JP2013538980A - 分割サイクル空気ハイブリッドv型エンジン - Google Patents

分割サイクル空気ハイブリッドv型エンジン Download PDF

Info

Publication number
JP2013538980A
JP2013538980A JP2013531795A JP2013531795A JP2013538980A JP 2013538980 A JP2013538980 A JP 2013538980A JP 2013531795 A JP2013531795 A JP 2013531795A JP 2013531795 A JP2013531795 A JP 2013531795A JP 2013538980 A JP2013538980 A JP 2013538980A
Authority
JP
Japan
Prior art keywords
cylinder
engine
crossover
expansion
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013531795A
Other languages
English (en)
Inventor
エー.フィリップス フォード
ピー.スクデリ スティーブン
エー.マッキー ダグラス
Original Assignee
スクデリ グループ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スクデリ グループ インコーポレイテッド filed Critical スクデリ グループ インコーポレイテッド
Publication of JP2013538980A publication Critical patent/JP2013538980A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/22Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with pumping cylinder situated at side of working cylinder, e.g. the cylinders being parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

改良された効率を備える分割サイクル空気ハイブリッドエンジンが開示され、そこでは、当該エンジンがV型構成を有するように、圧縮シリンダーの中心線が膨張シリンダーの中心線に関してゼロではない角度に位置されている。一実施形態において、それぞれのシリンダーの中心線は、クランクシャフトの回転軸に平行であるがそれからオフセットされている軸に交差している。モジュール式のクロスオーバー通路、クロスオーバー通路マニホールド、及び関連する空気貯留器バルブアセンブリ及び熱調節システムもまた開示されている。

