JP2013254570A - Lithium ion battery separator and lithium ion battery - Google Patents

Lithium ion battery separator and lithium ion battery Download PDF

Info

Publication number
JP2013254570A
JP2013254570A JP2012127666A JP2012127666A JP2013254570A JP 2013254570 A JP2013254570 A JP 2013254570A JP 2012127666 A JP2012127666 A JP 2012127666A JP 2012127666 A JP2012127666 A JP 2012127666A JP 2013254570 A JP2013254570 A JP 2013254570A
Authority
JP
Japan
Prior art keywords
separator
lithium ion
ion battery
nonwoven fabric
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012127666A
Other languages
Japanese (ja)
Inventor
Makoto Kato
真 加藤
Kenji Hyodo
建二 兵頭
Hiroaki Watanabe
宏明 渡邉
Kasumi Kato
加寿美 加藤
Takako Kasai
誉子 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2012127666A priority Critical patent/JP2013254570A/en
Publication of JP2013254570A publication Critical patent/JP2013254570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a separator which has high perforation resistance and achieves good internal resistance and cycle characteristic when used in a lithium ion battery; and a lithium ion battery which is good in terms of safety, internal resistance, and cycle characteristic.SOLUTION: The lithium ion battery separator comprises: a nonwoven fabric base; and a pair of coating layers including an inorganic pigment and an organic polymer binder and covering two opposing faces of the nonwoven fabric base respectively. The organic polymer binder of the coating layer covering one face of the nonwoven fabric base consists of an oxidation-resistant polymer. The organic polymer binder of the coating layer covering the other face is resistant to reduction. The lithium ion battery comprises the separator arranged so that a face of the separator on the side of the organic polymer binder consisting of the oxidation resistant polymer is opposed to a positive electrode.

Description

本発明は、リチウムイオン電池用セパレータ、及びこのリチウムイオン電池用セパレータを用いたリチウムイオン電池に関する。   The present invention relates to a lithium ion battery separator and a lithium ion battery using the lithium ion battery separator.

リチウムイオン電池(以下、「電池」と略記する場合がある)には、正負極間の接触を防ぐためのセパレータが用いられている。   In a lithium ion battery (hereinafter sometimes abbreviated as “battery”), a separator for preventing contact between positive and negative electrodes is used.

リチウムイオン電池用セパレータ(以下、「セパレータ」と略記する場合がある)として従来用いられているポリエチレンまたはポリプロピレンからなる多孔性フィルムは、耐熱性が低く、安全上重大な問題を抱えている。すなわち、かかる多孔性フィルムをセパレータとして用いた電池は、内部短絡等の原因により電池内部で局部的な発熱が生じた場合、発熱部位周辺のセパレータが収縮して内部短絡がさらに拡大し、暴走的に発熱して発火・破裂等の重大な事象に至ることがある。   A porous film made of polyethylene or polypropylene conventionally used as a separator for lithium ion batteries (hereinafter sometimes abbreviated as “separator”) has low heat resistance and has serious safety problems. That is, in the battery using such a porous film as a separator, when local heat generation occurs due to an internal short circuit or the like, the separator around the heat generating portion contracts and the internal short circuit further expands, causing a runaway May generate significant events such as ignition and rupture.

このような問題に対し、ポリエチレンテレフタレート(PET)等の耐熱性の高い繊維からなる不織布に、アルミナ等の無機粒子及び有機ポリマーバインダーを塗工してなるセパレータが提案されている(例えば、特許文献1参照)。   For such a problem, a separator formed by coating inorganic particles such as alumina and an organic polymer binder on a nonwoven fabric made of highly heat-resistant fibers such as polyethylene terephthalate (PET) has been proposed (for example, Patent Documents). 1).

しかし、本技術には、塗層に含まれるバインダーが正極における電気化学的酸化反応によって劣化し、分解生成物が活物質に作用して電池特性が悪化するという問題があった。この問題に対し、耐酸化性の高いアクリレート系ポリマーをバインダーとして用いることが提案されている(例えば、特許文献2参照)。しかし、一般に、耐酸化性の高いポリマーは負極における電気化学的還元反応に対する耐還元性は低く、この技術によっても極めて高い電池特性を実現することはできなかった。   However, the present technology has a problem that the binder contained in the coating layer is deteriorated by an electrochemical oxidation reaction in the positive electrode, and the decomposition product acts on the active material to deteriorate the battery characteristics. In order to solve this problem, it has been proposed to use an acrylate polymer having high oxidation resistance as a binder (see, for example, Patent Document 2). However, in general, a polymer having high oxidation resistance has low reduction resistance against an electrochemical reduction reaction in the negative electrode, and even with this technique, extremely high battery characteristics could not be realized.

