JP2013231697A - Mixing precision determination method for mixed soil - Google Patents

Mixing precision determination method for mixed soil Download PDF

Info

Publication number
JP2013231697A
JP2013231697A JP2012104782A JP2012104782A JP2013231697A JP 2013231697 A JP2013231697 A JP 2013231697A JP 2012104782 A JP2012104782 A JP 2012104782A JP 2012104782 A JP2012104782 A JP 2012104782A JP 2013231697 A JP2013231697 A JP 2013231697A
Authority
JP
Japan
Prior art keywords
soil
mixed
mixed soil
mixing
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012104782A
Other languages
Japanese (ja)
Inventor
Takeshi Kuninishi
健史 國西
Toru Matsuo
透 松尾
Sadato Kikuchi
定人 菊池
Tadahiro Noguchi
忠宏 野口
Toru Ujiie
亨 氏家
Mitsuru Yamamura
充 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Japan Conservation Engineers Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Japan Conservation Engineers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Japan Conservation Engineers Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2012104782A priority Critical patent/JP2013231697A/en
Publication of JP2013231697A publication Critical patent/JP2013231697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixing precision determination method for mixed soil that can speedily and precisely measure the mixing precision of mixed soil.SOLUTION: A mixing precision determination method for mixed soil includes a mixing process of obtaining mixed soil by mixing a soil improving material including marker elements with soil, a density measuring process of measuring respective densities of the marker elements in the mixed soil by irradiating a plurality of places of the mixed soil with radiation, and a determination process of determining the mixing precision of the mixed soil from variance in density among the marker elements in the mixed soil.

Description

本発明は、土壌と土壌改良材とを混合した混合土壌の混合精度判定方法に関する。   The present invention relates to a method for determining mixing accuracy of mixed soil obtained by mixing soil and soil improvement material.

汚染土壌や、軟弱地盤の土壌等の土壌を改良するために、土壌改良材を土壌に混合することが行われている。
例えば、重金属等の汚染物質を含む汚染土壌を改良するために、前記重金属が溶出することを抑制するあるいは不溶化する溶出低減材を土壌改良材として汚染土壌中に混合して、汚染土壌中の重金属が溶出することを抑制することや、軟弱な土壌を改良するために、セメント系の固化材を土壌改良材として軟弱な土壌に混合して、軟弱な土壌を補強すること等が行われている。
In order to improve soils such as contaminated soil and soil of soft ground, a soil improver is mixed with the soil.
For example, in order to improve contaminated soil containing pollutants such as heavy metals, an elution reducing material that suppresses or insolubilizes the heavy metals is mixed into the contaminated soil as a soil improver, and heavy metals in the contaminated soil are mixed. In order to suppress leaching of soil and to improve soft soil, cement-based solidified material is mixed with soft soil as a soil improver, and the soft soil is reinforced. .

前記のように土壌と土壌改良材とを混合する土壌改良方法において、土壌と土壌改良材とが均一に混合されていないと、土壌改良材が十分に存在しない箇所が生じて、目的とする土壌改良効果が得られないおそれがある。
そのため、混合土壌の混合精度を確認して、好ましい混合状態に調整するために、混合土壌の混合精度の判定を行っている。かかる混合土壌の混合精度の判定方法としては、従来は、現場の混合土壌から任意の複数箇所の土壌を採取し、サンプルとして実験室などに持ち帰り、溶出試験等を行って混合土壌の成分濃度を調べて、各箇所での成分濃度の相違などを比較することで、混合精度を判定していた。しかし、かかる方法では、現場で混合精度を知ることができないため、混合土壌の混合状況を評価するまでに時間がかかり、例えば、混合土壌をさらに混合するなど対応が必要な場合にも、対応が遅くなるという問題がある。
In the soil improvement method in which soil and soil improvement material are mixed as described above, if the soil and soil improvement material are not mixed uniformly, a place where the soil improvement material does not exist sufficiently occurs, and the target soil The improvement effect may not be obtained.
Therefore, in order to confirm the mixing accuracy of the mixed soil and adjust it to a preferable mixed state, the mixing accuracy of the mixed soil is determined. As a method for determining the mixing accuracy of such mixed soil, conventionally, soils at arbitrary multiple locations are collected from the mixed soil at the site, taken back to the laboratory as a sample, and an elution test or the like is performed to determine the component concentration of the mixed soil. The mixing accuracy was determined by examining and comparing the difference in the component concentration at each location. However, with this method, it is not possible to know the mixing accuracy at the site, so it takes time to evaluate the mixing status of the mixed soil. There is a problem of being slow.

そこで、直接現場で混合土壌の状況を判定する方法として特許文献1に記載のような方法がある。
特許文献1に記載された方法は、現場において蛍光X線分析装置を用いて前記混合土壌に含まれる各元素の含有量を測定し、さらに、予め測定しておいた硬化材中に含まれる元素濃度および土壌中に元々含まれていた元素濃度と、前記測定した含有量とから、混合土壌における硬化材の含有割合を算出し、かかる含有割合によって、混合土壌の混合精度を確認するものであり、前記蛍光X線分析装置を用いることで、現場において混合土壌の混合精度の判定を行うことが可能である。
Then, there exists a method as described in patent document 1 as a method of judging the condition of mixed soil directly on-site.
The method described in Patent Document 1 measures the content of each element contained in the mixed soil using a fluorescent X-ray analyzer in the field, and further includes an element contained in a hardened material that has been measured in advance. The content ratio of the hardener in the mixed soil is calculated from the concentration and the element concentration originally contained in the soil and the measured content, and the mixing accuracy of the mixed soil is confirmed by the content ratio. By using the fluorescent X-ray analyzer, it is possible to determine the mixing accuracy of the mixed soil at the site.