Description

この出願は、2010年10月1日に出願された米国仮特許出願第61/388,716号の優先権の利益を主張し、その全内容は参照によりここに取り込まれている。
本発明は分割サイクルエンジンに関し、より詳しくは、V型形態を有する分割サイクル空気ハイブリッドエンジンに関する。
明確化の目的のために、本出願において用いられるとき、用語「従来のエンジン」とは、周知のオットーサイクルの4つのストロークの全て(すなわち、吸気、圧縮、膨張、及び排気のストローク)が、エンジンのピストン/シリンダーの組み合わせの各々に包含されている内燃機関を意味している。また、明確化の目的のために、先行技術に開示されたエンジンに適用され、及び本出願において言及されるように、用語「分割サイクルエンジン」について、以下の定義が提供されている。
ここに言及されるように、分割サイクルエンジンは、クランクシャフト軸回りに回転可能なクランクシャフト、当該クランクシャフトの単一の回転中の吸入ストローク及び圧縮ストロークを通して往復するように圧縮シリンダー内に摺動可能に収容されると共に、当該クランクシャフトに作用可能に連結された圧縮ピストン、当該クランクシャフトの単一の回転中の膨張ストローク及び排気ストロークを通して往復するように膨張シリンダーに摺動可能に収容されると共に、当該クランクシャフトに作用可能に連結された膨張(動力)ピストン、及び圧縮シリンダー及び膨張シリンダーを相互に連結するクロスオーバー通路であって、内部に配置された少なくともクロスオーバー膨張バルブ(XovrE)を含み、より好ましくは、両者間に圧力室を画成するクロスオーバー圧縮バルブ(XovrC)及びクロスオーバー膨張バルブ(XovrE)を含むクロスオーバー通路、を備えている。
2003年4月8日にScuderiに許可された特許文献1(United States Patent No. 6,543,225)、及び2005年10月11日にBranyon et al. に許可された特許文献2(United States Patent No. 6,952,923)は、両者は参照によってここに組み入れられており、分割サイクルエンジン及び同種のエンジンについて詳しく論じている。加えて、これらの特許は、本開示がさらなる開発を詳述するエンジンの先行バージョンを詳述している。
分割サイクル空気ハイブリッドエンジンは、分割サイクルエンジンと空気貯留器及び種々の制御装置を組み合わせている。この組合せは、分割サイクル空気ハイブリッドエンジンが、圧縮空気の形で空気貯留器内にエネルギーを蓄えることを可能にしている。空気貯留器内の圧縮空気は、後で、クランクシャフトに動力を与えるべく膨張シリンダーで用いられる。
ここに言及される分割サイクル空気ハイブリッドエンジンは、クランクシャフト軸回りに回転可能なクランクシャフト、当該クランクシャフトの単一の回転中の吸入ストローク及び圧縮ストロークを通して往復するように圧縮シリンダー内に摺動可能に収容されると共に、当該クランクシャフトに作用可能に連結された圧縮ピストン、当該クランクシャフトの単一の回転中の膨張ストローク及び排気ストロークを通して往復するように膨張シリンダーに摺動可能に収容されると共に、当該クランクシャフトに作用可能に連結された膨張(動力)ピストン、圧縮シリンダー及び膨張シリンダーを相互に連結するクロスオーバー通路(ポート)であって、内部に配置された少なくともクロスオーバー膨張(XovrE)バルブを含み、より好ましくは、両者間に圧力室を画成するクロスオーバー圧縮(XovrC)バルブ及びクロスオーバー膨張(XovrE)バルブを含むクロスオーバー通路、及びクロスオーバー通路に作用可能に連結され、圧縮シリンダーからの圧縮空気を蓄え、及び圧縮空気を膨張シリンダーに配送すべく選択的に作動可能である空気貯留器、を備えている。
2008年4月8日にScuderi et al.に付与された特許文献3(United States Patent No. 7,353,786)は、参照によりここに組み入れられるが、分割サイクル空気ハイブリッド及び同種の形式のエンジンの克明な議論を包含している。加えて、この特許文献3は、本開示がさらなる発展を詳らかにする先行のハイブリッドシステムの詳細を開示している。
図1を参照するに、模範的な先行技術の分割サイクル空気ハイブリッドエンジンが概略的に数字10で示されている。当該分割サイクル空気ハイブリッドエンジン10は、従来のエンジンの2つの隣り合うシリンダーを1つの圧縮シリンダー12及び1つの膨張シリンダー14の組み合わせに置き換えている。オットーサイクルの4つのストロークは、かくて、当該圧縮シリンダー12がその関連する圧縮ピストン20と共に、吸入及び圧縮ストロークを遂行し、そして当該膨張シリンダー14がその関連する膨張ピストン30と共に、膨張及び排気ストロークを遂行するように、2つのシリンダー12及び14に亘って「分割」されている。したがって、オットーサイクルは、クランクシャフト軸17の回りのクランクシャフト106の1回転(360度CA)毎に、これら2つのシリンダー12,14で完了される。
当該吸入ストローク中、吸入空気が、シリンダーヘッド33内に配置された吸気ポート19を介して当該圧縮シリンダー12内に吸引される。内方に開く(シリンダー内にピストンに向かって開く)ポペット吸気バルブ18が、吸気ポート19及び圧縮シリンダー12の間の流体連通を制御する。
圧縮ストローク中、圧縮ピストン20は空気充填物を加圧し、典型的には、シリンダーヘッド33内に配置されるクロスオーバー通路(ポート)22に当該空気充填物を押し込む。ある実施形態においては、2つ以上のクロスオーバー通路22が圧縮シリンダー12及び膨張シリンダー14を相互に連結している。
分割サイクルエンジン10(及び、分割サイクルエンジンについて一般に)の圧縮シリンダー12の容積測定(すなわち、幾何学的な)圧縮比が、ここで分割サイクルエンジンの「圧縮比」と呼ばれる。エンジン10の膨張シリンダー14の容積測定(すなわち、幾何学的な)圧縮比が、(及び分割サイクルエンジンについて一般に)ここで当該分割サイクルエンジンの「膨張比」と称される。シリンダーの容積測定の圧縮比は、前記ピストンがその上死点(TDC)位置にあるときに、シリンダー内に囲われた容積(すなわち、クリアランス容積)に対しての、そこを往復するピストンがその下死点位置にあるときに、(全ての凹みを含む)シリンダー内に囲われた(すなわち、捕捉された)容積の比として、である当該技術分野では周知である。具体的に言うと、分割サイクルエンジンについては、ここに定義されるように、圧縮シリンダーの圧縮比は、XovrCバルブが閉じられているときに決定される。また、具体的に言うと、分割サイクルエンジンについては、ここに定義されるように、膨張シリンダーの膨張比は、XovrEバルブが閉じられているときに決定される。
圧縮シリンダー12内での極めて高い容積測定の圧縮比(例えば、20対1、30対1、40対1、又はそれ以上)のせいで、圧縮シリンダー12からクロスオーバー通路22への流れを制御するのにクロスオーバー通路22の入口で外方に開く(シリンダー及びピストンから外方に離れて開く)ポペットクロスオーバー圧縮(XovrC)バルブ24が用いられている。膨張シリンダー14内での極めて高い容積測定の圧縮比(例えば、20対1、30対1、40対1、又はそれ以上)のせいで、クロスオーバー通路22から膨張シリンダー14への流れを制御するのにクロスオーバー通路22の出口で外方に開くポペットクロスオーバー膨張(XovrE)バルブ26が用いられている。当該XovrCバルブ24及びXovrEバルブ26の作動割合及び位相付けは、クロスオーバー通路22内の圧力をオットーサイクルの4つのストローク全ての間に高い最低圧力(典型的には、全負荷で20bar以上)に維持するように、タイミング付けられている。
少なくとも1つのフュエルインジェクター28が、XovrEバルブ26の開きに連携して、クロスオーバー通路22の出口端部で加圧空気内に燃料を噴射する。代わりに、又は付加的に、燃料が当該膨張シリンダー14に直接に噴射されてもよい。燃料-空気充填物は、膨張ピストン30がそのTDC位置に到達後直ぐに当該膨張シリンダー14内に十分に入る。膨張ピストン30がそのTDC位置からの下降を開始するとき、そしてXovrEバルブ26がまだ開いている間に、1つ以上の点火プラグ32が点火され、(典型的には、膨張ピストン30のTDC後の10乃至20度CAの間で)燃焼を開始させる。燃焼は、膨張ピストンがそのTDC位置通過後の1乃至30度CAの間にある間に開始されてもよい。より好ましくは、燃焼は、膨張ピストンがそのTDC位置通過後の5乃至25度CAの間にある間に開始されてもよい。最も好ましくは、燃焼は、膨張ピストンがそのTDC位置通過後の10乃至20度CAの間にある間に開始されてもよい。加えて、燃焼は、グロープラグ、マイクロウエーブ点火装置によるような、又は圧縮着火方法によるような他の点火装置及び/又は方法によって、開始されてもよい。
排気ストローク中、排気ガスはシリンダーヘッド33に配置された排気ポート35を介して膨張シリンダー14から排出される。排気ポート35の入口31に配置された内開きのポペット排気バルブ34が、膨張シリンダー14及び排気ポート35の間の流体連通を制御する。当該排気バルブ34及び排気ポート35は、クロスオーバー通路22から分離されている。すなわち、当該排気バルブ34及び排気ポート35は、クロスオーバー通路22に接触していない。
分割サイクルエンジンのコンセプトによれば、圧縮シリンダー12及び膨張シリンダー14の幾何学的なエンジンパラメータ(すなわち、ボア、ストローク、コネクティングロッド長さ、容積測定の圧縮比、その他)は概ね互いから独立である。例えば、圧縮シリンダー12及び膨張シリンダー14についてのクランクスロー36、38は、それぞれ、異なる半径を有してもよく、そして膨張ピストン30の上死点(TDC)が圧縮ピストン20のTDCの前に起こるように互いから離れて位相付けられてもよい。この独立性は、分割サイクルエンジンが一般の4ストロークエンジンよりもより高い効率レベル及びより大きなトルクを潜在的に達成すること可能にしている。
分割サイクルエンジン10におけるエンジンパラメータの幾何学的な独立性はまた、前に述べたように、クロスオーバー通路22内に圧力が維持され得る主な理由の一つである。詳しくは、膨張ピストン30はその上死点位置に、圧縮ピストンがその上死点位置に到達する僅かな位相角(典型的には10ないし30の間のクランク角度)だけ前に、到達する。この位相角は、XovrCバルブ24及びXovrEバルブ26の適切なタイミングと伴って、分割サイクルエンジン10がその圧力/容積サイクルの全4つのストロークの間にクロスオーバー通路22内を高い最小圧力(典型的には、全負荷運転中に絶対圧で20bar以上)に維持することを可能にしている。すなわち、分割サイクルエンジン10は、XovrC及びXovrEバルブ24,26の両者が膨張ピストン30がそのTDC位置からそのBDC位置に降下し、そして圧縮ピストン20が同時にそのBDC位置からそのTDC位置に向けて上昇する間のかなりの期間(すなわち、クランクシャフトの回転期間)開くように、XovrCバルブ24及びXovrEバルブ26をタイミング付けて作動可能である。クロスオーバーバルブ24、26の両者が開いている期間(すなわち、クランクシャフトの回転)中、(1)圧縮シリンダー12からクロスオーバー通路22へ、及び(2)クロスオーバー通路22から膨張シリンダー14へほぼ等しい空気質量(マス)が移送される。従って、この期間中、クロスオーバー通路内の圧力は所定の最小圧力(典型的には、全負荷運転中に絶対圧で20、30又は40bar)より低く低下するのが防がれる。さらに、エンジンサイクルの実質的な部分(典型的には、全エンジンサイクルの80%以上)の間、XovrCバルブ24及び XovrE バルブ26の両者は、クロスオーバー通路22内に捕捉されているガスの質量(マス)をほぼ一定のレベルに維持するために、閉じられている。結果として、クロスオーバー通路22内の圧力は、エンジンの圧力/容積サイクルの全4つのストロークの間、所定の最小圧力に維持される。
ここでの目的のため、ほぼ等しいガスの質量(マス)をクロスオーバー通路22へ、又はそれから同時に移送させるために、膨張ピストン30がTDCから降下し、そして圧縮ピストン20がTDCに向けて上昇している間にXovrCバルブ24及びXovrEバルブ26を開く方法が、ここでガス移送のプッシュプル方法と称される。分割サイクルエンジン10のクロスオーバー通路22内の圧力が、エンジンが全負荷で運転しているとき、エンジンのサイクルの全4つのストロークの間に典型的には、20bar以上に維持されるのを可能にしているのがプッシュプル方法である。
前に論じたように、排気バルブ34は、シリンダーヘッド33の排気ポート35内にクロスオーバー通路22から離れて配置されている。排気バルブ34の構造配列はクロスオーバー通路22内に配置されておらず、そしてそれ故にクロスオーバー通路22と共通部分を共有していない排気ポート35は、排気ストローク中に、捕捉されたガスの質量(マス)をクロスオーバー通路22内に維持するためには、好ましい。従って、当該クロスオーバー通路内の圧力を所定の最小圧力より下にするかもしれない大きな圧力の周期的な低下は防止される。
