JP2013240562A - Medical guide wire - Google Patents

Medical guide wire Download PDF

Info

Publication number
JP2013240562A
JP2013240562A JP2012128391A JP2012128391A JP2013240562A JP 2013240562 A JP2013240562 A JP 2013240562A JP 2012128391 A JP2012128391 A JP 2012128391A JP 2012128391 A JP2012128391 A JP 2012128391A JP 2013240562 A JP2013240562 A JP 2013240562A
Authority
JP
Japan
Prior art keywords
strain
wire
guide wire
tip
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012128391A
Other languages
Japanese (ja)
Inventor
Teruo Hashimoto
輝夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRS KK
Original Assignee
TRS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRS KK filed Critical TRS KK
Priority to JP2012128391A priority Critical patent/JP2013240562A/en
Publication of JP2013240562A publication Critical patent/JP2013240562A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a medical guide wire, which is a medical guide wire comprising a body and a front end configured integrally with a titanium-nickel alloy wire as a core material, wherein the body is high in elasticity, and is excellent in pushing properties and torque transmission properties as its straightness is excellent; and the front end has repetition reshaping properties and sufficient flexibility shape preservation properties, and is excellent in operability such as vascular following properties and vascular selectivity or the like.SOLUTION: A medical guide wire includes a body and a front end configured integrally with a titanium-nickel alloy wire as a core material. The titanium-nickel alloy wire is improved in material properties and straightness by mechanical and correctional processing without the need of heat treatment after cold wire drawing processing. The medical guide wire can be obtained which does not exhibit stress-induced martensitic transformation with high elasticity in a wide strain range, and has repetition reshaping properties and form preservation properties with various kinds of excellent operability by means of heat treatment only of the front end in the range of temperature 500-650°C.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、チタン・ニッケル系合金製ワイヤーを芯材として、互いに一体に構成された本体部と先端部とからなる医療用ガイドワイヤーであって、本体部は弾性率が高く、真直性が良いことから、押込み性やトルク伝達性に優れ、先端部は繰り返しリシェイプ性、形状保持性、柔軟性を有し、かつ、血管追従性、血管選択性、などの操作性に優れた医療用ガイドワイヤーに関する。  The present invention is a medical guide wire comprising a main body part and a tip part integrally formed with a titanium / nickel alloy wire as a core material, and the main body part has a high elastic modulus and good straightness. Therefore, the medical guide wire has excellent pushability and torque transmission, the tip has repeated reshapability, shape retention, and flexibility, and has excellent operability such as blood vessel follow-up and blood vessel selectivity. About.

カテーテル用ガイドワイヤーは外科的手術が困難な部位の治療、人体への低侵襲を目的とした治療、および血管造影などの検査に用いられるカテーテル等の処置具を目的部位へ誘導するのに使用されている。  Catheter guidewires are used to guide surgical instruments such as catheters used for the treatment of difficult surgical procedures, minimally invasive treatments of the human body, and angiographic examinations to the target site. ing.

そのために、ガイドワイヤーは、病変部など目的部位への到達、狭窄部の通過、カテーテ等処置具の誘導、などの操作がスムーズに行えることが重要である。従って、ガイドワイヤーには、目的部位へスムーズに挿入するために、押し込み力(プッシャビリティ)とトルク伝達性(ねじり回転力が先端部に確実かつ有効に伝わるトルカビリティ)が優れることが求められる。更に、複雑に湾曲、分岐した血管に沿って選択的かつ適正に通過させうる(血管追従性、血管選択性)ためには、真直性、復元性、柔軟性が優れていることが求められる。  Therefore, it is important that the guide wire can smoothly perform operations such as reaching a target site such as a lesion, passing through a stenosis, and guiding a treatment tool such as a catheter. Therefore, the guide wire is required to have excellent pushing force (pushability) and torque transmission property (torque ability to transmit the torsional rotational force reliably and effectively to the tip portion) in order to smoothly insert the guide wire into the target portion. Further, in order to allow selective and proper passage along a complicatedly curved or branched blood vessel (blood vessel followability, blood vessel selectivity), it is required to have excellent straightness, restoration property, and flexibility.

それに加えて、ガイドワイヤーを、血管分岐部において適正な分枝を選択してスムーズに進めて行く(血管追従性、血管選択性)ためには、ガイドワイヤーの先端部分を血管の分岐部の形状に合わせて適切な形状付けをすることが必要となる。この形状付けは、医師が手術時に手指によって行うものであり、リシェイプと呼ばれている。  In addition, for the guide wire to select the appropriate branch at the blood vessel bifurcation and to advance it smoothly (blood vessel followability, blood vessel selectivity), the tip of the guide wire is shaped as the blood vessel bifurcation. It is necessary to shape appropriately according to the situation. This shaping is performed by a doctor with fingers during surgery, and is called reshaping.

すなわち、従来の予備成形されたアングル型やJ型の先端形状だけで所望の血管選択性が得られない場合などは、一旦カテーテルからガイドワイヤーを抜去し、所望の形状に再度形状付けをして挿入する必要がある。従って、医師によって、所望する先端形状が自由に形成できること、繰り返し可能なリシェイプ性を有すること、付与された形状が湾曲した血管を通過した後も形状を維持していること(形状保持性)が、治療用ガイドワイヤーの重要な機能として求められている。  In other words, if the desired blood vessel selectivity cannot be obtained only with the conventional pre-shaped angle type or J type tip shape, remove the guide wire from the catheter and reshape it into the desired shape. It is necessary to insert. Therefore, a doctor can freely form a desired tip shape, have repeatable reshapability, and maintain the shape even after the applied shape passes through a curved blood vessel (shape retention). It is required as an important function of the guide wire for treatment.

現在、医療用ガイドワイヤーの芯線としては、ステンレス鋼あるいはチタン・ニッケル系合金が使用されているが、ステンレス鋼のように弾性率が高く押込みが効き、かつ塑性変形しやすい材料を芯材として用いると、複雑に蛇行湾曲した血管部において、血管壁を傷つけやすく、また、塑性変形を受けて、ねじり回転力の伝達性、血管選択性などの操作性が悪くなるなどの問題が指摘されている。  At present, stainless steel or titanium / nickel alloy is used as the core wire for medical guidewires, but a material with high elastic modulus, effective indentation and easy plastic deformation is used as the core material, such as stainless steel. However, it has been pointed out that the blood vessel wall is complicated to meander and is easily damaged, and the plastic deformation causes poor operability such as torsional rotational force transmission and blood vessel selectivity. .