かかる問題に対し、有機ポリマーに代えて、耐酸化性、耐還元性の高い無機バインダーを用いた塗層を設ける技術も提案されているが(例えば、特許文献3参照)、無機バインダーは機械的に脆いため、セパレータを折り曲げた際に、塗層が表面から脱落するなどの問題を有していた。   In order to solve this problem, a technique of providing a coating layer using an inorganic binder having high oxidation resistance and reduction resistance in place of the organic polymer has been proposed (see, for example, Patent Document 3). Therefore, when the separator is folded, there is a problem that the coating layer falls off from the surface.

特開2009−507353号公報JP 2009-507353 A 国際公開第2010/074202号パンフレットInternational Publication No. 2010/074202 Pamphlet 特表2005−518272号公報JP 2005-518272 A

本発明の課題は、リチウムイオン電池用セパレータに関し、これを用いた電池の安全性が高く、かつサイクル特性・充放電特性が良好であるセパレータと、このセパレータを用いた、安全性が高く、かつサイクル特性・充放電特性が良好であるリチウムイオン電池を提供することにある。   An object of the present invention relates to a separator for a lithium ion battery, a separator using the separator having high safety, and having good cycle characteristics and charge / discharge characteristics, and using the separator, the safety is high, and An object of the present invention is to provide a lithium ion battery having good cycle characteristics and charge / discharge characteristics.

上記課題を解決するために鋭意研究した結果、不織布基材の両面が、無機顔料及び有機ポリマーバインダーを含む塗層により被覆されてなるリチウムイオン電池用セパレータであって、一方の面を被覆する塗層の有機ポリマーバインダーが、正極電位による酸化に対し安定なポリマーであり、他方の面を被覆する塗層の有機ポリマーバインダーが、負極電位による還元に対し安定なポリマーであることにより、これを用いた電池の安全性が高く、かつサイクル特性・充放電特性を良好にすることが可能なセパレータが得られることを見出した。   As a result of diligent research to solve the above-mentioned problems, a lithium ion battery separator in which both surfaces of a nonwoven fabric base material are coated with a coating layer containing an inorganic pigment and an organic polymer binder, the coating covering one surface. The organic polymer binder of the layer is a polymer that is stable against oxidation by the positive electrode potential, and the organic polymer binder of the coating layer that covers the other surface is a polymer that is stable to reduction by the negative electrode potential. It has been found that a separator is obtained in which the safety of the battery is high and the cycle characteristics and charge / discharge characteristics can be improved.

さらに、上記セパレータを用い、有機ポリマーバインダーが正極電位による酸化に対して安定なポリマーである面が正極に対向してなるようにした電池は、安全性が高く、かつサイクル特性・充放電特性が良好なリチウムイオン電池になることを見出した。   Furthermore, the battery using the separator and having the organic polymer binder that is a polymer that is stable against oxidation due to the positive electrode potential facing the positive electrode has high safety, cycle characteristics, and charge / discharge characteristics. It has been found that a good lithium ion battery can be obtained.

本発明のセパレータを用いることで安全性が高く、かつサイクル特性・充放電特性が良好なリチウムイオン電池を製造することができる。   By using the separator of the present invention, a lithium ion battery having high safety and good cycle characteristics and charge / discharge characteristics can be produced.

本発明のセパレータを示す概念図である。It is a conceptual diagram which shows the separator of this invention.