当該XovrEバルブ26は、当該膨張ピストン30がその上死点位置に到達する直前に開く。この時点で、膨張シリンダー14内の圧力に対するクロスオーバー通路22内の圧力の圧力比は、当該クロスオーバー通路内の最小圧力が、典型的には、20bar絶対圧以上で、且つ排気ストローク中の膨張シリンダー内の圧力が、典型的には、約1から2bar絶対圧であるという事実によって、高い。換言すると、当該XovrEバルブ26が開いたとき、クロスオーバー通路22内の圧力は膨張シリンダー14内の圧力よりも大幅に高い(典型的には、20対1のオーダー以上)。この高い圧力比は、空気及び/又は燃料充填物の初期流れが膨張シリンダー14内へ高い速度で流れることを生じさせる。これらの高い流れ速度は、音速流と称される音の速度に到達することができる。この音速流は当該分割サイクルエンジン10にとって特に有利である。というのも、それは、当該膨張ピストン30がその上死点位置から下降している間に点火が開始されたとしても、当該分割サイクルエンジン10が高い燃焼圧力を維持することを可能にする急速燃焼事象を生じさせるからである。
当該分割サイクル空気ハイブリッドエンジン10はまた、空気貯留器タンクバルブ42を介してクロスオーバー通路22に作用可能に連結されている空気貯留器(タンク)40を含んでいる。2つ以上のクロスオーバー通路22を備える実施形態は、共通の空気貯留器40につながる各々のクロスオーバー通路22のためのタンクバルブ42を含んでもよく、全てのクロスオーバー通路22を共通の空気貯留器40に連結する単一のバルブを含んでもよく、又は各々のクロスオーバー通路22が別々の空気貯留器40に作用可能に連結してもよい。
当該タンクバルブ42は、典型的には、クロスオーバー通路22から空気タンク40まで延在している空気タンクポート44内に配置されている。当該空気タンクポート44は、第1の空気タンクポート区分46及び第2の空気タンクポート区分48に分けられている。当該第1の空気タンクポート区分46は当該空気タンクバルブ42をクロスオーバー通路22に連結し、そして第2の空気タンクポート区分48は当該空気タンクバルブ42を空気タンク40に連結している。
当該第1の空気タンクポート区分46の容積は、当該空気タンクバルブ42が閉じられているとき、当該タンクバルブ42をクロスオーバー通路22に連結する全ての付加的な凹部の容積を含んでいる。好ましくは、当該第1の空気タンクポート区分46の容積は第2の空気タンクポート区分48に比べて小さい。より好ましくは、当該第1の空気タンクポート区分46は実質的には無きに等しく、すなわち、当該タンクバルブ42は、最も好ましくは、クロスオーバー通路22の外壁に対して面一となるように配置されている。
当該タンクバルブ42は、適切なバルブ装置又はシステムであってもよい。例えば、当該タンクバルブ42は、種々のバルブ作動装置(例えば、空圧、液圧、カム、電気式など)によって動作される能動バルブであってもよい。加えて、当該タンクバルブ42は、2つ以上の作動装置でもって動作される2つ以上のバルブを備えるタンクバルブシステムを備えてもよい。
空気タンク40は、圧縮空気の形でエネルギーを蓄え、そしてクランクシャフト16に動力を与えるためにその圧縮空気を後で用いるべく利用されている。この潜在的なエネルギーを蓄える機械式の手段は、現在の技術水準に対して多数の潜在的有利性を提供している。例えば、当該分割サイクルエンジン10は、ディーゼルエンジン及び電気ハイブリッドシステムのような市場における他の技術に対して、比較的低い製造及び廃棄物処理コストで、燃料効率利得及びNOxエミッション低減での多くの有利性を潜在的に提供することができる。
空気ハイブリッド分割サイクルエンジン10は、典型的には通常の運転モード(エンジン点火燃焼(EF)モード、又は、通常の点火燃焼(NF)モードと呼ばれている)と4つの基本空気ハイブリッドモードとで作動する。EFモードにおいて、エンジン10は、詳しく前述したように普通に機能し、当該空気タンク40の使用なしで作動する。EFモードにおいて、空気タンクバルブ42は、空気タンク40を基本の分割サイクルエンジンから隔離すべく閉じられたままである。
4つの空気ハイブリッドモードにおいては、当該エンジン10は空気タンク40の使用を伴って作動する。当該4つの基本的な空気ハイブリッドモードは、
1)燃焼を伴わずに、空気タンク40からの圧縮空気エネルギーを用いることを含む空気膨張機(AE)モード、
2)燃焼を伴わずに、空気タンク40に圧縮空気エネルギーを蓄えることを含む空気圧縮機(AC)モード、
3)燃焼を伴って、空気タンク40からの圧縮空気エネルギーを用いることを含む空気膨張機及び点火燃焼(AEF)モード、及び
4)燃焼を伴って、空気タンク40に圧縮空気エネルギーを蓄えることを含む点火燃焼及び充填(FC)モード、を含んでいる。
米国特許第6,543,225号明細書 米国特許第6,952,923号明細書 米国特許第7,353,786号明細書
当該分割サイクルエンジン10において、圧縮及び膨張シリンダー12,14は互いに一列に並んで位置され、クロスオーバー通路22が形成されている共通のシリンダーヘッド33を共有している。加えて、当該共通のヘッド33は、圧縮シリンダー12、膨張シリンダー14及びクロスオーバー通路22から熱を除去するために、ヘッド33を通してエンジン冷却剤が圧送されるのを可能にする幾つかの冷却用通路(不図示)を含まねばならない。クロスオーバー通路22はシリンダーヘッド33に一体に形成されているので、シリンダー12、14に対するクロスオーバー通路22(及びその中の流体)の温度を独立して制御するのは極めて困難である。
また、シリンダーヘッド33における利用可能空間の相対的欠如が、当該クロスオーバー通路(複数)22及び空気貯留器制御バルブ(複数)42について、望ましくない寸法及び形状の制約を負わせている。例えば、クロスオーバー通路22、又はバルブ42をクロスオーバー通路22に接続している第1の空気タンクポート区分46は、種々の冷却用通路を通り抜けること又はそれらに近づき過ぎることを回避するために曲げられねばならないかもしれない。当該曲げられたクロスオーバー通路は、必要以上に長くなるであろうし、その中の熱損失を増大させ、そして効率を低下させるであろう。当該曲げられた第1のタンクポート区分46は、当該クロスオーバー通路の容積と望ましくなく組み合わさって当該クロスオーバー通路内の圧力を低下させ、そしてまた、効率を低下させるであろう。その上、当該共通のヘッドはとくに混雑することになるので、冷却用通路を通り抜けるか近づき過ぎること無しに、タンクバルブ42をクロスオーバー通路22に接続することは、(事実上不可能ではないにしても)極めて困難になるかもしれない。
またさらに、シリンダーヘッド33内にクロスオーバー通路22を形成するために典型的に用いられる鋳造法は、クロスオーバー通路22内の空気の流れを邪魔し、そして当該クロスオーバー通路(複数)22の形状及び寸法を望ましくなく制限する生成物を製造後に残す。従って、改良された分割サイクルエンジン構成に対する必要性が存している。
改良された効率の分割サイクル空気ハイブリッドエンジンが開示され、そこでは、エンジンのシリンダーがV型構成を有するように、圧縮シリンダーの中心線が膨張シリンダーの中心線に関して、ゼロではない角度に位置されている。それぞれのシリンダーの中心線は、それらが典型的には互いに交差しないので、実際には「V」を形成していない。むしろ、中心線は、通常、クランクシャフトの軸方向に互いから(すなわち、各々のシリンダーのそれぞれのクランクスローの厚みを収容するために)離間されている。しかしながら、クランクシャフトの回転軸に沿って視たとき、中心線は「V」の外見を有している。一実施形態において、それぞれのシリンダーの中心線は、「V」の頂点がクランクシャフトの回転軸で形成されるように、クランクシャフトの回転軸と交差している。
もう1つの実施形態において、圧縮シリンダー及び膨張シリンダーの一方又は両方は、中心線がクランクシャフトの回転軸に交差しないことを意味する「オフセットされた」中心線を有している。この実施形態において、シリンダーの中心線は、クランクシャフトの回転軸の下方に位置される(すなわち、クランクシャフトの回転軸に対してシリンダーの反対側に位置される)線(すなわち、その上にVの頂点が形成される)に交差することが好ましい。Vの頂点が形成される線は、選択肢として、クランクシャフトの回転軸に平行に形成されてもよい。モジュール式のクロスオーバー通路、クロスオーバー通路マニホールド、熱調節システム、及び関連する空気貯留器バルブアセンブリもまた開示されている。
本発明の少なくとも1つの実施形態の1つのアスペクトにおいて、膨張シリンダーの中心線に関して、ゼロではない角度に位置されている中心線を有している圧縮シリンダーを備えるV型の分割サイクル空気ハイブリッドエンジンが提供されている。一実施形態において、当該ゼロではない角度は、約10度から約120度の範囲内である。当該ゼロではない角度はまた、約30度、約45度、及び約60度からなる群から選ばれてもよい。
本発明の少なくとも1つの実施形態のもう1つのアスペクトにおいて、圧縮シリンダーに連結された第1のシリンダーヘッドと、膨張シリンダーに連結された第2のシリンダーヘッドと、当該第1及び第2のシリンダーヘッドに対して外付けで形成され、そして当該第1及び第2のシリンダーヘッドの間で流体を選択的に移送すべく構成されている少なくとも1つのクロスオーバー通路と、を含んでいる分割サイクルエンジンが提供される。
一実施形態において、当該エンジンは空気ハイブリッドエンジンであり、少なくとも1つのクロスオーバー通路は、空気貯留器を第1又は第2のシリンダーヘッドに選択的に流体連通状態にさせる空気貯留器バルブを含んでいる。当該少なくとも1つのクロスオーバー通路は、第1及び第2のクロスオーバー通路を備え、その各々は、クロスオーバー圧縮バルブ及びクロスオーバー膨張バルブを有している。当該クロスオーバー圧縮バルブ及び当該クロスオーバー膨張バルブは外方に開いてもよい。一実施形態において、当該空気貯留器バルブは外方に開く。
本発明の少なくとも1つの実施形態のもう1つのアスペクトにおいて、クランクシャフト軸の回りに回転するクランクシャフト、及び圧縮シリンダーであって、オフセット軸と交差する中心線を有しており、当該オフセット軸はクランクシャフト軸に平行で、そしてそれからオフセットされている圧縮シリンダーを含む分割サイクル空気ハイブリッドエンジンが提供されている。当該エンジンはまた、オフセット軸と交差する中心線を有する膨張シリンダーを含み、及び当該圧縮シリンダーの中心線は、オフセット軸に沿って視たとき、当該膨張シリンダーの中心線に関してゼロではない角度に位置されている。
本発明の少なくとも1つの実施形態のもう1つのアスペクトにおいて、クランクシャフト軸の回りに回転するクランクシャフト、第1のシリンダーであって、当該第1シリンダーの中心線がクランクシャフト軸に交差しないようにオフセットされている第1のシリンダー、及び中心線を有している第2のシリンダーであって、第1のシリンダーの中心線が第2のシリンダーの当該中心線に関してゼロではない角度に位置されている第2のシリンダー、を含む分割サイクル空気ハイブリッドエンジンが提供される。第1のシリンダーは圧縮シリンダー、又は第1のシリンダーは膨張シリンダーであってもよい。一実施形態において、当該第2のシリンダーは、当該第2のシリンダーの中心線がクランクシャフト軸に交差しないようにオフセットされている。
本発明の少なくとも1つの実施形態のもう1つのアスペクトにおいて、圧縮シリンダーに連結された第1のシリンダーヘッドと、膨張シリンダーに連結された第2のシリンダーヘッドと、当該第1及び第2のシリンダーヘッドの間で流体を選択的に移送させるべく構成された熱調節クロスオーバーマニホールドとを含む分割サイクルエンジンが提供されている。当該マニホールドは、少なくとも1つの断熱されたクロスオーバー通路と少なくとも1つの冷却されるクロスオーバー通路を含んでいる。一実施形態において、当該マニホールドは、エンジンの運転状態に応じて、当該少なくとも1つの冷却されるクロスオーバー通路又は当該少なくとも1つの断熱されたクロスオーバー通路のいずれかを介して流体を選択的に方向転換すべく構成された複数のバルブを含んでいる。当該エンジンはまた、エンジン冷却剤が流れる1つ以上の流体ジャケットであって、少なくとも1つの冷却されるクロスオーバー通路に近接して配置されている1つ以上の流体ジャケットを含んでもよい。少なくとも1つの断熱されたクロスオーバー通路の周りに配置された断熱材料もまた設けられてもよい。一実施形態において当該断熱材料はセラミックである。当該断熱されたクロスオーバー通路はまた加熱されてもよい。
本発明は、添付の図面と共になされる以下の詳細な説明からより十分に理解されるであろう。
先行技術の分割サイクル空気ハイブリッドエンジンの概略断面図である。 本発明による分割サイクル空気ハイブリッドエンジンの一実施形態の透視的断面図である。 図2の分割サイクル空気ハイブリッドエンジンの断面輪郭図である。 図3の4−4線に沿ってとった、図2及び3の分割サイクル空気ハイブリッドエンジンの断面平面図えある。 本発明によるオフセットされたシリンダー中心軸を有する分割サイクル空気ハイブリッドエンジンのもう1つの実施形態の断面輪郭図である。 図4における6−6線に沿ってとった図4の空気貯留器バルブアセンブリの部分断面輪郭図である。 図4における7−7線に沿ってとった図4の空気貯留器バルブアセンブリの斜視図である。 本発明による熱調整されるクロスオーバーマニホールドを有する分割サイクル空気ハイブリッドエンジンのもう1つの実施形態の透視的断面図である。 クロスオーバー通路及び第1の構成における制御バルブの組を有する図8のエンジンの熱調整されるクロスオーバーマニホールドの概略断面図である。 第2の構成における制御バルブの組を備える図8のエンジンのクロスオーバーマニホールドの概略断面図である。 本発明による熱調整されるクロスオーバーマニホールドを有する分割サイクル空気ハイブリッドエンジンのもう1つの実施形態の透視的断面図である。 クロスオーバー通路及び第1の構成における制御バルブの組を有する図11のエンジンの熱調整されるクロスオーバーマニホールドの概略断面図である。 第2の構成における制御バルブの組を備える図11のエンジンのクロスオーバーマニホールドの概略断面図である。
