JP2013508983A5 - - Google Patents

Download PDF

Info

Publication number
JP2013508983A5
JP2013508983A5 JP2012535387A JP2012535387A JP2013508983A5 JP 2013508983 A5 JP2013508983 A5 JP 2013508983A5 JP 2012535387 A JP2012535387 A JP 2012535387A JP 2012535387 A JP2012535387 A JP 2012535387A JP 2013508983 A5 JP2013508983 A5 JP 2013508983A5
Authority
JP
Japan
Prior art keywords
legs
leg
thermoelectric
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012535387A
Other languages
Japanese (ja)
Other versions
JP2013508983A (en
Filing date
Publication date
Priority claimed from US12/605,370 external-priority patent/US20110094556A1/en
Application filed filed Critical
Publication of JP2013508983A publication Critical patent/JP2013508983A/en
Publication of JP2013508983A5 publication Critical patent/JP2013508983A5/ja
Pending legal-status Critical Current

Links

Claims (34)

熱電発電装置であって、
一対の上部および下部プレートと、
前記上部プレートと前記下部プレートとの間に挿置され、基板上面および基板下面を有するとともに、比較的低い熱伝導率を有する電気絶縁材料で形成された基板と、
前記基板上面と前記基板下面との少なくとも一方に少なくとも1列に配置されるとともに交互の異種材料で形成される一連の熱電脚部であって、前記列の軸に対し非平行に配向される脚軸を各々画定する一連の熱電脚部と、
前記熱電脚部の一端が前記上部プレートと熱的に接触し、前記熱電脚部の反対端が前記下部プレートと熱的に接触するように、前記基板の両側に取り付けられるとともに前記列において前記熱電脚部の両端に整列される少なくとも一対の熱伝導性ストリップと
を備え、前記熱伝導性ストリップは前記熱電脚部の間に熱ギャップを画定し、前記上部および下部プレートは前記熱電脚部を通して長手方向に熱の流れを生じさせる、熱電発電装置。
A thermoelectric generator,
A pair of upper and lower plates;
A substrate inserted between the upper plate and the lower plate, having a substrate upper surface and a substrate lower surface, and a substrate formed of an electrically insulating material having a relatively low thermal conductivity;
A series of thermoelectric legs arranged in at least one row on at least one of the upper surface and the lower surface of the substrate and formed of alternating dissimilar materials, the legs being oriented non-parallel to the axis of the row A series of thermoelectric legs each defining an axis;
One end of the thermoelectric leg is in thermal contact with the upper plate and the other end of the thermoelectric leg is in thermal contact with the lower plate and is attached to both sides of the substrate and in the row. At least a pair of thermally conductive strips aligned at opposite ends of the legs, the thermally conductive strips defining a thermal gap between the thermoelectric legs, and the upper and lower plates extending longitudinally through the thermoelectric legs. A thermoelectric generator that generates heat flow in the direction.
前記基板の平面に平行でかつ前記熱電脚部の各々の脚軸に平行な方向に沿って前記脚部を電流が流れる、請求項1に記載の熱電発電装置。   2. The thermoelectric generator according to claim 1, wherein a current flows through the legs along a direction parallel to a plane of the substrate and parallel to a leg axis of each of the thermoelectric legs. 前記基板上面および前記基板下面の各々は前記熱電脚部の少なくとも1つの列を含む、請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, wherein each of the upper surface of the substrate and the lower surface of the substrate includes at least one row of the thermoelectric legs. 前記熱伝導性ストリップと前記熱電脚部との間に挿置された少なくとも1つの電気絶縁層をさらに含む請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, further comprising at least one electrical insulating layer interposed between the thermally conductive strip and the thermoelectric legs. 前記基板上に形成された複数の列をさらに備え、該複数の列の熱電脚部は電気的に直列に接続されている、請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, further comprising a plurality of rows formed on the substrate, wherein the thermoelectric legs of the plurality of rows are electrically connected in series. 前記基板は複数の前記列を含み、
前記列の1つにおける前記熱電脚部の端部は列間隔を画定するために前記列の隣接する1つにおける前記熱電脚部の端部から離間されており、
前記熱伝導性ストリップの各々は前記列間隔に整列されている、
請求項1に記載の熱電発電装置。
The substrate includes a plurality of the rows;
An end of the thermoelectric leg in one of the rows is spaced from an end of the thermoelectric leg in an adjacent one of the rows to define a row spacing;
Each of the thermally conductive strips is aligned with the row spacing;
The thermoelectric generator according to claim 1.
前記熱電脚部の脚軸は前記列の軸に対して実質的に垂直に配向されている、請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, wherein a leg axis of the thermoelectric leg is oriented substantially perpendicular to the axis of the row. 前記列において前記熱電脚部は互いに実質的に平行に配向されている、請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, wherein the thermoelectric legs in the row are oriented substantially parallel to each other. 前記異種材料は前記熱電脚部がn型およびp型脚部を備えるように異種半導体材料を含み、
前記n型およびp型脚部の少なくとも一方はBiTe型半導体材料からなる出発材料から形成されている、
請求項1に記載の熱電発電装置。
The dissimilar material comprises a dissimilar semiconductor material such that the thermoelectric legs comprise n-type and p-type legs;
At least one of the n-type and p-type legs is formed of a starting material made of a Bi 2 Te 3 type semiconductor material;
The thermoelectric generator according to claim 1.