本発明のセパレータは、不織布基材の両面が、無機顔料と有機ポリマーバインダーを含む塗層により被覆されてなるリチウムイオン電池用セパレータであって、一方の面を被覆する塗層に含まれる有機ポリマーバインダー(以下、「バインダー」と記す場合がある)が、正極電位による酸化に対し安定なポリマー(以下、「耐酸化性ポリマー」と記す場合がある)であり、他方の面を被覆する塗層に含まれるバインダーが、負極電位による還元に対し安定なポリマー(以下、「耐還元性ポリマー」と記す場合がある)であるセパレータである。   The separator of the present invention is a lithium ion battery separator in which both surfaces of a nonwoven fabric substrate are coated with a coating layer containing an inorganic pigment and an organic polymer binder, and the organic polymer contained in the coating layer covering one surface Binder (hereinafter sometimes referred to as “binder”) is a polymer that is stable against oxidation by the positive electrode potential (hereinafter sometimes referred to as “oxidation-resistant polymer”), and a coating layer that covers the other surface Is a separator that is a polymer that is stable against reduction by a negative electrode potential (hereinafter, sometimes referred to as “reduction resistant polymer”).

本発明の塗層に含まれる無機顔料としては、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ、ベーマイト等のアルミナ水和物、酸化マグネシウム、酸化カルシウム等を用いることができる。これらの中でも、リチウムイオン電池に用いられる電解質に対する安定性が高い点で、α−アルミナまたはアルミナ水和物が好ましく用いられる。   As the inorganic pigment contained in the coating layer of the present invention, alumina such as α-alumina, β-alumina and γ-alumina, alumina hydrate such as boehmite, magnesium oxide, calcium oxide and the like can be used. Among these, α-alumina or alumina hydrate is preferably used in terms of high stability to the electrolyte used in the lithium ion battery.

本発明の「正極電位による酸化に対し安定なポリマー」とは、正極の電位に曝された場合に、分解によりバインダーとしての能力が低下したり、分解生成物が、電池の内部抵抗を増大させたり、サイクル寿命を短くしたりなどの悪影響が生じにくいポリマーである。かかるポリマーの例としては、(メタ)アクリル酸エステルを主な構成単量体とするポリマーが挙げられる。   The “polymer that is stable against oxidation by the positive electrode potential” of the present invention means that when exposed to the potential of the positive electrode, the ability as a binder decreases due to decomposition, or decomposition products increase the internal resistance of the battery. Or a polymer that is less susceptible to adverse effects such as shortening the cycle life. An example of such a polymer is a polymer having (meth) acrylic acid ester as a main constituent monomer.

本発明の「負極電位による還元に対し安定なポリマー」とは、負極の電位に曝された場合に、分解によりバインダーとしての能力が低下したり、分解生成物が、電池の内部抵抗を増大させたり、サイクル寿命を短くしたりなどの悪影響が生じにくいポリマーである。かかるポリマーの例としては、スチレン−ブタジエン共重合エラストマーが挙げられる。   The “stable polymer with respect to reduction by the negative electrode potential” of the present invention means that when exposed to the negative electrode potential, the ability as a binder decreases due to decomposition, or the decomposition products increase the internal resistance of the battery. Or a polymer that is less susceptible to adverse effects such as shortening the cycle life. Examples of such polymers include styrene-butadiene copolymer elastomers.

