JP2013241815A - Earthquake resistant reinforcement structure by compressive brace - Google Patents

Earthquake resistant reinforcement structure by compressive brace Download PDF

Info

Publication number
JP2013241815A
JP2013241815A JP2012117118A JP2012117118A JP2013241815A JP 2013241815 A JP2013241815 A JP 2013241815A JP 2012117118 A JP2012117118 A JP 2012117118A JP 2012117118 A JP2012117118 A JP 2012117118A JP 2013241815 A JP2013241815 A JP 2013241815A
Authority
JP
Japan
Prior art keywords
brace
existing building
half steel
core material
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012117118A
Other languages
Japanese (ja)
Other versions
JP6033574B2 (en
Inventor
Takahisa Mori
貴久 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012117118A priority Critical patent/JP6033574B2/en
Publication of JP2013241815A publication Critical patent/JP2013241815A/en
Application granted granted Critical
Publication of JP6033574B2 publication Critical patent/JP6033574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resistant reinforcement structure capable of using a compressive brace to simplify its joining with an existing building and ensure a sufficient bearing force and reducing cost.SOLUTION: A compressive brace 1 consisting of a core material 2 and restraining materials 3 arranged along both faces of the core material 2 is used as a brace for reinforcement. A pair of half-split steel pipes 11, 11 made by vertically half-splitting a steel pipe, mutually joined by bolts, and surrounding a column 20 in a skeleton of an existing building are provided as a joint member 10 for joining the compressive brace 1 to the skeleton of the existing building. A clearance between the column 20 and the half-split steel pipes 11 is filled with grout 18 to join the half-split steel pipes 11 to the column 20. A horizontal plate 12 welded along the upper or lower end of each half-split steel pipe 11 and extending outward in a flange-like shape is provided and bonded to a beam 30 of the existing building by an epoxy adhesive 19. The core material 2 of the compression brace 1 is bonded to the half-split steel pipes 11.

Description

この発明は、RC造またはSRC造の既存建物を補強する圧縮ブレースを用いた建物の耐震補強構造に関する。   The present invention relates to a seismic reinforcement structure for a building using a compression brace that reinforces an existing building of RC or SRC.

従来、RC造(鉄筋コンクリート造)や、SRC造(鉄骨鉄筋コンクリート造)の既存建物の耐震補強構造として、鉄骨枠付のブレースが多く採用されている。この耐震補強構造では、既存建物の躯体と鉄骨枠との接合において、後施工アンカーとグラウト充填を併用する。しかし、後施工アンカーを打設するときに、騒音、振動、粉塵が発生するという問題がある。
そこで、これを避けるために、図7,図8にそれぞれ示すように、既存建物の柱51や梁52等の躯体50と鉄骨枠付ブレース53の鉄骨枠54との接合において、エポキシによる接着(図7)や、グラウト充填と圧着力Fによる摩擦伝達機構を用いた耐震補強構造が提案されている(例えば特許文献1〜4)。
Conventionally, brace with a steel frame is often used as an anti-seismic reinforcement structure for existing buildings of RC (steel reinforced concrete) or SRC (steel reinforced concrete). In this seismic reinforcement structure, post-construction anchors and grout filling are used together in the joining of the frame of the existing building and the steel frame. However, there is a problem that noise, vibration, and dust are generated when the post-installed anchor is placed.
Therefore, in order to avoid this, as shown in FIGS. 7 and 8, as shown in FIGS. 7 and 8, epoxy bonding (bonding between the frame 50 of the pillar 51 and the beam 52 of the existing building and the steel frame 54 of the brace 53 with the steel frame) FIG. 7), and an earthquake-proof reinforcement structure using a friction transmission mechanism using grout filling and pressure-bonding force F has been proposed (for example, Patent Documents 1 to 4).

特開2004−211315号公報JP 2004-21113 A 特開2008−121237号公報JP 2008-121237 A 特開2010−095963号公報JP 2010-095963 A 特開2008−150899号公報JP 2008-150899 A

鉄骨枠付きブレース53を用いた耐震補強構造におけるブレース55は、基本的に、圧縮と引っ張りの両方の力を伝達するものであり、それらの力を既存建物の躯体50からブレースに伝達する。このため、鉄骨枠54と既存建物の躯体50とを、引っ張り力でブレース55の接合部における既存建物のコンクリート表面に剥離が生じないように、堅固に接合する必要がある。そのため、上記したようにエポキシ接着剤等で接合する場合、鉄骨枠54の全周にわたって接着面積を確保することが可能である。しかし、鉄骨枠54を有する耐震補強構造では、作業に多くの時間を要して施工期間が長期化し、補強用材料の使用量も多くてコスト増を招く。   The brace 55 in the seismic reinforcement structure using the brace 53 with a steel frame basically transmits both compressive and tensile forces, and transmits these forces from the frame 50 of the existing building to the brace. For this reason, it is necessary to join firmly the steel frame 54 and the frame 50 of the existing building so that peeling may not arise in the concrete surface of the existing building in the junction part of the brace 55 by tensile force. Therefore, when joining with an epoxy adhesive etc. as mentioned above, it is possible to ensure a bonding area over the entire circumference of the steel frame 54. However, the seismic reinforcement structure having the steel frame 54 requires a lot of time for the work, and the construction period becomes longer, and the amount of the reinforcing material used is also increased, resulting in an increase in cost.