前記基板上に形成された複数の金属ブリッジをさらに備え、
前記異種材料は前記熱電脚部がn型およびp型脚部を備えるように異種半導体材料を含み、
前記n型およびp型脚部の各々は対向する脚部端を有しており、前記p型脚部の両端において前記p型脚部が前記n型脚部の隣接する一つに前記金属ブリッジによって電気的に相互接続されるように前記脚部端が前記金属ブリッジに重なっている、
請求項1に記載の熱電発電装置。
A plurality of metal bridges formed on the substrate;
The dissimilar material comprises a dissimilar semiconductor material such that the thermoelectric legs comprise n-type and p-type legs;
Each of the n-type and p-type legs has opposing leg ends, and at both ends of the p-type legs, the p-type legs are adjacent to the n-type legs and the metal bridge The leg ends overlap the metal bridge so that they are electrically interconnected by
The thermoelectric generator according to claim 1.
前記金属ブリッジは、タングステン、クロム、金、ニッケル、アルミニウム、銀、銅、チタン、モリブデン、タンタル、およびドープされた炭化ケイ素のうちの少なくとも1つを備える金属材料で形成される、請求項10に記載の熱電発電装置。   The metal bridge is formed of a metal material comprising at least one of tungsten, chromium, gold, nickel, aluminum, silver, copper, titanium, molybdenum, tantalum, and doped silicon carbide. The thermoelectric generator as described. 前記異種材料は、前記熱電脚部がn型およびp型脚部の一方と金属脚部とを備えるように半導体材料と金属材料とを含み、
前記金属脚部の金属材料はタングステン、クロム、金、ニッケル、アルミニウム、銀、銅、チタン、モリブデン、タンタル、およびドープされた炭化ケイ素のうちの少なくとも1つを備える、
請求項1に記載の熱電発電装置。
The dissimilar material includes a semiconductor material and a metal material such that the thermoelectric leg includes one of an n-type and a p-type leg and a metal leg.
The metal material of the metal leg comprises at least one of tungsten, chromium, gold, nickel, aluminum, silver, copper, titanium, molybdenum, tantalum, and doped silicon carbide;
The thermoelectric generator according to claim 1.
前記n型およびp型脚部の半導体材料はBiTe型半導体材料からなる、請求項12に記載の熱電発電装置。 The thermoelectric generator according to claim 12, wherein the semiconductor material of the n-type and p-type legs is made of a Bi 2 Te 3 type semiconductor material. 前記金属脚部は前記基板上に形成され、
前記半導体材料からなる半導体脚部は該半導体脚部のほぼ全長に沿って前記金属脚部から電気的に絶縁されており、
前記半導体脚部の脚部端は前記金属脚部の脚部端に重なり合って電気的に接続されている、
請求項12に記載の熱電発電装置。
The metal legs are formed on the substrate;
A semiconductor leg made of the semiconductor material is electrically insulated from the metal leg along substantially the entire length of the semiconductor leg;
The leg end of the semiconductor leg overlaps and is electrically connected to the leg end of the metal leg,
The thermoelectric generator according to claim 12.
前記金属脚部と前記半導体脚部との間に挿置され、前記脚部端を電気的に結合するべく前記脚部端の各々において開口を有する電気絶縁層をさらに含む、請求項14に記載の熱電発電装置。   The electrical insulation layer of claim 14, further comprising an electrically insulating layer interposed between the metal leg and the semiconductor leg and having an opening at each of the leg ends to electrically couple the leg ends. Thermoelectric generator. 前記列における前記一連の熱電脚部がジグザグパターンを形成するように、隣接する複数対の前記熱電脚部の脚軸が鋭角をなしている、請求項12に記載の熱電発電装置。   The thermoelectric generator according to claim 12, wherein the leg shafts of adjacent pairs of the thermoelectric legs form an acute angle such that the series of thermoelectric legs in the row form a zigzag pattern. 前記異種材料は、
前記熱電脚部がn型およびp型脚部の一方と金属脚部とを備えるような半導体材料および金属材料と、
前記熱電脚部がn型およびp型脚部を備えるような半導体材料と、
のうちの少なくとも一方を備え、
前記n型およびp型脚部の少なくとも一方は、約15μm〜約100μmの範囲の脚部厚さと、約10μm〜約500μmの範囲の幅と、約50μm〜約500μmの範囲の長さとを有し、
前記金属脚部は、約0.5μm〜約5μmの範囲の脚部厚さと、約10μm〜約500μmの範囲の幅と、約50μm〜約500μmの範囲の長さとを有する、
請求項1に記載の熱電発電装置。
The dissimilar material is
A semiconductor material and a metal material such that the thermoelectric leg comprises one of an n-type and a p-type leg and a metal leg;
A semiconductor material wherein the thermoelectric legs comprise n-type and p-type legs;
Comprising at least one of
At least one of the n-type and p-type legs has a leg thickness in the range of about 15 μm to about 100 μm, a width in the range of about 10 μm to about 500 μm, and a length in the range of about 50 μm to about 500 μm. ,
The metal legs have a leg thickness in the range of about 0.5 μm to about 5 μm, a width in the range of about 10 μm to about 500 μm, and a length in the range of about 50 μm to about 500 μm.