ここに開示される方法、システム、及び装置の構造、機能、製造、及び使用の原理の全体的な理解をもたらすべく、いくつかの模範的実施形態が、今、説明される。これらの実施形態の1つ以上の実施例が添付図面に図解されている。当業者は、ここに具体的に説明され、そして添付図面に図解されている方法、システム、及び装置は非限定の模範的実施形態であり、そして本発明の範囲は特許請求の範囲によってのみ定められるということを理解するであろう。一模範的実施形態に関連して図解ないしは説明されている特徴は、他の実施形態の特徴と組み合わされてもよい。かかる修正及び変更は、本発明の範囲内に含まれるべく意図されている。
図2−4は、本発明による分割サイクル空気ハイブリッドエンジン200の1つの模範的な実施形態を図解している。当該エンジン200は、一般に、エンジンブロック202、クランクシャフト軸(すなわち、回転軸)228の回りを回転するクランクシャフト204、第1及び第2のシリンダーヘッド206、208、第1及び第2のクロスオーバー通路210、212、及び空気貯留器214を含んでいる。
図3に示されるように、エンジンブロック202は、少なくとも1つの圧縮シリンダー216及び少なくとも1つの膨張シリンダー218を画成している。図示されるように、圧縮及び膨張シリンダー 216、218の中心線は、クランクシャフト軸228に沿って視たとき、当該エンジン200がV型構成に向かわされるように、互いに対してゼロでない角度Aに位置されている。角度Aは、約0.1度と約180度の間、約5度と約150度の間、約10度と約120度の間、約15度と約90度の間、約30度と約60度の間、約10度と約30度の間、約60度と約90度の間、及び/又は約 45度と約55度の間であってもよい。例えば、角度Aは、0,1度、15度、30度、45度、60度、75度、90度、105度、120度、150度、又は180度であってもよい。図解されている実施形態において、圧縮及び膨張シリンダー 216、218は、互いに関して約54度の角度Aで方向付けられている。
当該エンジン200は、実質的に如何なる数の圧縮及び/又は膨張シリンダーを含んでもよく、そして圧縮シリンダーの数が必ずしも膨張シリンダーの数に等しくある必要はないということが理解されよう。この実施形態において、当該エンジン200は、1つの圧縮シリンダー及び1つの膨張シリンダーを含んでいる。オットーサイクルの4つのストロークは、圧縮シリンダー216が 吸入及び圧縮ストロークを包含し、そして膨張シリンダー218が膨張及び排気ストロークを包含するように、圧縮及び膨張シリンダーに亘って「分割」されている。それ故に、オットーサイクルは、圧縮及び膨張シリンダー 216、218においてクランクシャフトの一回転(360度CA)毎に完了される。
シリンダー216、218の上端部は、それぞれのシリンダーヘッド206、208で閉じられている。圧縮及び膨張シリンダー216、218は、往復用に、圧縮ピストン220及び膨張(又は「動力」)ピストン222をそれぞれ受け入れている。当該第1のシリンダーヘッド206、圧縮ピストン220、及び圧縮シリンダー216は、圧縮シリンダー216内に可変容量の圧縮チャンバー 224を画成している。当該第2のシリンダーヘッド208、膨張ピストン222、及び膨張シリンダー218は、膨張シリンダー218内に可変容量の燃焼チャンバー226を画成している。
シリンダーヘッド206、208をV型構成に方向付けて分離することは、クロスオーバー通路210、212への良好なアクセスを許容し、空気貯留器バルブ260のそれへの取り付けをより容易にし、それによって空気貯留器214の構築を促進させる。
この構成はまた、共通のシリンダーヘッド33内にクロスオーバー通路を形成する必要性を回避し、以下に詳細に論ずるように、圧縮及び膨張シリンダーに対しての当該クロスオーバー通路の独立した温度制御を可能にする。エンジン200の当該V型構成は、当該クロスオーバー通路210、212の実体部分が、例えば、分離したクロスオーバー通路マニホールド(不図示)のように、第1及び第2のシリンダーヘッド206、208の外側に位置されるのを可能にする。従って、丁度、当該クロスオーバー通路用に分離した冷却用通路が設計され得、当該クロスオーバー通路の周りの領域をより開けて利用しやすくすることができる。このことは、当該クロスオーバー通路がより直線状でより短く作られることが可能で、熱損失を低減し且つエンジン効率を向上させるであろうことを意味している。加えて、1つ以上の空気貯留器バルブ260が、冷却用通路に当たるとか過剰に近接するとかの構造的問題無しに、当該クロスオーバー通路210、212により容易に取り付けられ、そして空気貯留器214に接続される。その上、空気貯留器214への接続が直線状にでき、そして空気貯留器バルブ(複数)260が当該クロスオーバー通路210、212の外表面に対して同一面に取り付けられ得、クロスオーバー通路圧力及びエンジン効率をさらに増大させる。
クランクシャフト204は、クランクシャフト軸228の回りの回転のためにエンジンブロック202に軸支され、そして軸方向に変位され且つ角度的にオフセットされている第1及び第2のクランクスロー230、232(その間に位相角を有している)を含んでいる。当該第1のクランクスロー230は、ピストン220、222を、それぞれ、それらのそれぞれのシリンダー216、218内で、クランクスロー230、232の角度的オフセットによって決定されているタイミング関係、及びシリンダー216、218とクランクシャフト204とピストン220、222との幾何学的関係で往復させるべく、第1のコネクティングロッド236によって圧縮ピストン220に旋回可能に連結され、そして当該第2のクランクスロー232は、第2のコネクティングロッド238によって膨張ピストン222に旋回可能に連結されている。もしも望まれるなら、当該ピストン220、222の運動及びタイミングを関係付ける代替の機構が、用いられてもよい。
シリンダーヘッド206、208は、分割サイクル空気ハイブリッドエンジン200の所望の目的を達成するのに適した種々の通路、ポート及びバルブを含んでいる。図解された実施形態において、吸気ポート242と圧縮シリンダー216との間の流体の流れを制御するための内方に開く吸気バルブ240を含んでいる、第1の、圧縮側シリンダーヘッド206が設けられている。当該シリンダーヘッド206はまた、それぞれのクロスオーバー通路210、212の入口に、それぞれ、当該圧縮シリンダー216と当該クロスオーバー通路210、212との間の流体の流れを制御するための第1及び第2の外方に開くポペット型クロスオーバー圧縮(XovrC)バルブ244、246を含んでいる。
吸気ストローク中、吸入空気は、吸気ポート242を通して圧縮シリンダー216内に吸気バルブ240を経由して引き込まれる。圧縮ストローク中、圧縮ピストン220が当該空気充填物を加圧し、そして当該空気充填物を、膨張シリンダー218にとって吸気通路として作用する当該クロスオーバー通路210、212に押し出す。
当該図解されているエンジン200はまた、第2の、膨張側シリンダーヘッド208を含んでいる。当該ヘッド208は、当該クロスオーバー通路210、212と当該膨張シリンダー218との間の流体の流れを制御する、第1及び第2の外方に開くポペット型クロスオーバー膨張( XovrE )バルブ248、250をそれぞれのクロスオーバー通路210、212の出口に、含んでいる。当該ヘッド208はまた、膨張シリンダー218と排気ポート254との間の流体の流れを制御するために、内方に開くポペット型排気バルブ252を含んでいる。
1つ以上のフュエルインジェクター(不図示)が、当該XovrEバルブ248、250のそれぞれの開きに一致して、当該クロスオーバー通路210、212の出口端部で当該加圧された空気に燃料を噴射する。代わりに、又は追加して、燃料が、膨張シリンダー218に直接に、及び/又は当該クロスオーバー通路210、212の一方又は両方に直接に噴射されてもよい。当該燃料−空気の充填物は、膨張ピストン222がそのTDC位置に到達した僅か後に膨張シリンダー218内に十分に入る。当該XovrEバルブ248、250の1つ以上が開いたままで、当該ピストン222がそのTDC位置からその下降を開始したとき、1つ以上の点火プラグ(不図示)が、燃焼を開始させるべく(典型的には、膨張ピストン222のTDC後10乃至20度CAの間で)点火される。当該点火プラグ(複数)は、点火制御器(不図示)によって精確な時に空気燃料充填物を着火するために、電極が燃焼チャンバー226内に延びた状態で、シリンダーヘッド208に取り付けられている。当該エンジン200はまた、ディーゼルエンジンであってもよく、点火プラグ無しに作動され得るということが理解されるべきである。その上、当該エンジン200は、往復ピストンエンジン用に適した水素又は天然ガスのような如何なる燃料ででも作動するように設計され得る。
点火プラグが点火された後、結果としての燃焼事象がクロスオーバー通路210、212に入る前に、XovrEバルブ248、250は閉じられる。当該燃焼事象は、動力ストロークにおいて、膨張ピストン222を下方に駆動する。排気ガスは、排気ストローク中に、排気ポート254を通って排気バルブ252を経由して、膨張シリンダー222から送出される。
当該クロスオーバー通路210、212は、種々の構成を有することができる。当該図解されているエンジン200は、2つのクロスオーバー通路210、212を含んでいるが、それはまた、単一のクロスオーバー通路のみ、又は2つ以上のクロスオーバー通路を有することができる。
当該図解されているクロスオーバー通路210、212は、一般に、当該クロスオーバー通路210、212をシリンダーヘッド206、208に取り付けるための取付けフランジ256がいずれかの端部に形成されている細長くて中空の流れ管を含んでいる。当該クロスオーバー通路210、212はまた、以下にさらに詳細に論じられるように、少なくとも1つの空気貯留器バルブ260(図3を見よ)を収容する少なくとも1つの空気貯留器バルブアセンブリ258を含んでいる。図解された実施形態において、当該クロスオーバー通路210、212は、本発明の範囲から逸脱すること無しに実質的には如何なる断面形状が用いられてもよいけれども、概ね円形断面を有している。例えば、当該クロスオーバー通路は、楕円断面を有することができる。当該クロスオーバー通路210、212は、一般に、図示されるように直線状であってもよく、又は、1つ以上の曲がりないしはベンド(bend)を含んでもよい。一実施形態において、当該クロスオーバー通路は、それらが異なるエンジン負荷領域のための流れに対応して異なる内部容積を有するように、寸法付けられ且つ形状付けられている。例えば、クロスオーバー通路210は、クロスオーバー通路212の容積の約半分の容積を有するように寸法付けられてもよい。従って、小さい容積の通路210は、主としてエンジン負荷領域の下側3分の1のために用いられ、大きい容積の通路212は、主としてエンジン負荷領域の中間の3分の1のために用いられ、そして組み合わされた通路210、212は主としてエンジン負荷領域の上側の3分の1のために用いられ得る。
クロスオーバー通路210、212の空気貯留器バルブアセンブリ258は、当該クロスオーバー通路210、212と空気貯留器214との間の流体の流れを制御する。空気貯留器214は、圧縮ピストン220の複数の圧縮ストロークからの圧縮空気エネルギーを受け取って蓄え、そして以下に説明されるように、当該エンジン200の種々の空気ハイブリッドモードでの運転を促進するように寸法付けられている。クロスオーバー通路210、212の各々は、それ自体のそれぞれの空気貯留器に連結されてもよく、及び/又は図示されるような、単一の共通の空気貯留器214に連結されてもよいことが理解されよう。
当該エンジン200におけるバルブ(すなわち、吸気バルブ240、XovrCバルブ244、246、XovrEバルブ248、250、排気バルブ252、空気貯留器バルブ260等)は、典型的には、それぞれ直接に又は1つ以上の中間エレメントを経由して、バルブを作動させ且つ係合するカムローブを有しているカムシャフト(不図示)によって作動される。各々のバルブは、それ自体のカム及び/又はそれ自体のカムシャフトを有することができ、又は2つ以上のバルブは、共通のカム及び/又はカムシャフトによって作動されてもよい。代わりに、バルブの1つ以上が、機械的に、電子的に、空力学的に、及び/又は油圧式に可変作動されてもよい。
当該エンジン200は、前述の空気ハイブリッドモード(すなわち、AE、AC、AEF、及びFCモード)のいずれでも運転可能である。
既存の分割サイクルエンジンにおいて、膨張及び圧縮シリンダーのそれぞれの中心線は、一般に、互いに平行であり、そして図1に示されるように、クランクシャフトの回転軸に交差している。図3のエンジン200においては、圧縮シリンダー216の中心線262及び膨張シリンダー218の中心線264は、互いには平行ではないが、クランクシャフト204の回転軸228に交差している。しかしながら、これは常にそうでなければならないということではない。換言すると、圧縮シリンダー及び膨張シリンダーの一方又は両方は、それらの中心線がクランクシャフトの回転軸に交差しないことを意味する「オフセットされ」てもよい。かかる実施形態において、シリンダーの中心線は、クランクシャフトの回転軸の下方に位置されている(すなわち、クランクシャフトの回転軸に対してシリンダーと反対側に位置されている)線(すなわち、その線上にV型の頂点が形成されている)に交差するのが好ましい。線上にV型の頂点が形成されている当該線は、選択肢としてクランクシャフトの回転軸に平行であってもよい。例えば、図5は、圧縮及び膨張シリンダー216'、218'の中心線262'、264'が、クランクシャフト軸228’に交差しない分割サイクル空気ハイブリッドエンジン200'を図解している。むしろ、当該中心線262’、264’は、クランクシャフト軸228’に平行であるがそれからオフセットされているオフセット軸266’に交差している。このことは、有利なことに、ピストンスカートとシリンダー壁との間の摩擦を軽減する。加えて、このことは、V型のエンジンブロック202'の角度A'が減少されるのを許容し、回りまわって、より短いクロスオーバー通路210'、212'を可能にする。より短いクロスオーバー通路210'、212'によれば、通路全域での圧力低下及び熱損失が少なく、エンジン効率を向上させる。種々のオフセット(すなわち、クランクシャフト軸228’と当該オフセット軸266'との間の距離)が本発明の範囲から逸脱すること無しに用いられてもよい。