一方、超弾性チタン・ニッケル合金を使用したカテーテル用ガイドワイヤー(特許文献1〜4参照)は柔軟性および変形に対する復元性が優れることから血管選択性など操作性は改良されるが、ワイヤー本体の先端部が超弾性を示すので、室温下(15〜30℃)において、リシェイプすることが困難である。また、この超弾性チタン・ニッケル系合金製ワイヤーは応力−ひずみ曲線で降伏点を有し、これを超えるとそれ以上ひずみを付与しても応力が増加しないため、プッシャビリティに劣る。すなわち、ガイドワイヤーを所定位置に到達せしめても、上記の本質的な材料特性によって、反発弾性が小さいことから、血管やカテーテルの曲げ応力に抗して、ガイドワイヤーを所定位置に留めて置くに必要な抵抗力が無く、ガイドワイヤーの先端部が所定部位から引き出され、逆戻りが起こることから、結果的に、押込み性が劣り、適正位置への留置が困難となる。  On the other hand, catheter guidewires using superelastic titanium / nickel alloys (see Patent Documents 1 to 4) have improved flexibility and resilience to deformation, so that operability such as blood vessel selectivity is improved. Since the tip portion exhibits superelasticity, it is difficult to reshape at room temperature (15 to 30 ° C.). In addition, this superelastic titanium / nickel alloy wire has a yield point in the stress-strain curve, and if it exceeds this, the stress does not increase even if more strain is applied, so the pushability is inferior. That is, even if the guide wire reaches a predetermined position, due to the above-mentioned essential material characteristics, the rebound resilience is small, so the guide wire is held in place against the bending stress of blood vessels and catheters. Since there is no necessary resistance, the distal end portion of the guide wire is pulled out from the predetermined site and reversal occurs, and as a result, the pushability is inferior and it is difficult to place the guide wire at an appropriate position.

また、本体部にはステンレス線を用いて高い剛性を持たせ、先端部にはチタン・ニッケル系合金を用いて超弾性特性を付与して柔軟性を高め、これら2つの異なる金属線を一本の芯材として接合することで、上記それぞれの単一の芯線からなるガイドワイヤーの問題点を軽減した製品が見られる。しかし、互いに異なる材質の機械的接合強度を高めるために製造工程が煩雑となり、さらに高コストとなる欠点がある。また、先端部は超弾性のチタン・ニッケル系合金を用いていることから、いずれにしても、繰り返しのリシェイプは困難である。  In addition, a stainless steel wire is used for the main body, and the tip is made of a titanium / nickel alloy to give super-elastic properties to increase flexibility. One of these two different metal wires is used. By joining as a core material, a product can be seen in which the problems of the guide wires composed of the single core wires are alleviated. However, there is a drawback that the manufacturing process becomes complicated and the cost is increased in order to increase the mechanical bonding strength of different materials. In addition, since the tip portion uses a superelastic titanium / nickel alloy, reshaping is difficult in any case.

また、超弾性チタン・ニッケル系合金からなるガイドワイヤーの先端部を400〜500℃で熱処理を施して当該部分の柔軟性を高め、曲りぐせがつき難く、折れ難いガイドワイヤーが開示されている(特許文献5〜6参照)。  In addition, a guide wire is disclosed that is heat-resistant at 400 to 500 ° C. to improve the flexibility of the portion of the guide wire made of a superelastic titanium / nickel alloy, is difficult to bend, and is difficult to break ( (See Patent Documents 5 to 6).

しかしながら、先端部に熱処理を施して超弾性を失わせた場合、リシェイプに際し形状付けはできるが、生体内に挿入され、湾曲した血管内を通過するとその形状の変形・へたりが生じ、形状保持性、操作性が低下する。また繰り返しリシェイプ性が得られないなどの問題がある。また、超弾性チタン・ニッケル系合金を使用しているために、プッシャビリティに劣り、ガイドワイヤーの先端部が所定部位から引き出され、逆戻りが起こることから、結果的に、押込み性が悪く、適正位置への留置も困難となる。  However, if the tip is heat treated to lose superelasticity, it can be shaped during reshaping, but when inserted into a living body and passed through a curved blood vessel, its shape deforms and sags, maintaining its shape. And operability are reduced. There are also problems such as inability to obtain repeated reshapability. In addition, because it uses a superelastic titanium-nickel alloy, it is inferior in pushability, and the tip of the guide wire is pulled out from the specified part, causing reversal, resulting in poor pushability and proper Detention in position is also difficult.

また、芯線(ワイヤ本体)の先端部に強加工を施して当該部分の超弾性を失わせた構成のガイドワイヤーが開示されている(特許文献7参照)。しかしながら、伸線加工上がり型ガイドワイヤーについては、見かけ上の弾性率は大きい特徴を持っているが、変形後の残留歪が大きいため曲がった血管を通すと永久変形してしまう。更には、伸線加工のみでは真直度の高いガイドワイヤーが得られないため、トルク伝達性が悪い。また、熱処理温度が高すぎた場合は、加工部分が必要以上に硬くなってしまい、ガイドワイヤーの先端部の柔軟性が低下するという問題もある。  In addition, a guide wire having a configuration in which the tip portion of the core wire (wire body) is subjected to strong processing to lose the superelasticity of the portion is disclosed (see Patent Document 7). However, the drawn wire guide wire has a characteristic that the apparent elastic modulus is large, but since the residual strain after deformation is large, it will be permanently deformed if it passes through a bent blood vessel. Furthermore, since a guide wire with high straightness cannot be obtained only by wire drawing, torque transmission is poor. In addition, when the heat treatment temperature is too high, the processed portion becomes harder than necessary, and there is a problem that the flexibility of the tip portion of the guide wire is lowered.