The thermoelectric generator according to claim 1.
前記n型およびp型脚部の各々は約20〜約35μmの脚部厚さを有する、請求項17に記載の熱電発電装置。   The thermoelectric generator of claim 17, wherein each of the n-type and p-type legs has a leg thickness of about 20 to about 35 μm. 前記基板は或る基板厚さを有し、
前記n型およびp型脚部の脚部厚さは前記基板厚さの約1〜約10倍であり、
前記基板厚さは前記金属脚部の脚部厚さの約1〜約50倍である、
請求項17に記載の熱電発電装置。
The substrate has a substrate thickness;
The leg thickness of the n-type and p-type legs is about 1 to about 10 times the substrate thickness;
The substrate thickness is about 1 to about 50 times the thickness of the metal leg.
The thermoelectric generator according to claim 17.
前記n型およびp型の脚部厚さの前記基板厚さに対する厚さ比は約2〜約4の範囲内にあり、
前記基板厚さの前記金属脚部の脚部厚さに対する厚さ比は約10〜約15の範囲内にある、
請求項19に記載の熱電発電装置。
The thickness ratio of the n-type and p-type leg thickness to the substrate thickness is in the range of about 2 to about 4,
The thickness ratio of the substrate thickness to the leg thickness of the metal legs is in the range of about 10 to about 15.
The thermoelectric generator according to claim 19.
前記基板はポリイミド材料で形成される、請求項19に記載の熱電発電装置。   The thermoelectric generator according to claim 19, wherein the substrate is made of a polyimide material. 前記上部および下部プレートの間に約5Kの温度勾配で、
約0.2V〜約2.0Vの開放熱電電圧出力、
約0.1V〜約1.0Vの整合負荷における熱電電圧出力、
約0.1mA〜約5.0mAの電流、
約0.1mW〜約0.5mWの電力出力、
約0.1mW/cm〜約0.5mW/cmの電力出力密度、および
約0.02%〜約0.2%のエネルギー変換効率、
の特性パラメータのうちの少なくとも1つを有する請求項1に記載の熱電発電装置。
With a temperature gradient of about 5K between the upper and lower plates,
An open thermoelectric voltage output of about 0.2V to about 2.0V,
Thermoelectric voltage output at a matched load of about 0.1V to about 1.0V,
A current of about 0.1 mA to about 5.0 mA;
Power output of about 0.1 mW to about 0.5 mW,
About 0.1 mW / cm 2 to about power output density of 0.5 mW / cm 2, and from about 0.02% to about 0.2% of energy conversion efficiency,
The thermoelectric generator according to claim 1, wherein the thermoelectric generator has at least one of the following characteristic parameters.
約10K/W〜約20K/Wの熱抵抗を有する請求項1に記載の熱電発電装置。   The thermoelectric generator of claim 1 having a thermal resistance of about 10 K / W to about 20 K / W. 熱電発電装置を形成する方法であって、
基板を設けるステップと、
前記基板上に金属ブリッジを形成するステップと、
前記基板上に交互にn型およびp型脚部を形成して熱電脚部の列を形成することにより、前記n型およびp型脚部の端部を前記金属ブリッジに重ね合わせて前記n型およびp型脚部を直列に電気的に相互接続させるステップであって、前記熱電脚部の各々が前記列の軸に対して非平行に配向される脚軸を画定する当該ステップと、
前記基板、前記金属ブリッジ、および前記n型およびp型脚部を電気絶縁層で覆うステップと、
を備える方法。
A method of forming a thermoelectric generator,
Providing a substrate;
Forming a metal bridge on the substrate;
By alternately forming n-type and p-type legs on the substrate to form a row of thermoelectric legs, the ends of the n-type and p-type legs are overlapped with the metal bridge to form the n-type Electrically connecting the p-type legs in series with each other, wherein each of the thermoelectric legs defines a leg axis oriented non-parallel to the axis of the row;
Covering the substrate, the metal bridge, and the n-type and p-type legs with an electrically insulating layer;
A method comprising:
前記熱電脚部の対向脚部端に整列された熱伝導性ストリップを用いて上部プレートおよび下部プレートを前記基板に接続することにより、前記基板、前記熱電脚部、および前記上部および下部プレートの間に熱ギャップを形成するステップをさらに備える請求項24に記載の方法。   By connecting a top plate and a bottom plate to the substrate using thermally conductive strips aligned with opposite leg ends of the thermoelectric legs, the substrate, the thermoelectric legs, and the top and bottom plates are connected. 25. The method of claim 24, further comprising forming a thermal gap in. 前記交互のn型およびp型脚部が前記熱電脚部の列を画定し、
前記熱電脚部の各々が脚軸を画定し、
前記熱電脚部の脚軸が前記列の軸に対して実質的に垂直に配向されている、
請求項24に記載の方法。
The alternating n-type and p-type legs define a row of the thermoelectric legs;
Each of the thermoelectric legs defines a leg axis;
A leg axis of the thermoelectric leg is oriented substantially perpendicular to the axis of the row;
