JP2013235778A - Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope - Google Patents

Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope Download PDF

Info

Publication number
JP2013235778A
JP2013235778A JP2012108740A JP2012108740A JP2013235778A JP 2013235778 A JP2013235778 A JP 2013235778A JP 2012108740 A JP2012108740 A JP 2012108740A JP 2012108740 A JP2012108740 A JP 2012108740A JP 2013235778 A JP2013235778 A JP 2013235778A
Authority
JP
Japan
Prior art keywords
sample
filter paper
electron microscope
scanning electron
paper sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012108740A
Other languages
Japanese (ja)
Inventor
Masato Hamanaka
真人 浜中
Akira Taniyama
明 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012108740A priority Critical patent/JP2013235778A/en
Publication of JP2013235778A publication Critical patent/JP2013235778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample table for a scanning type electron microscope, in which a filter paper sample can be easily located on a SEM sample table.SOLUTION: A sample table 10 for a scanning type electron microscope comprises: a sample pedestal 11 for locating a filter paper sample 13 to which an analyte is adhered; and a holding member 12 for holding the filter paper sample 13. On the sample table, while the filter paper sample 13 is located on a smooth surface of a recess 11a of the sample pedestal 11, it is covered with a holding lid 12b. A screw 12a is inserted in and fixed to a screw hole 11b, and therefore, the filter paper sample 13 can be fixed to the sample table 10 while preventing its warpage.

Description

本発明は、走査型電子顕微鏡(以下、「SEM」と称す。)の試料台およびSEMの試料設置方法に関する。   The present invention relates to a sample stage of a scanning electron microscope (hereinafter referred to as “SEM”) and a sample setting method of the SEM.

SEMは、試料に細く絞った一本の電子線を照射し、その部位から発生する2次電子数を検出器でカウントし、電子線で試料表面を走査することにより、試料表面の形状を観察する顕微鏡である。このため、導電性を有しない材料の解析を行う場合には、該材料を濾紙で回収し、この濾紙試料をそのまま、または適当なサイズにカットし、SEM内の試験台に両面テープ(通常は、導電性両面テープ)で貼り付け、その後に、カーボンなどの導電性材料を蒸着したものを観察する。試験台には、様々な形状のものが市販されているが、通常は、円柱形の試験台が用いられる。   SEM irradiates a sample with a finely focused electron beam, counts the number of secondary electrons generated from the site with a detector, and scans the sample surface with the electron beam to observe the shape of the sample surface Microscope. For this reason, when analyzing a non-conductive material, the material is collected with a filter paper, and the filter paper sample is directly or cut into an appropriate size, and a double-sided tape (usually, a test table in the SEM). , Conductive double-sided tape), and after that, a vapor-deposited conductive material such as carbon is observed. Various types of test benches are commercially available, but a cylindrical test bench is usually used.

金属材料中の介在物の粒度分布を測定する方法として、特許文献1には非金属介在物分析装置に関する発明が、特許文献2には金属中の非金属介在物分析方法及び装置に関する発明が、特許文献3には金属材料中微粒子の粒度分布測定方法に関する発明が、特許文献4には、金属材料中の介在物を電解で抽出する方法に関する発明がそれぞれ開示されているが、いずれも濾紙試料を観察するための具体的な方法について一切記載されておらず、いずれの文献においても、濾紙試料を試験台に両面テープで貼り付ける、上記の方法を採用していると推測される。   As a method for measuring the particle size distribution of inclusions in a metal material, Patent Document 1 discloses an invention related to a non-metallic inclusion analysis apparatus, and Patent Document 2 discloses an invention related to a non-metallic inclusion analysis method and apparatus in metal. Patent Document 3 discloses an invention related to a method for measuring the particle size distribution of fine particles in a metal material, and Patent Document 4 discloses an invention related to a method for extracting inclusions in a metal material by electrolysis. No specific method for observing the film is described, and it is presumed that, in any of the documents, the above-described method in which a filter paper sample is attached to a test stand with a double-sided tape is employed.

