity due to the conductive portion having a network structure composed of metal fine particles, and an oxide mainly composed of silica is a network of the conductive portion. The transparent conductive film laminated substrate has a structure in which a portion is filled, the flatness of the upper surface is improved, the transmittance is high, and the oxide is mainly composed of silica and has excellent heat resistance.

金属微粒子の金属原料としてはAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Alなどを用いることが出来る。あるいは前記金属を2種類以上含む合金であっても良い。近年、電子回路の微細配線形成用に用いられているAu、Ag、Cu、Pt、PdあるいはAu、Ag、Cu、Pt、Pdを2種類以上含む合金を用いるのがより好ましい。   Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, etc. can be used as the metal raw material for the metal fine particles. Alternatively, an alloy containing two or more kinds of the metals may be used. In recent years, it is more preferable to use Au, Ag, Cu, Pt, Pd, or an alloy containing two or more kinds of Au, Ag, Cu, Pt, Pd, which has been used for forming fine wiring in electronic circuits.

金属微粒子で構成される網目状構造物を有する導電性部の金属微粒子は、従来開示されているガス中蒸発法などの気相法あるいは金属塩を溶液中で還元する液相還元法、または金属錯体の加熱分解による金属微粒子の調製法などを用いて調製することができる。   The metal fine particles of the conductive portion having a network structure composed of metal fine particles may be a gas phase method such as a gas evaporation method disclosed in the related art or a liquid phase reduction method in which a metal salt is reduced in a solution, or a metal It can be prepared using a method for preparing metal fine particles by thermal decomposition of a complex.

金属微粒子は分散溶液あるいは印刷用インキなどに調製し、基板上に塗布あるいは印刷される。そのため、金属微粒子の表面は適当な表面処理剤あるいは分散剤などで処理されていることが好ましい。表面処理剤あるいは分散剤は各分散溶液や各印刷用インキに最適に分散する表面処理剤あるいは分散剤を用いるのが好ましい。   The metal fine particles are prepared in a dispersion solution or printing ink and applied or printed on the substrate. Therefore, the surface of the metal fine particles is preferably treated with an appropriate surface treatment agent or dispersant. As the surface treating agent or dispersing agent, it is preferable to use a surface treating agent or dispersing agent that is optimally dispersed in each dispersion solution or each printing ink.

金属微粒子分散溶液あるいは金属微粒子を含む印刷インキを塗布または印刷する基板(10)は、その後に金属アルコキシドを加水分解させ湿潤ゲル体を形成させた時に、基板と湿潤ゲル体が剥離可能な程度の親和性の素材を用いることが必要である。さらに、金属微粒子分散溶液あるいは金属微粒子を含む印刷インキによる網目状構造を有する導電性部を形成させるのに耐えうる、耐薬品性および耐熱性を有する必要がある。上記条件に合う基板としてはポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂や、ポリイミド樹脂、ポリアミド樹脂などが好ましい。   The substrate (10) to which the metal fine particle dispersion solution or the printing ink containing the metal fine particles is applied or printed is such that when the metal alkoxide is subsequently hydrolyzed to form a wet gel body, the substrate and the wet gel body can be peeled off. It is necessary to use an affinity material. Furthermore, it is necessary to have chemical resistance and heat resistance that can withstand the formation of a conductive part having a network structure with a metal fine particle dispersion solution or printing ink containing metal fine particles. As the substrate meeting the above conditions, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyimide resins, polyamide resins and the like are preferable.

次に、金属微粒子で構成された網目状構造物を有する導電性部を形成する場合には、特許文献2記載の金属微粒子分散溶液の塗布する方法や特許文献1記載の金属微粒子分散インクをスクリーン印刷する方法を用いても良い。   Next, when forming a conductive portion having a network structure composed of metal fine particles, a method of applying a metal fine particle dispersion solution described in Patent Document 2 or a metal fine particle dispersion ink described in Patent Document 1 is screened. A printing method may be used.

金属微粒子で構成された網目状構造物を有する導電性部を形成した後、導電性の向上を目的に基板が耐えうる範囲で加熱およびあるいは化学処理を行うことが好ましい。   After forming the conductive portion having a network structure composed of metal fine particles, it is preferable to perform heating and / or chemical treatment within a range that the substrate can withstand for the purpose of improving conductivity.