25. A method according to claim 24.
前記基板上に前記金属ブリッジを形成するステップは、
タングステンの層を前記基板上に形成すること、
アルミニウムの層を前記タングステンの上に形成すること、
タングステンの層を前記アルミニウムの上に形成すること、
を含む、請求項24に記載の方法。
Forming the metal bridge on the substrate comprises:
Forming a layer of tungsten on the substrate;
Forming a layer of aluminum on the tungsten;
Forming a layer of tungsten on the aluminum;
25. The method of claim 24, comprising:
前記半導体脚部はBiTe型半導体材料を備える材料から形成される、請求項24に記載の方法。 The semiconductor legs is formed from a material comprising a Bi 2 Te 3 type semiconductor material, The method of claim 24. 前記熱ギャップを比較的低い熱伝導率を有する材料で満たすステップをさらに備える請求項25に記載の方法。 26. The method of claim 25 , further comprising filling the thermal gap with a material having a relatively low thermal conductivity. 熱電発電装置の箔アセンブリを形成する方法であって、
基板を設けるステップと、
前記基板上で互いに離間させて金属脚部の列を形成するステップと、
前記金属脚部を電気絶縁層で覆うステップと、
前記金属脚部の対向する脚部端において前記電気絶縁層に開口を形成するステップと、
前記基板上に前記金属脚部に対して交互に半導体脚部を形成して、前記列のジグザグパターンを形成するように前記半導体脚部の脚部端を前記金属脚部の脚部端に重ね合わせて電気的に接続するステップと、
前記基板、前記金属ブリッジ、および前記半導体脚部を電気絶縁層で覆うステップと、
を備える方法。
A method for forming a foil assembly of a thermoelectric generator, comprising:
Providing a substrate;
Forming rows of metal legs spaced apart from each other on the substrate;
Covering the metal legs with an electrically insulating layer;
Forming an opening in the electrically insulating layer at opposite leg ends of the metal legs;
Semiconductor legs are alternately formed on the substrate with respect to the metal legs, and the legs of the semiconductor legs are overlapped with the legs of the metal legs so as to form a zigzag pattern of the row. And electrically connecting them together,
Covering the substrate, the metal bridge, and the semiconductor legs with an electrically insulating layer;
A method comprising:
前記半導体脚部の両端および前記金属脚部の両端に整列される熱伝導性ストリップを用いて前記基板に上部プレートおよび下部プレートを接続することにより、前記基板、前記半導体脚部、および前記上部および下部プレートの間に熱ギャップを形成するステップをさらに備え、前記上部および下部プレートは、前記半導体脚部および前記金属脚部を通して長手方向に熱の流れを生じさせる、請求項30に記載の方法。   Connecting the upper plate and the lower plate to the substrate using thermally conductive strips aligned at both ends of the semiconductor leg and both ends of the metal leg, thereby allowing the substrate, the semiconductor leg, and the top and 31. The method of claim 30, further comprising forming a thermal gap between a lower plate, wherein the upper and lower plates generate a heat flow in a longitudinal direction through the semiconductor legs and the metal legs. 前記半導体脚部および前記金属脚部の各々は脚軸を画定し、当該方法は、
隣接する複数対の前記半導体脚部および前記金属脚部の脚軸が鋭角を画定するような向きに前記半導体脚部および前記金属脚部の少なくとも一方を形成するステップをさらに備える、請求項30に記載の方法。
Each of the semiconductor leg and the metal leg defines a leg axis, the method comprising:
31. The method of claim 30, further comprising forming at least one of the semiconductor legs and the metal legs in an orientation such that leg axes of adjacent pairs of the semiconductor legs and the metal legs define an acute angle. The method described.
前記金属脚部はタングステン、クロム、金、ニッケル、アルミニウム、銀、銅、チタン、モリブデン、タンタル、およびドープされた炭化ケイ素のうちの少なくとも1つで形成され、
前記半導体脚部はBiTe型半導体材料を備える材料から形成されている、
請求項30に記載の方法。
The metal legs are formed of at least one of tungsten, chromium, gold, nickel, aluminum, silver, copper, titanium, molybdenum, tantalum, and doped silicon carbide;
The semiconductor leg is formed of a material comprising a Bi 2 Te 3 type semiconductor material,
The method of claim 30.
前記熱ギャップを比較的低い熱伝導率を有する材料で満たすステップをさらに備える請求項31に記載の方法。 32. The method of claim 31 , further comprising filling the thermal gap with a material having a relatively low thermal conductivity.