一方、例えば図6に示すように、鉄骨枠を使用しない耐震補強構造も提案されている。この場合、ブレースとして圧縮力を支持する圧縮ブレース41を用い、その芯材42の両端のエンドプレート45と既存建物の躯体50との間にモルタル48を充填した耐震補強構造とされる。   On the other hand, as shown in FIG. 6, for example, an earthquake-resistant reinforcement structure that does not use a steel frame has been proposed. In this case, a compression brace 41 that supports a compressive force is used as a brace, and an aseismic reinforcing structure in which a mortar 48 is filled between the end plates 45 at both ends of the core member 42 and the housing 50 of the existing building.

しかし、この耐震補強構造の場合、図7,8の例のような鉄骨枠54がなく、圧縮ブレース41と既存建物の躯体50との間には、支圧力を伝達するための部分的な接合面しか存在しない。すなわち、エンドプレート45の外面となる接合面しか存在しない。このため、例えばエポキシ系接着剤で接着する場合でも十分な接着面積を確保できない場合が多い。したがって、想定外の引っ張り力作用時や面外方向の地震力などに対して、接合部での剥離によって圧縮ブレース41の脱落や倒れも懸念される。
このため、接合の確実のためには、エンドプレート45を躯体50に接合する手段として、後施工アンカー49が必要となって、上記の騒音、振動、粉塵が発生するという問題が生じる。
However, in the case of this seismic reinforcement structure, there is no steel frame 54 as in the examples of FIGS. 7 and 8, and a partial joint for transmitting a support pressure is provided between the compression brace 41 and the frame 50 of the existing building. There are only faces. That is, there is only a joint surface that is the outer surface of the end plate 45. For this reason, for example, even when bonding with an epoxy-based adhesive, a sufficient bonding area cannot be secured in many cases. Accordingly, there is a concern that the compression brace 41 may fall off or fall down due to peeling at the joint portion when an unexpected pulling force is applied or an earthquake force is generated in the out-of-plane direction.
For this reason, in order to ensure the joining, the post-installed anchor 49 is required as a means for joining the end plate 45 to the housing 50, and the above-described noise, vibration, and dust are generated.

この発明の目的は、引っ張り力を負担させない圧縮ブレースを用いて、既存建物との接合部を簡素化できると共に、十分な支圧耐力を確保でき、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題もない耐震補強構造を提供することである。   The object of the present invention is to use a compression brace that does not impose a tensile force, simplify the joint with the existing building, ensure sufficient bearing strength, and perform seismic reinforcement with a short construction period with simple construction. Also, it is to provide a seismic reinforcement structure that is free from the problems of noise, vibration and dust associated with construction.

この発明の圧縮ブレースによる耐震補強構造は、RC造またはSRC造の既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、この圧縮ブレースを前記既存建物の躯体に接合する接合部材として、鋼管を縦に二分割してなり互いにボルト接合されて前記既存建物の躯体における柱を囲む一対の半割り鋼管を用い、前記柱と半割り鋼管との間の空隙にグラウトを充填してこの半割り鋼管を前記柱に接合し、前記圧縮ブレースの芯材を前記半割り鋼管に接合したことを特徴とする。   The seismic reinforcement structure by the compression brace according to the present invention is a structure in which an existing building of RC or SRC structure is reinforced with braces, and the braces are connected to the frame of the existing building at both ends and the core. A compression brace having a restraining material arranged along both surfaces of the material and restraining buckling of the core material, and the steel pipe is vertically divided into two as a joining member for joining the compression brace to the frame of the existing building A pair of half steel pipes that are bolted to each other and surround the pillar in the frame of the existing building are filled with grout in the gap between the pillar and the half steel pipe, and the half steel pipe is used as the pillar. The core material of the compression brace is bonded to the half steel pipe.