金属微粒子で構成された網目状構造物を有する導電性部の厚みは0.4μm以上が好ましい。0.4μmより薄い場合には、十分な導電性が得られない。その上限の膜厚は10μmが好ましい。10μmを超える場合には同時に網目部分の線幅が広がり易く、結果的に透過率の低下をもたらすためである。   As for the thickness of the electroconductive part which has the network structure comprised by the metal microparticles, 0.4 micrometer or more is preferable. When it is thinner than 0.4 μm, sufficient conductivity cannot be obtained. The upper limit film thickness is preferably 10 μm. This is because when the thickness exceeds 10 μm, the line width of the mesh portion tends to be widened at the same time, resulting in a decrease in transmittance.

次に、金属微粒子で構成される網目状構造物を有する導電性部を内包するようにシランを主成分とする金属アルコキシドとアルコールと水と酸及び/又は塩基触媒、また必要によりゲル体の乾燥時のひび割れなど防止するための溶剤を混合した溶液を塗布する(図1の(B))。   Next, a metal alkoxide mainly composed of silane, alcohol, water, acid and / or base catalyst, and if necessary, drying of the gel body so as to enclose a conductive portion having a network structure composed of metal fine particles. A solution mixed with a solvent for preventing cracks at the time is applied ((B) in FIG. 1).

シリコンの金属アルコキシドとしてはテトラエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、2−(3、4エポキシシクロヘキシル)エチルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−メルカプトプロピルトリエトキシシランなどが挙げられる。エトキシ基をメトキシ基に変えた物でも良い。上記シラン化合物を1種類使用しても2種類以上混合しても用いても良い。入手し易さからテトラメトキシシランおよびあるいはテトラエトキシシランがより好ましく、前記シラン化合物をこれに混合して用いても良い。   Examples of silicon metal alkoxides include tetraethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, N -2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltriethoxysilane, and the like. The thing which changed the ethoxy group into the methoxy group may be used. One silane compound may be used, or two or more silane compounds may be mixed and used. Tetramethoxysilane and / or tetraethoxysilane are more preferable from the viewpoint of availability, and the silane compound may be mixed and used.

シラン以外の金属アルコキシドとしてはチタンアルコキシドやジルコニウムアルコキシドなどを混合して用いても良い。   As metal alkoxides other than silane, titanium alkoxides, zirconium alkoxides, and the like may be mixed and used.

アルコールとしてはメタノール、エタノール、プロパノール、ブタノールなど用いることができる。メタノール及び/又はエタノールがより好ましい。   As the alcohol, methanol, ethanol, propanol, butanol and the like can be used. Methanol and / or ethanol are more preferred.

酸触媒や塩基触媒はゲル体中に出来るだけ残存しないものが好ましく、酸触媒であれば塩酸、硫酸、硝酸、酢酸、フッ酸などであり、塩基触媒としてはアンモニアが好ましい。 The acid catalyst and the base catalyst are preferably those that do not remain in the gel body as much as possible. In the case of an acid catalyst, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, etc. are preferable, and ammonia is preferable as the base catalyst.

ゲル体を乾燥させるときに、ひび割れなどを防止するために加えられる溶剤としてはDMF(ジメチルフォルムアミド)やフォルムアミド、アセチルアセトン、ジオキサン、蓚酸を加えても良い。   When the gel is dried, DMF (dimethylformamide), formamide, acetylacetone, dioxane, or oxalic acid may be added as a solvent that is added to prevent cracking.

シランを主成分とする金属アルコキシドを含む混合溶液の組成は、用いる金属アルコキシドによって異なるが、モル比で、金属アルコキシド:水:アルコール:酸あるいは塩基触媒:溶剤=1:0〜20:0〜20:0〜1:0〜0.5の範囲になるように調整することが好ましい。
例えば、テトラメトキシシランを主成分とし塩基触媒を用いる場合にはモル比で、テトラメトキシシラン:水:メタノール:DMF:アンモニアが1.0:10:2.2:1.0:3.7×10−4、の組成の塗布液を用いるのが好ましい。
The composition of the mixed solution containing a metal alkoxide containing silane as a main component varies depending on the metal alkoxide used, but in a molar ratio, the metal alkoxide: water: alcohol: acid or base catalyst: solvent = 1: 0 to 20: 0 to 20 : It is preferable to adjust so that it may become the range of 0-1: 0-0.5.
For example, when tetramethoxysilane is used as the main component and a base catalyst is used, tetramethoxysilane: water: methanol: DMF: ammonia is 1.0: 10: 2.2: 1.0: 3.7 × in a molar ratio. It is preferable to use a coating solution having a composition of 10 −4 .