JP2012535387A 2009-10-25 2010-10-21 Planar thermoelectric generator Pending JP2013508983A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/605,370 2009-10-25
US12/605,370 US20110094556A1 (en) 2009-10-25 2009-10-25 Planar thermoelectric generator
PCT/US2010/053612 WO2011050203A1 (en) 2009-10-25 2010-10-21 Planar thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2013508983A JP2013508983A (en) 2013-03-07
JP2013508983A5 true JP2013508983A5 (en) 2013-12-05

Family

ID=43897348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012535387A Pending JP2013508983A (en) 2009-10-25 2010-10-21 Planar thermoelectric generator

Country Status (5)

Country Link
US (1) US20110094556A1 (en)
EP (1) EP2491602A4 (en)
JP (1) JP2013508983A (en)
CN (1) CN102612762A (en)
WO (1) WO2011050203A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680766B1 (en) * 2010-01-14 2016-11-29 삼성전자주식회사 Thermoelectric device and Array of Thermoelectric device
KR101892621B1 (en) * 2010-11-09 2018-08-28 삼성전자 주식회사 Thermoelectric device and method for forming the same
US8459865B1 (en) * 2010-11-30 2013-06-11 Sandia Corporation Tracking heat flux sensors for concentrating solar applications
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
US9312466B2 (en) 2011-06-10 2016-04-12 Perpetua Power Source Technologies, Inc. Energy harvester with improved heat flow arrangement
US9263659B2 (en) 2011-06-10 2016-02-16 Perpetua Power Source Technologies, Inc. System and method for thermal protection of an electronics module of an energy harvester
US8664931B2 (en) 2011-06-13 2014-03-04 Perpetua Power Source Technologies, Inc. Self-optimizing energy harvester using generator having a variable source voltage
CN102263197B (en) * 2011-07-22 2013-02-27 江苏物联网研究发展中心 Novel miniature thermoelectric generator and manufacturing method
DE102011052565B4 (en) * 2011-08-10 2019-04-18 Vacuumschmelze Gmbh & Co. Kg Thermoelectric module and method for producing a thermoelectric module
TW201320418A (en) * 2011-11-04 2013-05-16 Nat Univ Tsing Hua Highly efficient thermoelectric material
DE102012105373B4 (en) * 2012-02-24 2019-02-07 Mahle International Gmbh Thermoelectric element and method for its production
USD731447S1 (en) 2012-09-24 2015-06-09 Perpetua Power Source Technologies, Inc. Thermoelectric energy harvester module
CN102983791A (en) * 2012-10-26 2013-03-20 苏州大学 Temperature difference alternating current power generation device and power generation method thereof
JP2014154761A (en) * 2013-02-12 2014-08-25 Furukawa Electric Co Ltd:The Thermoelectric conversion module
US20140326287A1 (en) * 2013-05-02 2014-11-06 Perpetua Power Source Technologies, Inc. Wearable thermoelectric generator assembly and method of manufacturing same
JP6024642B2 (en) * 2013-10-25 2016-11-16 株式会社デンソー Thermoelectric conversion device and manufacturing method thereof
US10141492B2 (en) * 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
MA40285A (en) * 2014-06-02 2017-04-05 Hat Teknoloji A S Integrated, three-dimensional cell configuration, integrated cooling array and cell-based integrated circuit
CN105322087A (en) * 2014-07-28 2016-02-10 中国电子科技集团公司第十八研究所 BiTe-based flexible film thermoelectric cell
US20160056363A1 (en) * 2014-08-21 2016-02-25 The Penn State Research Foundation Freestanding Thermoelectric Energy Conversion Device
CN105406503B (en) * 2014-09-11 2018-09-25 国家电网公司 A method of it is generated electricity by way of merging two or more grid systems based on solar street light power supply system
US20160163949A1 (en) * 2014-12-03 2016-06-09 Perpetua Power Source Technologies Flexible thermoelectric generator
CN104638742B (en) * 2014-12-22 2019-02-05 惠州Tcl移动通信有限公司 Wearable device and its heat energy recovering method
WO2017004199A1 (en) * 2015-06-29 2017-01-05 Sheetak Inc. Thermoelectric devices and power systems
CN105099275B (en) * 2015-07-29 2017-08-25 浙江大学 Plane thermo-electric generation structure with micro-boss array hot junction
JP2017055064A (en) * 2015-09-11 2017-03-16 富士通株式会社 Thermoelectric conversion apparatus
JP6431992B2 (en) * 2015-11-17 2018-11-28 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
RU2611562C1 (en) * 2015-12-14 2017-02-28 Общество с ограниченной ответственностью "Термостат+" Spatially oriented thermoelectric module and method of its manufacturing
KR20170111840A (en) * 2016-03-30 2017-10-12 현대자동차주식회사 Thermoelectric module and method for manufacturing the same
JP2017188574A (en) * 2016-04-06 2017-10-12 積水化学工業株式会社 Thermoelectric conversion device
DE102016209683A1 (en) * 2016-06-02 2017-12-07 Mahle International Gmbh Thermoelectric module
US20210280762A1 (en) 2016-08-17 2021-09-09 Nitto Denko Corporation Thermoelectric devices and methods of making same
CN106568341B (en) * 2016-11-09 2019-03-01 西安交通大学 A kind of plate-fin heat power generation heat exchanger
JP7183794B2 (en) * 2017-01-31 2022-12-06 日本ゼオン株式会社 Thermoelectric conversion module
US20200370965A1 (en) * 2018-02-28 2020-11-26 Arthur Beckman Thermopile Assembly Providing a Massive Electrical Series of Thermocouple Elements