この構成によると、ブレースに圧縮力のみを負担させる圧縮ブレースを用いており、また圧縮ブレースと既存建物の躯体の柱との接合において、半割り鋼管により柱周囲を取り巻くように接合部材を配置し、柱への支圧接合によって圧縮ブレースと既存建物とを接合することができる。そのため、グラウトによる接合であっても剥がれの問題を生じることなく堅固に接合でき、後施工アンカーが不要となる。後施工アンカーを用いないため、騒音、振動、粉塵の発生の問題が生じない。
また、鉄骨のブレースをRC造,SRC造の既存建物の柱に接合する場合、接合面の支圧耐力(パンチングシア破壊耐力)の確保が重要となるが、半割り鋼管は柱周囲を取り巻いているため、従来の鉄骨枠を用いない接合構造に比べ、既存の柱に対する支圧面積を大きく設計できる。
このように、引っ張り力を負担させない圧縮ブレースを用いて、既存建物との接合部を簡素化できると共に、十分な支圧耐力を確保でき、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題もないという利点が得られる。
According to this configuration, a compression brace that bears only the compression force on the brace is used, and in joining the compression brace and the column of the frame of the existing building, the joining members are arranged so as to surround the column by the half steel pipe. The compression brace and the existing building can be joined by bearing connection to the column. Therefore, even if it is joining by grout, it can join firmly, without producing the problem of peeling, and a post-construction anchor becomes unnecessary. Since post-installed anchors are not used, problems of noise, vibration and dust generation do not occur.
In addition, when steel braces are joined to columns of existing RC or SRC buildings, it is important to secure bearing bearing strength (punching shear fracture strength) of the joint surface, but the half-ply steel pipe surrounds the periphery of the column. Therefore, the bearing area for the existing column can be designed to be larger than that of a conventional joint structure that does not use a steel frame.
In this way, using a compression brace that does not impose a pulling force, the joint with the existing building can be simplified, sufficient bearing strength can be secured, earthquake-proof reinforcement can be performed with a short construction period with simple construction, and There is an advantage that there is no problem of noise, vibration and dust associated with construction.

この発明において、前記各半割り鋼管の上端または下端に沿って溶接されて外側へ鍔状に張り出す水平プレートを設け、この水平プレートを既存建物の躯体における梁に接着剤で接着しても良い。前記接着剤には、例えばエポキシ接着剤を用いる。
このように半割り鋼管に水平プレートを設けて接着を併用した場合は、そのせん断耐力が見込めて、支圧耐力をより大きく設計できる。
In the present invention, a horizontal plate that is welded along the upper end or the lower end of each of the half steel pipes and extends outwardly in a bowl shape may be provided, and the horizontal plate may be bonded to a beam in the frame of an existing building with an adhesive. . For example, an epoxy adhesive is used as the adhesive.
In this way, when a horizontal plate is provided on the half steel pipe and bonding is used in combination, the shear strength can be expected and the bearing strength can be designed to be larger.

この発明において、前記両半割り鋼管は、これら各半割り鋼管の両側端にそれぞれ溶接されて外径側に延びる合わせ用垂直プレートを有し、両半割り鋼管の合わせ用垂直プレートで前記圧縮ブレースの芯材を挟み、これら合わせ用垂直プレートと前記芯材とに渡って貫通するボルトにより前記芯材を前記半割り鋼管に接合しても良い。
このように、半割り鋼管と圧縮ブレースの芯材との接合において、半割り鋼管の合わせ用垂直プレートに圧縮ブレースの芯材を挟み込む場合、合わせ用垂直プレートの相互の接合と、圧縮ブレースの半割り鋼管への接合とに同じボルトが兼用できて、高力ボルト等によるボルト接合のボルト本数を削減できる。
In the present invention, each of the half steel pipes has a matching vertical plate that is welded to both ends of each of the half steel pipes and extends to the outer diameter side. These core materials may be sandwiched, and the core material may be joined to the half steel pipe with bolts passing through the vertical plate for alignment and the core material.
As described above, when the half braided steel pipe and the core material of the compression brace are joined, when the core material of the compression brace is sandwiched between the vertical plates for mating the half steel pipe, The same bolt can also be used for joining to the split steel pipe, and the number of bolts for bolt joining with high strength bolts can be reduced.

この発明の圧縮ブレースによる耐震補強構造は、RC造またはSRC造の既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、この圧縮ブレースを前記既存建物の躯体に接合する接合部材として、鋼管を縦に二分割してなり互いにボルト接合されて前記既存建物の躯体における柱を囲む一対の半割り鋼管を用い、前記柱と半割り鋼管との間の空隙にグラウトを充填してこの半割り鋼管を前記柱に接合し、前記圧縮ブレースの芯材を前記半割り鋼管に接合したため、引っ張り力を負担させない圧縮ブレースを用いて、既存建物との接合部を簡素化できると共に十分な支圧耐力を確保でき、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題もない。   The seismic reinforcement structure by the compression brace according to the present invention is a structure in which an existing building of RC or SRC structure is reinforced with braces, and the braces are connected to the frame of the existing building at both ends and the core. A compression brace having a restraining material arranged along both surfaces of the material and restraining buckling of the core material, and the steel pipe is vertically divided into two as a joining member for joining the compression brace to the frame of the existing building A pair of half steel pipes that are bolted to each other and surround the pillar in the frame of the existing building are filled with grout in the gap between the pillar and the half steel pipe, and the half steel pipe is used as the pillar. Because the core material of the compression brace is joined to the half steel pipe, the joint with the existing building can be simplified and sufficient bearing strength can be secured by using the compression brace that does not impose a tensile force. Come, seismic reinforcement is done, and noise associated with the construction, vibration, there is no dust problems by a short construction period with a simple construction.