しかし、特許文献1に記載の方法では、例えば、硬化材と土壌とに近似する濃度で含まれている元素があった場合には、精度良く混合精度を判定することが困難である。
さらに、予め、硬化材中に含まれる元素濃度および土壌中に含まれている元素濃度を測定しておき、各測定値に基づき混合土壌中の硬化材の配合割合を算出するという、煩雑な作業を行っている。
However, in the method described in Patent Document 1, for example, when there is an element contained at a concentration that approximates the hardener and the soil, it is difficult to accurately determine the mixing accuracy.
Furthermore, the complicated work of measuring the element concentration contained in the hardener and the element concentration contained in the soil in advance and calculating the blending ratio of the hardener in the mixed soil based on each measured value It is carried out.

特開平7−197444号公報JP 7-197444 A

そこで、本発明は、上記のような従来の問題を鑑みて、迅速に且つ簡単に、混合土壌の混合精度を判定しうる混合土壌の混合精度判定方法を提供することを課題とする。   Then, this invention makes it a subject to provide the mixing accuracy determination method of the mixed soil which can determine the mixing accuracy of mixed soil quickly and easily in view of the above conventional problems.

本発明に係る混合土壌の混合精度判定方法は、
土壌にマーカー元素を含む土壌改良材を混合して混合土壌を得る混合工程と、
前記混合土壌の複数箇所に放射線を照射して、前記マーカー元素の各濃度を測定する濃度測定工程と、
前記マーカー元素の各濃度のばらつきから、前記混合土壌の混合精度を判定する判定工程とを実施する。
The method for determining the mixing accuracy of the mixed soil according to the present invention is as follows.
A mixing step of obtaining a mixed soil by mixing a soil improvement material containing a marker element into the soil;
A concentration measuring step of irradiating a plurality of locations of the mixed soil to measure each concentration of the marker element,
A determination step of determining the mixing accuracy of the mixed soil from the variation in the concentration of the marker element is performed.

前記のように本発明によれば、マーカー元素を含む土壌改良材を土壌に混合し、かかる混合土壌の複数箇所に放射線を照射して、前記各箇所におけるマーカー元素の各濃度を測定して、測定した各濃度のばらつきから、前記混合土壌の混合精度を判定するため、土壌中に含まれる元素濃度等を測定しておく必要がなく、迅速に且つ簡単に土壌改良材と土壌との混合精度を判定することができる。   As described above, according to the present invention, the soil improvement material containing the marker element is mixed with the soil, irradiated to a plurality of locations of the mixed soil, and each concentration of the marker element at each location is measured, In order to determine the mixing accuracy of the mixed soil from the measured concentration variations, it is not necessary to measure the concentration of elements contained in the soil, etc., and the mixing accuracy of the soil amendment material and the soil quickly and easily Can be determined.

尚、本発明において「マーカー元素」とは、土壌改良材に混合しても目的とする土壌改良効果を阻害することなく、混合土壌に放射線を照射することで濃度の測定が可能であって、且つ、改良する土壌中には検出可能な濃度で含まれていない元素をいう。   In the present invention, the “marker element” means that the concentration can be measured by irradiating the mixed soil with radiation without inhibiting the intended soil improvement effect even when mixed with the soil improvement material, And the element which is not contained in the soil to improve in a detectable concentration.

本発明の一態様として、前記マーカー元素が、ゲルマニウム、銀、パラジウム、ガリウムからなる群より選択される少なくとも1以上の金属であってもよい。   As one aspect of the present invention, the marker element may be at least one metal selected from the group consisting of germanium, silver, palladium, and gallium.

ゲルマニウム、銀、パラジウムは、微量でも放射線の照射で濃度を測定可能であるため、前記マーカー元素として土壌改良材中に配合した場合に、精度よく混合土壌の混合状態を判定することができる。
また、ゲルマニウム、銀、パラジウムは水中にイオンとして溶出しにくい性質を有しており、かかる元素をマーカー元素として使用した場合には、土壌改良材を混合してから時間が経過した混合土壌においても、雨水等によってマーカー元素が流出することを抑制できる。よって、時間が経過した混合土壌であっても、精度良く混合精度を判定することができる。
Since the concentration of germanium, silver and palladium can be measured even by a minute amount by irradiation with radiation, the mixed state of the mixed soil can be accurately determined when blended in the soil improving material as the marker element.
In addition, germanium, silver, and palladium have the property of being difficult to elute as ions in water, and when such elements are used as marker elements, even in mixed soil where time has passed since the soil amendment material was mixed. It is possible to prevent the marker element from flowing out due to rainwater or the like. Therefore, even if it is mixed soil which time passed, mixing accuracy can be determined with sufficient accuracy.

本発明の一態様として、前記濃度測定工程を、蛍光X線分析装置を用いて実施してもよい。   As one aspect of the present invention, the concentration measurement step may be performed using a fluorescent X-ray analyzer.