本発明のセパレータは、無機顔料と耐酸化性ポリマーとを含む第1の塗液を一方の面(A面)に塗工し、無機顔料と耐還元性ポリマーとを含む第2の塗液を他方の面(B面)に塗工することで製造できる。A面への第1の塗液の塗工とB面への第2の塗液の塗工は同時に行なっても良いし、A面→B面の順で順次行なっても、B面→A面の順で順次行なっても良い。また、1面に塗液を塗工→乾燥させてから、他方の面に塗液を塗工→乾燥しても良いし、1面に塗液を塗工→他方の面に塗液を塗工→両面を乾燥しても良い。図1は本発明のセパレータを示す概念図であり、符号1は不織布基材を示し、符号2はバインダーが耐酸化性ポリマーである塗層を示し、符号3はバインダーが耐還元性ポリマーである塗層である。本発明の塗層は、不織布基材の表面を被覆してなる塗層のみで形成されていても良いし、不織布基材の表面を被覆してなる塗層4と不織布基材の内部に浸透してなる塗層5とで形成されていても良い。本発明の塗層は、不織布基材の大部分を被覆していれば良く、不織布基材の一部が露出していることは、本発明の効果に影響を及ぼさない。   In the separator of the present invention, a first coating liquid containing an inorganic pigment and an oxidation-resistant polymer is applied to one surface (A surface), and a second coating liquid containing an inorganic pigment and a reduction-resistant polymer is applied. It can be manufactured by coating the other surface (B surface). The application of the first coating liquid onto the A surface and the application of the second coating liquid onto the B surface may be performed simultaneously, or may be performed sequentially in the order of the A surface → B surface, or the B surface → A. You may carry out sequentially in the order of a surface. Alternatively, the coating liquid may be applied to one side → dried, and then the coating liquid may be applied to the other side → dried, or the coating liquid may be applied to one side → the coating liquid may be applied to the other side. Work → Both sides may be dried. FIG. 1 is a conceptual diagram showing a separator of the present invention. Reference numeral 1 denotes a nonwoven fabric substrate, reference numeral 2 denotes a coating layer in which the binder is an oxidation-resistant polymer, and reference numeral 3 denotes a binder that is a reduction-resistant polymer. It is a coating layer. The coating layer of the present invention may be formed only by a coating layer that covers the surface of the nonwoven fabric substrate, or penetrates into the interior of the coating layer 4 that covers the surface of the nonwoven fabric substrate and the nonwoven fabric substrate. It may be formed with the coating layer 5 formed. The coating layer of this invention should just have coat | covered most nonwoven fabric base materials, and that the part of nonwoven fabric base material has exposed does not affect the effect of this invention.

本発明のセパレータの製造において、塗液を不織布基材に塗工する方法としては、各種の塗工装置を用いることができる。かかる塗工装置としては、グラビアコーター、ダイコーター、ブレードコーター、ロッドコーター、ロールコーター等の各種コーターを用いることができる。   In the production of the separator of the present invention, various coating apparatuses can be used as a method for coating the coating liquid on the nonwoven fabric substrate. As such a coating apparatus, various coaters such as a gravure coater, a die coater, a blade coater, a rod coater, and a roll coater can be used.

本発明のセパレータを用い、安全性が高く、かつサイクル特性・充放電特性が良好な電池を製造するためには、バインダーが耐酸化性ポリマーである面が正極に対向するように電池を組み立てる。バインダーが耐酸化性ポリマーである面を負極に対向させた場合、本発明のセパレータの効果である、良好な内部抵抗・サイクル特性が実現できない。   In order to produce a battery having high safety and good cycle characteristics and charge / discharge characteristics using the separator of the present invention, the battery is assembled so that the surface of the binder that is an oxidation-resistant polymer faces the positive electrode. When the surface where the binder is an oxidation resistant polymer is opposed to the negative electrode, good internal resistance and cycle characteristics, which are the effects of the separator of the present invention, cannot be realized.

本発明のセパレータに用いる不織布基材は、特に制限されないが、耐熱性の高いセパレータを製造するという目的を達成するためには、不織布基材についても耐熱性の高いものであることが好ましく、かかる観点からは、融点の高い繊維から構成されることが好ましい。本発明のセパレータに用いる不織布基材を形成する繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート等のポリエステル、ポリアクリロニトリル等のアクリル、6,6ナイロン、6ナイロン等のポリアミド等の各種合成繊維、木材パルプ、麻パルプ、コットンパルプ等の各種セルロースパルプ、レーヨン、リヨセル等のセルロース系再生繊維等が例示される。これらの中で、耐熱性、低吸湿性等の理由から、ポリエステルまたはポリプロピレンを主体とした不織布が好ましい。不織布基材を形成する繊維の好ましい繊維径は、用いる塗液の物性にも依存するが、2〜8μmの範囲にあることが好ましい。不織布基材の厚みとしては、15〜30μmの範囲にあることが好ましい。   Although the nonwoven fabric base material used for the separator of the present invention is not particularly limited, in order to achieve the purpose of producing a separator having high heat resistance, it is preferable that the nonwoven fabric base material is also highly heat resistant. From the viewpoint, it is preferable to be composed of fibers having a high melting point. The fibers forming the nonwoven fabric substrate used in the separator of the present invention include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate, polyethylene isophthalate, and polyethylene naphthalate, acrylics such as polyacrylonitrile, 6,6 nylon, and 6 nylon. Examples thereof include various synthetic fibers such as polyamide, various cellulose pulps such as wood pulp, hemp pulp and cotton pulp, and cellulose-based regenerated fibers such as rayon and lyocell. Among these, non-woven fabrics mainly composed of polyester or polypropylene are preferred for reasons such as heat resistance and low hygroscopicity. Although the preferable fiber diameter of the fiber which forms a nonwoven fabric base material also depends on the physical property of the coating liquid to be used, it is preferable to exist in the range of 2-8 micrometers. The thickness of the nonwoven fabric substrate is preferably in the range of 15 to 30 μm.