図6−7は、本発明による空気貯留器バルブアセンブリ258の一実施形態を図解している。図示されるように、当該バルブアセンブリ258は、一般に、クロスオーバー通路(すなわち、クロスオーバー通路210、212)と一列に並んで置かれるべく構成されている長手方向管状部分268を含んでいる。一実施形態において、当該バルブアセンブリ258は当該クロスオーバー通路と一体に形成されている。代わりに、当該クロスオーバー通路が第1及び第2の部分を含み、その各々が、当該バルブアセンブリ258の長手方向管状部分268のそれぞれの端部に連結されてもよい。当該管状部分268は、空気貯留器バルブ260のヘッド272とシール係合を形成するためのバルブシート270を含んでいる。図解された実施形態において、当該空気貯留器バルブ260は、外方に開く(すなわち、当該管状部分268の内部から外方に離れて開く)バルブヘッド272及びバルブステム274を有しているポペット型バルブである。バルブステム274は、当該管状部分268から上方に離れて延びている、当該バルブアセンブリ258の横断部分276を通って延在している。横断部分276の内部と当該管状部分268の内部との間の流体の連通が、空気貯留器バルブ260を作動させることによって、選択的に確立される。当該管状部分268から反対側の横断部分276の端部は、空気貯留器(不図示)に、直接に、又は管体、バルブのような1つ以上の中管構造体を介して連結されている。
当該バルブステム274は、横断部分276の外側に配置されたカム又は他のバルブアクチュエータによって直線運動が授けられるように、摺動可能な配列でもって、横断部分276の側壁を通って延在している。横断部分276内の加圧された流体がバルブステム274の表面周りを漏れるのを許さずに、当該バルブステム274が横断部分276に関して摺動するのを可能にするためのシール特性が、当該技術分野で知られているように、与えられている。当該空気貯留器を1つ以上のクロスオーバー通路と流体の連通状態に選択的に置くためには、種々の他のバルブ及び/又はハウジングの形式が用いられ得るということが理解されるであろう。
上で述べたように、クロスオーバー通路をシリンダー ヘッドに対し外付けで形成すると、有利なことに、当該クロスオーバー通路の独立した熱調節が可能になる。図8は、分割サイクル空気ハイブリッドV型エンジン300の一実施形態を図解しており、そこでは、種々のエンジン運転パラメータに応じて当該クロスオーバー通路の温度を調節するための熱制御システムが用いられている。図示されるように、当該エンジン300は、4つのクロスオーバー通路380、382、384、386が形成されて熱調整されるクロスオーバー通路マニホールド378を含んでいる。かかるクロスオーバー通路マニホールドを用いることは、V型の分割サイクルエンジンに限定されることなく、そしてここに説明されるマニホールドはまた、直列の分割サイクルエンジンにも用いられ得るということが理解されよう。当該マニホールド378の各通路は、それ自体の空気貯留器バルブアセンブリ358を有している。再度、図解されているクロスオーバー通路及び空気貯留器バルブの数は、単に、模範的なものであり、如何なる数のクロスオーバー通路及び/又は空気貯留器バルブが、本発明の範囲から逸脱すること無しに用いられてもよい。クロスオーバー通路380、382は、共通のXovrCバルブ344及び共通のXovrEバルブ348を共有している。同様に、クロスオーバー通路384、386は、共通のXovrCバルブ346及び共通のXovrEバルブ350を共有している。他の実施形態においては、各クロスオーバー通路は、それ自体の固有のXovrC及び/又はXovrEバルブを含んでおり、又は単一のXovrC又はXovrEバルブが2つの以上のクロスオーバー通路によって共有されている。
図9は、クロスオーバーマニホールド378の断面図を図解している。図示されるように、当該マニホールド378の両端部は、第1及び第2のシリンダーヘッド306、308にボルト付けされている。当該マニホールド378は、流体の流れが、XovrCバルブ344、346によって、それぞれ、制御される第1及び第2のXovrC入口388、390を含んでいる。当該マニホールド378はまた、流体の流れが、XovrEバルブ348、350によって、それぞれ、制御される第1及び第2のXovrE出口392、394を含んでいる。調節可能なボールバルブ391、395が、当該マニホールドの入口388、390に、それぞれ、配置され、そして調節可能なボールバルブ393、397が、当該マニホールド出口392、394に、それぞれ、配置されている。当該ボールバルブ391、393の構成は、当該入口388に入ってくる流体をクロスオーバー通路380又はクロスオーバー通路382のいずれかに選択的に向けるべく、調節可能である。同様に、当該ボールバルブ395、397の構成は、当該入口390に入ってくる流体をクロスオーバー通路384又はクロスオーバー通路386のいずれかに選択的に向けるべく、調節可能である。当該技術分野で知られている種々の手段のいずれも、機械式、油圧式、電磁式、及び/又は空力式のアクチュエータを含む、当該ボールバルブ391、393、395、397の構成を変更するために用いられてもよい。加えて、当該図解されているボールバルブは、本発明に用いられ得るバルブの単に1つの模範的な形式であり、当業者は、種々の既知のバルブ形式も全て本発明の範囲から逸脱すること無しに用いられ得ることを理解するであろう。当該バルブ391、393、395、397は、選択肢として、2位置バルブであってもよい。一実施形態において、クロスオーバー通路間の切替は、複数のエンジンサイクル(すなわち、数ダース、数百、など)に亘って生じ得、このことは、当該バルブ391、393、395、397が必ずしも高速作動である必要はなく、そして代わりに、遅くて、耐久性があり廉価な種類であってもよいことを意味している。
クロスオーバー通路380、384は、そこに配設された又はそこを通過する流体の温度を概ね維持又は上昇させるための特徴部を含んでいる。図9の実施形態において、クロスオーバー通路380、384は、当該クロスオーバー通路380、384内のエンジン熱を維持するべく構成された断熱材396で包み込まれている。限定すること無しに、セラミックス、ケブラー(Kevlar)、プラスチックス、複合材料等を含む、種々の断熱材料のいずれもが、この目的のために用いられ得る。加えて、当該クロスオーバー通路380、384は、真空で覆われ(すなわち、内部に真空が生成されている外管内に配置され)てもよい。当該エンジン300はまた、選択肢として、能動的加熱エレメントを含んでいてもよい。例えば、高温の排気ガスが、当該クロスオーバー通路380、384に並んで形成された空気通路を通して送られてもよく、又は当該クロスオーバー通路380、384に隣接して配置されている流体ジャケットを通して送り出され得るオイル又は他の流体を、加熱するために用いられる。一実施形態において、当該クロスオーバー通路380、384は、電熱コイルでもって包まれてもよい。
クロスオーバー通路382、386は、そこに配設された又はそこを通過する流体の温度を概ね下降させるための特徴部を含んでいる。図解されているように、流体ジャケット398が、当該マニホールド378内に当該クロスオーバー通路382、386に近接して形成されている。エンジン冷却剤ないしは他の流体が、当該クロスオーバー通路382、386を冷却するために、当該流体ジャケット398を通して送られている。当該冷却されるクロスオーバー通路382、386はまた、ヒートシンク又はファンのような他の冷却機構を含んでもよく、且つ選択肢として、熱を速やかに消散させると知られているアルミニウムのような材料から形成されてもよい。
当該エンジン300はまた、熱制御コンピューター(不図示)及び種々の関連するセンサー、サーモスタット、アクチュエータ、及び/又は精確な温度制御を促進させるための他の制御器を含んでいる。
運転中には、当該ボールバルブ391、393、395、397は、圧縮シリンダーから膨張シリンダーへ流れる流体が、当該エンジン300の効率を向上させるために必要とされる、断熱されるか、加熱されるか、又は冷却されるかのいずれかであるように、選択的に作動される。例えば、当該エンジン300が最初にスタートされ、まだ作動温度に到達していないときは、バルブ391、393、395、397は、圧縮シリンダーで圧縮された流体が断熱されたクロスオーバー通路380、384を介して送られ、そして膨張シリンダーに入る前に加熱及び/又は断熱されるように、図9に示されるような第1の構成に置かれる。この構成における流体の流れは、図示の矢印で指示されている。この構成はまた、当該エンジン300が低負荷の下に作動しているとき(例えば、エンジンが全負荷の約70%より下で作動しているとき)に用いられる。入っている空気充填物が膨張シリンダーに到達する前にそれを加熱及び/又は断熱することによって、クロスオーバー通路の圧力が高いレベルに維持され、それによって全体の効率を向上させる。
当該エンジン300が高負荷で作動しているとき(例えば、エンジンがその定格負荷の約70%以上で作動しているとき)は、早期燃焼を防止し且つ出力を向上させるために、当該空気充填物が膨張シリンダーに入る前にそれを冷却することが望ましい。従って、当該バルブ391、393、395、397は、圧縮シリンダーで圧縮された流体を冷却されるクロスオーバー通路382、386を介して送るべく、図10に示されるような、第2の構成に置かれる。この構成における流体の流れは、図示の矢印によって指示されている。入っている空気充填物が膨張シリンダーに到達する前にそれを冷却することによって、当該空気充填物の温度及び圧力が低減され、そのことは、有利なことに、過早点火及びノッキングを防止する。当該冷却されるクロスオーバー通路382、386は、選択肢として、空気貯留器バルブ358を有していない。何故ならば、当該冷却されるクロスオーバー通路382、386が用いられる運転状態の下では、空気ハイブリッドモードで作動させることが望ましくないかもしれないからである。
図11は、分割サイクル空気ハイブリッドエンジン400のもう1つの実施形態を図解し、そこでは、種々のエンジン運転パラメータに応じてクロスオーバー通路の温度を調節するために熱制御システムが用いられている。エンジン400は、図8-10に関して上に論じられたエンジン300と、当該エンジン400のマニホールド478がただ3つのクロスオーバー通路480、484、499を有するということを除いて、ほぼ同じである。換言すると、エンジン300が、2つの冷却されるクロスオーバー通路382、386を含んでいる一方、エンジン400は、代わりに、単一の冷却されるクロスオーバー通路499を有している。かくて、図12に示されるように、エンジン400は、第1及び第2の断熱されたクロスオーバー通路480、484、及び中央の冷却されるクロスオーバー通路499を含んでいる。エンジン400は、代替的に、第1及び第2の冷却されるクロスオーバー通路を有することができ、そして断熱されたクロスオーバー通路は、代わりに、単一の通路に合流され得ることが理解されよう。
運転中には、エンジン400は、上述のエンジン300と実質的に同じように作動する。低負荷及び/又は低速運転中、又はエンジンの始動/暖機中には、一連のバルブ491、493、495、497は、図12に示されるように、圧縮シリンダーからの流体を、当該流体が膨張シリンダーに入る前にそれを断熱又は加熱するために、断熱されたクロスオーバー通路480、484に向けるべく構成されている。高負荷及び/又は高速運転中には、当該バルブ491、493、495、497は、図13に示されるように、圧縮シリンダーからの流体を中央の冷却されるクロスオーバー通路499に向けるべく構成され、それによって当該流体が膨張シリンダーに入る前にそれを冷却する。
ここに開示されたエンジン200、200'、300、400は、エンジン速度の広い範囲に亘って信頼性を有して作動するべく構成されている。ある実施形態において、本発明によるエンジンは、少なくとも約4000rpm、及び好ましくは少なくとも約5000rpm及びより好ましくは少なくとも約7000rpmの速度まで作動可能である。
本発明が特定の実施形態を参照して説明されたが、説明された発明のコンセプトの趣旨及び範囲内で多数の変更がなされ得ることが理解されるべきである。例えば、1つ以上のクロスオーバーバルブ又は空気貯留器バルブは内方に開くものであってもよい。また、4つ以上のクロスオーバーバルブ及び2つ以上のクロスオーバー通路があってもよい。加えて、ここに開示されたエンジンは、必ずしも空気ハイブリッドエンジンである必要はなく、むしろV型構成は、非ハイブリッド分割サイクルエンジンにも同じく適用され得る。これらの変更はただ例示的であり、他の変更も本発明の範囲から逸脱することなくなされ得る。従って、本発明は説明された実施形態に限定されず、しかし以下の請求の範囲の言葉によって定められる全範囲を有することが意図されている。