蛍光X線分析装置を用いて前記混合土壌中の前記マーカー元素の濃度を測定することで、より簡易に混合土壌の混合精度判定が行える。   By measuring the concentration of the marker element in the mixed soil using a fluorescent X-ray analyzer, the mixing accuracy of the mixed soil can be determined more easily.

本発明の他の一態様として、前記土壌改良材に固化材が含まれていてもよい。   As another aspect of the present invention, a solidifying material may be included in the soil improvement material.

土壌改良材に固化材が含まれている場合には、混合土壌の混合精度を精度良く判定することで、固化材を均一に土壌に混合させて、軟弱な土壌を均一な強度になるように調整することが可能となる。   If the soil amendment material contains a solidifying material, the mixing accuracy of the mixed soil is judged accurately, so that the solidifying material is uniformly mixed with the soil so that the soft soil has a uniform strength. It becomes possible to adjust.

本発明の他の一態様として、前記土壌改良材が、重金属溶出低減材であってもよい。   As another aspect of the present invention, the soil improving material may be a heavy metal elution reducing material.

土壌改良材が重金属溶出低減材である場合には、混合土壌の混合精度を精度良く判定することで、重金属の溶出を効果的に低減させうるような混合土壌に調整することが可能となる。   When the soil improvement material is a heavy metal elution reducing material, it is possible to adjust the mixed soil so that the elution of heavy metal can be effectively reduced by accurately determining the mixing accuracy of the mixed soil.

以上のように、本発明によれば、迅速且つ簡易に、混合土壌の混合精度を判定することができる。   As described above, according to the present invention, the mixing accuracy of the mixed soil can be determined quickly and easily.

以下に、本発明にかかる混合土壌の混合精度判定方法について説明する。
本実施形態の混合精度判定方法は、
土壌にマーカー元素を含む土壌改良材を混合して混合土壌を得る混合工程と、
前記混合土壌の複数箇所に放射線を照射して、前記マーカー元素の各濃度を測定する濃度測定工程と、
前記マーカー元素の各濃度のばらつきから、前記混合土壌の混合精度を判定する判定工程とを実施する方法である。
Below, the mixing accuracy determination method of the mixed soil concerning this invention is demonstrated.
The mixing accuracy determination method of this embodiment is
A mixing step of obtaining a mixed soil by mixing a soil improvement material containing a marker element into the soil;
A concentration measuring step of irradiating a plurality of locations of the mixed soil to measure each concentration of the marker element,
And a determination step of determining the mixing accuracy of the mixed soil from variations in the concentrations of the marker elements.

本実施形態の混合精度判定方法で判定する混合土壌は、例えば、ヒ素、鉛などの有害な重金属等を含む汚染土壌に、土壌改良材として前記重金属の溶出を低減させる重金属溶出低減材を混合した混合土壌等が挙げられる。   The mixed soil determined by the mixing accuracy determination method of the present embodiment is, for example, mixed with contaminated soil containing harmful heavy metals such as arsenic and lead with a heavy metal elution reducing material that reduces elution of the heavy metal as a soil improvement material. Examples include mixed soil.

前記重金属溶出低減材は、例えば、炭酸マグネシウム、酸化マグネシウム、ドロマイト、軽焼ドロマイト、セメント、ゼオライト、鉄塩、高炉スラグなどを主成分として含むものが挙げられる。
特に、ドロマイト、あるいは炭酸マグネシウムを含む天然鉱物または精製物を焼成した生成物を含む重金属溶出低減材が、溶出低減効果が安定していることから好ましく用いられる。
Examples of the heavy metal elution reducing material include magnesium carbonate, magnesium oxide, dolomite, light calcined dolomite, cement, zeolite, iron salt, blast furnace slag, and the like as main components.
In particular, a heavy metal elution reducing material containing a product obtained by calcining dolomite or a natural mineral containing magnesium carbonate or a purified product is preferably used because the elution reducing effect is stable.

前記重金属溶出低減材には、前記マーカー元素が含まれる。
前記マーカー元素としては、土壌改良材の土壌改良効果を阻害しないものを用いる。
例えば、土壌改良材として重金属溶出低減材を用いる場合には、前記重金属溶出低減材の重金属の溶出を低減する効果を阻害することがないものを用いる。
さらに、前記マーカー元素としては、放射線の照射によって濃度の測定が可能であって、且つ、改良する土壌中に実質的に含まれていない元素であることが必要である。
尚、改良する土壌中に実質的に含まれていない、とは、濃度測定工程において放射線を照射しても濃度が測定できる程度には含まれていない、ことを意味する。
The heavy metal elution reducing material includes the marker element.
As said marker element, the element which does not inhibit the soil improvement effect of a soil improvement material is used.
For example, when a heavy metal elution reducing material is used as the soil improving material, a material that does not inhibit the effect of reducing the heavy metal elution of the heavy metal elution reducing material is used.
Furthermore, the marker element needs to be an element that can be measured for concentration by irradiation with radiation and is not substantially contained in the soil to be improved.
The phrase “not substantially contained in the soil to be improved” means that the concentration is not included so that the concentration can be measured even when irradiated with radiation in the concentration measurement step.