あるいはテトラメトキシシランを主成分とし酸触媒を用いる場合にはモル比でテトラメトキシシラン:水:メタノール:塩酸が1.0:1.53:2:0.1の組成の塗布液を用いるのが好ましい。 Alternatively, when tetramethoxysilane is the main component and an acid catalyst is used, a coating solution having a molar ratio of tetramethoxysilane: water: methanol: hydrochloric acid of 1.0: 1.53: 2: 0.1 is used. preferable.

上述した金属アルコキシドを含む混合溶液を塗布する場合には、湿潤ゲル体膜が前記金属微粒子で構成された網目状構造物を有する導電性部を十分覆うだけの膜厚になる様に調製することが好ましい。金属微粒子で構成された網目状構造物の膜厚によって異なるが、0.5μm〜20μmになるよう調整することが好ましい。0.5μm以下であると十分に導電性部を覆うことが出来ず、20μm以上であると湿潤ゲル体膜の乾燥・焼成時にひび割れやボイドが発生しやすく好ましくない。ひび割れやボイドは透過率低下の原因となるため好ましくない。 When applying the mixed solution containing the metal alkoxide described above, the wet gel body film should be prepared so as to have a film thickness sufficient to cover the conductive portion having the network structure composed of the metal fine particles. Is preferred. Although it varies depending on the film thickness of the network structure composed of metal fine particles, it is preferably adjusted to 0.5 μm to 20 μm. When the thickness is 0.5 μm or less, the conductive portion cannot be sufficiently covered, and when the thickness is 20 μm or more, cracks and voids are liable to occur during drying and firing of the wet gel body film. Cracks and voids are not preferable because they cause a decrease in transmittance.

金属アルコキシドを含む混合溶液を、金属微粒子で構成された網目状構造物を覆うように塗布する方法は、通常のコーティング方法を用いることが出来る。ディップコーティング、ダイコーティング、スプレーコーティングなどを用いることが出来る。必要な膜厚になるように数回に分けて塗布しても良い。   As a method for applying the mixed solution containing the metal alkoxide so as to cover the network structure composed of the metal fine particles, a normal coating method can be used. Dip coating, die coating, spray coating, etc. can be used. You may apply | coat in several times so that it may become a required film thickness.

上述の金属アルコキシドを湿潤ゲル化する場合(図1の(C))には、大気中、30〜80℃の温度で10分〜120時間加熱するのが好ましい。30℃以下ではゲル化に長時間が必要になり、80℃以上では溶液中の水やアルコール、酸または塩基触媒が蒸発しやすく反応性が低下し好ましくない。加熱時間が10分より短いと未反応物が残り、十分にゲル化しないため好ましくない。120時間以上でも特にゲル体の特性に対して悪い影響はないが、生産性を考慮すると好ましくない。   When the above-described metal alkoxide is wet-gelled ((C) in FIG. 1), it is preferably heated in the atmosphere at a temperature of 30 to 80 ° C. for 10 minutes to 120 hours. If it is 30 ° C. or less, gelation requires a long time, and if it is 80 ° C. or more, water, alcohol, acid, or base catalyst in the solution is likely to evaporate and the reactivity is lowered, which is not preferable. When the heating time is shorter than 10 minutes, unreacted substances remain and the gelation is not sufficient, which is not preferable. Even if it is 120 hours or more, there is no adverse effect on the properties of the gel body, but it is not preferable in view of productivity.

前記、金属アルコキシドを湿潤ゲル化した後、ガラス基板上面あるいは前記湿潤ゲル化した表面に金属アルコキシドを含む溶液を塗布した後、前記金属アルコキシドを湿潤ゲル化し、ガラス基板と湿潤ゲル体膜を接着させる(図1の(D))。この時の湿潤ゲル化の条件は上述した金属アルコキシドを湿潤ゲル化する場合と同様である。   After the metal alkoxide is wet-gelled, a solution containing the metal alkoxide is applied to the upper surface of the glass substrate or the wet-gelled surface, and then the metal alkoxide is wet-gelled to bond the glass substrate and the wet gel body film. ((D) of FIG. 1). The conditions for wet gelation at this time are the same as in the case of wet gelation of the metal alkoxide described above.

十分に接着されていることを確認した後に基板(10)を取り除くことで、金属微粒子で構成される網目状構造物を内包する湿潤ゲル体膜がガラス基板に積層された透明導電性膜基板を得ることができる。   A transparent conductive film substrate in which a wet gel body film containing a network structure composed of metal fine particles is laminated on a glass substrate by removing the substrate (10) after confirming that it is sufficiently bonded is provided. Obtainable.