特開昭62−73546号公報JP-A-62-73546 特開平10−318948号公報Japanese Patent Laid-Open No. 10-318948 特表2009−131175号公報Special table 2009-131175 特開昭59−141035号公報JP 59-141035 A

従来技術のように、濾紙試料を試験台に貼り付ける方法では、貼り付け時に濾紙試料に皺が生じやすく、また、一度貼り付けた濾紙試料を剥がすと破損し、新たな濾紙試料を貼り直す必要がある。このため、濾紙試料を試験台に貼り付ける作業が煩雑になる。   In the method of pasting the filter paper sample on the test stand as in the prior art, the filter paper sample is prone to wrinkle at the time of pasting, and once the filter paper sample is peeled off, it is damaged, and a new filter paper sample needs to be pasted again. There is. For this reason, the operation | work which affixes a filter paper sample on a test stand becomes complicated.

一方、SEMには、各粒子の組成を評価するため、エネルギー分散型X線分光器(以下、「EDS」と称す)が内蔵されている。EDSによる測定を行うためには、X線のエネルギー校正を行う標準試料が必要であるが、濾紙試料を試験台に貼り付ける方法の場合、別途、標準試料のための試料台を設けなければならない。このとき、濾紙試料用試料台と、標準試料用試料台との間の移動を要するので、装置への負担が大きい。装置への負担は、濾紙試料用試料台と、標準試料用試料台との距離が大きい場合や、高さが異なる場合には、さらに大きくなる。そして、測定メニューの設定を誤った場合には、装置へのダメージが懸念される。   On the other hand, in order to evaluate the composition of each particle, the SEM incorporates an energy dispersive X-ray spectrometer (hereinafter referred to as “EDS”). In order to perform measurement by EDS, a standard sample for X-ray energy calibration is required. However, in the case of a method of attaching a filter paper sample to a test table, a sample table for the standard sample must be provided separately. . At this time, since the movement between the sample stage for the filter paper sample and the sample stage for the standard sample is required, the burden on the apparatus is large. The burden on the apparatus is further increased when the distance between the filter paper sample stage and the standard sample stage is large or when the height is different. If the measurement menu is set incorrectly, there is a concern about damage to the apparatus.

本発明は、このような従来技術の問題を解消するため、濾紙試料の設置が容易なSEMの試料台およびSEMの試料設置方法を提供することを目的とする。   An object of the present invention is to provide an SEM sample stage and an SEM sample setting method that facilitate the setting of a filter paper sample in order to solve such problems of the conventional technology.

本発明は、下記の(1)〜(7)に示すSEMの試料台と、下記の(8)に示すSEMの試料設置方法を要旨とする。   The gist of the present invention is the SEM sample stage shown in the following (1) to (7) and the SEM sample setting method shown in the following (8).

(1)濾紙で回収した被検体を走査型電子顕微鏡によって観察するに際して用いる試料台であって、該被検体を付着させた濾紙試料を載せるための試料台座と、該濾紙試料を把持するための把持部材とを備える走査型電子顕微鏡用試料台。   (1) A sample stage for use in observing a specimen collected by a filter paper with a scanning electron microscope, a specimen base for placing the filter paper sample with the specimen attached thereon, and a grip for holding the filter paper specimen A sample stage for a scanning electron microscope comprising a gripping member.

(2)前記試料台座が、前記濾紙試料よりも大きい平滑面を有する、上記(1)の走査型電子顕微鏡用試料台。   (2) The sample table for a scanning electron microscope according to (1), wherein the sample base has a smooth surface larger than that of the filter paper sample.

(3)前記試料台座が、深さ1mm以下の凹部を有する、上記(1)または(2)の走査型電子顕微鏡用試料台。   (3) The scanning electron microscope sample stage according to (1) or (2), wherein the sample base has a recess having a depth of 1 mm or less.

(4)前記試料台座および前記把持部材が、ともに円柱形状または円板形状を有し、該把持部材の中央に内径10mm以上の開口部が形成されている、上記(1)〜(3)いずれかの走査型電子顕微鏡用試料台。   (4) Any of the above (1) to (3), wherein each of the sample base and the gripping member has a columnar shape or a disk shape, and an opening having an inner diameter of 10 mm or more is formed at the center of the gripping member. Sample table for scanning electron microscope.

(5)前記開口部の内壁面には、エネルギー分散型X線分光器の取り込み角度以下の勾配が設けられている、上記(4)の走査型電子顕微鏡用試料台。   (5) The scanning electron microscope sample stage according to (4), wherein the inner wall surface of the opening is provided with a gradient equal to or smaller than the angle of incorporation of the energy dispersive X-ray spectrometer.