前記マーカー元素の例としては、例えば、ゲルマニウム、銀、パラジウム、臭素、ガリウム等が挙げられ、好ましくは、ゲルマニウム、銀、パラジウム、ガリウム、特に好ましくはゲルマニウムが挙げられる。
ゲルマニウム、銀、パラジウム、ガリウムは水にイオンとして溶解しにくい性質を有しており、前記重金属溶出低減材中に配合して、前記重金属溶出低減材を土壌に混合した場合に、雨水などによって前記マーカー元素が前記重金属溶出低減材から流出しにくい。
従って、かかる元素をマーカー元素として使用した場合には、重金属溶出低減材を混合してから時間が経過した混合土壌においても、雨水や土壌中の水分等によってマーカー元素が流出することを抑制できるため好ましい。
前記各元素のうち、特に、ゲルマニウムは、極めて微量でもX線等の放射線で濃度を測定することができ、また、重金属溶出低減材に配合した場合、重金属の溶出をより低減させうるため、好ましい。
Examples of the marker element include germanium, silver, palladium, bromine, gallium, and the like, preferably germanium, silver, palladium, gallium, and particularly preferably germanium.
Germanium, silver, palladium, and gallium have the property that they are difficult to dissolve as ions in water, and when mixed with the heavy metal elution reducing material, the heavy metal elution reducing material is mixed with soil. The marker element is unlikely to flow out of the heavy metal elution reducing material.
Therefore, when such an element is used as a marker element, it is possible to prevent the marker element from flowing out due to rainwater, moisture in the soil, etc., even in mixed soil where time has elapsed since mixing the heavy metal elution reducing material. preferable.
Among the above elements, germanium is particularly preferable because the concentration of germanium can be measured with radiation such as X-rays even in a very small amount, and when mixed with a heavy metal elution reducing material, the elution of heavy metal can be further reduced. .

前記各マーカー元素は、前記各元素を含む化合物として前記重金属溶出低減材に含有されていてもよい。
前記化合物としては、例えば、ゲルマニウム化合物としてのC6107Ge2、銀化合物としてのAgNO2、パラジウム化合物としてのPdCl2等が挙げられる。
中でも、C6107Ge2等のゲルマニウム化合物が土壌中に存在していても生物等に与える影響が少ないため好ましい。
Each said marker element may be contained in the said heavy metal elution reduction material as a compound containing each said element.
Examples of the compound include C 6 H 10 O 7 Ge 2 as a germanium compound, AgNO 2 as a silver compound, PdCl 2 as a palladium compound, and the like.
Among them, even if a germanium compound such as C 6 H 10 O 7 Ge 2 is present in the soil, it is preferable because it has little influence on living organisms.

前記マーカー元素の濃度は、前記土壌改良材を土壌に添加する量に応じて適宜設定できるが、例えば、土壌に前記土壌改良材を混合した場合に、前記混合土壌1kgに対して
25〜250mg(元素量として)程度含まれるように記土壌改良材に配合することが好ましい。
The concentration of the marker element can be appropriately set according to the amount of the soil improvement material added to the soil. For example, when the soil improvement material is mixed with soil, 25 to 250 mg ( It is preferable to mix with the soil improving material so that it is included to the extent that it is included as an element amount.

前記土壌改良材としての重金属溶出低減材を土壌中に混合することで混合土壌が得られる。前記混合土壌を得るためには、改良する現場の土壌中に、スラリー状または粉状の土壌改良材を注入散布して、ミキサー等の攪拌機械を用いて機械的に攪拌混合する方法等が採用できる。   A mixed soil is obtained by mixing the heavy metal elution reducing material as the soil improving material into the soil. In order to obtain the mixed soil, a slurry-like or powdery soil-improving material is injected and dispersed in the soil of the site to be improved, and a method of mechanically stirring and mixing using a stirring machine such as a mixer is adopted. it can.

前記のようにして重金属溶出低減材が混合された混合土壌は、前記重金属溶出低減材が均一に土壌中に混合されていない場合には、部分的に重金属溶出低減材が存在しない箇所が生じて、溶出低減効果が十分に得られない可能性がある。
そこで、混合土壌の混合精度を判定して、混合精度が低い、すなわち均一に混合されていない場合には、再度混合攪拌するなどの対処をする必要がある。
本実施形態においては、前記混合土壌の複数箇所に放射線を照射して、前記マーカー元素の各濃度を測定する濃度測定工程を実施する。
In the mixed soil in which the heavy metal elution reducing material is mixed as described above, when the heavy metal elution reducing material is not uniformly mixed in the soil, a portion where the heavy metal elution reducing material does not exist partially occurs. The elution reduction effect may not be obtained sufficiently.
Therefore, it is necessary to determine the mixing accuracy of the mixed soil and take measures such as mixing and stirring again when the mixing accuracy is low, that is, when the mixing is not uniformly performed.
In the present embodiment, a concentration measurement step is performed in which a plurality of locations of the mixed soil are irradiated with radiation to measure each concentration of the marker element.