さらに、チタン・ニッケル系合金を冷間伸線加工しただけの加工硬化型ガイドワイヤーが開示されている(特許文献8参照)。このものは、実質的に応力誘起マルテンサイト変態または逆変態を生じないもので、見かけの弾性率は大きいことから、プッシャビリティは優れるが、350〜450℃での形付け処理では十分な真直性が得られないため、トルク伝達性に劣るという大きな問題が残されている。また、負荷時と除荷時の応力差が大きく、残留ひずみが大きいため、複雑に湾曲した血管内を通すと、永久変形する問題がある。  Furthermore, a work-hardening type guide wire is disclosed in which a titanium / nickel alloy is simply cold drawn (see Patent Document 8). This material does not substantially cause stress-induced martensitic transformation or reverse transformation, and has a large apparent elastic modulus, so it has excellent pushability, but it is straight enough to be shaped at 350-450 ° C. Cannot be obtained, so that there remains a big problem that the torque transmission is inferior. In addition, since the stress difference between loading and unloading is large and the residual strain is large, there is a problem of permanent deformation when passing through a complicatedly curved blood vessel.

また、チタン・ニッケル系合金製ワイヤーを冷間伸線加工した後、熱処理することなく、機械的矯正加工により材料特性と真直度を改善した、応力誘起マルテンサイト変態を示さず、広ひずみ範囲にわたり高弾性を示すプッシャビリティ、トルク伝達性に優れる医療用ガイドワイヤー(特許文献9参照)、およびそれに用いられる広ひずみ範囲高弾性チタン・ニッケル系合金製ワイヤーの製造方法(特許文献10参照)が開示されている。しかし、本体部と同様に先端部も弾性率が高いために、先端部がリシェイプしにくいこと、また、繰り返しリシェイプが困難であり、繰り返しのリシェイプによって変形・へたりが生じるなどの問題点があった。本発明は、上記ワイヤーの先端部のみを適正な温度範囲で熱処理することで、先端部にのみ非常に優れたリシェイプ性が付与できること、すなわち、繰り返しリシェイプを行っても、変形・へたりが生じることなく、押し込み性、トルク伝達性などの操作性が非常に優れたガイドワイヤーが得られることを見出したものである。  In addition, after cold-drawing titanium-nickel alloy wire, heat treatment, improved material properties and straightness by mechanical straightening, no stress-induced martensitic transformation, over a wide strain range A medical guide wire (see Patent Document 9) excellent in pushability and torque transmission showing high elasticity, and a manufacturing method of a wide strain range high elasticity titanium-nickel alloy wire used therein (see Patent Document 10) are disclosed. Has been. However, as with the main body, the tip has a high modulus of elasticity, which makes it difficult for the tip to reshape, and makes it difficult to reshape repeatedly, resulting in deformation and sag due to repeated reshaping. It was. In the present invention, only the tip of the wire is heat-treated in an appropriate temperature range, so that very excellent reshapability can be imparted only to the tip, that is, deformation and sag occur even after repeated reshaping. It has been found that a guide wire having excellent operability such as pushability and torque transmission can be obtained without any problems.

特公平2−24548号公報JP-B-2-24548 特公平2−24549号公報Japanese Patent Publication No.2-245549 特公平2−24550号公報Japanese Patent Publication No.2-245550 特公平4−60675号公報Japanese Examined Patent Publication No. 4-60675 特公平3−31472号公報Japanese Patent Publication No.3-331472 特公平4−8065号公報Japanese Patent Publication No. 4-8065 特許第3297434号(特表平5−508559)公報Japanese Patent No. 3297434 (Japanese Patent Publication No. 5-508559) 特公平6−83726号公報Japanese Examined Patent Publication No. 6-83726 特許第3337989号公報Japanese Patent No. 3337989 特許第3547366号公報Japanese Patent No. 3547366

本発明の目的は、ガイドワイヤーの芯材の本体部と先端部とを別々に製造し接続する工程を不要とし、同一組成の芯材をもって、本体部と先端部を一体に形成し、本体部は弾性率が高く、押込み性やトルク伝達性に優れ、先端部は十分な柔軟性と繰り返しリシェイプ性、形状保持性を有し、かつ押込み性、トルク伝達性、血管追従性、血管選択性、所定位置での留置性(押し込み時に逆戻りしない)などの操作性に優れた医療用ガイドワイヤーを提供することにある。  The object of the present invention is to eliminate the need for separately manufacturing and connecting the main body portion and the tip portion of the core material of the guide wire, forming the main body portion and the tip portion integrally with the core material of the same composition, Has a high elastic modulus, excellent pushability and torque transmission, the tip has sufficient flexibility, repeated reshape, shape retention, and pushability, torque transfer, blood vessel follow-up, blood vessel selectivity, An object of the present invention is to provide a medical guide wire excellent in operability such as indwellability at a predetermined position (does not return when pushed).

本発明者は鋭意検討した結果、上記目的は、下記(1)から(3)の本発明により達成されることを見出し、本発明を完成するに至った。
(1)チタン・ニッケル系合金製ワイヤーを芯材として、互いに一体に構成された本体部と先端部とからなる医療用ガイドワイヤーであって、前記チタン・ニッケル系合金製ワイヤーは冷間伸線加工後に熱処理することなく、機械的矯正加工により材料特性と真直度を改善したものであって、応力誘起マルテンサイト変態を示さず、広ひずみ範囲にわたり高弾性を有し、その先端部のみを熱処理することで、先端部の変形後の残留ひずみを本体部よりも大きくすることで、先端部に室温における繰り返しリシェイプ性を付与したことを特徴とする医療用ガイドワイヤー
(2)先端部の熱処理温度が500〜650℃の温度範囲であることを特徴とする(1)に記載の繰り返しリシェイプ可能な医療用ガイドワイヤー
(3)本体部のチタン・ニッケル系合金製ワイヤーの引っ張り試験による応力−ひずみ特性が、下記▲1▼〜▲4▼を満足することを特徴とする(1)に記載の繰り返しリシェイプ可能な医療用ガイドワイヤー
▲1▼ひずみ4%まで降伏点や変曲点を持たず応力が単調に増加し、
▲2▼ひずみ4%における見かけの弾性率が3000kgf/mm以上であり、
▲3▼4%までひずみをかけ除荷した時、ひずみ2%における負荷時と除荷時の応力差が15kgf/mm以下であり、
▲4▼ひずみ4%まで変形し、除荷した時の残留ひずみが0.15%以下である
As a result of intensive studies, the present inventor has found that the above object can be achieved by the present inventions (1) to (3) below, and has completed the present invention.
(1) A medical guide wire having a main body portion and a distal end portion integrally formed with a titanium / nickel alloy wire as a core material, and the titanium / nickel alloy wire is cold drawn. The material properties and straightness are improved by mechanical straightening without heat treatment after processing, it does not show stress-induced martensitic transformation, has high elasticity over a wide strain range, and only its tip is heat treated. By making the residual strain after deformation of the distal end larger than that of the main body, the medical guide wire (2) heat treatment temperature of the distal end is characterized in that the distal end is repeatedly reshaped at room temperature. Is a temperature range of 500 to 650 ° C. The medical guide wire according to (1), which can be reshaped repeatedly (3) Stress-strain characteristics of the Kel-based alloy wire by the tensile test satisfy the following (1) to (4): Medical guide wire capable of repeated reshaping according to (1) (1) Strain 4 %, The stress increases monotonously without yield point or inflection point,
(2) The apparent elastic modulus at a strain of 4% is 3000 kgf / mm 2 or more,
(3) When unloading with strain up to 4%, the stress difference between loading and unloading at 2% strain is 15 kgf / mm 2 or less.
(4) Deformation to strain 4% and residual strain when unloaded is 0.15% or less