この発明の一実施形態の耐震補強構造を用いた建物躯体の正面図である。It is a front view of the building frame using the earthquake-proof reinforcement structure of one embodiment of this invention. 図1におけるA部の拡大断面図である。It is an expanded sectional view of the A section in FIG. 図2におけるIII −III 矢視断面図である。It is the III-III arrow sectional drawing in FIG. 同耐震補強構造における圧縮ブレースの外観斜視図および断面図である。It is the external appearance perspective view and sectional drawing of the compression brace in the seismic reinforcement structure. 同耐震補強構造における半割り鋼管と圧縮ブレースのボルト接合部を分解して示す正面図である。It is a front view which decomposes | disassembles and shows the bolt joint part of the half steel pipe and compression brace in the same earthquake-proof reinforcement structure. 従来の耐震補強構造を用いた建物躯体の正面図である。It is a front view of the building frame using the conventional seismic reinforcement structure. 耐震補強構造を用いた他の従来例を示す建物躯体の正面図である。It is a front view of the building frame which shows the other conventional example using an earthquake-proof reinforcement structure. 耐震補強構造を用いた他のさらに従来例を示す建物躯体の正面図である。It is a front view of the building frame which shows the other further conventional example using an earthquake-proof reinforcement structure.

この発明の一の実施形態を図1ないし図5と共に説明する。図1は、この実施形態の耐震補強構造を適用した既存建物の躯体構造を示す正面図である。この実施形態の耐震補強構造は、既存建物を圧縮ブレース1を用いて補強する構造である。同図に示すように、建物躯体は、隣り合う2本の柱20A,20B間に上下の梁30A、30Bが横架されている。建物躯体はRC造またはSRC造である。片方の柱20Aにおける下側の梁30Bの上側に隣合う部分を、接合部材10となる一対の半割り鋼管11,11で囲み、もう片方の柱20Bにおける上側の梁30Aの下側に隣合う部分も、接合部材10となる一対の半割り鋼管11,11で囲む。   One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view showing a frame structure of an existing building to which the seismic reinforcement structure of this embodiment is applied. The seismic reinforcement structure of this embodiment is a structure that reinforces an existing building using the compression brace 1. As shown in the figure, in the building frame, upper and lower beams 30A and 30B are horizontally mounted between two adjacent columns 20A and 20B. The building frame is RC or SRC. A portion adjacent to the upper side of the lower beam 30B in the one column 20A is surrounded by a pair of half steel pipes 11 and 11 to be the joining members 10, and is adjacent to the lower side of the upper beam 30A in the other column 20B. The part is also surrounded by a pair of half steel pipes 11, 11 that become the joining member 10.

図1のA部の横断面を拡大して図3に示す。同図のように、柱20A,20Bは断面方形であり、一対の半割り鋼管11,11は、角形の鋼管を一対の対向する面の中央で縦に二分割してなり、互いにボルト14で接合される。図2は、図3のII−II矢視断面図を示す。なお、図3は、図2のIII −III 矢視断面図を示す。各一対の半割り鋼管11,11と、これらに対応する柱20Aとの空隙には、無収縮グラウト18を充填する。これにより、半割り鋼管11を柱20Aに接合する。片方の柱20Aを囲む一対の鋼管11,11には、それらの下端に沿って溶接されて外側へ鍔状に張り出すベースプレートとなる水平プレート12が設けられ、この水平プレート12を下側の梁30Bの上面にエポキシ接着剤19で接着する。   FIG. 3 is an enlarged cross-sectional view of part A in FIG. As shown in the figure, the pillars 20A and 20B are square in cross section, and the pair of half steel pipes 11 and 11 are formed by vertically dividing a square steel pipe into two vertically at the center of a pair of opposed surfaces. Be joined. 2 shows a cross-sectional view taken along the line II-II in FIG. 3 shows a cross-sectional view taken along the line III-III in FIG. A non-shrink grout 18 is filled in the space between each pair of the half steel pipes 11 and 11 and the pillars 20A corresponding thereto. Thereby, the half steel pipe 11 is joined to the column 20A. A pair of steel pipes 11 and 11 surrounding one column 20A is provided with a horizontal plate 12 which becomes a base plate which is welded along the lower ends thereof and extends outwardly in a bowl shape. The epoxy adhesive 19 is attached to the upper surface of 30B.