本実施形態において、前記混合土壌に照射する放射線とは、電磁波および粒子線を意味し、例えば、α線、β線、電子線等の粒子線や、γ線、X線等のような電磁波等のように、前記混合土壌に照射することで、混合土壌中のマーカー元素から濃度の測定が可能な信号を発生させることが可能なものを意味する。照射する放射線は前記マーカー元素の濃度を測定する手段としてどのような手段を採用するかで、適宜選択可能である。   In the present embodiment, the radiation applied to the mixed soil means electromagnetic waves and particle beams, for example, particle beams such as α rays, β rays, electron beams, electromagnetic waves such as γ rays, X rays, etc. As described above, by irradiating the mixed soil, it is possible to generate a signal capable of measuring the concentration from the marker element in the mixed soil. The radiation to be irradiated can be appropriately selected depending on what means is adopted as a means for measuring the concentration of the marker element.

前記マーカー元素の濃度測定方法としては、蛍光X線分析装置を用いて、X線を前記混合土壌に照射して、発生する特性X線(蛍光X線)の強度から前記マーカー元素の濃度を測定する蛍光X線分析方法を採用することが好ましい。
前記蛍光X分析方法を用いる場合には、混合土壌を試料とする場合に、煩雑な処理をする必要がなく、簡単に試料を準備することができる。
また、前記蛍光X線分析装置としては、小型の装置、特には可搬型の装置を用いることが、現場あるいは現場付近で測定を行うことができるため好ましい。
The marker element concentration is measured by irradiating the mixed soil with X-rays using a fluorescent X-ray analyzer and measuring the marker element concentration from the intensity of the characteristic X-rays (fluorescent X-rays) generated. It is preferable to adopt a fluorescent X-ray analysis method.
In the case of using the fluorescent X analysis method, when the mixed soil is used as a sample, it is not necessary to perform a complicated process and the sample can be easily prepared.
As the X-ray fluorescence analyzer, it is preferable to use a small device, particularly a portable device, because measurement can be performed at or near the site.

前記混合土壌中のマーカー元素濃度を測定する方法としては、例えば、混合土壌の任意の複数箇所から、それぞれ混合土壌を抜き取り、乾燥させてすりつぶして細かい粉末試料にした後に、前記蛍光X線分析装置を用いて、粉末試料中のマーカー元素の強度から換算した濃度を測定することが挙げられる。
尚、前記測定は、混合土壌の採取現場で行なってもよく、あるいは、採取された混合土壌を持ち帰り、実験室等で行なってもよい。
As a method of measuring the marker element concentration in the mixed soil, for example, after extracting the mixed soil from any plurality of locations of the mixed soil, drying and crushing it into a fine powder sample, the X-ray fluorescence analyzer Is used to measure the concentration converted from the strength of the marker element in the powder sample.
In addition, the measurement may be performed at the sampling site of the mixed soil, or may be performed in a laboratory or the like by bringing the collected mixed soil home.

さらに、本実施形態では、前記濃度測定工程で測定された前記マーカー元素の各濃度のばらつきから、前記混合土壌の混合精度を判定する判定工程を実施する。
すなわち、前記濃度測定工程において、複数箇所における混合土壌中のマーカー元素の濃度を測定することで、各箇所におけるマーカー元素濃度がそれぞれ得られる。この各箇所におけるマーカー元素の各濃度を比較して、ばらつきの有無あるいは度合いを判定することで、土壌と土壌改良材としての重金属溶出低減材とが均一に混合されているかどうかを判定することができる。
判定の結果、前記各箇所の混合土壌中のマーカー元素の濃度に大きいばらつきがある場合には、土壌と重金属溶出低減材との混合が均一に行われていない、すなわち、混合精度が低い、ことになる。
この場合には、混合土壌をさらに攪拌したり、あるいは重金属溶出低減材をさらに土壌に添加する等の対応をすることで、目的とする土壌改良効果、すなわち、本実施形態においては重金属の溶出低減効果を得ることができる。
尚、前記各マーカー元素の濃度のばらつきが大きいと判断する方法としては、例えば、各濃度の変動係数を算出して、かかる変動係数から判断することができる。
Furthermore, in this embodiment, the determination process which determines the mixing precision of the said mixed soil from the dispersion | variation in each density | concentration of the said marker element measured at the said density | concentration measurement process is implemented.
That is, in the said concentration measurement process, the marker element density | concentration in each location is each obtained by measuring the density | concentration of the marker element in the mixed soil in multiple locations. It is possible to determine whether the soil and the heavy metal elution reducing material as a soil improvement material are uniformly mixed by comparing each concentration of the marker element at each location and determining the presence or absence or degree of variation. it can.
As a result of the determination, when there is a large variation in the concentration of the marker element in the mixed soil at each location, the soil and the heavy metal elution reducing material are not uniformly mixed, that is, the mixing accuracy is low. become.
In this case, by further agitating the mixed soil or adding a heavy metal elution reducing material to the soil, the intended soil improvement effect, that is, reduction of heavy metal elution in the present embodiment. An effect can be obtained.
As a method for determining that the concentration variation of each marker element is large, for example, a variation coefficient of each concentration can be calculated and determined from the variation coefficient.

本実施形態において、前記マーカー元素としてゲルマニウム、銀、パラジウム、ガリウム等のマーカー元素を用いた場合には、特に、水などによって溶出しにくいため、雨水などによって重金属溶出低減材からマーカー元素のみが分離して流出するおそれが少ない。従って、例えば、土壌と土壌改良材とを混合してからある程度日数が経過した混合土壌において、前記濃度測定工程を実施した場合でも、マーカー元素は、土壌改良材中に留まっており、精度よく混合土壌の混合精度を判定することができる。   In the present embodiment, when a marker element such as germanium, silver, palladium, gallium or the like is used as the marker element, in particular, since it is difficult to elute with water or the like, only the marker element is separated from the heavy metal elution reducing material by rainwater or the like. There is little risk of spillage. Therefore, for example, even when the concentration measurement step is performed in a mixed soil in which a certain number of days have passed after mixing the soil and the soil improvement material, the marker element remains in the soil improvement material and is mixed accurately. The mixing accuracy of soil can be determined.