(6)前記把持部材が、X線のエネルギー校正用標準試料を兼ねる、上記(1)〜(5)いずれかの走査型電子顕微鏡用試料台。   (6) The scanning electron microscope sample stage according to any one of (1) to (5), wherein the gripping member also serves as an X-ray energy calibration standard sample.

(7)下記(A)から(C)までの工程を有する走査型電子顕微鏡の試料設置方法。
(A)被検体を付着させた濾紙試料を試料台座上に載せる工程、
(B)該濾紙試料の表面上に導電材料の蒸着層を形成する工程および
(C)該蒸着層を介して該濾紙試料を把持する工程。
(7) A sample placement method for a scanning electron microscope having the following steps (A) to (C).
(A) A step of placing a filter paper sample to which an object is attached on a sample pedestal;
(B) A step of forming a vapor deposition layer of a conductive material on the surface of the filter paper sample, and (C) a step of gripping the filter paper sample through the vapor deposition layer.

本発明によれば、濾紙試料をSEM試料台に設置するに際して、そのしわや破損を防止することができ、SEMの試料台への濾紙試料の設置作業が容易となる。SEMによる分析、特にSEM/EDSでの自動粒度測定を実施するときに、作業性が格段に向上する。   According to the present invention, when the filter paper sample is set on the SEM sample stage, wrinkles and breakage can be prevented, and the installation work of the filter paper sample on the SEM sample stage becomes easy. When analysis by SEM, particularly automatic particle size measurement by SEM / EDS, is performed, workability is greatly improved.

本発明に係る走査型電子顕微鏡用試料台を例示した図 (a)分解図 (b)斜視図The figure which illustrated the sample stand for scanning electron microscopes concerning the present invention. (A) Exploded view (b) Perspective view 開口部の内壁面に設けられる勾配を説明する図The figure explaining the gradient provided in the inner wall surface of an opening part 本発明に係る走査型電子顕微鏡の試料設置方法を説明する図 (a)濾紙試料を試料台座に載せる前の状態を示す図 (b)濾紙試料に遮蔽部材を被せた状態を示す図 (c)蒸着後の状態を示す図The figure explaining the sample placement method of the scanning electron microscope which concerns on this invention (a) The figure which shows the state before mounting a filter paper sample on a sample base (b) The figure which shows the state which covered the shielding member on the filter paper sample (c) The figure which shows the state after vapor deposition 本発明に係る走査型電子顕微鏡の試料設置方法を説明する図(つづき) (a)濾紙試料を試料台座上に把持する前の状態を示す図 (b)濾紙試料を試料台座上に把持した状態を示す図 (c)蒸着後の濾紙試料を示す図FIG. 2 is a diagram for explaining a sample placement method of a scanning electron microscope according to the present invention (continued) (a) A diagram showing a state before a filter paper sample is gripped on a sample base (b) A state where a filter paper sample is gripped on a sample base (C) The figure which shows the filter paper sample after vapor deposition

本発明に係る走査型電子顕微鏡用試料台は、濾紙で回収した被検体を走査型電子顕微鏡によって観察するに際して用いる試料台である。被検体としては、例えば、金属材料中の非金属介在物などである。   The sample table for a scanning electron microscope according to the present invention is a sample table used when observing an object collected with a filter paper with a scanning electron microscope. Examples of the specimen include non-metallic inclusions in a metal material.

図1に示すように、本発明に係る走査型電子顕微鏡用試料台10は、被検体を付着させた濾紙試料13を載せるための試料台座11と、濾紙試料13を把持するための把持部材12とを備えるものである。この試料台においては、試料台座11の凹部11aの平滑面上に濾紙試料13を載せた状態で、把持用蓋12bで覆い、ネジ12aをネジ穴11bに挿入して固定することにより、濾紙試料13を、その反りを防止しつつ、試料台10に固定することができる。そして、この例においては、濾紙試料13は、少なくともその一部が露出している、具体的には、把持用蓋12bの中央に設けられた開口部12cから露出しているので、濾紙試料13の観察が可能となる。このような構成であれば、両面テープを使用することがないので、作業性よく、また、確実に平滑な面状に濾紙試料13を載置できるので、精度良い測定が可能となる。   As shown in FIG. 1, a scanning electron microscope sample stage 10 according to the present invention includes a sample base 11 for placing a filter paper sample 13 to which a subject is attached, and a gripping member 12 for gripping the filter paper sample 13. Are provided. In this sample stage, the filter paper sample 13 is covered with a gripping lid 12b in a state where the filter paper sample 13 is placed on the smooth surface of the concave portion 11a of the sample base 11, and the screw 12a is inserted into the screw hole 11b and fixed. 13 can be fixed to the sample stage 10 while preventing the warpage. In this example, at least a part of the filter paper sample 13 is exposed. Specifically, the filter paper sample 13 is exposed from the opening 12c provided at the center of the gripping lid 12b. Can be observed. With such a configuration, since the double-sided tape is not used, the filter paper sample 13 can be placed on a smooth and smooth surface with good workability, so that accurate measurement is possible.