繊維をシート状に形成せしめる方法としては、スパンボンド法、メルトブロー法、湿式法、静電紡糸法等の各種製造方法によることができる。これらの中で、湿式法によれば、薄くて緻密な構造を得ることができるため好ましい。繊維間を接合する方法としては、ケミカルボンド法、熱融着法等の各種方法によることができる。これらの中で、熱融着法によることで、表面が平滑な基材不織布が得られることから好ましい。   As a method for forming the fiber into a sheet, various production methods such as a spunbond method, a melt blow method, a wet method, and an electrostatic spinning method can be used. Among these, the wet method is preferable because a thin and dense structure can be obtained. As a method for bonding fibers, various methods such as a chemical bond method and a heat fusion method can be used. Among these, it is preferable to use a base material nonwoven fabric having a smooth surface by the heat fusion method.

本発明の塗層を形成せしめるのに用いる塗液には、前記無機顔料及びバインダーの他に、ポリアクリル酸、カルボキシメチルセルロースナトリウム等の各種分散剤、ヒドロキシエチルセルロース、カルボキシメチルセルロースナトリウム、ポリエチレンオキサイド等の各種増粘剤、各種の濡れ剤、防腐剤、消泡剤等の各種添加剤を、必要に応じ配合せしめることもできる。   The coating liquid used to form the coating layer of the present invention includes various dispersants such as polyacrylic acid and sodium carboxymethylcellulose, hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene oxide and the like in addition to the inorganic pigment and binder. Various additives such as thickeners, various wetting agents, preservatives and antifoaming agents can be blended as necessary.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において%及び部は、断りのない限り全て質量基準である。また塗工量は絶乾塗工量である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and parts are all based on mass unless otherwise specified. The coating amount is an absolutely dry coating amount.

<不織布基材の作製>
繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維50質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)50質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、円網型抄紙機にて、湿式方式で抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET系短繊維同士、及びバインダー用PET系短繊維と配向結晶化PET系短繊維の交点を接着させて不織布強度を発現させ、目付12g/mの不織布とした。さらに、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み18μmの不織布基材を作製した。
<Preparation of nonwoven substrate>
50 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.1 dtex (average fiber diameter of 3.0 μm) and a fiber length of 3 mm, a fineness of 0.2 dtex (average fiber diameter of 4.3 μm), and a single fiber length of 3 mm 50 parts by mass of a PET short fiber for a one-component binder (softening point 120 ° C., melting point 230 ° C.) was dispersed in water by a pulper to prepare a uniform papermaking slurry having a concentration of 1% by mass. This slurry for papermaking is made up by a wet type machine with a circular net type paper machine, and with a cylinder dryer at 135 ° C., the PET short fibers for binders, and the PET short fibers for binders and the oriented crystallized PET short The crossing point of the fibers was adhered to develop the strength of the nonwoven fabric to obtain a nonwoven fabric having a basis weight of 12 g / m 2 . Furthermore, this nonwoven fabric was subjected to conditions of a hot roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min, using a 1-nip thermal calender consisting of a dielectric heating jacket roll (metal hot roll) and an elastic roll. Was subjected to thermal calendering to prepare a nonwoven fabric substrate having a thickness of 18 μm.

<塗液Aの作製>
体積平均粒子径2.3μm、比表面積3m/gのベーマイト100部を、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液120部に混合し十分撹拌し、次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液300部、及び、耐酸化性ポリマーであるバインダーとして、ガラス転移点−18℃、体積平均粒子径0.2μmのアクリル酸エステル樹脂エマルション(固形分濃度50%)10部を混合、撹拌して塗液Aを作製した。
<Preparation of coating liquid A>
100 parts of boehmite having a volume average particle diameter of 2.3 μm and a specific surface area of 3 m 2 / g are sufficiently mixed with 120 parts of a 0.3% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. Then, 300 parts of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. of the 1% by mass aqueous solution, and a glass transition point of −18 ° C. as a binder that is an oxidation-resistant polymer, A coating liquid A was prepared by mixing and stirring 10 parts of an acrylic ester resin emulsion (solid content concentration 50%) having a volume average particle size of 0.2 μm.