次に、大気中80℃〜150℃で前記湿潤ゲル体膜が積層したガラス基板を、1〜120時間乾燥させることで乾燥ゲル体膜をガラス基板上に積層させることができる。   Next, the dried gel body film can be laminated on the glass substrate by drying the glass substrate on which the wet gel body film is laminated at 80 ° C. to 150 ° C. in the atmosphere for 1 to 120 hours.

最後に、前記乾燥ゲル体膜がガラス基板に積層した透明導電性膜積層基板を大気中、200〜700℃で1〜10時間加熱焼成することで乾燥ゲル体膜をガラス化し、金属微粒子で構成される網目状構造物を内包するシリカを主成分とした酸化物膜が積層した透明導電性膜積層基板(5)を得ることができる(図1の(G))。   Finally, the transparent gel film laminated substrate having the dry gel film laminated on the glass substrate is heated and fired at 200 to 700 ° C. for 1 to 10 hours in the air to vitrify the dry gel film and is composed of metal fine particles. A transparent conductive film laminated substrate (5) in which an oxide film mainly composed of silica enclosing the network structure to be formed can be obtained ((G) in FIG. 1).

あるいは、湿潤ゲル体膜の乾燥とガラス化の両方を一連の加熱において行う場合には、大気中、200〜600℃で1〜10時間加熱焼成しても良い。加熱条件は湿潤ゲル体膜の膜厚や湿潤ゲル体膜の体積にも依存するため適宜最適な条件を決める必要がある。   Or when performing both drying and vitrification of a wet gel body film in a series of heating, you may heat-fire at 200-600 degreeC for 1 to 10 hours in air | atmosphere. The heating conditions depend on the film thickness of the wet gel body film and the volume of the wet gel body film, so that it is necessary to appropriately determine the optimum conditions.

本発明に係る透明導電性積層基板における表面抵抗値は、100Ω/□以下が好ましく、50Ω/□以下がより好ましく、更により好ましくは、20Ω/□以下である。100Ω/□を超える場合は、高導電性膜とは言い難く好ましくない。   The surface resistance value in the transparent conductive laminated substrate according to the present invention is preferably 100Ω / □ or less, more preferably 50Ω / □ or less, and still more preferably 20Ω / □ or less. When it exceeds 100 Ω / □, it is difficult to say that the film is a highly conductive film.

本発明に係る透明導電性積層基板における中心線表面粗さ(Ra)は、1.0μm以下が好ましく、0.2μm以下がより好ましく、更により好ましくは0.1μm以下である。1μmを超える場合は、機能性薄膜を積層した場合に機能を低下させるため好ましくない。   The centerline surface roughness (Ra) in the transparent conductive laminated substrate according to the present invention is preferably 1.0 μm or less, more preferably 0.2 μm or less, and even more preferably 0.1 μm or less. When exceeding 1 micrometer, since a function will be reduced when a functional thin film is laminated | stacked, it is unpreferable.

本発明に係る透明導電性積層基板における全光線透過率は、60%以上が好ましく、70%以上がより好ましく、更により好ましくは80%以上である。60%未満の場合は、高透明性とは言い難く好ましくない。   The total light transmittance in the transparent conductive laminated substrate according to the present invention is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. If it is less than 60%, it is difficult to say that the film has high transparency, which is not preferable.

本発明の代表的な実施例は、次のとおりである。   A typical embodiment of the present invention is as follows.

湿潤ゲル体膜の厚みは、金属アルコキシドの溶液を塗布する前段階で、PET基板上にマスキングを施し(ポリイミド製のマスキングテープを使用)、湿潤ゲル体膜を作製した後に、マスキングを除去して出来る段差を、触針式表面粗さ計(DEKTAK製)で測定し湿潤ゲル体膜の膜厚として測定した。     The thickness of the wet gel body film is determined by applying masking to the PET substrate (using a polyimide masking tape) before applying the metal alkoxide solution, and then removing the masking after producing the wet gel body film. The level | step difference which can be performed was measured with the stylus type surface roughness meter (made by DEKTAK), and was measured as the film thickness of a wet gel body film.

透明導電性膜積層基板の表面粗さは、触針式表面粗さ計(DEKTAK製)を用いて、中心線表面粗さ(Ra)を測定した。     For the surface roughness of the transparent conductive film laminated substrate, the centerline surface roughness (Ra) was measured using a stylus type surface roughness meter (manufactured by DEKTAK).

表面抵抗は、MCP−T600(三菱化学株式会社製)を用いて、試料の3点を測定し、その平均値を表面抵抗値とした。     For the surface resistance, three points of the sample were measured using MCP-T600 (manufactured by Mitsubishi Chemical Corporation), and the average value was defined as the surface resistance value.