本発明の目的は、ガイドワイヤーの芯材の本体部と先端部とを別々に製造し接続する工程を不要とし、同一組成の芯材をもって、本体部と先端部を一体に形成して、先端部だけを熱処理することで、先端部が繰り返しリシェイプ性を有し、かつ各種の操作性に優れた医療用ガイドワイヤーを提供することにある。すなわち、本発明の医療用ガイドワイヤーは実使用時(湿潤状態)において、摩擦係数が低く、優れた走行性を有すると共に、押し込み性、トルク伝達性に優れ、先端部は十分な柔軟性と繰り返しリシェイプ性を有し、血管追従性、血管選択性、所定位置での留置性などの操作性に優れる。また、繰り返しリシェイプ性を有することから、臨床に即応した先端の形状付けが可能であり、あらかじめ何種類かの先端形状の異なるガイドワイヤーを準備しておく必要がなく、信頼性、経済性に優れる。また、同一組成の芯材をもって、本体部と先端部を一体に形成することができることから、経済性、安全性にも優れ、極めて有用である。  The object of the present invention is to eliminate the need to separately manufacture and connect the main body portion and the tip portion of the core material of the guide wire, with the core material of the same composition, integrally forming the main body portion and the tip portion, By heat-treating only the portion, it is an object to provide a medical guide wire that has a repetitive shape at the tip portion and is excellent in various operability. In other words, the medical guide wire of the present invention has a low coefficient of friction and excellent running performance in actual use (wet state), and has excellent pushability and torque transmission, and the tip portion has sufficient flexibility and repeatability. It has reshapability and is excellent in operability such as blood vessel followability, blood vessel selectivity, and indwellability at a predetermined position. In addition, since it has repeated reshapability, it is possible to shape the tip that is ready for clinical use, and there is no need to prepare several types of guidewires with different tip shapes in advance, and it is excellent in reliability and economy. . Further, since the main body portion and the tip portion can be formed integrally with a core material having the same composition, it is excellent in economic efficiency and safety and is extremely useful.

本発明の医療用ガイドワイヤーは特許第357366号および特許第3337989号に記載された広ひずみ範囲高弾性チタン・ニッケル系合金ワイヤーを芯線として用いる。上記ワイヤーは上記公報に記載のように、チタン・ニッケル系合金鋳塊に熱間加工、冷間伸線加工、矯正加工を順に施して製造され、伸線加工後は矯正加工後も含め、いかなる熱処理も施さないものである。最終の冷間伸線加工率は15〜60%が適当である。なお、この製造方法に関しては、従来タイプの熱間加工→冷間伸線加工→超弾性特性を付与するための熱処理(記憶熱処理)を施す製造方法、あるいは、熱間加工→冷間伸線加工で最終仕上がりとする製造方法とは根本的に異なる製造方法である。  The medical guide wire of the present invention uses a wide strain range high elasticity titanium / nickel alloy wire described in Japanese Patent No. 357366 and Japanese Patent No. 3337989 as a core wire. As described in the above publication, the wire is manufactured by subjecting a titanium / nickel alloy ingot to hot working, cold wire drawing, and straightening in order. No heat treatment is performed. The final cold drawing ratio is suitably 15 to 60%. As for this manufacturing method, a conventional method of hot working → cold wire drawing → a heat treatment (memory heat treatment) for imparting superelastic properties, or hot work → cold wire drawing. This is a manufacturing method that is fundamentally different from the final manufacturing method.

前記の機械的な矯正加工は、例えば、スピナー式矯正機またはブレード式矯正機を用いて曲げひずみとねじりひずみの両方を与える方法、ボビンを回転してねじりひずみを与える方法、ローラーレベラー式矯正機を用いて曲げひずみを与える方法などによって可能である。この機械的矯正加工によって、伸線方向(線に対して長手方向)以外の方向性(線に対して曲げ、ねじり方向成分)を持った加工ひずみによる転位を残すことにより、見かけの弾性率が高く、直線性が高く、かつ残留ひずみが小さい特性が得られる。  The mechanical straightening is performed by, for example, a method of giving both bending strain and torsional strain using a spinner type straightening machine or a blade type straightening machine, a method of giving torsional strain by rotating a bobbin, and a roller leveler type straightening machine. It is possible by a method of applying bending strain using By this mechanical correction processing, the apparent elastic modulus is reduced by leaving dislocations due to processing strain having a directionality (bending and torsional direction component) other than the drawing direction (longitudinal direction to the line). High characteristics with high linearity and low residual strain can be obtained.

このようにして得られたチタン・ニッケル系合金製ワイヤーは応力誘起マルテンサイト変態を示さないタイプであり、さらに引っ張り試験による応力−ひずみ特性が、▲1▼ひずみ4%まで降伏点や変曲点を持たず応力が単調に増加し、▲2▼ひずみ4%における見かけの弾性率が3000kgf/mm以上であり、▲3▼4%までひずみをかけ除荷した時、ひずみ2%における負荷時と除荷時の応力差が15kgf/mm以下であり、▲4▼ひずみ4%まで変形し、除荷した時の残留ひずみが0.15%以下であり、広ひずみ範囲にわたり高弾性を示す。The titanium-nickel alloy wire thus obtained is a type that does not show stress-induced martensitic transformation. Furthermore, the stress-strain characteristics by the tensile test are as follows: (1) Strain yield point and inflection point up to 4% strain. When the stress increases monotonically, (2) the apparent elastic modulus at 4% strain is 3000 kgf / mm 2 or more, and (3) when the strain is unloaded with strain up to 4%, the load is at 2% strain. The difference in stress at unloading is 15 kgf / mm 2 or less, (4) Strain is deformed to 4%, the residual strain when unloaded is 0.15% or less, and exhibits high elasticity over a wide strain range. .