<塗液Bの作製>
バインダーとして、耐還元性ポリマーである、ガラス転移点5℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合エマルション(固形分濃度50%)7部を用いた以外は塗液Aと同様にして、塗液Bを作製した。
<Preparation of coating liquid B>
Coating solution A except that 7 parts of carboxy-modified styrene-butadiene copolymer emulsion (solid content concentration 50%) having a glass transition point of 5 ° C. and a volume average particle size of 0.2 μm, which is a reduction-resistant polymer, was used as a binder. Similarly, a coating liquid B was produced.

<セパレータAの作製>
前記不織布基材の一方の面(A面)上に、塗液Aを、キスリバース方式のグラビアコーターにて絶乾塗工量が8g/mとなるように塗工・乾燥した。次いで、塗液Aを塗工したのとは反対面(B面)に、塗液Bを、キスリバース方式のグラビアコーターにて絶乾塗工量が8g/mとなるように塗工・乾燥し、厚み36μmのセパレータAを作製した。
<Preparation of separator A>
On one side (A side) of the non-woven fabric substrate, the coating liquid A was coated and dried with a kiss reverse gravure coater so that the absolute dry coating amount was 8 g / m 2 . Next, on the opposite side (B side) to which the coating liquid A was applied, the coating liquid B was coated with a kiss reverse gravure coater so that the absolute dry coating amount was 8 g / m 2. The separator A was dried to produce a separator A having a thickness of 36 μm.

<セパレータB〜Fの作製>
各面に塗工した塗液の種類・量を表1のように変更した以外は、セパレータAと同様にして、セパレータB〜Fを作製した。表1には、得られた各セパレータの厚みも記す。
<Preparation of separators B to F>
Separators B to F were prepared in the same manner as the separator A except that the type and amount of the coating liquid applied to each surface were changed as shown in Table 1. Table 1 also shows the thickness of each separator obtained.

Figure 2013254570
Figure 2013254570

電池I〜IXの作製
正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウムの1mol/L炭酸ジエチル/炭酸エチレン(容量比7/3)混合溶媒溶液を用いた設計容量30mAhの評価用電池を作製した。この時、使用するセパレータ、正極・負極に対向するセパレータ面の塗層におけるバインダーの種類を表2に示す。
Preparation of batteries I to IX Design using lithium manganate as the positive electrode, mesocarbon microbeads as the negative electrode, and 1 mol / L diethyl carbonate / ethylene carbonate (capacity ratio 7/3) mixed solvent solution of lithium hexafluorophosphate as the electrolyte A battery for evaluation having a capacity of 30 mAh was produced. At this time, Table 2 shows the types of binders used in the separator and the coating layer on the separator surface facing the positive and negative electrodes.

Figure 2013254570
Figure 2013254570

<内部抵抗の評価>
作製した各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクルのシーケンスにて、5サイクルの慣らし充放電を行った後、60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)を測定、を行い、内部抵抗Ω=(電圧a−電圧b)/(90mA−6mA)の式で内部抵抗を求めた。結果を表1に記す。
○:内部抵抗4Ω未満
△:内部抵抗4Ω以上5Ω未満
×:内部抵抗5Ω以上
<Evaluation of internal resistance>
About each produced battery, 60mA constant current charge-> 4.2V constant voltage charge (1 hour)-> constant current discharge at 60mA-> When it becomes 2.8V, 5 cycles of acclimatization charge-discharge are performed in the next cycle sequence. Then, 60 mA constant current charge → 4.2 V constant voltage charge (1 hour) → 30 mA constant current discharge at 6 mA (discharge amount 3 mAh) → Measure the voltage just before the end of discharge (voltage a) → 60 mA constant current charge → 4 .2V constant voltage charging (1 hour) → constant current discharge at 90 mA for 2 minutes (discharge amount 3 mAh) → measurement of voltage (voltage b) just before the end of discharge, internal resistance Ω = (voltage a−voltage b) / The internal resistance was determined by the formula (90 mA-6 mA). The results are shown in Table 1.
○: Internal resistance 4Ω or less △: Internal resistance 4Ω or more and less than 5Ω ×: Internal resistance 5Ω or more