試料台座11および把持部材12は、通常の試料台と同様の導電性材料で構成すればよい。電子線の照射によって試料に生じた電子を装置外に逃がし、いわゆるチャージアップを抑制するためである。特に、把持部材12は、被検体とは異なる元素材料であるのがよく、例えば、アルミニウム、銅、カーボンなどである。なお、把持部材12には、EDSによる測定を行う際に、X線のエネルギー校正用の標準試料としての役割を兼ねるべく、銅、アルミニウムなどの純金属を使用することが特に好ましい。   The sample base 11 and the holding member 12 may be made of the same conductive material as that of a normal sample base. This is because electrons generated in the sample by the electron beam irradiation escape to the outside of the apparatus, and so-called charge-up is suppressed. In particular, the grasping member 12 may be an element material different from the subject, such as aluminum, copper, or carbon. Note that it is particularly preferable to use a pure metal such as copper or aluminum for the gripping member 12 so as to serve as a standard sample for X-ray energy calibration when performing measurement by EDS.

ここで、試料台座11は、濾紙試料13よりも大きい平滑面を有するものであればよい。濾紙試料13を載せた時にしわが発生するのを防止するためである。試料台座11としては、濾紙試料13よりも大きい平滑面を有するものであれば、例えば、上面に平滑面しかない円柱形状または円板形状のものなど、図に例示した形状に限定されない。なお、図1(a)に示すように、試料台座11は、中央部に凹部11aを有するものが好ましい。これは濾紙試料13が把持されるときにずれるのを防止するためである。ただし、その深さが深すぎると、後段で説明するように、EDSを用いて組成を計測する際に問題が生じやすくなる。このため、凹部11aの深さは1mm以下とすることが好ましい。   Here, the sample base 11 only needs to have a larger smooth surface than the filter paper sample 13. This is to prevent wrinkles from occurring when the filter paper sample 13 is placed. As long as the sample base 11 has a smooth surface larger than the filter paper sample 13, the sample base 11 is not limited to the shape illustrated in the drawing, such as a cylindrical shape or a disk shape having only a smooth surface on the upper surface. In addition, as shown to Fig.1 (a), the sample base 11 has a preferable thing which has the recessed part 11a in the center part. This is to prevent the filter paper sample 13 from shifting when it is gripped. However, when the depth is too deep, as will be described later, a problem easily occurs when the composition is measured using EDS. For this reason, it is preferable that the depth of the recessed part 11a shall be 1 mm or less.

前記把持部材12としては、図1に示すように、円柱形状または円板形状を有し、該把持部材の中央に内径10mm以上の開口部12cが形成されていることが好ましい。開口部の内径が小さすぎると、電子線を走査できる範囲が狭くなりすぎるからである。開口部12cの内径は、大きすぎると、濾紙試料がずれたり、場合によって外れたりするおそれがあるため、濾紙試料の径の2/3以下とすることが好ましい。   As shown in FIG. 1, the grip member 12 preferably has a cylindrical shape or a disk shape, and an opening 12c having an inner diameter of 10 mm or more is formed at the center of the grip member. This is because if the inner diameter of the opening is too small, the range in which the electron beam can be scanned becomes too narrow. If the inner diameter of the opening 12c is too large, the filter paper sample may be displaced or may be detached in some cases. Therefore, it is preferable to set it to 2/3 or less of the diameter of the filter paper sample.