本発明は上記のように機械的矯正加工した応力誘起マルテンサイト変態を示さない高弾性チタン・ニッケル系合金製ワイヤーを芯材として、互いに一体に構成された本体部と先端部とからなる医療用ガイドワイヤーの先端部のみを、500℃〜650℃の温度範囲内でおよそ10分間程度の熱処理を行うことで、先端部の柔軟性を改良し、かつ先端部に繰り返しリシェイプ性を付与できる。この温度範囲においては、熱処理温度が高くなるほど、先端部の形状付与性(シェイピング性)が高くなる。500℃以下では先端部の柔軟化効果が小さく、かつ形状付与性が劣る。一方、650℃以上では、形状付与性(変形性)は大きくなるが、形状保持安定性が劣り、繰り返しリシェイプ性が低下する。また、先端部のヤング率が高くなる問題も生じる。従って、先端部の熱処理温度は、好ましくは、500℃〜650℃である。特に、530℃〜600℃の範囲が繰り返しリシェイプ性、柔軟性、形状保持性、回復性、血管選択性、押し込み性などの総合的な性能が優れることからより好ましい。  The present invention is a medical use comprising a main body portion and a distal end portion which are integrally formed with a core made of a highly elastic titanium / nickel alloy wire which does not exhibit stress-induced martensitic transformation, which has been mechanically straightened as described above. Only the tip of the guide wire is heat-treated for about 10 minutes within a temperature range of 500 ° C. to 650 ° C., so that the flexibility of the tip can be improved and the shape of the tip can be repeatedly given. In this temperature range, the higher the heat treatment temperature, the higher the shape imparting property (shaping property) of the tip. If it is 500 ° C. or less, the effect of softening the tip is small and the shape imparting property is poor. On the other hand, at 650 ° C. or higher, the shape imparting property (deformability) is increased, but the shape retention stability is inferior, and the repeated reshapability is lowered. In addition, there is a problem that the Young's modulus of the tip is increased. Therefore, the heat treatment temperature at the tip is preferably 500 ° C to 650 ° C. In particular, the range of 530 ° C. to 600 ° C. is more preferable because it has excellent overall performance such as reshaping, flexibility, shape retention, recovery, blood vessel selectivity, and pushability.

以下に本発明を実施例により詳細に説明するが、本発明は以下の例に限定されるものではない。  EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

ニッケルを51.0at%含有し、残部がチタンからなる合金鋳塊に熱間加工および冷間伸線加工を施し、前記冷間伸線加工における最終焼鈍後の伸線加工率を55%として、直径0.35mmの加工上がり線材を製造し、次いで前記線材をスピナー式矯正機(ねじり歪と曲げひずみの両方を与える)により直線状に矯正加工して、チタン・ニッケル系合金製ワイヤーを製造した。前記矯正加工はいずれも、線材張力20および10kgf/mm、矯正速度10m/分の条件で行って、チタン・ニッケル系合金製ワイヤーを得た。このワイヤーの応力−ひずみ曲線はひずみ4%まで変曲点を持たず、ひずみの増加につれて応力は連続的に増加し、ひずみ4%における見かけの弾性率は4712kgf/mm、応力ヒステリシスを示すひずみ2%での負荷時と除荷時の応力差および残留ひずみはそれぞれ、8.5kgf/mm、0.07%と小さい。真直度も1.5mあたり15mmと良好であった(供試ワイヤー1)。この供試ワイヤー1の先端から5cmの範囲を、550℃で10分間熱処理して本発明のワイヤーを得た(供試ワイヤー2)。熱処理した先端部の、ひずみ2%での残留ひずみは0.28%であり、熱処理前の残留ひずみが0.07%であったことから、上記熱処理によって残留ひずみが増大していた。An alloy ingot containing 51.0 at% nickel and the balance being made of titanium is subjected to hot working and cold wire drawing, and the wire drawing rate after the final annealing in the cold wire drawing is 55%. A finished wire with a diameter of 0.35 mm was manufactured, and then the wire was straightened with a spinner type straightening machine (giving both torsional strain and bending strain) to produce a titanium / nickel alloy wire. . All of the straightening processes were performed under the conditions of a wire tension of 20 and 10 kgf / mm 2 and a straightening speed of 10 m / min to obtain a titanium / nickel alloy wire. The stress-strain curve of this wire does not have an inflection point up to 4% strain, the stress continuously increases with increasing strain, the apparent elastic modulus at 4% strain is 4712 kgf / mm 2 , and strain showing stress hysteresis. The stress difference and residual strain during loading and unloading at 2 % are as small as 8.5 kgf / mm 2 and 0.07%, respectively. The straightness was also good at 15 mm per 1.5 m (test wire 1). A range of 5 cm from the tip of the sample wire 1 was heat-treated at 550 ° C. for 10 minutes to obtain a wire of the present invention (sample wire 2). The residual strain at the strain of 2% at the tip end subjected to the heat treatment was 0.28% and the residual strain before the heat treatment was 0.07%. Therefore, the residual strain was increased by the heat treatment.

供試ワイヤー1および2は全長1500mm、本体部の直径は0.35mm、先端部には次のようなテーパー加工を施した。先端から300mmの部分が、先端に向かってテーパー状に縮径しており、テーパー最先端の直径が0.06mm、テーパー後端の直径が0.35mmである。  The test wires 1 and 2 had a total length of 1500 mm, the diameter of the main body was 0.35 mm, and the tip was tapered as follows. A portion 300 mm from the tip is tapered toward the tip, the diameter at the tip of the taper is 0.06 mm, and the diameter at the rear end of the taper is 0.35 mm.