<サイクル特性の評価>
上記の各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクルのシーケンスにて、100サイクルの充放電を行い、[1−(100サイクル目の放電容量/1サイクル目の放電容量)]×100(%)として容量低下率を求めた。容量低下率の低い方が、サイクル特性が良好な電池である。結果を表2に記す。
○:容量低下率10%未満
△:容量低下率10%以上20%未満
×:容量低下率20%以上
<Evaluation of cycle characteristics>
For each of the above batteries, 60 mA constant current charge → 4.2 V constant voltage charge (1 hour) → constant current discharge at 60 mA → 2.8 V, and then charge / discharge 100 cycles in the next cycle sequence, The capacity reduction rate was determined as [1- (discharge capacity at the 100th cycle / discharge capacity at the first cycle)] × 100 (%). A battery with a lower capacity reduction rate has better cycle characteristics. The results are shown in Table 2.
○: Capacity reduction rate of less than 10% Δ: Capacity reduction rate of 10% or more and less than 20% ×: Capacity reduction rate of 20% or more

<耐穿孔性の評価>
直径40mmの真ちゅう製円筒電極、セパレータ、直径0.3mm・長さ5mmの銅線、直径25mmの真ちゅう製円筒電極をこの順で重ね、両電極に2.5Vの電圧を加えながら、荷重装置により徐々に荷重した。両電極間に10μAの電流が流れた時点をもって、セパレータが穿孔したものとした。結果を表2に記す。
○:穿孔時の荷重2000N以上
△:穿孔時の荷重1000N以上2000N未満
×:穿孔時の荷重1000N未満
<Evaluation of perforation resistance>
A brass cylindrical electrode with a diameter of 40 mm, a separator, a copper wire with a diameter of 0.3 mm and a length of 5 mm, and a brass cylindrical electrode with a diameter of 25 mm are stacked in this order, and while applying a voltage of 2.5 V to both electrodes, The load was gradually applied. The separator was perforated when a current of 10 μA flowed between both electrodes. The results are shown in Table 2.
○: Load at the time of drilling 2000N or more Δ: Load at the time of drilling 1000N or more and less than 2000N ×: Load at the time of drilling less than 1000N

表2に記すように、一方の面を被覆する層のバインダーが耐酸化性ポリマーであり、他方の面を被覆する層のバインダーが耐還元性ポリマーである本発明のセパレータAは、不織布基材の1面のみが被覆されたセパレータC、E、不織布基材のみのセパレータFと比較して、耐穿孔性に優れ、安全性が高い電池を製造することができる。   As shown in Table 2, the separator A of the present invention in which the binder of the layer covering one surface is an oxidation-resistant polymer and the binder of the layer covering the other surface is a reduction-resistant polymer Compared with the separators C and E coated only on one side and the separator F only with the nonwoven fabric substrate, it is possible to manufacture a battery having excellent puncture resistance and high safety.

本発明のセパレータであるセパレータAを、バインダーが耐酸化性ポリマーであるA面が正極に対向するように用いてなる本発明の電池Iは、セパレータの向きが異なる本発明以外の電池IIや、他のセパレータを用いた本発明以外の電池III〜IXと比較して、内部抵抗、サイクル特性とも良好であり、かつ使用されているセパレータの耐穿孔性が高いので、安全性も高い。   The battery I of the present invention using the separator A which is the separator of the present invention so that the A surface where the binder is an oxidation-resistant polymer faces the positive electrode is a battery II other than the present invention in which the orientation of the separator is different, Compared with batteries III to IX other than the present invention using other separators, both internal resistance and cycle characteristics are good, and the used separator has high perforation resistance, so that safety is also high.

本発明は、安全性が高く、かつ内部抵抗・サイクル特性が良好なリチウムイオン電池用セパレータの製造に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for manufacturing a separator for a lithium ion battery having high safety and good internal resistance / cycle characteristics.