JP7294607B2 (en) * 2018-03-29 2023-06-20 リンテック株式会社 Thermoelectric conversion module manufacturing method and thermoelectric conversion module
JP2019204927A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generation system
JP2019204926A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generating system
GB2574855A (en) * 2018-06-20 2019-12-25 Kohler Mira Ltd Energy recovery
KR102489222B1 (en) * 2018-09-28 2023-01-17 엘지디스플레이 주식회사 Rollable display device
WO2020142130A2 (en) * 2018-10-16 2020-07-09 Tham Douglas W Thermoelectric systems, methods, and devices
KR20210062987A (en) * 2019-11-22 2021-06-01 엘지이노텍 주식회사 Thermo electric element
CN117813945A (en) * 2021-08-06 2024-04-02 日东电工株式会社 Thermoelectric conversion element
IT202200011045A1 (en) * 2022-05-26 2023-11-26 St Microelectronics Srl MEMS THERMOELECTRIC GENERATOR, GENERATOR MANUFACTURING PROCESS AND HEATING SYSTEM INCLUDING THE GENERATOR
CN114695636B (en) * 2022-05-31 2022-08-19 季华实验室 Wearable photo-thermal thermoelectric equipment
CN117479809B (en) * 2023-12-27 2024-03-12 中北大学 Flexible Y-shaped micro thermoelectric device and preparation method thereof

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694098A (en) * 1950-05-23 1954-11-09 Milwaukee Gas Specialty Co Thermoelectric generator and method for production of same
CH413018A (en) * 1963-04-30 1966-05-15 Du Pont Thermoelectric generator
US3923551A (en) * 1966-06-02 1975-12-02 Arco Med Prod Co Method of making a thermopile with insulatingly separate junctions on an alumina insulator
US3767470A (en) * 1968-02-19 1973-10-23 F Hines Thermally compensated heat flow sensors
US3617886A (en) * 1968-07-26 1971-11-02 Bailey Meter Co Transducer open-circuit failure detector
CH540580A (en) * 1970-11-23 1973-08-15 Siemens Ag Process for the manufacture of a thermal generator
DE2124465B2 (en) * 1971-05-17 1976-08-26 Siemens AG, 1000 Berlin und 8000 München THERMOELECTRIC RADIONUCLID GENERATOR
US3871981A (en) * 1971-09-01 1975-03-18 Bailey Meter Co In-situ oxygen detector
FR2199429A5 (en) * 1972-09-13 1974-04-05 Cit Alcatel
DE2263469C3 (en) * 1972-12-27 1975-10-02 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Temperature measuring device
SU455702A1 (en) * 1973-12-06 1976-08-05 Предприятие П/Я В-2763 Thermocouple
IL45788A (en) * 1974-10-04 1977-11-30 Yeda Res & Dev Thermoelectric detector
US4003250A (en) * 1974-12-16 1977-01-18 Thermonetics Corporation Geothermal heat flux transducers
US4032363A (en) * 1975-01-27 1977-06-28 Syncal Corporation Low power high voltage thermopile
US4050302A (en) * 1975-02-10 1977-09-27 Aluminum Company Of America Thermoelectric heat flow transducer
US4049469A (en) * 1975-06-20 1977-09-20 Nikolai Vasilievich Kolomoets Film thermoelement
FR2320637A1 (en) * 1975-08-07 1977-03-04 Kolomoets Nikolai Thermoelement with semiconductor layer - is between hot and cold rails and in thermal contact with both via spaced contact pieces
US4111717A (en) * 1977-06-29 1978-09-05 Leeds & Northrup Company Small-size high-performance radiation thermopile
DE2734022C3 (en) * 1977-07-28 1981-11-05 Reinhard Dr. 7101 Flein Dahlberg Thermoelectric arrangement with large non-stationary temperature gradients
US4270386A (en) * 1979-08-23 1981-06-02 Teledyne, Inc. Indirectly heated thermal flowmeter
US4313342A (en) * 1980-03-11 1982-02-02 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for determining vertical heat flux of geothermal field
US4494112A (en) * 1980-09-05 1985-01-15 Chevron Research Company Ultrasensitive apparatus and monitoring method for detecting change in fluid flow
US4495488A (en) * 1980-09-05 1985-01-22 Chevron Research Company Ultrasensitive apparatus and positioning method for detecting change in fluid flow conditions in relief flowlines associated with a chemical or refinery complex
US4466746A (en) * 1981-12-01 1984-08-21 Robert D. Hancock Ebulliometric hot spot detector
US4555764A (en) * 1981-12-23 1985-11-26 Iowa State University Research Foundation, Inc. Net energy transfer measurement methods, apparatus and systems with solar energy and control applications
US4448028A (en) * 1982-04-29 1984-05-15 Ecd-Anr Energy Conversion Company Thermoelectric systems incorporating rectangular heat pipes
US4673300A (en) * 1982-05-19 1987-06-16 Cooper Industries, Inc. Calibrated probe for temperature measuring
FR2536536B1 (en) * 1982-11-18 1985-07-26 Anvar THERMAL-COUPLED THERMAL FLUXMETER
US4460802A (en) * 1982-12-15 1984-07-17 Westinghouse Electric Corporation Radially activated thermocouple assembly
US4468557A (en) * 1983-02-03 1984-08-28 Bylin Heating Systems, Inc. Conformable electric heating apparatus
FR2544860B1 (en) * 1983-04-19 1985-10-04 Commissariat Energie Atomique THERMOFLUX-METRIC DEVICE FOR THE CONTROL OF CALOGENIC MATERIALS WITHIN A CONTAINER
US4513201A (en) * 1983-07-21 1985-04-23 Ball Corporation Thermocouple detector
US4541728A (en) * 1983-07-25 1985-09-17 Ray L. Hauser Device and method for measuring heat flux and method for forming such a device
US4650920A (en) * 1985-07-26 1987-03-17 Redick Hugh E Graphite fiber thermocouple device and method