Claims (20)

  1. 膨張シリンダーの中心線に関して、ゼロではない角度に位置されている中心線を有している圧縮シリンダーを備えることを特徴とするV型の分割サイクル空気ハイブリッドエンジン。
  2. 当該ゼロではない角度は、約10度から約30度の範囲内であることを特徴とする請求項1に記載のエンジン。
  3. 当該ゼロではない角度は、約30度、約45度、及び約60度からなる群から選ばれていることを特徴とする請求項1に記載のエンジン。
  4. 圧縮シリンダーに連結された第1のシリンダーヘッドと、
    膨張シリンダーに連結された第2のシリンダーヘッドと、
    当該第1及び第2のシリンダーヘッドに対して外付けで形成され、そして当該第1及び第2のシリンダーヘッドの間で流体を選択的に移送すべく構成されている少なくとも1つのクロスオーバー通路と、
    を備えることを特徴とする分割サイクルエンジン。
  5. 当該エンジンは空気ハイブリッドエンジンであり、当該少なくとも1つのクロスオーバー通路は、空気貯留器を第1又は第2のシリンダーヘッドに選択的に流体連通状態にさせる空気貯留器バルブを備えていることを特徴とする請求項4に記載のエンジン。
  6. 当該少なくとも1つのクロスオーバー通路は第1及び第2のクロスオーバー通路を備え、その各々は、クロスオーバー圧縮バルブ及びクロスオーバー膨張バルブを有していることを特徴とする請求項5に記載のエンジン。
  7. 当該クロスオーバー圧縮バルブ及び当該クロスオーバー膨張バルブは外方に開くことを特徴とする請求項6に記載のエンジン。
  8. 当該空気貯留器バルブは外方に開くことを特徴とする請求項5に記載のエンジン。
  9. クランクシャフト軸の回りに回転するクランクシャフト、
    圧縮シリンダーであって、オフセット軸と交差する中心線を有しており、当該オフセット軸はクランクシャフト軸に平行で、そしてそれからオフセットされている圧縮シリンダー、
    当該オフセット軸と交差する中心線を有している膨張シリンダー、を備え、
    当該圧縮シリンダーの中心線が当該膨張シリンダーの中心線に関して、ゼロではない角度に位置されていることを特徴とする分割サイクル空気ハイブリッドエンジン。
  10. 当該オフセット軸は、クランクシャフト軸に対して圧縮シリンダー及び膨張シリンダーと反対に位置されていることを特徴とする請求項9に記載のエンジン。
  11. クランクシャフト軸の回りに回転するクランクシャフト、
    第1のシリンダーであって、当該第1シリンダーの中心線がクランクシャフト軸に交差しないようにオフセットされている第1のシリンダー、及び
    中心線を有している第2のシリンダーであって、第1のシリンダーの中心線が第2のシリンダーの当該中心線に関してゼロではない角度に位置されている第2のシリンダー、
    を備えることを特徴とする分割サイクル空気ハイブリッドエンジン。
  12. 当該第1のシリンダーは圧縮シリンダーであることを特徴とする請求項11に記載のエンジン。
  13. 当該第1のシリンダーは膨張シリンダーであることを特徴とする請求項11に記載のエンジン。
  14. 当該第2のシリンダーは、当該第2のシリンダーの中心線がクランクシャフト軸に交差しないようにオフセットされていることを特徴とする請求項11に記載のエンジン。
  15. 圧縮シリンダーに連結された第1のシリンダーヘッドと、
    膨張シリンダーに連結された第2のシリンダーヘッドと、
    当該第1及び第2のシリンダーヘッドの間で流体を選択的に移送させるべく構成されたマニホールドであって、少なくとも1つの断熱されたクロスオーバー通路と少なくとも1つの冷却されるクロスオーバー通路を含むマニホールドと、を備えることを特徴とする分割サイクルエンジン。
  16. 当該マニホールドは、エンジンの運転状態に応じて、当該少なくとも1つの冷却されるクロスオーバー通路又は当該少なくとも1つの断熱されたクロスオーバー通路のいずれかを介して流体を選択的に方向転換すべく構成された複数のバルブを含むことを特徴とする請求項15に記載の分割サイクルエンジン。
  17. エンジン冷却剤が流れる1つ以上の流体ジャケットであって、少なくとも1つの冷却されるクロスオーバー通路に近接して配置されている1つ以上の流体ジャケットをさらに備えることを特徴とする請求項15に記載のエンジン。
  18. 少なくとも1つの断熱されたクロスオーバー通路の周りに配置された断熱材料をさらに備えることを特徴とする請求項15に記載のエンジン。
  19. 当該断熱材料はセラミックであることを特徴とする請求項18に記載のエンジン。
  20. 少なくとも1つの断熱されたクロスオーバー通路は加熱されていることを特徴とする請求項15に記載のエンジン。
JP2013531795A 2010-10-01 2011-09-29 分割サイクル空気ハイブリッドv型エンジン Withdrawn JP2013538980A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38871610P 2010-10-01 2010-10-01
US61/388,716 2010-10-01
PCT/US2011/053802 WO2012044723A1 (en) 2010-10-01 2011-09-29 Split-cycle air hybrid v-engine