1 不織布基材
2 バインダーが耐酸化性ポリマーである塗層
3 バインダーが耐還元性ポリマーである塗層
4 不織布基材の表面を被覆してなる塗層
5 不織布基材の内部に浸透してなる塗層
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric base material 2 Coating layer in which binder is oxidation-resistant polymer 3 Coating layer in which binder is reduction-resistant polymer 4 Coating layer formed by coating the surface of the nonwoven fabric base material Penetration inside the nonwoven fabric base material Coating layer

Claims (2)

不織布基材の両面が、無機顔料と有機ポリマーバインダーを含む塗層により被覆されてなるリチウムイオン電池用セパレータであって、一方の面を被覆する塗層の有機ポリマーバインダーが、正極電位による酸化に対し安定なポリマーであり、他方の面を被覆する塗層の有機ポリマーバインダーが、負極電位による還元に対し安定なポリマーであることを特徴とするリチウムイオン電池用セパレータ。   A separator for a lithium ion battery in which both surfaces of a nonwoven fabric substrate are coated with a coating layer containing an inorganic pigment and an organic polymer binder, and the organic polymer binder of the coating layer covering one surface is oxidized by a positive electrode potential. A lithium ion battery separator, wherein the separator is a stable polymer and the organic polymer binder of the coating layer covering the other surface is a polymer that is stable against reduction by a negative electrode potential. 請求項1のセパレータを用いてなるリチウムイオン電池であって、塗層の有機ポリマーバインダーが正極電位による酸化に対し安定なポリマーである面が正極に対向してなることを特徴とするリチウムイオン電池。   2. A lithium ion battery using the separator according to claim 1, wherein a surface of the coating layer in which the organic polymer binder is a polymer that is stable against oxidation by a positive electrode potential is opposed to the positive electrode. .
JP2012127666A 2012-06-05 2012-06-05 Lithium ion battery separator and lithium ion battery Pending JP2013254570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127666A JP2013254570A (en) 2012-06-05 2012-06-05 Lithium ion battery separator and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127666A JP2013254570A (en) 2012-06-05 2012-06-05 Lithium ion battery separator and lithium ion battery

Publications (1)

Publication Number Publication Date
JP2013254570A true JP2013254570A (en) 2013-12-19

Family

ID=49951928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127666A Pending JP2013254570A (en) 2012-06-05 2012-06-05 Lithium ion battery separator and lithium ion battery

Country Status (1)

Country Link
JP (1) JP2013254570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024970A (en) * 2014-07-22 2016-02-08 日本バイリーン株式会社 Separator for electrochemical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024970A (en) * 2014-07-22 2016-02-08 日本バイリーン株式会社 Separator for electrochemical element

Similar Documents

Publication Publication Date Title
JP6542343B2 (en) Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
CN106537537B (en) Electrical storage device partition and the electrical storage device for using the partition
CN107230765B (en) Lithium ion battery separator
CN109844991A (en) Electro chemical elements use spacer and electrochemical element comprising it
WO2016043142A1 (en) Electrochemical element separator and electrochemical element obtained using same
JP6294989B2 (en) Lithium ion battery separator
JP2018085347A (en) Lithium ion battery separator
JP6347690B2 (en) Electrochemical element separator
JP2012155941A (en) Separator for electrochemical element, and electrochemical element using the same
JP6999671B2 (en) Lithium-ion battery separator coating liquid and lithium-ion battery separator
JP6049595B2 (en) Lithium ion battery separator
JP2013254570A (en) Lithium ion battery separator and lithium ion battery
JP2016009579A (en) Separator for lithium ion secondary battery
JP6962924B2 (en) Thin high-density non-woven fabric separator for energy storage equipment and its manufacturing method
JP6049588B2 (en) Lithium ion battery separator
JP6013815B2 (en) Lithium ion battery separator
CN104659312B (en) Isolator Used For Lithium Ion Battery
JP2019175703A (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP6016466B2 (en) Lithium ion battery separator coating liquid and lithium ion battery separator
JP2014022094A (en) Separator for lithium ion battery
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator
JP6018526B2 (en) Metal ion secondary battery separator
JP2019160888A (en) Coating liquid for separator for capacitor, and separator for capacitor
JP2021163604A (en) Lithium ion secondary battery
JP2014175108A (en) Cell separator