図2に示すように、EDS14の取り込み角度をαとするとき、開口部12cの内壁面に設けられる勾配12dの角度βは、β≦αであることが好ましい。角度βが角度αよりも大きいと、濾紙試料13の開口部12cの内壁面付近の測定が困難となる。勾配12dの角度がβ≦αを満たすとき、把持部材12の開口部12cから露出した濾紙試料13の全ての面における成分分析を行うことが可能となる。上記のとおり、濾紙試料13のずれを防止しつつ、EDS14による成分分析を広い範囲で行うためには、開口部12cの内径は、できるだけ小さくしつつ、開口部12cの内壁面に勾配を設けるのが特に好ましい。   As shown in FIG. 2, when the take-in angle of the EDS 14 is α, the angle β of the gradient 12d provided on the inner wall surface of the opening 12c is preferably β ≦ α. When the angle β is larger than the angle α, it becomes difficult to measure the vicinity of the inner wall surface of the opening 12c of the filter paper sample 13. When the angle of the gradient 12d satisfies β ≦ α, component analysis can be performed on all surfaces of the filter paper sample 13 exposed from the opening 12c of the gripping member 12. As described above, in order to perform component analysis using the EDS 14 in a wide range while preventing displacement of the filter paper sample 13, the inner diameter of the opening 12c is made as small as possible while providing a gradient on the inner wall surface of the opening 12c. Is particularly preferred.

特に、把持部材12として、X線のエネルギー校正の標準試料としての役割を兼ねるべく、銅、アルミニウムなどの純金属を使用した構成であれば、例えば、把持用蓋12bの勾配12dの位置でエネルギー校正を行うことが可能となる。特に、勾配12dの開口部12cの直近位置で測定すれば、試料台座が移動する距離を短くすることができ、濾紙試料13と高さ方向の位置もほとんど同じであるため、装置への負担は軽減し、測定メニューの設定も簡単に行える。   In particular, if the gripping member 12 is configured to use a pure metal such as copper or aluminum in order to serve as a standard sample for X-ray energy calibration, for example, the energy at the position of the gradient 12d of the gripping lid 12b. Calibration can be performed. In particular, if the measurement is performed at a position closest to the opening 12c of the gradient 12d, the distance that the sample base moves can be shortened, and the position in the height direction is almost the same as that of the filter paper sample 13, so that the burden on the apparatus is reduced. It can be reduced and the measurement menu can be set easily.

走査型電子顕微鏡の原理上、被検体が非金属材料である場合には、濾紙試料表面をカーボンなどの導電性材料で蒸着させる必要がある。図1(b)に示すように、濾紙試料13を試料台10に固定したものに、導電性材料を蒸着させてもよいが、把持部材の開口部12cと濾紙試料13とに隙間が生じやすいため、蒸着層が把持部材の開口部12cと濾紙試料13との間で分離することがある。このような状態になると、濾紙試料13のチャージアップが避けられなくなる。   Based on the principle of the scanning electron microscope, when the subject is a non-metallic material, it is necessary to deposit the filter paper sample surface with a conductive material such as carbon. As shown in FIG. 1B, a conductive material may be vapor-deposited on the filter paper sample 13 fixed to the sample stage 10, but a gap is likely to be formed between the opening 12c of the gripping member and the filter paper sample 13. Therefore, the vapor deposition layer may be separated between the opening 12c of the holding member and the filter paper sample 13. In such a state, charge-up of the filter paper sample 13 cannot be avoided.

このため、被検体を付着させた濾紙試料を試料台座上に載せて、濾紙試料の表面上に導電材料の蒸着層を形成した後、この蒸着層を介して該濾紙試料を把持するようにすることが好ましい。このための方法としては、例えば、図3および図4に示す方法がある。   For this reason, the filter paper sample to which the specimen is attached is placed on the sample pedestal, and after forming a vapor deposition layer of a conductive material on the surface of the filter paper sample, the filter paper sample is gripped through the vapor deposition layer. It is preferable. As a method for this, for example, there is a method shown in FIGS.