上記テーパー加工を施した供試ワイヤー1および2を、それぞれ、ポリウレタン樹脂バインダー液に浸漬した後、3cm/秒の速度で引き上げて、室温にて10分間放置した後、110℃、120分間の乾燥を行なった。さらに、このポリウレタン樹脂を処理したワイヤーをメチルビニルエーテル無水マレイン酸共重合化合物<IPS社製GANTREZ−AN−169>の3%溶液に浸漬して、3cm/秒の速度で引き上げて、風乾した後,100℃で60分間乾燥を行なって、潤滑剤を表面に固定した。その後,1/10Nの水酸化ナトリウムの水溶液中に浸漬し、室温で30分間処理した。さらに、水洗を行い,60℃で30分乾燥した。上記方法にて得られたワイヤーは水の中において優れた潤滑性を示した。供試ワイヤー1に潤滑性コーティングしたワイヤーは供試ワイヤーAとし、供試ワイヤー2に潤滑性コーティングしたワイヤーは供試ワイヤーBとする。以下の実施例および比較例においても、実施例1に記載した同様の方法で、テーパー加工、コーティング加工を施した。  Each of the test wires 1 and 2 subjected to the taper processing was dipped in a polyurethane resin binder solution, pulled up at a rate of 3 cm / second, allowed to stand at room temperature for 10 minutes, and then dried at 110 ° C. for 120 minutes. Was done. Furthermore, the wire treated with this polyurethane resin was immersed in a 3% solution of methyl vinyl ether maleic anhydride copolymer compound <GANTREZ-AN-169 manufactured by IPS>, pulled up at a speed of 3 cm / second, and air-dried. Drying was performed at 100 ° C. for 60 minutes to fix the lubricant to the surface. Then, it was immersed in an aqueous solution of 1 / 10N sodium hydroxide and treated at room temperature for 30 minutes. Further, it was washed with water and dried at 60 ° C. for 30 minutes. The wire obtained by the above method showed excellent lubricity in water. The wire coated with lubricity on the test wire 1 is designated as test wire A, and the wire coated with lubricity on the test wire 2 is designated as test wire B. Also in the following examples and comparative examples, taper processing and coating processing were performed in the same manner as described in Example 1.

供試ワイヤー1の先端から3cmの範囲を、600℃で10分間熱処理して本発明のワイヤーを得た。このワイヤーに、実施例1と同様のテーパー加工、コーティング加工を施した(供試ワイヤーC)。  The range of 3 cm from the tip of the test wire 1 was heat-treated at 600 ° C. for 10 minutes to obtain the wire of the present invention. This wire was subjected to the same taper processing and coating processing as in Example 1 (test wire C).

供試ワイヤー1の先端から5cmの範囲を、580℃で10分間熱処理して本発明のワイヤーを得た。このワイヤーに、実施例1と同様のテーパー加工、コーティング加工を施した(供試ワイヤーD)。
(比較例1)
A range of 5 cm from the tip of the test wire 1 was heat-treated at 580 ° C. for 10 minutes to obtain the wire of the present invention. This wire was subjected to the same taper processing and coating processing as in Example 1 (test wire D).
(Comparative Example 1)

供試ワイヤー1の先端から5cmの範囲を、480℃で10分間熱処理して本発明のワイヤーを得た。このワイヤーに、実施例1と同様のテーパー加工、コーティング加工を施した(供試ワイヤーE)。
(比較例2)
A range of 5 cm from the tip of the test wire 1 was heat-treated at 480 ° C. for 10 minutes to obtain the wire of the present invention. This wire was subjected to the same taper processing and coating processing as in Example 1 (test wire E).
(Comparative Example 2)

供試ワイヤー1の先端から5cmの範囲を、670℃で10分間熱処理して本発明のワイヤーを得た。このワイヤーに、実施例1と同様のテーパー加工、コーティング加工を施した(供試ワイヤーF)。
(比較例3)
A range of 5 cm from the tip of the test wire 1 was heat-treated at 670 ° C. for 10 minutes to obtain the wire of the present invention. This wire was subjected to the same taper processing and coating processing as in Example 1 (test wire F).
(Comparative Example 3)

超弾性型チタン・ニッケル系合金製のワイヤーに実施例1と同様に、テーパー加工、コーティング加工を施した(供試ワイヤーG)。
(比較例4)
In the same manner as in Example 1, taper processing and coating processing were performed on a wire made of a superelastic titanium / nickel alloy (test wire G).
(Comparative Example 4)

超弾性型チタン・ニッケル系合金製のワイヤーの先端から5cmの範囲を600℃で10分間加熱した後、実施例1と同様のテーパー加工、コーティング加工を施した(供試ワイヤーH)。表1に記載したように、リシェイプ性は発現するが、数回のリシェイプを繰り返すだけで、変形、へたりが大きく、形状保持性が不良であった。
(比較例5)
After heating a range of 5 cm from the tip of a wire made of superelastic titanium / nickel alloy at 600 ° C. for 10 minutes, the same taper processing and coating processing as in Example 1 were performed (test wire H). As shown in Table 1, reshapability was exhibited, but deformation and sag were large and shape retention was poor only by repeating the reshaping several times.
(Comparative Example 5)

伸線加工率57%の高加工率ステンレス鋼ワイヤーに実施例1と同様に、テーパー加工、コーティング加工を施した(供試ワイヤーI)。  In the same manner as in Example 1, taper processing and coating processing were performed on a high processing rate stainless steel wire having a wire drawing rate of 57% (test wire I).

上記の実施例および比較例で得られた供試ワイヤー(B〜I)の性能をそれぞれ下記の方法で評価測定した。
(トルク伝達性)
The performance of the test wires (B to I) obtained in the above examples and comparative examples was evaluated and measured by the following methods.
(Torque transmission)

ループ状のカテーテルチューブに通したワイヤーの本体部分を捩じって行き、ワイヤー先端が一回転するに要する本体部分の回転数(回転角度)を測定して比較した。
(先端柔軟性)
The wire body passed through the looped catheter tube was twisted, and the number of rotations (rotation angle) of the body required for one turn of the wire tip was measured and compared.
(Tip flexibility)

島津小型卓上試験機EZTestシリーズと専用治具を使用し、最先端から1cmごと(15cmまで)のテーパー部分の荷重を3点法で測定し、比較した。試験速度は2mm/min、押込長は2mmとした。
(形状保持性)
Using a Shimadzu small desktop testing machine EZTest series and a dedicated jig, the load on the taper portion of every 1 cm (up to 15 cm) from the most advanced point was measured and compared. The test speed was 2 mm / min, and the indentation length was 2 mm.
(Shape retention)