各半割り鋼管11は、それらの両側端に全長に渡って溶接されて外径側に延びる合わせ用垂直プレート13A,13Bを有している。これらの互いに対向する合わせ用垂直プレート13A,13Bをボルト14で接合することで、一対の半割り鋼管11,11を、柱20A,20Bを囲む管状に接合する。柱20Aを囲む一対の半割り鋼管11,11は、それらの上端に沿って溶接されて外側へ張り出す補強用の水平リブ11aを有する。   Each half steel pipe 11 has welding vertical plates 13A and 13B which are welded over their entire lengths on both side ends and extend to the outer diameter side. By joining these opposing vertical plates 13A and 13B with bolts 14, the pair of half steel pipes 11 and 11 are joined into a tube surrounding the columns 20A and 20B. A pair of half steel pipes 11 and 11 surrounding the column 20A have reinforcing horizontal ribs 11a which are welded along their upper ends and project outward.

もう片方の柱20Bを囲む一対の半割り鋼管11,11においても、それらの上端に沿って溶接されて外側へ鍔状に張り出すトッププレートとなる水平プレート12(図1)が設けられている。この水平プレート12を上側の梁30Aの下面にエポキシ接着剤19で接着する。また、これら一対の半割り鋼管11,11は、それらの下端に沿って溶接されて外側へ張り出す補強用の水平リブ11aを有する。   Also in the pair of halved steel pipes 11 and 11 surrounding the other column 20B, a horizontal plate 12 (FIG. 1) serving as a top plate that is welded along the upper ends thereof and projects outwardly in a bowl shape is provided. . The horizontal plate 12 is bonded to the lower surface of the upper beam 30A with an epoxy adhesive 19. In addition, the pair of half steel pipes 11, 11 have reinforcing horizontal ribs 11 a that are welded along their lower ends and project outward.

圧縮ブレース1は、片方の柱20Aと下側の梁30Bとの隅部から、もう片方の柱20Bと上側の梁30Aとの隅部に渡って斜交いに設ける。圧縮ブレース1は、建物躯体に加わる層間の水平力に抵抗する部材であって、図4に示すように、芯材2とこの芯材2の両面に沿って配置されて芯材2の座屈を拘束する一対の拘束材3,3とを有する。芯材2は、帯状の平鋼板であり、SN材(建築構造用圧延鋼材)や、LYP材(極低降伏点鋼材)等の降伏点の低い鉄鋼材料からなる。この圧縮ブレース1の芯材2の下端側を、片方の柱20Aに接合した一対の半割り鋼管11,11(図1)に接合し、芯材2の上端側を、もう片方の柱20Bに接合したもう一対の半割り鋼管11,11に接合する。   The compression brace 1 is obliquely provided from the corner of one column 20A and the lower beam 30B to the corner of the other column 20B and the upper beam 30A. The compression brace 1 is a member that resists horizontal force between layers applied to the building frame. As shown in FIG. 4, the compression brace 1 is disposed along both sides of the core material 2 and the core material 2 to buckle. And a pair of restraining materials 3 and 3 for restraining. The core material 2 is a strip-shaped flat steel plate, and is made of a steel material having a low yield point such as an SN material (rolled steel material for building structure) or a LYP material (extremely low yield point steel material). The lower end side of the core material 2 of the compression brace 1 is joined to a pair of half steel pipes 11 and 11 (FIG. 1) joined to one column 20A, and the upper end side of the core material 2 is joined to the other column 20B. It joins to another joined half steel pipe 11,11.

拘束材3は、例えば図4に示すように、芯材2に向けて開口する溝形鋼材4内にモルタルまたはコンクリート5を充填して構成される。芯材2と拘束材3との間には粘性弾性体からなるアンボンド材6が介在させてある。芯材2の両側面には、対向する一対の拘束材3,3間の隙間を確保するスペーサ7が介在させてある。スペーサ7は、線状の鋼材またはゴム材等からなるが、省略しても良い。   For example, as shown in FIG. 4, the constraining material 3 is configured by filling a mortar or concrete 5 into a channel steel material 4 that opens toward the core material 2. An unbond material 6 made of a viscous elastic body is interposed between the core material 2 and the restraint material 3. Spacers 7 are provided on both side surfaces of the core material 2 to ensure a gap between the pair of constraining materials 3 and 3 facing each other. The spacer 7 is made of a linear steel material or rubber material, but may be omitted.