また、本実施形態において、土壌改良材として重金属溶出低減材を用いた場合を説明したが、土壌改良材としては、他の土壌改良材を用いても良い。
例えば、セメント等の固化成分を含む固化材のように、改良する地盤の土壌を固化させて軟弱地盤を補強するような土壌改良材を用いても良い。
かかるセメント系固化材は、土壌と混合した場合、混合精度にムラがあると、強度にムラが生じるおそれがある。
よって、本発明の混合土壌の混合精度判定方法を実施することで、均一な強度の混合土壌を得るための判定を行うことができる。
Moreover, in this embodiment, although the case where the heavy metal elution reduction material was used as a soil improvement material was demonstrated, you may use another soil improvement material as a soil improvement material.
For example, a soil improving material that solidifies the soil of the ground to be improved and reinforces the soft ground, such as a solidified material containing a solidifying component such as cement, may be used.
When such cement-based solidified material is mixed with soil, if the mixing accuracy is uneven, the strength may be uneven.
Therefore, the determination for obtaining the mixed soil of uniform strength can be performed by carrying out the mixed soil mixing accuracy determination method of the present invention.

尚、前記のように土壌改良材として固化材を含むものを用いた場合にも、マーカー元素としては、前述したように、放射線の照射によって濃度の測定が可能であって、且つ、改良する土壌中に実質的に含まれていない元素であることに加えて、セメント等の固化材の固化を阻害しない元素を用いることが好ましい。
この場合でも、ゲルマニウム、銀、パラジウム、ガリウム等がマーカー元素として好適に用いることができる。
In addition, as described above, when using a material containing a solidifying material as a soil improving material as described above, as a marker element, as described above, the concentration can be measured by radiation irradiation, and the soil to be improved In addition to being an element that is not substantially contained therein, it is preferable to use an element that does not inhibit solidification of a solidifying material such as cement.
Even in this case, germanium, silver, palladium, gallium, or the like can be suitably used as the marker element.

尚、本実施形態にかかる混合土壌の混合精度判定方法は以上のとおりであるが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   In addition, although the mixing accuracy determination method of the mixed soil concerning this embodiment is as above, it should be thought that embodiment disclosed this time is an illustration and restrictive at all points. . The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

以下に実施例を示して、本発明にかかる混合土壌の混合精度測定方法についてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Although the Example is shown below and the mixing precision measuring method of the mixed soil concerning this invention is demonstrated further more concretely, this invention is not limited to a following example.

(試験1)
擬似汚染混合土壌として、含水率15%の砂質土(成田産)に砒素をAs濃度として40mg/kgとなるように混合したものを準備した。
土壌改良材として、重金属不溶化材(商品名:MFX、住友大阪セメント社製)に、有機ゲルマニウム((CH2CH2COOHGe)23:純度99.99%、Shanghai Hongqiang interanational trade Co.,LTD.製)、NaBr(試薬特級、キシダ化学社製)をそれぞれ5000mg/kgになるように混合したものを準備した。
(Test 1)
As the pseudo-contaminated mixed soil, sandy soil having a moisture content of 15% (produced by Narita) was prepared by mixing arsenic to an As concentration of 40 mg / kg.
As a soil improvement material, heavy metal insolubilized material (trade name: MFX, manufactured by Sumitomo Osaka Cement Co., Ltd.), organic germanium ((CH 2 CH 2 COOHGe) 2 O 3 : purity 99.99%, Shanghai Hongqiang international trade Co., LTD. ) And NaBr (special reagent grade, manufactured by Kishida Chemical Co., Ltd.) were mixed to prepare 5000 mg / kg.

前記擬似汚染土壌0.36kgに、前記土壌改良材を土壌中の前記有機ゲルマニウム濃度またはNaBr濃度が500mg/kg添加して混合した。
混合は、ホバートミキサーを用いて9分間混合した。これらの混合土壌を、均一混合土壌とした。
To the pseudo-contaminated soil 0.36 kg, the soil amendment material was added with the organic germanium concentration or NaBr concentration in the soil of 500 mg / kg and mixed.
The mixing was performed for 9 minutes using a Hobart mixer. These mixed soils were defined as uniform mixed soils.

一方、前記擬似汚染土壌0.36kgに、前記土壌改良材を土壌中の前記有機ゲルマニウム濃度又はNaBr濃度が250mg/kgになる量を添加して、ホバートミキサーを用いて10秒間混合した。これらの混合土壌を、不均一混合土壌とした。   On the other hand, 0.36 kg of the pseudo-contaminated soil was added with an amount of the organic germanium concentration or NaBr concentration of 250 mg / kg in the soil and mixed for 10 seconds using a Hobart mixer. These mixed soils were designated as heterogeneous mixed soils.