全光線透過率は、ヘイズメーターNDH2000(日本電色工業株式会社製)を用いて、試料の全光線透過率を3点測定し、その平均値を透過率とした。     The total light transmittance was measured at three points using the haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the average value was defined as the transmittance.

<銀微粒子の調製法>
硝酸銀40g、ブチルアミン37.9g、メタノール200mLを加え、1時間攪拌し、A液を調製した。別にイソアスコルビン酸62.2gを取り、水400mLを加え攪拌して溶解し、続いてメタノール200mLを加えB液を調製した。B液をよく攪拌しA液をB液に1時間20分かけて滴下した。滴下終了後、3時間30分攪拌を継続した。攪拌終了後、30分間静置し固形物を沈降させた。上澄みをデカンテーションにより取り除いた後、新たに水500mLを加え、攪拌、静置、デカンテーションにより上澄み液を取り除いた。この精製操作を3回繰り返した。沈降した固形物を40℃の乾燥機中で乾燥し、水分を除去した。さらに、得られた銀微粒子20gとDisperbyk−106(ビッグケミージャパン社製)0.2gをメタノール100mLと純水5mLの混合溶液中に混合し、1時間混合した後に、純水100mLを加えて、スラリーをろ過した後、40℃の乾燥機中で乾燥させて、銀微粒子1を得た。銀微粒子は電子顕微鏡による観察から一次粒子の平均粒子径が60nmであった。
<Preparation method of silver fine particles>
40 g of silver nitrate, 37.9 g of butylamine, and 200 mL of methanol were added and stirred for 1 hour to prepare solution A. Separately, 62.2 g of isoascorbic acid was taken, 400 mL of water was added and dissolved by stirring, and then 200 mL of methanol was added to prepare solution B. B liquid was stirred well and A liquid was dripped at B liquid over 1 hour and 20 minutes. After completion of the dropwise addition, stirring was continued for 3 hours and 30 minutes. After completion of stirring, the mixture was allowed to stand for 30 minutes to precipitate the solid. After removing the supernatant by decantation, 500 mL of water was newly added, and the supernatant was removed by stirring, standing, and decantation. This purification operation was repeated three times. The settled solid was dried in a dryer at 40 ° C. to remove moisture. Further, 20 g of the obtained silver fine particles and 0.2 g of Disperbyk-106 (manufactured by Big Chemie Japan) were mixed in a mixed solution of 100 mL of methanol and 5 mL of pure water, mixed for 1 hour, and then 100 mL of pure water was added, After filtering the slurry, the slurry was dried in a dryer at 40 ° C. to obtain silver fine particles 1. Silver fine particles had an average primary particle diameter of 60 nm as observed with an electron microscope.

<銀微粒子分散溶液の調製法>(特表2005−530005を参考に調製)
銀微粒子1を4g、トルエン30g、BYK−410(ビッグケミージャパン社製)0.2gを混合し、出力180Wの超音波分散機で1.5分間分散化処理を行い、純水15gを添加し、得られた乳濁液を出力180Wの超音波分散機で30秒間分散処理を行い、金属微粒子分散溶液2を調製した。
<Preparation Method of Silver Fine Particle Dispersion Solution> (Prepared with reference to Special Table 2005-530005)
4 g of silver fine particles 1, 30 g of toluene and 0.2 g of BYK-410 (manufactured by Big Chemie Japan) are mixed, dispersed for 1.5 minutes with an ultrasonic disperser with an output of 180 W, and 15 g of pure water is added. The obtained emulsion was subjected to a dispersion treatment for 30 seconds with an ultrasonic disperser with an output of 180 W to prepare a metal fine particle dispersion 2.

<銀微粒子を含む網目状構造物の作製法>
表面にコロナ処理を施し表面性を最適化したポリエチレンテレフタレート樹脂基板(以下、PET基板)上に、銀微粒子分散溶液をバーコーターにより塗布した後、乾燥させることでPET基板上に金属微粒子が網目状に繋がった透明導電性膜を作製した。さらに、導電性部位の導電性を向上させるため、大気中70℃で30秒の間熱処理を施し、さらにギ酸蒸気を含む雰囲気中で、70℃で30分熱処理し、銀微粒子で構成される網目状構造物を有した基板を作製した。
<Method for producing network structure containing silver fine particles>
After coating the surface of the polyethylene terephthalate resin substrate (hereinafter referred to as “PET substrate”) with corona treatment and optimizing the surface properties, the silver fine particle dispersion is applied with a bar coater and then dried to form metal fine particles on the PET substrate. A transparent conductive film connected to was produced. Further, in order to improve the conductivity of the conductive portion, heat treatment is performed at 70 ° C. in the atmosphere for 30 seconds, and further heat treatment is performed at 70 ° C. for 30 minutes in an atmosphere containing formic acid vapor, thereby forming a network composed of silver fine particles. A substrate having a structure was produced.