芯材2の両端部2aには、その両面の幅方向中央位置からそれぞれ垂直に突出するリブ2bが設けられて断面十字状とされ、芯材2の端部2aと前記リブ2bとに複数のボルト孔8があけられている。この芯材2の端部2aを、図2および図3に示すように、一対の半割り鋼管11,11の合わせ用垂直プレート13B,13Bで挟み、両合わせ用垂直プレート13Bを、その挟み込まれた芯材端部2aと共にボルト14で接合する。これにより、合わせ用垂直プレート13Bは、一対の半割り鋼管11,11を相互に接合する部材としての機能と、これら合わせ用垂直プレート13B,13Bに対して芯材2を接合する部材としての機能とを兼ねる。ボルト14には高力ボルト等を用いる。   Both ends 2a of the core material 2 are provided with ribs 2b projecting perpendicularly from the center positions in the width direction of both surfaces to form a cross-shaped cross section, and a plurality of ends 2a of the core material 2 and the ribs 2b Bolt holes 8 are formed. As shown in FIGS. 2 and 3, the end 2a of the core member 2 is sandwiched between the vertical plates 13B, 13B of the pair of half steel pipes 11, 11, and the vertical plate 13B is sandwiched between the vertical plates 13B. It joins with the volt | bolt 14 with the core end part 2a. Thereby, the alignment vertical plate 13B functions as a member that joins the pair of half steel pipes 11 and 11 to each other, and functions as a member that joins the core material 2 to the alignment vertical plates 13B and 13B. Also serves as. A high strength bolt or the like is used for the bolt 14.

図2における一対の半割り鋼管11,11への圧縮ブレース1の接合部の分解拡大図を図5に示す。同図に示すように、合わせ用垂直プレート13B,13Bには、芯材2の端部2aに設けられたリブ2bの進入を許容するスリット部13Baと、このスリット部13Baの両側に沿って合わせ用垂直プレート13Bに垂直な方向に突出する一対の挟持片13Bb,13Bbとが設けられる。これにより、芯材2の端部2aが両合わせ用垂直プレート13B,13Bで挟まれた状態で、芯材2のリブ2bが前記スリット部13Baから突出して一対の挟持片13Bb,13Bbで挟まれる。芯材2のリブ2bはこれら両挟持片13Bb,13Bbにボルト14で接合する。これらの構造は、もう片方の柱20Bを囲む一対の半割り鋼管11,11への圧縮ブレース1の接合部でも略同様であり、ここでは説明を省略する。   FIG. 5 is an exploded enlarged view of the joint portion of the compression brace 1 to the pair of half steel pipes 11 and 11 in FIG. As shown in the figure, the alignment vertical plates 13B and 13B are aligned along the slit 13Ba that allows the rib 2b provided on the end 2a of the core member 2 to enter and along both sides of the slit 13Ba. A pair of sandwiching pieces 13Bb and 13Bb projecting in a direction perpendicular to the vertical plate 13B is provided. Accordingly, the rib 2b of the core material 2 protrudes from the slit portion 13Ba and is sandwiched between the pair of sandwiching pieces 13Bb and 13Bb in a state where the end portion 2a of the core material 2 is sandwiched between the vertical plates 13B and 13B. . The rib 2b of the core material 2 is joined to these sandwiching pieces 13Bb and 13Bb with bolts. These structures are also substantially the same at the joint of the compression brace 1 to the pair of half steel pipes 11 and 11 surrounding the other column 20B, and the description thereof is omitted here.

柱20Aを囲む一対の半割り鋼管11,11に設けられる水平プレート12における圧縮ブレース1の接合側となる端部には、垂直に立ち上がる補強用のリブ12aが溶接され、このリブ12aは合わせ用垂直プレート13B,13Bの側縁にも溶接される。これにより、圧縮ブレース1の接合部の補強が確保されている。これらの構造は、もう片方の柱20Bを囲む一対の半割り鋼管11,11に設けられる水平プレート12でも上記と略同様であり、ここでは説明を省略する。   A reinforcing rib 12a that rises vertically is welded to the end of the horizontal plate 12 that is provided on the pair of half-pipe steel pipes 11 and 11 that surround the column 20A and is joined to the compression brace 1, and this rib 12a is used for matching. It is also welded to the side edges of the vertical plates 13B, 13B. Thereby, the reinforcement of the junction part of the compression brace 1 is ensured. These structures are also substantially the same as described above for the horizontal plate 12 provided in the pair of half-cut steel pipes 11 and 11 surrounding the other column 20B, and the description thereof is omitted here.