FR2598803B1 (en) * 1986-05-16 1988-09-02 Anvar DEVICE FOR MEASURING THE INTENSITY OF A RADIATIVE FLOW
US4782708A (en) * 1987-08-27 1988-11-08 General Motors Corporation Thermocouple sensors
US4779994A (en) * 1987-10-15 1988-10-25 Virginia Polytechnic Institute And State University Heat flux gage
JPH0640478Y2 (en) * 1988-07-29 1994-10-19 シーケーデイ株式会社 Thermoelectric generator using Zebeck element
US5277959A (en) * 1989-09-21 1994-01-11 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Composite flexible blanket insulation
US5286304A (en) * 1991-10-24 1994-02-15 Enerdyne Corporation Thermoelectric device and method of manufacturing
US5554819A (en) * 1992-01-22 1996-09-10 Baghai-Kermani; A. Method and apparatus for the thermoelectric generation of electricity
US5411600A (en) * 1992-06-03 1995-05-02 Eastman Kodak Company Ultrathin film thermocouples and method of manufacture
AU4662293A (en) * 1992-07-01 1994-01-31 Technobeam Corporation Thermoelectric device and method of fabrication and thermoelectric generator and vehicle
US5345213A (en) * 1992-10-26 1994-09-06 The United States Of America, As Represented By The Secretary Of Commerce Temperature-controlled, micromachined arrays for chemical sensor fabrication and operation
US5464966A (en) * 1992-10-26 1995-11-07 The United States Of America As Represented By The Secretary Of Commerce Micro-hotplate devices and methods for their fabrication
US5370459A (en) * 1993-06-08 1994-12-06 Claud S. Gordon Company Surface temperature probe with uniform thermocouple junction
GB2280506A (en) * 1993-07-29 1995-02-01 Euratom Thermostatic device
JPH0745869A (en) * 1993-07-30 1995-02-14 Nissan Motor Co Ltd N-type thermoelectric material
US5769943A (en) * 1993-08-03 1998-06-23 California Institute Of Technology Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques
JPH0837322A (en) * 1994-07-21 1996-02-06 Seiko Instr Inc Thermoelectric module
US5702185A (en) * 1994-08-09 1997-12-30 P. A. Hilton Limited Heat flow transducer
US5641400A (en) * 1994-10-19 1997-06-24 Hewlett-Packard Company Use of temperature control devices in miniaturized planar column devices and miniaturized total analysis systems
US5551244A (en) * 1994-11-18 1996-09-03 Martin Marietta Corporation Hybrid thermoelectric/Joule-Thomson cryostat for cooling detectors
US6222111B1 (en) * 1995-06-07 2001-04-24 Raytheon Company Spectrally selective thermopile detector
US6025554A (en) * 1995-10-16 2000-02-15 Macris; Chris Thermoelectric device and method of manufacture
US6288321B1 (en) * 1996-02-07 2001-09-11 California Institute Of Technology Electronic device featuring thermoelectric power generation
US5712448A (en) * 1996-02-07 1998-01-27 California Institute Of Technology Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices
US6180867B1 (en) * 1996-04-17 2001-01-30 General Electric Company Thermal sensor array and methods of fabrication and use
US5986261A (en) * 1996-04-29 1999-11-16 Nanoptics, Inc. Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities
US5883563A (en) * 1996-05-01 1999-03-16 Yamaha Corporation Thermo-electric material having mean crystal grain diameter nor greater than 50 microns and mean aspect ratio between 1 and 3 for large figure of merit and thermo-electric element using the same
US5990412A (en) * 1996-05-07 1999-11-23 Vatell Corporation Differential thermopile heat flux transducer formed by depositing metals and non-metals from liquids onto a substrate
JPH09329058A (en) * 1996-06-11 1997-12-22 Matsushita Electric Ind Co Ltd Thermoelectric generator
JP3459328B2 (en) * 1996-07-26 2003-10-20 日本政策投資銀行 Thermoelectric semiconductor and method for manufacturing the same
IL123052A (en) * 1997-01-31 2001-03-19 Omega Engineering Thermoelectric product
US6458319B1 (en) * 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
US6300150B1 (en) * 1997-03-31 2001-10-09 Research Triangle Institute Thin-film thermoelectric device and fabrication method of same
US6605197B1 (en) * 1997-05-13 2003-08-12 Applied Materials, Inc. Method of sputtering copper to fill trenches and vias
US5982014A (en) * 1997-05-30 1999-11-09 Thermalytics, Inc. Microfabricated silicon thermopile sensor
JP3196823B2 (en) * 1997-06-11 2001-08-06 日本電気株式会社 Semiconductor device
US6278051B1 (en) * 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
US6100463A (en) * 1997-11-18 2000-08-08 The Boeing Company Method for making advanced thermoelectric devices
JPH11218587A (en) * 1997-11-25 1999-08-10 Seiko Instruments Inc Electronic timepiece with thermoelectric element
JP4131029B2 (en) * 1998-02-18 2008-08-13 松下電工株式会社 Thermoelectric conversion module
US6388185B1 (en) * 1998-08-07 2002-05-14 California Institute Of Technology Microfabricated thermoelectric power-generation devices
US6046398A (en) * 1998-11-04 2000-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Micromachined thermoelectric sensors and arrays and process for producing
JP3051919B2 (en) * 1998-11-13 2000-06-12 セイコーインスツルメンツ株式会社 Thermoelectric electronics