ガイドワイヤーの先端を手によって形状付けした後、マイクロカテーテルに各ガイドワイヤーを5回通過させた後の形状の保持性を比較した。
(繰り返しリシェイプ性)
After the tip of the guide wire was shaped by hand, the retention of the shape after each guide wire was passed through the microcatheter five times was compared.
(Repetitive reshapability)

形状付けしたガイドワイヤーをストレートに戻し、先端形状の復元性を比較した。さらに、形状付けしストレートに戻す操作を10回繰り返し、先端形状の復元性を比較した。
(押し込み性)
The shaped guide wire was returned to straight and the restoration of the tip shape was compared. Further, the operation of shaping and returning to straight was repeated 10 times, and the restoration of the tip shape was compared.
(Pushability)

ワイヤーの弾性率が高いほど押込み性に優れることから、ガイドワイヤー芯線の本体部の弾性率(剛性)の比較から押込み性を評価した。
(留置性)
The higher the elastic modulus of the wire, the better the pushability. Therefore, the pushability was evaluated by comparing the elastic modulus (rigidity) of the main body of the guide wire core wire.
(Indwelling property)

マイクロカテーテル内通過繰り返し試験用治具にガイドワイヤーを通し、カテーテル先端からガイドワイヤーの先端が10cm出たところで、手を離し、ガイドワイヤーが手元の方向に戻る程度を比較した。ガイドワイヤーが戻ることなく、挿入された元の位置で維持された場合は◎、大きく戻る場合は×の基準で評価した。  The guide wire was passed through the microcatheter repeated test jig, and when the tip of the guide wire protruded 10 cm from the tip of the catheter, the hands were released and the degree of return of the guide wire in the direction of the hand was compared. Evaluation was made on the basis of 元 when the guide wire was maintained at the original position without returning, and × when it was greatly returned.

下記の表1に本発明の実施例、比較例の各種操作性の評価を記載する。従来の超弾性チタン・ニッケル系合金やステンレス鋼ではトルク伝達性、押込み性と繰り返しリシェイプ性、形状保持性の両立は不可能であった。特に、従来の超弾性チタン・ニッケル系合金系ガイドワイヤーを本発明で規定した温度範囲で熱処理しても、熱処理温度が低い場合はリシェイプ性が得られず、また温度が高い場合はリシェイプ性が発現するものの、数回のリシェイプによって、変形・へたりが大きくなり、繰り返しリシェイプ性が得られない(比較例3)。しかしながら、本発明では、実施例1〜3に見られるように、所定温度範囲での熱処理によって、優れた繰り返しリシェイプ性と形状保持性が得られ、その結果、トルク伝達性、押込み性と繰り返しリシェイプ性、形状保持性の両立が可能となり、操作性が非常に優れることが分かる。  Table 1 below shows evaluations of various operability of examples and comparative examples of the present invention. Conventional superelastic titanium-nickel alloys and stainless steels cannot achieve both torque transmission, indentation, repeated reshape, and shape retention. In particular, even if a conventional superelastic titanium / nickel alloy guide wire is heat-treated within the temperature range specified in the present invention, the reshape property cannot be obtained when the heat treatment temperature is low, and the reshape property is not obtained when the temperature is high. Although it is manifested, deformation and sag increase due to several reshapes, and repeated reshape properties cannot be obtained (Comparative Example 3). However, in the present invention, as shown in Examples 1 to 3, excellent repetitive reshapability and shape retention can be obtained by heat treatment in a predetermined temperature range. As a result, torque transmission performance, indentability and repetitive reshapability are obtained. As a result, it is understood that the operability and the shape retention are compatible, and the operability is very excellent.

なお、本発明において使用する高弾性率でかつ真直性に優れたチタン・ニッケル系合金の先端部を本発明で記載した温度範囲で熱処理することなく、そのまま使用して製造した供試ワイヤーAの場合は、室温におけるリシェイプ性が乏しく、リシェイプ困難との指摘を受けている。

Figure 2013240562
It should be noted that the tip of the titanium / nickel alloy having a high elastic modulus and excellent straightness used in the present invention was used as it was without being heat-treated in the temperature range described in the present invention. In some cases, reshapeability at room temperature is poor, and it has been pointed out that reshape is difficult.
Figure 2013240562

本発明の医療用ガイドワイヤーは、本体部は弾性率が高く、押込み性やトルク伝達性に優れ、先端部は十分な柔軟性、繰り返しリシェイプ性、形状保持性を有し、かつ、血管追従性、血管選択性などの操作性に優れることから、外科的手術が困難な部位の治療、人体への低侵襲を目的とした治療、および血管造影などの検査に用いられるカテーテル等の処置具を、血管(特に下肢部、腹部、脳、心臓)、消化管、気管その他の体腔内の目的部位にまで誘導するための操作性に優れたカテーテル用ガイドワイヤーとして利用可能である。  The medical guide wire of the present invention has a high elastic modulus in the main body, excellent pushability and torque transmission, the tip has sufficient flexibility, repeated reshapability, shape retention, and blood vessel followability. Because of its superior operability such as blood vessel selectivity, a treatment tool such as a catheter used for treatment of a site where surgical operation is difficult, treatment for minimally invasive to the human body, and examination such as angiography, It can be used as a guide wire for a catheter excellent in operability for guiding to blood vessels (particularly lower limbs, abdomen, brain, heart), digestive tract, trachea and other target sites in body cavities.