実施例1
上述した方法により作製した銀微粒子で構成された網目状構造物が積層したPET基板上に、金属アルコキシドを含む溶液(テトラエトキシシラン:25g、エタノール:37.6g、純水:23.5g、塩酸:0.3g)を塗布し、湿潤ゲル体膜の厚みが10μmになるように塗布した。
次に、80℃の乾燥器中で3時間熟成させてPET基板上に湿潤ゲル体膜を作製した。
次に前記金属アルコキシドを含む溶液を、湿潤ゲル体膜の厚みが1μmになるように、ガラス基板上に塗布した後、前述の湿潤ゲル体膜側と向かい合う位置で貼り合わせ、80℃の乾燥器中で3時間熟成させることによりガラス基板と湿潤ゲル体膜を接着させた。次に、PET基板を取り除き、焼成炉にて500℃で3時間焼成することで、銀微粒子で構成された網目状構造物を有した透明導電性膜積層基板を得た。中心線平均粗さ(Ra)は0.08μmであり、従来の透明導電性膜に比較して表面平坦性に優れていた。表面抵抗値は10Ω/□であり、全光線透過率は81%であった。耐熱性試験として耐熱性テストとして250℃で1時間加熱したが、加熱前と同様の表面抵抗と全光線透過率であった。
Example 1
A solution containing a metal alkoxide (tetraethoxysilane: 25 g, ethanol: 37.6 g, pure water: 23.5 g, hydrochloric acid) on a PET substrate on which a network structure composed of silver fine particles produced by the above-described method was laminated. : 0.3 g) was applied so that the thickness of the wet gel film was 10 μm.
Next, it was aged in an oven at 80 ° C. for 3 hours to prepare a wet gel film on a PET substrate.
Next, the solution containing the metal alkoxide was applied on a glass substrate so that the thickness of the wet gel body film was 1 μm, and then bonded at a position facing the wet gel body film side, and a dryer at 80 ° C. The glass substrate and the wet gel body film were adhered by aging for 3 hours. Next, the PET substrate was removed and baked at 500 ° C. for 3 hours in a baking furnace to obtain a transparent conductive film laminated substrate having a network structure composed of silver fine particles. The center line average roughness (Ra) was 0.08 μm, and the surface flatness was excellent as compared with the conventional transparent conductive film. The surface resistance value was 10Ω / □, and the total light transmittance was 81%. As a heat resistance test, the sample was heated at 250 ° C. for 1 hour as a heat resistance test, and had the same surface resistance and total light transmittance as before the heating.

実施例2
上述した方法により銀微粒子で構成された網目状構造物が積層したPET基板上に、金属アルコキシドを含む溶液(テトラエトキシシラン:25g、エタノール:37.6g、純水:23.5g、塩酸:0.4g)を塗布し、湿潤ゲル体膜の厚みが10μmになるように塗布した。
以下、実施例1と同様の乾燥および加熱を行い、銀微粒子で構成された網目状構造物を有した透明導電性膜積層基板を得た。表面粗さの最大表面高さは0.09μmであり、表面平坦性が改善されていた。表面抵抗値は15Ω/□であり、全光線透過率は80%であった。
Example 2
A solution containing a metal alkoxide (tetraethoxysilane: 25 g, ethanol: 37.6 g, pure water: 23.5 g, hydrochloric acid: 0 on a PET substrate on which a network structure composed of silver fine particles is laminated by the above-described method. 4 g) was applied so that the thickness of the wet gel film was 10 μm.
Thereafter, drying and heating were performed in the same manner as in Example 1 to obtain a transparent conductive film laminated substrate having a network structure composed of silver fine particles. The maximum surface height of the surface roughness was 0.09 μm, and the surface flatness was improved. The surface resistance value was 15Ω / □, and the total light transmittance was 80%.