Publications (1)

Publication Number Publication Date
JP2013538980A true JP2013538980A (ja) 2013-10-17

Family

ID=45888719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531795A Withdrawn JP2013538980A (ja) 2010-10-01 2011-09-29 分割サイクル空気ハイブリッドv型エンジン

Country Status (11)

Country Link
US (1) US8714121B2 (ja)
EP (1) EP2622187A1 (ja)
JP (1) JP2013538980A (ja)
KR (1) KR20130111560A (ja)
CN (1) CN103228887A (ja)
AU (1) AU2011308852A1 (ja)
BR (1) BR112013007823A2 (ja)
CA (1) CA2813331A1 (ja)
MX (1) MX2013003426A (ja)
RU (1) RU2013117686A (ja)
WO (1) WO2012044723A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104230A1 (ja) * 2015-12-17 2017-06-22 本田技研工業株式会社 内燃機関

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103503A1 (en) 2012-01-06 2013-07-11 Scuderi Group, Inc. Lost-motion variable valve actuation system
KR101394047B1 (ko) * 2012-12-06 2014-05-12 현대자동차 주식회사 가변 사이클 엔진
US9297295B2 (en) 2013-03-15 2016-03-29 Scuderi Group, Inc. Split-cycle engines with direct injection
EP3441584B1 (en) * 2013-07-17 2021-03-10 Tour Engine, Inc. Method of operation of a split-cycle engine with a spool crossover shuttle
KR102394987B1 (ko) 2014-01-20 2022-05-06 투어 엔진 인코퍼레이티드 가변 공간 전달 셔틀 캡슐 및 밸브 기구
WO2016116928A1 (en) * 2015-01-19 2016-07-28 Tour Engine, Inc. Split cycle engine with crossover shuttle valve
GB2535693B (en) * 2015-01-27 2019-05-15 Ricardo Uk Ltd Split Cycle Engine Comprising Two Working Fluid Systems
US10352233B2 (en) * 2017-09-12 2019-07-16 James T. Ganley High-efficiency two-stroke internal combustion engine
NL2019783B1 (en) * 2017-10-23 2019-04-29 Finvestor B V Combustion engine
JP7426997B2 (ja) 2018-11-09 2024-02-02 ツアー エンジン, インコーポレイテッド 分割サイクルエンジンのための移送機構