Claims (3)

互いに一体に構成された本体部と先端部とからなるチタン・ニッケル系合金製ワイヤーを芯材とした医療用ガイドワイヤーであって、前記チタン・ニッケル合金製ワイヤーは冷間伸線加工後に熱処理することなく、機械的矯正加工により材料特性と真直度を改善したものであり、応力誘起マルテンサイト変態を示さず、広ひずみ範囲にわたり高弾性を有し、その先端部のみを熱処理することで、先端部の変形後の残留ひずみを本体部よりも大きくすることで、先端部に室温における繰り返しリシェイプ性を付与したことを特徴とする医療用ガイドワイヤー  A medical guide wire having a core made of a titanium / nickel alloy consisting of a main body and a tip formed integrally with each other, and the titanium / nickel alloy wire is heat-treated after cold drawing. Without improving the material properties and straightness by mechanical straightening, it does not show stress-induced martensitic transformation, has high elasticity over a wide strain range, and heat-treats only its tip. A guide wire for medical use characterized in that the residual strain after deformation of the part is made larger than that of the main body part, so that the tip part is repeatedly reshaped at room temperature. 先端部の熱処理温度が500〜650℃の温度範囲であることを特徴とする請求項1に記載の繰り返しリシェイプ可能な医療用ガイドワイヤー  The medical guide wire capable of repeated reshaping according to claim 1, wherein the heat treatment temperature at the tip is in a temperature range of 500 to 650 ° C. 本体部のチタン・ニッケル系合金製ワイヤーの引っ張り試験による応力−ひずみ特性が、下記▲1▼〜▲4▼を満足することを特徴とする請求項1に記載の繰り返しリシェイプ可能な医療用ガイドワイヤー
▲1▼ひずみ4%まで降伏点や変曲点を持たず応力が単調に増加し、
▲2▼ひずみ4%における見かけの弾性率が3000kgf/mm以上であり、
▲3▼4%までひずみをかけ除荷した時、ひずみ2%における負荷時と除荷時の応力差が15kgf/mm以下であり、
▲4▼ひずみ4%まで変形し、除荷した時の残留ひずみが0.15%以下である
2. The medical guide wire capable of repeated reshaping according to claim 1, wherein the stress-strain characteristics of the titanium-nickel alloy wire in the main body by the tensile test satisfy the following (1) to (4). (1) Stress increases monotonously without yield point or inflection point up to 4% strain,
(2) The apparent elastic modulus at a strain of 4% is 3000 kgf / mm 2 or more,
(3) When unloading with strain up to 4%, the stress difference between loading and unloading at 2% strain is 15 kgf / mm 2 or less.
(4) Deformation to strain 4% and residual strain when unloaded is 0.15% or less
JP2012128391A 2012-05-17 2012-05-17 Medical guide wire Pending JP2013240562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128391A JP2013240562A (en) 2012-05-17 2012-05-17 Medical guide wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128391A JP2013240562A (en) 2012-05-17 2012-05-17 Medical guide wire

Publications (1)

Publication Number Publication Date
JP2013240562A true JP2013240562A (en) 2013-12-05

Family

ID=49842070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128391A Pending JP2013240562A (en) 2012-05-17 2012-05-17 Medical guide wire

Country Status (1)

Country Link
JP (1) JP2013240562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092002A1 (en) * 2020-10-30 2022-05-05 テルモ株式会社 Guide wire and method of manufacturing guide wire
CN117030494A (en) * 2023-08-09 2023-11-10 济南众测机电设备有限公司 Guide wire testing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737199A (en) * 1993-07-20 1995-02-07 Aqueous Res:Kk Navigation system
JPH10146390A (en) * 1997-12-05 1998-06-02 Terumo Corp Guide wire
JP3337989B2 (en) * 1998-11-06 2002-10-28 古河電気工業株式会社 Medical guidewire using high strain Ni-Ti alloy wire with wide strain range
JP2004073253A (en) * 2002-08-09 2004-03-11 Terumo Corp Guidewire
JP3547366B2 (en) * 1999-09-27 2004-07-28 株式会社古河テクノマテリアル Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire
JP2005144104A (en) * 2003-11-13 2005-06-09 Teruo Hashimoto Medical guide wire superior in operability
JP2008237253A (en) * 2007-03-23 2008-10-09 Terumo Corp Guide wire
JP2009172251A (en) * 2008-01-25 2009-08-06 Terumo Corp Guide wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737199A (en) * 1993-07-20 1995-02-07 Aqueous Res:Kk Navigation system
JPH10146390A (en) * 1997-12-05 1998-06-02 Terumo Corp Guide wire
JP3337989B2 (en) * 1998-11-06 2002-10-28 古河電気工業株式会社 Medical guidewire using high strain Ni-Ti alloy wire with wide strain range
JP3547366B2 (en) * 1999-09-27 2004-07-28 株式会社古河テクノマテリアル Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire
JP2004073253A (en) * 2002-08-09 2004-03-11 Terumo Corp Guidewire
JP2005144104A (en) * 2003-11-13 2005-06-09 Teruo Hashimoto Medical guide wire superior in operability
JP2008237253A (en) * 2007-03-23 2008-10-09 Terumo Corp Guide wire
JP2009172251A (en) * 2008-01-25 2009-08-06 Terumo Corp Guide wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092002A1 (en) * 2020-10-30 2022-05-05 テルモ株式会社 Guide wire and method of manufacturing guide wire
CN117030494A (en) * 2023-08-09 2023-11-10 济南众测机电设备有限公司 Guide wire testing device
CN117030494B (en) * 2023-08-09 2024-04-19 济南众测机电设备有限公司 Guide wire testing device

Similar Documents

Publication Publication Date Title
JP6396966B2 (en) Nickel titanium core guide wire
US6352515B1 (en) NiTi alloyed guidewires
EP3052177B1 (en) Guide wire core with improved torsional ductility
JP5774636B2 (en) Shape memory medical device and method of use thereof
US9061124B2 (en) High-modulus superelastic alloy wire for medical and dental purposes
JPH0683726B2 (en) Guide wire for catheter
JP2005508229A (en) Work-hardening pseudoelastic guidewire
JP2009523481A (en) Titanium / molybdenum alloy guide wire
JP2004181184A (en) Medical guide wire
JP3725900B2 (en) Guide wire with superelastic distal portion
JP2013240562A (en) Medical guide wire
US20150094690A1 (en) Guidewire with varying properties
JP3337989B2 (en) Medical guidewire using high strain Ni-Ti alloy wire with wide strain range
JP3547366B2 (en) Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire
WO2013084599A1 (en) Medical guide wire
JP2002058748A (en) Guide wire for catheter and production method thereof
US10335580B2 (en) Guidewire with varying properties
JP2005144104A (en) Medical guide wire superior in operability
JP2006055245A (en) Medical guide wire
JP4493098B2 (en) Medical guidewire
JP3774592B2 (en) Medical guidewire
JPH0663151A (en) Medical guide wire
JP2005131358A (en) Ti-ni based super-elasticity alloy wire
JP5284878B2 (en) Guide wire
JP4141576B2 (en) Medical catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630