比較例1
上述した方法により銀微粒子分散溶液をPET基板上に塗布・乾燥させ、熱処理及び化学処理を施し、銀微粒子で構成された網目状構造物を積層した。表面抵抗値は6Ω/□、全光線透過率は86%であった。
表面粗さ計で測定した中心線平均粗さ(Ra)は1.2μmであり、平坦性の乏しい表面であった。耐熱性テストとして250℃で1時間加熱したところ、PETフィルムが収縮してしまうと同時に黄色に変色し透明導電性膜としての機能を失ってしまった。
Comparative Example 1
The silver fine particle dispersion solution was applied and dried on the PET substrate by the above-described method, heat treatment and chemical treatment were performed, and a network structure composed of silver fine particles was laminated. The surface resistance value was 6Ω / □, and the total light transmittance was 86%.
The center line average roughness (Ra) measured by a surface roughness meter was 1.2 μm, and the surface was poor in flatness. As a heat resistance test, when heated at 250 ° C. for 1 hour, the PET film shrunk, and at the same time it turned yellow and lost its function as a transparent conductive film.

本発明に係る透明導電性膜および透明導電性膜積基板は、低抵抗(高導電性)で高透過率であり、耐熱性および平坦性に優れているので、薄膜型太陽電池あるいは有機EL用の透明電極に好適である。また本発明に係る透明導電性膜及び透明導電性膜積層基板の製造方法は、特別な装置を用いることなく容易に作製することが可能であるので、製造方法として好適である。 Since the transparent conductive film and the transparent conductive film substrate according to the present invention have low resistance (high conductivity), high transmittance, and excellent heat resistance and flatness, they are for thin film solar cells or organic EL. It is suitable for the transparent electrode. Moreover, since the manufacturing method of the transparent conductive film and transparent conductive film laminated substrate which concerns on this invention can be produced easily without using a special apparatus, it is suitable as a manufacturing method.

本発明に係る透明導電性膜積層基板の製造方法を示したフローチャートである。It is the flowchart which showed the manufacturing method of the transparent conductive film laminated substrate which concerns on this invention.

符号の説明Explanation of symbols

1 金属微粒子で構成させる網目状構造物
2 金属アルコキシド溶液
3 湿潤ゲル体膜(ポリシロキサン)
4 透明導電性膜
5 透明導電性膜積層基板
10 基板
11 ガラス基板
1 Network structure composed of fine metal particles
2 Metal alkoxide solution
3 Wet gel film (polysiloxane)
4 Transparent conductive film
5 Transparent conductive film laminated substrate
10 Substrate
11 Glass substrate

Claims (8)

金属微粒子で構成される網目状構造物を内包し、シロキサンを主成分とすることを特徴とする湿潤ゲル体膜。 A wet gel body film containing a network structure composed of metal fine particles and containing siloxane as a main component. 請求項1記載の金属微粒子がAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Alから選ばれた金属あるいは前記金属の2種類以上を含む合金である湿潤ゲル体膜。 A wet gel film, wherein the metal fine particles according to claim 1 are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, and Al, or an alloy containing two or more of the above metals. 請求項1及び2記載の湿潤ゲル体膜において、シリコンの金属アルコキシドから生成したシロキサンである湿潤ゲル体膜。 3. The wet gel film according to claim 1, wherein the wet gel film is a siloxane formed from a metal alkoxide of silicon. 請求項1乃至3のいずれかに記載の湿潤ゲル体膜を加熱処理して得られる透明導電性膜であって、該透明導電性膜はシリカを主成分とする酸化物中に金属微粒子で構成される網目状構造物が内包されていることを特徴とする透明導電性膜。 A transparent conductive film obtained by heat-treating the wet gel film according to claim 1, wherein the transparent conductive film is composed of metal fine particles in an oxide mainly composed of silica. A transparent conductive film characterized in that a network structure is contained. 請求項4記載の透明導電性膜をガラス基板に積層した透明導電性膜積層基板。 A transparent conductive film laminated substrate obtained by laminating the transparent conductive film according to claim 4 on a glass substrate. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製することを特徴とする請求項1乃至3のいずれかに記載の湿潤ゲル体膜の製造方法。 After a network structure composed of fine metal particles is formed on a substrate, a metal alkoxide solution containing silicon as a main component is applied to the network structure and hydrolyzed to wet the siloxane as a main component. A method for producing a wet gel film according to any one of claims 1 to 3, wherein a gel film is prepared. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製した後、当該湿潤ゲル体膜を加熱処理することを特徴とする請求項4記載の透明導電性膜の製造方法。 After a network structure composed of fine metal particles is formed on a substrate, a metal alkoxide solution containing silicon as a main component is applied to the network structure and hydrolyzed to wet the siloxane as a main component. The method for producing a transparent conductive film according to claim 4, wherein the wet gel body film is heat-treated after the gel body film is prepared. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にシリコンを主成分とする金属アルコキシドの溶液を塗布し、加水分解させてシロキサンを主成分とする湿潤ゲル体膜を調製した後、当該湿潤ゲル体膜を接着層としてガラス基板に接着した後、前記ガラス基板を取り除き、続いて加熱処理することを特徴とする請求項5記載の透明導電性膜の製造方法。 After a network structure composed of fine metal particles is formed on a substrate, a metal alkoxide solution containing silicon as a main component is applied to the network structure and hydrolyzed to wet the siloxane as a main component. 6. The transparent conductive film according to claim 5, wherein after the gel body film is prepared, the wet gel body film is adhered to the glass substrate as an adhesive layer, and then the glass substrate is removed, followed by heat treatment. Production method.
JP2008302927A 2008-11-27 2008-11-27 Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same Pending JP2010129379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302927A JP2010129379A (en) 2008-11-27 2008-11-27 Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302927A JP2010129379A (en) 2008-11-27 2008-11-27 Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010129379A true JP2010129379A (en) 2010-06-10