US6238085B1 (en) * 1998-12-31 2001-05-29 Honeywell International Inc. Differential thermal analysis sensor
US6348650B1 (en) * 1999-03-24 2002-02-19 Ishizuka Electronics Corporation Thermopile infrared sensor and process for producing the same
US6232750B1 (en) * 1999-06-08 2001-05-15 Enrey Corporation Battery charger with enhanced charging and charge measurement processes
EP1272671A2 (en) * 2000-03-30 2003-01-08 Infineon Technologies AG Biosensor, biosensor array, method for producing an electrode of a biosensor, method for producing a biosensor
JP2002064227A (en) * 2000-08-18 2002-02-28 Sumitomo Special Metals Co Ltd Thermoelectric conversion material and its manufacturing method
JP4196373B2 (en) * 2000-12-28 2008-12-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US6673996B2 (en) * 2001-01-17 2004-01-06 California Institute Of Technology Thermoelectric unicouple used for power generation
US7939744B2 (en) * 2001-08-21 2011-05-10 Kyocera Corporation Thermoelectric element
US6812395B2 (en) * 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element
US6914343B2 (en) * 2001-12-12 2005-07-05 Hi-Z Technology, Inc. Thermoelectric power from environmental temperature cycles
US7594982B1 (en) * 2002-06-22 2009-09-29 Nanosolar, Inc. Nanostructured transparent conducting electrode
US7098757B2 (en) * 2002-09-23 2006-08-29 Georgia Tech Research Corporation Electrically-coupled micro-electro-mechanical filter systems and methods
JP2004179480A (en) * 2002-11-28 2004-06-24 Hitachi Metals Ltd Thin film thermoelectric element and its manufacturing method
US6998153B2 (en) * 2003-01-27 2006-02-14 Applied Materials, Inc. Suppression of NiSi2 formation in a nickel salicide process using a pre-silicide nitrogen plasma
US6958443B2 (en) * 2003-05-19 2005-10-25 Applied Digital Solutions Low power thermoelectric generator
US7629531B2 (en) * 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
DE602004015449D1 (en) * 2003-05-23 2008-09-11 Koninkl Philips Electronics Nv METHOD FOR PRODUCING A THERMOELECTRIC DEVICE
JP4417694B2 (en) * 2003-11-12 2010-02-17 学校法人立命館 Thermoelectric conversion device manufacturing method and thermoelectric conversion device
US20050139250A1 (en) * 2003-12-02 2005-06-30 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8455751B2 (en) * 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
JP4141415B2 (en) * 2004-06-30 2008-08-27 義臣 近藤 Integrated parallel Peltier Seebeck element chip and manufacturing method thereof, integrated Peltier Seebeck element panel or sheet, and direct energy conversion system and energy transfer system
EP1612870A1 (en) * 2004-07-01 2006-01-04 Interuniversitair Microelektronica Centrum Vzw Method of manufacturing a thermoelectric generator and thermoelectric generator thus obtained
US20060048809A1 (en) * 2004-09-09 2006-03-09 Onvural O R Thermoelectric devices with controlled current flow and related methods
US20060090787A1 (en) * 2004-10-28 2006-05-04 Onvural O R Thermoelectric alternators and thermoelectric climate control devices with controlled current flow for motor vehicles
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method
US7626114B2 (en) * 2006-06-16 2009-12-01 Digital Angel Corporation Thermoelectric power supply
US8222511B2 (en) * 2006-08-03 2012-07-17 Gentherm Thermoelectric device
DE102006040576B4 (en) * 2006-08-30 2009-10-08 Angaris Gmbh Method for producing a thin-film thermogenerator
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
JP2008227178A (en) * 2007-03-13 2008-09-25 Sumitomo Chemical Co Ltd Thermoelectric conversion module and substrate therefor
JP5087757B2 (en) * 2007-06-08 2012-12-05 住友金属鉱山株式会社 Thermoelectric conversion module and power generator using the same

Similar Documents

Publication Publication Date Title
JP2013508983A5 (en)
US20050087222A1 (en) Device for producing electric energy
JP2009526401A5 (en)
JP2006294935A (en) High efficiency and low loss thermoelectric module
JP2003533031A5 (en)
CN101859867A (en) Thermoelectric element
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
RU2011123784A (en) METHOD FOR CONVERTING THERMAL ENERGY TO ELECTRIC ENERGY
JP2021506209A (en) Heat converter
Bosisio et al. Nanowire-based thermoelectric ratchet in the hopping regime
JP6430781B2 (en) Thermoelectric module
JP2013161973A (en) Thermoelectric conversion module
JP6778968B2 (en) Thermoelectric cell and thermoelectric module
JP2009081286A (en) Thermoelectric conversion module
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JP7072004B2 (en) Heat converter
RU2604180C1 (en) Thermoelectric energy converter
KR102366388B1 (en) Thermo electric element
JP6505585B2 (en) Thermoelectric conversion element
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP2013042113A5 (en) Thermoelectric conversion element, thermoelectric conversion power generator and power generation method
TW201327951A (en) Thermoelectric generating apparatus and module
US20130319491A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JP7432217B2 (en) thermoelectric conversion module
Yazawa et al. Heat transfer modeling for bio-heat recovery