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1936653A (en) 1927-04-28 1933-11-28 Gen Motors Res Corp Slack adjusting mechanism
US2109809A (en) 1932-06-22 1938-03-01 Packard Motor Car Co Internal combustion engine
US2058705A (en) * 1935-04-10 1936-10-27 Maniscalco Pietro Internal combustion engine
US2394354A (en) 1943-03-10 1946-02-05 Gen Motors Corp Hydraulic lash adjuster
US2772667A (en) 1950-01-13 1956-12-04 Daimler Benz Ag Valve-control
US3209737A (en) 1962-06-27 1965-10-05 Mitsubishi Shipbuilding & Eng Valve operating device for internal combustion engine
US3786792A (en) 1971-05-28 1974-01-22 Mack Trucks Variable valve timing system
US3808818A (en) 1972-08-04 1974-05-07 Gen Motors Corp Dual combustion engine and cycle
US3774581A (en) 1972-10-04 1973-11-27 Gen Motors Corp Combination poppet and reed valve
US3880126A (en) 1973-05-10 1975-04-29 Gen Motors Corp Split cylinder engine and method of operation
US3908701A (en) 1973-06-22 1975-09-30 Westinghouse Electric Corp Three stage, double tapered dashpot
US3938483A (en) 1973-08-20 1976-02-17 Joseph Carl Firey Gasoline engine torque regulator
US3949964A (en) 1975-02-13 1976-04-13 Westinghouse Electric Corporation Electromechanically-operated valve
US4133172A (en) 1977-08-03 1979-01-09 General Motors Corporation Modified Ericsson cycle engine
US4224798A (en) 1979-07-05 1980-09-30 Brinkerhoff Verdon C Split cycle engine and method
US4307687A (en) * 1979-12-10 1981-12-29 Edward Holstein Internal combustion engines
WO1982001741A1 (en) 1980-11-13 1982-05-27 John D Wishart Improvements in split cycle internal combustion engines
US4344405A (en) * 1980-12-22 1982-08-17 Zaharis Edward J Internal combustion engine
DE3631284C1 (de) 1986-09-13 1987-04-16 Mtu Friedrichshafen Gmbh Mehrzylindrige Dieselbrennkraftmaschine mit niedrigem Verdichtungsverhaeltnis in denZylindern
US4825717A (en) 1988-09-12 1989-05-02 Henley Manufacturing Corporation Rocker arm of the cam-follower type with ribs
JP2700692B2 (ja) 1989-06-30 1998-01-21 スズキ株式会社 4サイクルエンジンの動弁装置
US4934652A (en) 1989-12-11 1990-06-19 Otis Engineering Corporation Dual stage valve actuator
DE4039351A1 (de) 1990-12-10 1992-06-11 Pierburg Gmbh Elektromagnetisches steuerventil fuer abgasrueckfuehrung
US5193495A (en) 1991-07-16 1993-03-16 Southwest Research Institute Internal combustion engine valve control device
WO1993022543A1 (de) 1992-04-27 1993-11-11 Iav - Motor Gmbh Ventiltrieb für ladungswechselventile, vorzugsweise einlassventile von hubkolbenbrennkraftmaschinen
DE4335431A1 (de) 1992-11-13 1995-04-20 Iav Motor Gmbh Schaltbarer Ventiltrieb mit Kipphebel und unterliegender Nockenwelle für Gaswechselventile für Verbrennungsmotoren
US5964087A (en) 1994-08-08 1999-10-12 Tort-Oropeza; Alejandro External combustion engine
US5638781A (en) 1995-05-17 1997-06-17 Sturman; Oded E. Hydraulic actuator for an internal combustion engine
FR2748776B1 (fr) 1996-04-15 1998-07-31 Negre Guy Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
JPH1089003A (ja) 1996-09-20 1998-04-07 Hitachi Ltd 容積型流体機械
US5690066A (en) 1996-09-30 1997-11-25 Eaton Corporation Engine valve control actuator with knee action linkage
DE19706895A1 (de) 1997-02-21 1998-08-27 Lorch J Ges & Co Kg Druckluftaufbereitungssystem
JPH10274105A (ja) 1997-03-28 1998-10-13 Nippon Soken Inc Egr制御弁およびそれを用いた排気ガス再循環装置
EP1012446A2 (en) 1997-08-28 2000-06-28 Diesel Engine Retarders, Inc. Engine valve actuator with valve seating control
US6647954B2 (en) 1997-11-17 2003-11-18 Diesel Engine Retarders, Inc. Method and system of improving engine braking by variable valve actuation
WO1999027242A2 (en) 1997-11-21 1999-06-03 Diesel Engine Retarders, Inc. Device to limit valve seating velocities in limited lost motion tappets
US6510824B2 (en) 1997-12-11 2003-01-28 Diesel Engine Retarders, Inc. Variable lost motion valve actuator and method
DE19806520A1 (de) 1998-02-17 1999-08-19 Ruediger Haaga Gmbh Verfahren zum Sterilisieren, Befüllen und Verschließen von Behältern
JPH11311112A (ja) 1998-03-14 1999-11-09 Fev Motorentechnik Gmbh & Co Kg 空気戻しバネを備えたピストン内燃機関用の電磁操作可能なガス交換弁
AU8633498A (en) * 1998-07-09 2000-02-01 Guy Negre Method for operating pollution-free engine expansion chamber and expansion chamber therefor
WO2000011336A1 (en) 1998-08-19 2000-03-02 Diesel Engine Retarders, Inc. Hydraulically-actuated fail-safe stroke-limiting piston
GB2340881B (en) 1998-08-19 2000-07-19 Benzion Olsfanger An internal combustion engine
WO2000012895A2 (en) 1998-08-26 2000-03-09 Diesel Engine Retarders, Inc. Valve seating control device with variable area orifice
SE514444C2 (sv) 1999-04-08 2001-02-26 Cargine Engineering Ab Förbränningsförfarande vid en kolvförbränningsmotor
JP4711581B2 (ja) 1999-09-16 2011-06-29 ジェイコブス ビークル システムズ、インコーポレイテッド バルブ着座速度制御の方法および装置
US6230742B1 (en) 1999-10-21 2001-05-15 Delphi Technologies, Inc. Poppet valve assembly apparatus having two simultaneously-seating heads
GB0007918D0 (en) 2000-03-31 2000-05-17 Npower Passive valve assembly
GB0007923D0 (en) 2000-03-31 2000-05-17 Npower A two stroke internal combustion engine
DE10115967B4 (de) 2001-03-27 2014-01-09 Volkswagen Ag Verfahren und eine Vorrichtung zur Nachbehandlung eines Abgases
US6584885B2 (en) 2001-06-12 2003-07-01 Visteon Global Technologies, Inc. Variable lift actuator
US6543225B2 (en) 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
CA2496451A1 (en) 2002-08-20 2004-03-04 Alberto Keel Rocker arm for valve actuation in internal combustion engines
CN100422514C (zh) 2003-01-31 2008-10-01 里姆技术有限责任公司 用于内燃机的气动阀门
EP1599661A2 (en) 2003-02-12 2005-11-30 D-J Engineering, Inc. Air injection engine
JP3875959B2 (ja) 2003-03-27 2007-01-31 泰彦 渡辺 流量制御弁
MY138166A (en) 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
US8087391B2 (en) 2003-06-26 2012-01-03 Tores Lawrence S Apparatus and methodology for rocker arm assembly
US7228826B2 (en) 2003-12-23 2007-06-12 Caterpillar Inc Internal combustion engine valve seating velocity control
US7156062B2 (en) 2004-04-19 2007-01-02 Jacobs Vehicle Systems, Inc. Valve actuation system with valve seating control
WO2006094213A1 (en) 2005-03-03 2006-09-08 Timken Us Corporation Valve actuator assembly
EP1869294B1 (en) 2005-04-11 2013-11-06 Jacobs Vehicle Systems, Inc. Valve actuation system with valve seating control
US7353786B2 (en) 2006-01-07 2008-04-08 Scuderi Group, Llc Split-cycle air hybrid engine
US7481190B2 (en) 2006-03-01 2009-01-27 Scuderi Group, Llc Split-cycle engine with disc valve
JP4932898B2 (ja) 2006-03-24 2012-05-16 スクデリ グループ リミテッド ライアビリティ カンパニー スプリットサイクルエンジンのための排熱回収のシステムと方法
US7766302B2 (en) 2006-08-30 2010-08-03 Lgd Technology, Llc Variable valve actuator with latches at both ends
US7513224B2 (en) 2006-09-11 2009-04-07 The Scuderi Group, Llc Split-cycle aircraft engine
BRPI0807979A2 (pt) 2007-02-27 2014-06-10 Scuderi Group Llc Motor de ciclo dividido com injeção de água
US7536984B2 (en) 2007-04-16 2009-05-26 Lgd Technology, Llc Variable valve actuator with a pneumatic booster
JP4705200B2 (ja) 2007-08-07 2011-06-22 スクデリ グループ リミテッド ライアビリティ カンパニー 耐ノック分割サイクルエンジン及び方法
JP5038498B2 (ja) 2007-08-13 2012-10-03 スクデリ グループ リミテッド ライアビリティ カンパニー 圧力バランスされたエンジンバルブ
AU2010206833B2 (en) 2009-01-22 2013-02-14 Scuderi Group, Inc. Valve lash adjustment system for a split-cycle engine
WO2010120856A1 (en) 2009-04-17 2010-10-21 Scuderi Group, Llc Variable volume crossover passage for a split-cycle engine
US8763571B2 (en) 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
US8371256B2 (en) 2009-05-27 2013-02-12 GM Global Technology Operations LLC Internal combustion engine utilizing dual compression and dual expansion processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104230A1 (ja) * 2015-12-17 2017-06-22 本田技研工業株式会社 内燃機関
JPWO2017104230A1 (ja) * 2015-12-17 2018-05-10 本田技研工業株式会社 内燃機関

Also Published As

Publication number Publication date
EP2622187A1 (en) 2013-08-07
RU2013117686A (ru) 2014-11-20
US20120080017A1 (en) 2012-04-05
KR20130111560A (ko) 2013-10-10
BR112013007823A2 (pt) 2016-06-21
US8714121B2 (en) 2014-05-06
CA2813331A1 (en) 2012-04-05
CN103228887A (zh) 2013-07-31
WO2012044723A1 (en) 2012-04-05
AU2011308852A1 (en) 2013-05-02
MX2013003426A (es) 2013-12-02

Similar Documents

Publication Publication Date Title
US8714121B2 (en) Split-cycle air hybrid V-engine
CA2696036C (en) Spark plug location for split-cycle engine
US9297295B2 (en) Split-cycle engines with direct injection
JP2013501194A (ja) 最小のクロスオーバーポート容積を備える分割サイクル空気ハイブリッドエンジン
US20120255296A1 (en) Air management system for air hybrid engine
JP2022106738A (ja) 圧縮点火エンジンの改善したシステムおよび方法
KR20200015472A (ko) 압축 착화 엔진의 개선된 시스템 및 방법
US20120073553A1 (en) Exhaust valve timing for split-cycle engine
US8833315B2 (en) Crossover passage sizing for split-cycle engine
US20130298889A1 (en) Outwardly-opening valve with cast-in diffuser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131113