前記各混合土壌を、24時間放置した後に、任意の5箇所から、各混合土壌を6gずつ採取し、蛍光X線分析装置(装置名:SEA1100、エスアイアイ・ナノテクノロジー社製)を用いて、混合土壌中の有機ゲルマニウム又はNaBrの強度(cps)を測定した。
ブランクとして、土壌改良材を混合しない混合土壌からも任意の5箇所から6gずつ採取したものの砒素の強度(cps)を測定した。
各箇所におけるそれぞれのcpsの値の変動係数を算出した。
測定結果および算出結果を、表1に示す。
After each of the mixed soils was allowed to stand for 24 hours, 6 g of each of the mixed soils was collected from arbitrary five locations, and using a fluorescent X-ray analyzer (device name: SEA1100, manufactured by SII Nano Technology), The strength (cps) of organic germanium or NaBr in the mixed soil was measured.
As a blank, the strength (cps) of arsenic of 6 g sampled from arbitrary 5 locations was also measured from the mixed soil not mixed with the soil conditioner.
The coefficient of variation of each cps value at each location was calculated.
Table 1 shows the measurement results and the calculation results.

Figure 2013231697
Figure 2013231697

表1から、均一に混合した混合土壌1および2は、採取箇所1〜5において、測定されたGe強度またはBr強度にばらつきが少なかった。一方、不均一に混合した混合土壌4および5は、採取箇所1〜5において、測定されたGe強度またはBr強度のばらつきが顕著であった。
尚、測定結果の変動係数にしきい値を設定しておき、かかるしきい値を基準として混合精度を判断してもよい。しきい値は、ブランク土壌の変動係数や、混合土壌等の変動係数等から求めてもよい。
From Table 1, the mixed soils 1 and 2 that were uniformly mixed had little variation in the measured Ge intensity or Br intensity at the sampling points 1 to 5. On the other hand, in the mixed soils 4 and 5 mixed inhomogeneously, the measured Ge intensity or Br intensity variation was remarkable at the sampling points 1 to 5.
Note that a threshold value may be set for the variation coefficient of the measurement result, and the mixing accuracy may be determined based on the threshold value. The threshold value may be obtained from a variation coefficient of blank soil, a variation coefficient of mixed soil, or the like.

(試験2)
前記試験1と同様の擬似汚染混合土壌と、重金属不溶化材(有機ゲルマニウムまたはNaBr混合)とを準備して、試験1と同様に、ホバートミキサーを用いて9分間混合した。
各混合土壌および擬似汚染混合土壌を、直径40mm、高さ275mmの円筒形容器に600gずつ充填した試験体をそれぞれ2個ずつ作製した。
充填直後の試験体のうち各1個ずつから、任意5箇所の各混合土壌を6gずつ採取し、蛍光X線分析装置(装置名:SEA1100、エスアイアイ・ナノテクノロジー社製)を用いて、混合土壌中の有機ゲルマニウム、NaBr又は砒素の強度(cps)を測定した。各箇所におけるそれぞれのcpsの値の変動係数を算出した。
充填直後の各試験体のうち各1個の、円筒形容器の上から60gの水を注いだ後、1週間放置した。その後、任意5箇所の各混合土壌を6gずつ採取し、蛍光X線分析装置(装置名:SEA1100、エスアイアイ・ナノテクノロジー社製)を用いて、混合土壌中の有機ゲルマニウム、NaBr又は砒素の強度(cps)を測定した。各箇所におけるそれぞれのcpsの値の変動係数を算出した。
測定結果および算出結果を表2に示す。
(Test 2)
Pseudo-contaminated mixed soil similar to Test 1 and heavy metal insolubilized material (organic germanium or NaBr mixed) were prepared and mixed for 9 minutes using a Hobart mixer as in Test 1.
Two test pieces were prepared by filling each mixed soil and pseudo-contaminated mixed soil in a cylindrical container having a diameter of 40 mm and a height of 275 mm by 600 g.
From each one of the test specimens immediately after filling, 6 g of each of the 5 mixed soils was collected and mixed using a fluorescent X-ray analyzer (device name: SEA1100, manufactured by SII Nano Technology). The intensity (cps) of organic germanium, NaBr or arsenic in the soil was measured. The coefficient of variation of each cps value at each location was calculated.
60 g of water was poured from the top of the cylindrical container of each test specimen immediately after filling, and left for 1 week. Thereafter, 6 g of each of the 5 mixed soils was collected and the intensity of organic germanium, NaBr or arsenic in the mixed soil was measured using a fluorescent X-ray analyzer (device name: SEA1100, manufactured by SII Nanotechnology). (Cps) was measured. The coefficient of variation of each cps value at each location was calculated.
Table 2 shows the measurement results and the calculation results.

Figure 2013231697
Figure 2013231697

表2の結果から、特にゲルマニウムをマーカー元素として使用した場合には、通水後1週間経過してから、混合精度を測定した場合でも、精度よく混合状態を測定しうることが明らかである。すなわち、雨などにさらされる屋外等の環境下において、土壌と土壌改良材とを混合してからある程度日数が経過した混合土壌でも、マーカー元素が土壌改良材中に留まっており、精度よく混合土壌の混合精度を判定することができることが明らかである。   From the results shown in Table 2, it is clear that, especially when germanium is used as a marker element, the mixing state can be measured with high accuracy even when the mixing accuracy is measured after one week has passed after passing water. In other words, the marker element remains in the soil amendment material even in mixed soil where some days have passed since the soil and the soil amendment material were mixed in an environment such as outdoors exposed to rain, etc. It is clear that the mixing accuracy can be determined.