図3(a)に示すように、まず、試料台座11と、被検体を付着させた濾紙試料13と、遮蔽部材15とを用意する。遮蔽部材15は、開口部15cを有している。この開口部15cは、後段の把持部材12の開口部12cよりも内径が大きいものとする。そして、図3(b)に示すように、試料台座上11に濾紙試料13を載せて、遮蔽部材15を被せると、濾紙試料13を、その反りを防止しつつ、試料台座上11に保持することができる。この状態で、図3(c)に示すように、露出した濾紙試料13の上面から導電材料の蒸着層16を形成する。蒸着層16は、濾紙試料13上だけでなく、遮蔽部材15上にも形成されるが、遮蔽部材15は、蒸着の工程が終了すると取り除かれる。   As shown in FIG. 3A, first, a sample pedestal 11, a filter paper sample 13 to which an object is attached, and a shielding member 15 are prepared. The shielding member 15 has an opening 15c. The opening 15c has a larger inner diameter than the opening 12c of the gripping member 12 at the subsequent stage. 3B, when the filter paper sample 13 is placed on the sample base 11 and covered with the shielding member 15, the filter paper sample 13 is held on the sample base 11 while preventing the warp. be able to. In this state, as shown in FIG. 3C, a vapor deposition layer 16 of a conductive material is formed from the upper surface of the exposed filter paper sample 13. The vapor deposition layer 16 is formed not only on the filter paper sample 13 but also on the shielding member 15, but the shielding member 15 is removed when the vapor deposition process is completed.

図4(a)および(b)に示すように、試料台座11の凹部11a上に、蒸着層16を設けた濾紙試料13を載せた状態で、把持用蓋12bで覆い、ネジ12aをネジ穴11bに挿入して固定することにより、濾紙試料13を試料台10に固定することができる。そして、この例においては、濾紙試料13は、その蒸着層16が形成された部分が露出している、具体的には、把持用蓋12bの中央に設けられた開口部12cから露出しているので、濾紙試料13の観察が可能となる。   As shown in FIGS. 4A and 4B, the filter paper sample 13 provided with the vapor deposition layer 16 is placed on the concave portion 11a of the sample base 11 and covered with the gripping lid 12b, and the screw 12a is screwed into the screw hole. The filter paper sample 13 can be fixed to the sample stage 10 by being inserted and fixed in 11b. In this example, the filter paper sample 13 is exposed at the portion where the vapor deposition layer 16 is formed. Specifically, the filter paper sample 13 is exposed from the opening 12c provided at the center of the grip lid 12b. Therefore, the filter paper sample 13 can be observed.

ここで、図4(c)に示すように、濾紙試料13の上面には蒸着層16が形成される。図中Aで示すのは、把持部材12の開口部12cによって、把持される箇所である。このように、上記の方法によれば、把持部材12が、蒸着層16を介して濾紙試料13を把持する構成となるので、チャージアップを確実に防止することが可能となる。   Here, as shown in FIG. 4C, the vapor deposition layer 16 is formed on the upper surface of the filter paper sample 13. In the drawing, A indicates a portion that is gripped by the opening 12 c of the gripping member 12. As described above, according to the above method, the gripping member 12 is configured to grip the filter paper sample 13 via the vapor deposition layer 16, so that it is possible to reliably prevent charge-up.

本発明によれば、濾紙試料をSEM試料台に設置するに際して、そのしわや破損を防止することができ、SEMの試料台への濾紙試料の設置作業が容易となる。SEMによる分析、特にSEM/EDSでの自動粒度測定を実施するときに、作業性が格段に向上する。   According to the present invention, when the filter paper sample is set on the SEM sample stage, wrinkles and breakage can be prevented, and the installation work of the filter paper sample on the SEM sample stage becomes easy. When analysis by SEM, particularly automatic particle size measurement by SEM / EDS, is performed, workability is greatly improved.

10 本発明に係る走査型電子顕微鏡用試料台
11 試料台座
11a 凹部
11b ネジ穴
12 把持部材
12a ネジ
12b 把持用蓋
12c 開口部
12d 勾配
13 濾紙試料
14 EDS
15 遮蔽部材
15c 開口部
16 蒸着層
10 Scanning Electron Microscope Sample Base 11 Sample Base 11a Recess 11b Screw Hole 12 Holding Member 12a Screw 12b Holding Lid 12c Opening 12d Gradient 13 Filter Paper Sample 14 EDS
15 shielding member 15c opening 16 vapor deposition layer

Claims (7)