このように、この実施形態の耐震補強構造では、互いにボルト14で接合される一対の半割り鋼管11,11で既存建物の躯体における柱20A,20Bを囲み、柱20A,20Bと半割り鋼管11との隙間に無収縮グラウト18を充填することで半割り鋼管11を柱20A,20Bに接合する。この半割り鋼管11に圧縮ブレース1の芯材2を接合する。そのため、柱20A,20Bに支圧面積を大きく確保することができる。その結果、引っ張り力を負担させない圧縮ブレース1を用いて、既存建物との接合部を簡素化できると共に、十分な支圧耐力を確保できて、簡易な施工で短い施工期間により耐震補強が行え、コスト低減が可能となる。また後施工アンカーを用いないので、施工に伴う騒音、振動、粉塵の問題もない。
また、各半割り鋼管11の上端または下端に沿って溶接されて外側へ鍔状に張り出す水平プレート12を、既存建物の躯体における梁30A,30Bにエポキシ接着剤19で接着するので、エポキシ接着剤19によるせん断耐力が見込め、支圧耐耐力をより大きく確保できる。
Thus, in the seismic reinforcement structure of this embodiment, the pillars 20A and 20B in the frame of the existing building are surrounded by the pair of half steel pipes 11 and 11 joined together by the bolts 14, and the pillars 20A and 20B and the half steel pipe 11 are enclosed. The non-shrink grout 18 is filled in the gap between the half steel pipe 11 and the columns 20A and 20B. The core material 2 of the compression brace 1 is joined to the half steel pipe 11. Therefore, a large bearing area can be secured for the columns 20A and 20B. As a result, using the compression brace 1 that does not impose a tensile force, the joint with the existing building can be simplified, sufficient bearing strength can be ensured, and seismic reinforcement can be performed in a short construction period with simple construction. Cost reduction is possible. Moreover, since no post-construction anchor is used, there are no problems of noise, vibration, and dust associated with construction.
Moreover, since the horizontal plate 12 which is welded along the upper end or the lower end of each half steel pipe 11 and protrudes outward in a bowl shape is bonded to the beams 30A and 30B in the frame of the existing building with the epoxy adhesive 19, The shear strength due to the agent 19 can be expected, and the bearing strength can be secured larger.

また、この実施形態では、各半割り鋼管11が、合わせ用垂直プレート13A,13Bを有し、両半割り鋼管11,11の合わせ用垂直プレート13B,13Bで圧縮ブレース1の芯材2を挟み、両合わせ用垂直プレート13B,13Bと共に、芯材2をボルト14で接合している。そのため、一部のボルト14を、両半割り鋼管11,11の相互の接合と、半割り鋼管11への圧縮ブレース1の接合とに共用できて、高力ボルト等のボルト本数を低減することができる。   Moreover, in this embodiment, each half steel pipe 11 has the vertical plates 13A and 13B for alignment, and the core material 2 of the compression brace 1 is sandwiched between the vertical plates 13B and 13B for both the half steel pipes 11 and 11. The core material 2 is joined with bolts 14 together with the vertical plates 13B and 13B for both alignment. Therefore, a part of the bolts 14 can be commonly used for the mutual joining of both the half steel pipes 11 and 11 and the joining of the compression brace 1 to the half steel pipe 11 to reduce the number of bolts such as high strength bolts. Can do.

1…圧縮ブレース
2…芯材
2a…端部
2b…リブ
3…拘束材
10…接合部材
11…半割り鋼管
12…水平プレート
13A,13B…合わせ用垂直プレート
14…ボルト
18…無収縮グラウト
19…エポキシ接着剤
20A,20B…柱
30A,30B…梁
DESCRIPTION OF SYMBOLS 1 ... Compression brace 2 ... Core material 2a ... End part 2b ... Rib 3 ... Restraint material 10 ... Joining member 11 ... Split steel pipe 12 ... Horizontal plate 13A, 13B ... Vertical plate 14 for alignment ... Bolt 18 ... Non-shrink grout 19 ... Epoxy adhesive 20A, 20B ... pillars 30A, 30B ... beams

Claims (3)

RC造またはSRC造の既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、この圧縮ブレースを前記既存建物の躯体に接合する接合部材として、鋼管を縦に二分割してなり互いにボルト接合されて前記既存建物の躯体における柱を囲む一対の半割り鋼管を用い、前記柱と半割り鋼管との間の空隙にグラウトを充填してこの半割り鋼管を前記柱に接合し、前記圧縮ブレースの芯材を前記半割り鋼管に接合したことを特徴とする圧縮ブレースによる耐震補強構造。   A structure in which an existing building of RC or SRC is reinforced with braces, wherein the braces are arranged along both sides of the core material, both ends of which are connected to the frame of the existing building, and the core A compression brace having a constraining material for restraining buckling of the material, and as a joining member for joining the compression brace to the frame of the existing building, the steel pipe is vertically divided into two and bolted to each other to form the existing building A pair of half steel pipes surrounding a column in the frame of the steel frame, filling the gap between the pillar and the half steel pipe with grout, joining the half steel pipe to the column, and forming the core material of the compression brace as described above Seismic reinforcement structure by compression brace, characterized by joining to half steel pipe. 請求項1において、前記各半割り鋼管の上端または下端に沿って溶接されて外側へ鍔状に張り出す水平プレートを設け、この水平プレートを既存建物の躯体における梁に接着剤で接着した圧縮ブレースによる耐震補強構造。   2. The compressed brace according to claim 1, wherein a horizontal plate is provided that is welded along the upper end or the lower end of each of the half steel pipes and projects outward in a bowl shape, and the horizontal plate is bonded to a beam in a frame of an existing building with an adhesive. Seismic reinforcement structure by. 請求項1または請求項2において、前記両半割り鋼管は、これら各半割り鋼管の両側端にそれぞれ溶接されて外径側に延びる合わせ用垂直プレートを有し、両半割り鋼管の合わせ用垂直プレートで前記圧縮ブレースの芯材を挟み、これら合わせ用垂直プレートと前記芯材とに渡って貫通するボルトにより、前記芯材を前記半割り鋼管に接合した圧縮ブレースによる耐震補強構造。   3. The half steel pipes according to claim 1 or 2, wherein each of the half steel pipes has a vertical matching plate that is welded to both side ends of each of the half steel pipes and extends to the outer diameter side. An anti-seismic reinforcing structure using compression braces in which a core material of the compression brace is sandwiched between plates, and the core material is joined to the half steel pipe by a bolt penetrating the alignment vertical plate and the core material.
JP2012117118A 2012-05-23 2012-05-23 Seismic reinforcement structure with compression braces Expired - Fee Related JP6033574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117118A JP6033574B2 (en) 2012-05-23 2012-05-23 Seismic reinforcement structure with compression braces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117118A JP6033574B2 (en) 2012-05-23 2012-05-23 Seismic reinforcement structure with compression braces