Family

ID=42329628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302927A Pending JP2010129379A (en) 2008-11-27 2008-11-27 Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010129379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617176A (en) * 2015-02-10 2015-05-13 陕西师范大学 Silicon-based thin-film solar cell and preparation method thereof
JP2015532669A (en) * 2012-08-16 2015-11-12 シーマ ナノテック イスラエル リミテッド Emulsions for preparing transparent conductive coatings
CN106206778A (en) * 2016-08-30 2016-12-07 陕西师范大学 A kind of crystalline silicon solaode and nano surface composite construction preparation method thereof
WO2017077933A1 (en) * 2015-11-06 2017-05-11 リンテック株式会社 Film for transparent conductive layer lamination, method for producing same, and transparent conductive film
JP2018081816A (en) * 2016-11-16 2018-05-24 リンテック株式会社 Method for producing transparent conductive laminate and transparent conductive laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532669A (en) * 2012-08-16 2015-11-12 シーマ ナノテック イスラエル リミテッド Emulsions for preparing transparent conductive coatings
CN104617176A (en) * 2015-02-10 2015-05-13 陕西师范大学 Silicon-based thin-film solar cell and preparation method thereof
WO2017077933A1 (en) * 2015-11-06 2017-05-11 リンテック株式会社 Film for transparent conductive layer lamination, method for producing same, and transparent conductive film
CN106206778A (en) * 2016-08-30 2016-12-07 陕西师范大学 A kind of crystalline silicon solaode and nano surface composite construction preparation method thereof
CN106206778B (en) * 2016-08-30 2019-01-22 陕西师范大学 A kind of crystalline silicon solar battery and its nano surface composite construction preparation method
JP2018081816A (en) * 2016-11-16 2018-05-24 リンテック株式会社 Method for producing transparent conductive laminate and transparent conductive laminate

Similar Documents

Publication Publication Date Title
KR100825880B1 (en) Paste composition and solar cell element employing same
CN103730194B (en) The preparation method of the compound transparent electricity conductive film of a kind of nano silver wire Quito Rotating fields
JP5497001B2 (en) Conductive paste composition and conductive film formed using the same
US20090233086A1 (en) Metal oxide microparticles, transparent conductive film, and dispersion
TWI613683B (en) Coating composition for transparent conductive film, transparent conductive film and method for fabricating the same
US20120006395A1 (en) Coated stainless steel substrate
JP2013189637A (en) Composition for reinforcing film
TWI401808B (en) Paste composition, electrode and solar cell including the same
JP5363125B2 (en) Transparent conductive film laminated substrate and manufacturing method thereof
JP2010129379A (en) Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same
WO2014115770A1 (en) Transparent electroconductive substrate and method for producing same
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
TW201407794A (en) Method for manufacturing substrate with anti-reflection film and photoelectric cell
JP4540311B2 (en) Transparent conductive film and method for producing the same
JP5640310B2 (en) Composition, antireflection film substrate, and solar cell system
JP4068993B2 (en) Transparent conductive laminated film
JP2010143802A (en) Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those
KR20150075173A (en) Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof
JPH07242842A (en) Composition for forming transparent electrically-conductive film and transparent electrically-conductive film
JP2010182640A (en) Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP2009040640A (en) Method for producing zinc oxide thin film
JP2005071901A (en) Transparent conductive laminated film
JP2012094830A (en) Transparent conductive film composition for solar battery and transparent conductive film
JP2012142539A (en) Back electrode tape for thin film solar cell and manufacturing method of thin film solar cell using back electrode tape
KR100420049B1 (en) A composition for a protective layer of a transparent conductive layer and a method of preparing a protective layer using the same