濾紙で回収した被検体を走査型電子顕微鏡によって観察するに際して用いる試料台であって、
該被検体を付着させた濾紙試料を載せるための試料台座と、
該濾紙試料を把持するための把持部材とを備える走査型電子顕微鏡用試料台。
A sample stage used for observing a specimen collected by a filter paper with a scanning electron microscope,
A sample pedestal for placing a filter paper sample to which the specimen is attached;
A scanning electron microscope sample stage, comprising: a gripping member for gripping the filter paper sample.
前記試料台座が、前記濾紙試料よりも大きい平滑面を有する、請求項1に記載の走査型電子顕微鏡用試料台。   The sample base for a scanning electron microscope according to claim 1, wherein the sample base has a larger smooth surface than the filter paper sample. 前記試料台座が、深さ1mm以下の凹部を有する、請求項1または2に記載の走査型電子顕微鏡用試料台。   The sample base for a scanning electron microscope according to claim 1, wherein the sample base has a recess having a depth of 1 mm or less. 前記試料台座および前記把持部材が、ともに円柱形状または円板形状を有し、該把持部材の中央に内径10mm以上の開口部が形成されている、請求項1から3までのいずれかに記載の走査型電子顕微鏡用試料台。   4. The sample base and the gripping member both have a cylindrical shape or a disk shape, and an opening having an inner diameter of 10 mm or more is formed at the center of the gripping member. 5. Sample stage for scanning electron microscope. 前記開口部の内壁面には、エネルギー分散型X線分光器の取り込み角度以下の勾配が設けられている、請求項4に記載の走査型電子顕微鏡用試料台。   The sample table for a scanning electron microscope according to claim 4, wherein an inner wall surface of the opening is provided with a gradient equal to or smaller than an intake angle of an energy dispersive X-ray spectrometer. 前記把持部材が、X線のエネルギー校正用標準試料を兼ねる、請求項1から5までのいずれかに記載の走査型電子顕微鏡用試料台。   The sample table for a scanning electron microscope according to any one of claims 1 to 5, wherein the gripping member also serves as an X-ray energy calibration standard sample. 下記(A)から(C)までの工程を有する走査型電子顕微鏡の試料設置方法。
(A)被検体を付着させた濾紙試料を試料台座上に載せる工程、
(B)該濾紙試料の表面上に導電材料の蒸着層を形成する工程および
(C)該蒸着層を介して該濾紙試料を把持する工程。
A sample placement method for a scanning electron microscope having the following steps (A) to (C).
(A) A step of placing a filter paper sample to which an object is attached on a sample pedestal;
(B) A step of forming a vapor deposition layer of a conductive material on the surface of the filter paper sample, and (C) a step of gripping the filter paper sample through the vapor deposition layer.
JP2012108740A 2012-05-10 2012-05-10 Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope Pending JP2013235778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012108740A JP2013235778A (en) 2012-05-10 2012-05-10 Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012108740A JP2013235778A (en) 2012-05-10 2012-05-10 Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope

Publications (1)

Publication Number Publication Date
JP2013235778A true JP2013235778A (en) 2013-11-21

Family

ID=49761737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012108740A Pending JP2013235778A (en) 2012-05-10 2012-05-10 Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope

Country Status (1)

Country Link
JP (1) JP2013235778A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940291A (en) * 2014-01-29 2016-09-14 国立研究开发法人科学技术振兴机构 Protectant for electron microscope observation of hydrated biological sample, kit for electron microscope observation, method for observation, diagnosis, evaluation, or quantification by electron microscope, and sample stage
KR101743146B1 (en) 2015-12-24 2017-06-15 강원대학교산학협력단 Specimens carrier device for atomic force microscope
US10699873B2 (en) 2016-04-27 2020-06-30 Kwansei Gakuin Educational Foundation Reference sample with inclined support base, method for evaluating scanning electron microscope, and method for evaluating SiC substrate
JP2021001778A (en) * 2019-06-20 2021-01-07 住友金属鉱山株式会社 Filter paper pedestal
KR20220095557A (en) * 2020-12-30 2022-07-07 (주)코셈 Scanning electron microscope used for particle analysis of large area samples including EDS, and analysis method using the same
CN114952695A (en) * 2021-02-23 2022-08-30 布鲁克Axs有限公司 Tool for TEM grid application
US11577296B2 (en) * 2018-03-12 2023-02-14 Massachusetts Institute Of Technology Devices and methods for holding a sample for multi-axial testing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115502A1 (en) * 2014-01-29 2017-03-23 国立研究開発法人科学技術振興機構 Protective agent for electron microscope observation of biological sample in water state, kit for electron microscope observation, observation, diagnosis, evaluation, quantification method and sample stage by electron microscope
US10128078B2 (en) 2014-01-29 2018-11-13 Japan Science And Technology Agency Protective agent for electron microscopic observation of biological sample in water-containing state, kit for electron microscopic observation, methods for observation, diagnosis, evaluation, and quantification by electron microscope, and sample stage
CN105940291A (en) * 2014-01-29 2016-09-14 国立研究开发法人科学技术振兴机构 Protectant for electron microscope observation of hydrated biological sample, kit for electron microscope observation, method for observation, diagnosis, evaluation, or quantification by electron microscope, and sample stage
KR101743146B1 (en) 2015-12-24 2017-06-15 강원대학교산학협력단 Specimens carrier device for atomic force microscope
US10699873B2 (en) 2016-04-27 2020-06-30 Kwansei Gakuin Educational Foundation Reference sample with inclined support base, method for evaluating scanning electron microscope, and method for evaluating SiC substrate
US10847342B2 (en) 2016-04-27 2020-11-24 Kwansei Gakuin Educational Foundation Reference sample with inclined support base, method for evaluating scanning electron microscope, and method for evaluating SiC substrate
EP3783637A1 (en) 2016-04-27 2021-02-24 Kwansei Gakuin Educational Foundation Method for evaluating sic substrate with inclined support base
US11577296B2 (en) * 2018-03-12 2023-02-14 Massachusetts Institute Of Technology Devices and methods for holding a sample for multi-axial testing
JP2021001778A (en) * 2019-06-20 2021-01-07 住友金属鉱山株式会社 Filter paper pedestal
JP7188288B2 (en) 2019-06-20 2022-12-13 住友金属鉱山株式会社 filter paper tray
KR102484466B1 (en) * 2020-12-30 2023-01-04 (주)코셈 Scanning electron microscope used for particle analysis of large area samples including EDS, and analysis method using the same
KR20220095557A (en) * 2020-12-30 2022-07-07 (주)코셈 Scanning electron microscope used for particle analysis of large area samples including EDS, and analysis method using the same
CN114952695A (en) * 2021-02-23 2022-08-30 布鲁克Axs有限公司 Tool for TEM grid application

Similar Documents

Publication Publication Date Title
JP2013235778A (en) Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope
Brodusch et al. Nanometres‐resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope
Griffin A comparison of conventional Everhart‐Thornley style and in‐lens secondary electron detectors—a further variable in scanning electron microscopy
Hodoroaba et al. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles
Hodoroaba et al. Inspection of morphology and elemental imaging of single nanoparticles by high‐resolution SEM/EDX in transmission mode
La Fontaine et al. Laser-assisted atom probe tomography of deformed minerals: a zircon case study
JP2007303946A (en) Sample analyzer and sample analyzing method
US9704689B2 (en) Method of reducing the thickness of a target sample
Hall In situ thickness assessment during ion milling of a free-standing membrane using transmission helium ion microscopy
Jacobs et al. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide
Brodusch et al. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold‐field emission scanning electron microscope for nanomaterials characterization
US20170169989A1 (en) Sample holder for scanning electron microscopy (sem) and atomic force microscopy (afm)
Wolstenholme Auger electron spectroscopy: practical application to materials analysis and characterization of surfaces, interfaces, and thin films
Herbig et al. Removal of hydrocarbon contamination and oxide films from atom probe specimens
Sharp et al. Uranium ion yields from monodisperse uranium oxide particles
Jiruše et al. Integrating focused ion beam–scanning electron microscope with confocal Raman microscope into a single instrument
JP2020507889A (en) Method for measuring pore distribution of secondary battery electrode
JP2016191562A (en) Analysis method of crystal orientation and analysis device
US11004656B2 (en) Methods and apparatus for determining, using, and indicating ion beam working properties
JP5450357B2 (en) Scanning electron microscope
JP2014215038A (en) Cantilever, manufacturing method, inspection device, and inspection method
JP2008256560A (en) Thin film sample and method of manufacturing the same
JP2008014899A (en) Sample preparing method
JP2014044967A (en) Scanning electron microscope and sample holder
JP6646290B2 (en) Method of measuring elements in a sample and visualization of concentration distribution