Claims (5)

土壌にマーカー元素を含む土壌改良材を混合して混合土壌を得る混合工程と、
前記混合土壌の複数箇所に放射線を照射して、前記マーカー元素の各濃度を測定する濃度測定工程と、
前記マーカー元素の各濃度のばらつきから、前記混合土壌の混合精度を判定する判定工程とを実施する混合土壌の混合精度判定方法。
A mixing step of obtaining a mixed soil by mixing a soil improvement material containing a marker element into the soil;
A concentration measuring step of irradiating a plurality of locations of the mixed soil to measure each concentration of the marker element,
A method for determining the mixing accuracy of the mixed soil, wherein a determination step of determining the mixing accuracy of the mixed soil is performed based on variations in the concentrations of the marker elements.
前記マーカー元素が、ゲルマニウム、銀、パラジウム、ガリウムからなる群より選択される少なくとも1以上の金属である請求項1に記載の混合土壌の混合精度判定方法。   2. The mixed soil mixing accuracy determination method according to claim 1, wherein the marker element is at least one metal selected from the group consisting of germanium, silver, palladium, and gallium. 前記濃度測定工程を、蛍光X線分析装置を用いて実施する請求項1または2に記載の混合土壌の混合精度判定方法。   The method for determining mixing accuracy of mixed soil according to claim 1 or 2, wherein the concentration measuring step is performed using a fluorescent X-ray analyzer. 前記土壌改良材に固化材が含まれている請求項1乃至3のいずれか一項に記載の混合土壌の混合精度判定方法。   The method for determining the mixing accuracy of mixed soil according to any one of claims 1 to 3, wherein the soil improving material includes a solidifying material. 前記土壌改良材が、重金属溶出低減材である請求項1乃至4のいずれか一項に記載の混合土壌の混合精度判定方法。   The mixed soil judgment method according to any one of claims 1 to 4, wherein the soil improvement material is a heavy metal elution reducing material.
JP2012104782A 2012-05-01 2012-05-01 Mixing precision determination method for mixed soil Pending JP2013231697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104782A JP2013231697A (en) 2012-05-01 2012-05-01 Mixing precision determination method for mixed soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104782A JP2013231697A (en) 2012-05-01 2012-05-01 Mixing precision determination method for mixed soil

Publications (1)

Publication Number Publication Date
JP2013231697A true JP2013231697A (en) 2013-11-14

Family

ID=49678254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104782A Pending JP2013231697A (en) 2012-05-01 2012-05-01 Mixing precision determination method for mixed soil

Country Status (1)

Country Link
JP (1) JP2013231697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056021A (en) * 2019-09-27 2021-04-08 太平洋セメント株式会社 Quality evaluation method for improved ground

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056021A (en) * 2019-09-27 2021-04-08 太平洋セメント株式会社 Quality evaluation method for improved ground
JP7401238B2 (en) 2019-09-27 2023-12-19 太平洋セメント株式会社 Quality evaluation method of improved ground

Similar Documents

Publication Publication Date Title
Minkina et al. Method of determining loosely bound compounds of heavy metals in the soil
Szulczewski et al. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils
Ho et al. Sequential extraction of metal contaminated soils with radiochemical assessment of readsorption effects
Kurudirek et al. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions
Menezes et al. K 0-instrumental neutron activation analysis establishment at CDTN, Brazil: a successful story
Baranowski et al. Speciation analysis of elements in soil samples by XRF
Mihajlovic et al. Concentrations and geochemical fractions of rare earth elements in two different marsh soil profiles at the North Sea, Germany
De La Calle et al. Ultrasound-assisted single extraction tests for rapid assessment of metal extractability from soils by total reflection X-ray fluorescence
Rodrigues dos Santos et al. Evaluation of metal release from battery and electronic components in soil using SR‐TXRF and EDXRF
Sowder et al. The impact of mineralogy in the U (VI)—Ca—PO 4 system on the environmental availability of uranium
Solismaa et al. Substitution of cement with granulated blast furnace slag in cemented paste backfill: Evaluation of technical and chemical properties
Marguí et al. Sample preparation for X-ray fluorescence analysis
Asmussen et al. Getter Incorporation into Cast Stone and Solid State Characterizations
Komárek et al. Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils
CN110369488A (en) A kind of preparation and application for the medicament that the stabilisation for mercury contaminated soil is repaired
Zhdanov et al. Determination of forms of element occurrence in samples of vanadium slag and slime
JP2012255689A (en) Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material
JP2013231697A (en) Mixing precision determination method for mixed soil
JP2017116467A (en) Element analysis method of aggregate
Bingöl et al. Determination of trace elements in fly ash samples by FAAS after applying different digestion procedure
Ene et al. PIXE analysis of multielemental samples
JP2005077350A (en) Chloride ion concentration measuring method in concrete structure
Savichev et al. Improvement of the X-ray radiometric method of lanthanides’ diagnostics in soils
Liu et al. The influence of aging on the comparative terrestrial ecotoxicity potential of copper and zinc in soils
Pantelica et al. Determination of 54 elements in lichen transplants: comparison of INAA, ICPMS, and EDXRF