Publications (2)

Publication Number Publication Date
JP2013241815A true JP2013241815A (en) 2013-12-05
JP6033574B2 JP6033574B2 (en) 2016-11-30

Family

ID=49842943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117118A Expired - Fee Related JP6033574B2 (en) 2012-05-23 2012-05-23 Seismic reinforcement structure with compression braces

Country Status (1)

Country Link
JP (1) JP6033574B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183460A (en) * 2014-03-25 2015-10-22 大和ハウス工業株式会社 Seismic strengthening structure using compression brace
CN109252445A (en) * 2018-05-28 2019-01-22 广西路建工程集团有限公司 Cast-in-situ Beam assembled Large Diameter Pipeline steel pipe support structure and its construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292636A (en) * 1997-04-15 1998-11-04 Taisei Corp Structure reinforcing brace of existing building
JPH10292639A (en) * 1997-04-18 1998-11-04 Zenitaka Corp Aseismatic reinforcing method for building
JP2012001881A (en) * 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd External brace using aseismic reinforcement structure and aseismic reinforcement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292636A (en) * 1997-04-15 1998-11-04 Taisei Corp Structure reinforcing brace of existing building
JPH10292639A (en) * 1997-04-18 1998-11-04 Zenitaka Corp Aseismatic reinforcing method for building
JP2012001881A (en) * 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd External brace using aseismic reinforcement structure and aseismic reinforcement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183460A (en) * 2014-03-25 2015-10-22 大和ハウス工業株式会社 Seismic strengthening structure using compression brace
CN109252445A (en) * 2018-05-28 2019-01-22 广西路建工程集团有限公司 Cast-in-situ Beam assembled Large Diameter Pipeline steel pipe support structure and its construction method

Also Published As

Publication number Publication date
JP6033574B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
KR101638556B1 (en) Hybrid Vibration Control Damper for Seismic Reinforce of Building
KR20110061841A (en) Joint structure for concrete filled tube column and h-shaped beam and construction method therefor
JP5634627B1 (en) Mixed structural frames of reinforced concrete columns and steel beams
JP2014077248A (en) Seismic strengthening structure and seismic strengthening method
JP4710067B2 (en) Beam-column joint structure
JP5596990B2 (en) Bearing wall structure of wooden building
JP5275545B2 (en) Seismic wall and its construction method
JP2018178466A (en) Damper and method for manufacturing damper
JP6033574B2 (en) Seismic reinforcement structure with compression braces
JP6246464B2 (en) Buckling-restrained brace and seismic reinforcement structure using the same
KR101652621B1 (en) Aseismic structure for existing building
JP2008088756A (en) Aseismatic repair method for existing building structure
JP5934033B2 (en) Seismic reinforcement structure and method using compression braces
JP2015074928A (en) Steel earthquake-resisting wall
JP2012001881A (en) External brace using aseismic reinforcement structure and aseismic reinforcement method
KR101299574B1 (en) Moment connection structure using panel zone of rectangular shape
JP2012207389A (en) Seismic strengthening construction method for existing building
JP2015224480A (en) Vibration control element
JP4405336B2 (en) Damping block wall structure
JP2008184826A (en) Base isolated building
JP4571904B2 (en) Seismic reinforcement method using concrete blocks
JP6268998B2 (en) End structure of steel member
JP6353647B2 (en) Seismic isolation device joint structure
JP6905927B2 (en) How to build a seismic isolated building and a seismic isolated structure
JP6240420B2 (en) Seismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees