JP2012255689A - Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material - Google Patents

Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material Download PDF

Info

Publication number
JP2012255689A
JP2012255689A JP2011128168A JP2011128168A JP2012255689A JP 2012255689 A JP2012255689 A JP 2012255689A JP 2011128168 A JP2011128168 A JP 2011128168A JP 2011128168 A JP2011128168 A JP 2011128168A JP 2012255689 A JP2012255689 A JP 2012255689A
Authority
JP
Japan
Prior art keywords
inorganic oxide
lead content
oxide material
lead
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011128168A
Other languages
Japanese (ja)
Inventor
Michihiro Aimoto
道宏 相本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011128168A priority Critical patent/JP2012255689A/en
Publication of JP2012255689A publication Critical patent/JP2012255689A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining the amount of lead contained in a trace amount in an inorganic oxide-based material in an easy and quick manner.SOLUTION: A measuring method of lead content in an inorganic oxide-based material includes the steps of: measuring X-ray intensity of a Pb-Lβ-ray emitted from an inorganic oxide-based material with a fluorescent X-ray analysis method; and determining the amount of lead contained in the inorganic oxide-based material using the relationship between X-ray intensity and lead content of a Pb-Lβ-ray emitted from a standard sample that contains known amount of lead, which has been determined in advance.

Description

本発明は、溶融スラグなどの無機酸化物系材料中の鉛含有量を、蛍光X線分析法を用いて簡易かつ迅速に測定する方法に関する。さらに、蛍光X線分析法を用いて無機酸化物系材料を分別する方法、及び無機酸化物系材料を製造する方法に関する。   The present invention relates to a method for easily and rapidly measuring the lead content in an inorganic oxide material such as molten slag using a fluorescent X-ray analysis method. Furthermore, it is related with the method of fractionating an inorganic oxide type material using a fluorescent X ray analysis method, and the method of manufacturing an inorganic oxide type material.

金属精錬プロセス、例えば製鉄プロセスにおいて、鉛は、廃バッテリや廃回路基板を含む原料としてのスクラップから、あるいは石炭などの燃料や、石灰石や添加合金などの副原料中に含有される微量の不純物として、プロセス内に不可避的に混入する。   In metal refining processes, such as ironmaking processes, lead is a trace amount of impurities contained in scraps as raw materials including waste batteries and waste circuit boards, or in fuels such as coal and auxiliary raw materials such as limestone and additive alloys. Inevitably mixed into the process.

製鉄プロセスの場合、一般に、鉛は鉄鋼の靱性や延性などの機械的特性を悪化させるので、特定の鋼種で快削性などの特性を得るために鉛が添加される例外を除き、精錬時に生じるスラグ及びダストなどの副生物として生成する無機酸化物系材料中に分配・濃化させることにより、鉄鋼中に残存しないようにする。   In the steelmaking process, lead generally deteriorates mechanical properties such as toughness and ductility of steel, so it occurs during refining, with the exception that lead is added to obtain properties such as free-cutting properties in certain steel types. By distributing and concentrating in inorganic oxide materials generated as by-products such as slag and dust, it does not remain in steel.

例えば製鉄プロセスの場合、電気炉や転炉で鋼を溶製する製鋼工程で、鉛はスラグ、ダストの両方に分配される。スラグには、鉛含有量として0〜数100μg/g程度が不可避的に含まれる。   For example, in the case of an iron making process, lead is distributed to both slag and dust in a steel making process in which steel is melted in an electric furnace or converter. The slag inevitably contains about 0 to several hundred μg / g as the lead content.

鉛には、人体に対する有害性があることが知られている(非特許文献1〜3)。鉛を吸入又は飲み込んだ場合には、不快感・吐き気・頭痛・貧血を起こすことがある。また、鉛は、消化管・血液・中枢神経・腎臓に影響を与え、仙痛・ショック・貧血・腎障害・脳症を起こすことがある。さらに、人に対して発ガン性を示す可能性がある。   It is known that lead is harmful to the human body (Non-Patent Documents 1 to 3). If lead is inhaled or swallowed, it may cause discomfort, nausea, headache, and anemia. Lead also affects the gastrointestinal tract, blood, central nervous system, and kidneys, and may cause colic, shock, anemia, kidney damage, and encephalopathy. In addition, it may be carcinogenic to humans.

鉛の人体への曝露に対する許容濃度は、ACGIH(TLV)では0.05mg/m以下(非特許文献4)、日本産業衛生学会勧告では最大許容濃度として0.1mg/m以下(非特許文献5)とされている。 The allowable concentration for lead exposure to the human body is 0.05 mg / m 3 or less for ACGIH (TLV) (Non-Patent Document 4), and 0.1 mg / m 3 or less (Non-patent) Reference 5).

無機酸化物系材料が水に触れた場合、その一部が水中に溶出する。高濃度に鉛を含有した無機酸化物系材料を、例えば道路用路盤材や土木工事用、セメント原料として屋外に設置したり、管理されていない処分場に埋立て処分したりすると、無機酸化物系材料から鉛が多量に溶出する可能性があり、結果として地下水が汚染されて飲料水に混入し、人体に悪影響を及ぼすおそれがある。   When the inorganic oxide material comes into contact with water, a part of the material is eluted in water. When inorganic oxide-based materials containing lead in high concentrations are installed outdoors, for example, as roadbed materials and civil engineering works, as cement raw materials, or when landfilled in unmanaged disposal sites, inorganic oxide materials There is a possibility that a large amount of lead is eluted from the system material, and as a result, the groundwater is contaminated and mixed with drinking water, which may adversely affect the human body.

すなわち、無機酸化物系材料の環境負荷を考慮すると、製造や加工時に発生する可能性のある鉛粉塵から作業者の安全を確保できるような鉛含有量の無機酸化物系材料を選定する必要がある。また、無機酸化物系材料の利用時において、例えば、道路用路盤材などとして使用する際には、鉛の周辺水への溶出が起こらないような品種の無機酸化物系材料が求められる。   In other words, considering the environmental impact of inorganic oxide materials, it is necessary to select inorganic oxide materials with a lead content that can ensure the safety of workers from lead dust that may occur during manufacturing and processing. is there. Further, when using an inorganic oxide material, for example, when used as a road base material, a variety of inorganic oxide material is required so that lead does not elute into surrounding water.

高濃度に鉛を含有する無機酸化物系材料は、鉛を含有する粉塵や汚染水が漏出しないように、管理型処分場で処分する必要がある。環境汚染を確実に防止するためには、無機酸化物系材料から何らかの方法で鉛を分離回収することが好ましい。しかし、鉛の分離回収には時間と労力、分離回収コストがかかるので、工業的に現実的でない。   It is necessary to dispose of inorganic oxide materials containing lead at a high concentration in a controlled disposal site so that dust and contaminated water containing lead do not leak. In order to reliably prevent environmental contamination, it is preferable to separate and recover lead from the inorganic oxide material by some method. However, the separation and recovery of lead takes time, labor, and separation / recovery costs, which is not industrially realistic.

鉄鋼などの金属精錬工程において、スクラップや原燃料からスラグやダスト中への鉛の混入そのものを防止することは極めて困難である。そこで、スラグやダストから鉛の溶出を抑制する方法、又は、スラグやダストを改質して鉛を溶出しなくする方法が、種々提案されている。   In metal refining processes such as steel, it is extremely difficult to prevent lead from being mixed into scrap and raw fuel from slag and dust. Therefore, various methods have been proposed for suppressing the elution of lead from slag and dust, or for modifying the slag and dust so as not to elute lead.

例えば、溶融鉛塩を含んだスラグを、水又は酸水溶液で洗浄し、スラグから溶融鉛塩をあらかじめ溶出させてスラグそのものを無害化する方法(特許文献1、2)や、アルカリ土類金属とアルカリ金属の含有モル量の合計がスラグ単位重量あたり所定の量以下となるように溶融スラグの組成を調整することにより、溶融スラグの化学的安定性を高めて有害重金属が該スラグから溶出しにくくする技術(特許文献3)などが提案されている。   For example, slag containing molten lead salt is washed with water or an acid aqueous solution, and the molten lead salt is eluted from the slag in advance to render the slag itself harmless (Patent Documents 1 and 2). By adjusting the composition of the molten slag so that the total molar amount of alkali metal is less than the predetermined amount per unit weight of the slag, the chemical stability of the molten slag is increased and harmful heavy metals are less likely to elute from the slag. The technique (patent document 3) etc. which do is proposed.

また、スクラップ原料になる半導体材料に、鉛そのものを用いないような技術開発も進められている。例えばはんだの場合、従来の錫・鉛共晶はんだから、鉛フリーはんだへの切替えが進められている。スクラップに含まれる廃回路基板が鉛フリーはんだを使用したものであれば、結果として鉛を含まないスラグを回収することができるので、回収されたスラグをセメント原料等として有効に活用することができる(特許文献4)。   In addition, technological development is being promoted so that lead is not used as a semiconductor material for scrap. For example, in the case of solder, switching from conventional tin-lead eutectic solder to lead-free solder is being promoted. If the waste circuit board contained in the scrap uses lead-free solder, it is possible to collect slag that does not contain lead as a result, so that the collected slag can be effectively used as a raw material for cement, etc. (Patent Document 4).

しかし、市中には未だに多量の鉛を含む回路基板が残存している。廃回路基板を含んで不均質な組成となっているスクラップ原料の品質管理は容易ではないので、鉛の混入は不可避である。また、副原料に鉛が不純物として含まれる場合にも、副原料の精錬に現実的でないコストがかかるなどの工業的な問題がある。よって、スラグがプロセスから排出される場合には、排出の都度、鉛の含有量分析を行い、健康に影響のない鉛含有量であることを確認する必要がある。   However, circuit boards containing a large amount of lead still remain in the city. Since it is not easy to control the quality of scrap raw materials that include a waste circuit board and have an inhomogeneous composition, it is inevitable to mix lead. In addition, even when lead is contained as an impurity in the auxiliary material, there are industrial problems such as unrealistic costs for refining the auxiliary material. Therefore, when slag is discharged from the process, it is necessary to conduct a lead content analysis each time it is discharged to confirm that the lead content does not affect health.

鉛の溶出量は、無機酸化物系材料中の鉛含有量にある程度の相関があり、鉛含有量が低いものほど鉛が溶出しにくい傾向にある。したがって、利用時には低鉛含有量の無機酸化物系材料が好適に用いられる。   The lead elution amount has a certain degree of correlation with the lead content in the inorganic oxide-based material, and the lower the lead content, the more the lead tends to be eluted. Therefore, an inorganic oxide material having a low lead content is suitably used when used.

高鉛含有量の無機酸化物系材料は、外部への環境負荷を防止するため、管理が必要となる。すなわち、無機酸化物系材料を効果的に利用するためには、それぞれの用途に適した性質を有する無機酸化物系材料製品を選別することで、無機酸化物系材料の差別化を図っていくことが重要である。   Management of inorganic oxide materials with high lead content is necessary to prevent external environmental impacts. In other words, in order to effectively use inorganic oxide materials, we will differentiate inorganic oxide materials by selecting inorganic oxide material products having properties suitable for each application. This is very important.

無機酸化物系材料中の鉛含有量の定量が実施できれば、無機酸化物系材料の用途を厳密に規定した、安全、安心なリサイクルが可能となる。無機酸化物系材料中の鉛を化学的に定量する場合には、一般に化学分析法が適用される。すなわち、鉛含有量定量の前処理として、フッ化水素酸やアルカリ融解法などを用いた試料分解法により無機酸化物系材料を溶液化した後、吸光光度法や、誘導結合プラズマ発光分光分析法、原子吸光光度法などの方法で分析する方法である。   If the lead content in the inorganic oxide material can be quantified, safe and secure recycling is possible, which strictly defines the use of the inorganic oxide material. When lead in an inorganic oxide material is chemically quantified, a chemical analysis method is generally applied. In other words, as a pretreatment for lead content determination, after dissolving an inorganic oxide material by sample decomposition method using hydrofluoric acid or alkali melting method, absorptiometry or inductively coupled plasma emission spectroscopy In this method, analysis is performed by a method such as atomic absorption spectrophotometry.

しかしながら、化学分析法は、一度の分析に数時間から数日かかるので迅速さに欠け、また、多検体を処理することが困難な上、薬品を扱うことによる薬災の可能性や、高温の炉を用いることによる火傷等の可能性も伴う。したがって、迅速さ、簡便さが要求される工場でのオンサイトの日常管理分析に適しているとは言い難い。   However, chemical analysis methods require several hours to several days for a single analysis, so they are not quick, and it is difficult to process many samples. There is also the possibility of burns from using a furnace. Therefore, it is difficult to say that it is suitable for on-site daily management analysis in factories where quickness and simplicity are required.

無機酸化物系材料の鉛の含有量、溶出量を調査し、人及び環境への安全性を確認するための国内公定法がある。重金属含有量試験(土壌汚染対策法に基づく告示)として環境省告示第19号試験方法(非特許文献6)が定められている。   There is a national official method to investigate the lead content and elution amount of inorganic oxide materials and confirm safety to humans and the environment. As a heavy metal content test (notification based on the Soil Contamination Countermeasures Law), the Ministry of the Environment Notification No. 19 Test Method (Non-Patent Document 6) is defined.

この方法は、土壌汚染対策法に規定された含有量基準の試験方法として定められたものであり、試験方法は以下のとおりである。   This method is defined as a content standard test method stipulated in the Soil Contamination Countermeasures Law, and the test method is as follows.

利用有姿の状態で採取した試料を粗砕し、次いで、溶媒に対する試料の質量体積比が3%となるように1mol/L塩酸などの溶媒を加えて、毎分約200回で2時間平行振とうして検液を調整する。この検液中の化学物質の濃度を測定し、試料中の含有量を求める。   The sample collected in the state of use is roughly crushed, and then a solvent such as 1 mol / L hydrochloric acid is added so that the mass volume ratio of the sample to the solvent is 3%, and parallel for 2 hours at about 200 times per minute. Shake to adjust the test solution. The concentration of the chemical substance in this test solution is measured to determine the content in the sample.

環境庁告示第13号試験(非特許文献7)は、沈降堆積型海洋投入や陸上の埋め立てによって処分される廃棄物から、有害物質を含む海水が10倍量排水として排出されると仮定し決定された。試験方法は、以下のとおりである。   The Environmental Agency Notification No. 13 test (Non-Patent Document 7) is determined on the assumption that seawater containing hazardous substances will be discharged as 10-fold wastewater from waste disposed of by sedimentation-type ocean input or land reclamation. It was done. The test method is as follows.

試料が紛状の場合は有姿のまま、成形体試料の場合は粒径を0.5〜5mmに調整する。溶媒は、塩酸でpH5.8〜6.3に調整した常温の蒸留水を用いる。液固比が10となるように試料と溶媒を混合し、毎分約200回で6時間平行振とうする。振とう後、孔径1μmのガラス繊維濾紙を用いて濾過し、その濾液を検液とし、鉛を含む有害成分の溶出量を測定する。   If the sample is in powder form, the particle size is adjusted to be 0.5 to 5 mm. As the solvent, distilled water at room temperature adjusted to pH 5.8 to 6.3 with hydrochloric acid is used. The sample and the solvent are mixed so that the liquid-solid ratio becomes 10, and the sample is shaken in parallel at about 200 times per minute for 6 hours. After shaking, the mixture is filtered using glass fiber filter paper having a pore size of 1 μm, and the filtrate is used as a test solution to measure the amount of elution of harmful components including lead.

環境庁告示第46号試験(非特許文献8)は、土壌中の汚染物質が溶出して汚染された地下水を人間が摂取することによるリスクを防止するため定められた土壌環境基準である。試験方法は、以下のとおりである。   The Environmental Agency Notification No. 46 test (Non-Patent Document 8) is a soil environmental standard established to prevent risks caused by human ingestion of contaminated groundwater by elution of pollutants in the soil. The test method is as follows.

篩で粒径2mm以下に調整した試料を用い、環境庁告示第13号試験と同じ溶媒を用いて、同じ液固比で混合し、同じ条件で6時間平行振とうする。振とう後10〜30分静置した後、毎分約3000回転で20分間遠心分離した後の上澄み液を孔径0.45μmのメンブランフィルターで濾過し、その濾液を検液とし、鉛を含む有害成分の溶出量を測定する。   Using a sample adjusted to a particle size of 2 mm or less with a sieve, using the same solvent as used in the Environmental Agency Notification No. 13 test, mix at the same liquid-solid ratio and shake for 6 hours under the same conditions. After shaking, leave for 10 to 30 minutes, then centrifuge for 20 minutes at approximately 3000 rpm, filter the supernatant with a membrane filter with a pore size of 0.45 μm, and use the filtrate as a test solution. Measure the elution amount of the components.

タンクリーチング試験(非特許文献9)は、塊状にサンプリングした試料を環境庁告示第13号試験と同じ溶媒、液固比、同じ条件で溶媒中に静置し、プロペラ式撹拌機で6時間ほど溶媒を撹拌し、溶媒中に溶出した有害成分の溶出量を測定する方法である。   In the tank leaching test (Non-patent Document 9), a sample sampled in a lump is left in the solvent under the same solvent, liquid-solid ratio, and the same conditions as the Environment Agency Notification No. 13 test, and the propeller type agitator is used for about 6 hours In this method, the solvent is stirred, and the amount of harmful components eluted in the solvent is measured.

いずれの方法も、溶出操作など、数時間の前処理操作が必要であり、また、検液中に溶出した成分の分析は煩雑な化学分析法による。したがって、化学分析の技量を有する人手を複数必要とするので、無機酸化物系材料を多量に処理する必要のある工場でのオンサイトの日常管理分析には不適な方法である。   Both methods require several hours of pretreatment operations such as elution, and analysis of components eluted in the test solution is based on complicated chemical analysis methods. Therefore, since it requires a plurality of human resources having chemical analysis skills, it is an unsuitable method for on-site daily management analysis in factories that need to process a large amount of inorganic oxide materials.

特開平9−243047号公報Japanese Patent Application Laid-Open No. 9-243047 特開2008−68156号公報JP 2008-68156 A 特開平11−76993号公報Japanese Patent Laid-Open No. 11-76993 特開2002−310952号公報JP 2002-310952 A

産業中毒便覧(増補版), 後藤稠, 池田正之, 原一郎, 医歯薬出版, 1981Industrial Poisoning Handbook (enlarged edition), Goto So, Masayuki Ikeda, Ichiro Hara, Ishiyaku Publishing, 1981 化学物質毒性データ総覧, 日本メディカルセンター, 1976Chemical substance data overview, Japan Medical Center, 1976 化学物質の危険有害便覧, 中央労働災害防止協会編, 1991Hazardous Handbook of Chemical Substances, Central Industrial Accident Prevention Association, 1991 ACGIH化学物質と物理因子のTLV 化学物質のBEI, 沼野雄志訳, 作業環境測定協会, 1994ACGIH Chemical Substances and Physical Factors TLV Chemical Substances BEI, Translated by Yuji Numano, Work Environment Measurement Association, 1994 日本産業衛生学会許容濃度の勧告, 産業衛生学雑誌, 44, 4, 2002Japan Society for Occupational Health Recommendation of acceptable concentration, Journal of Occupational Health, 44, 4, 2002 平成15年3月6日環境省告示第19号 土壌含有量調査に係る測定方法を定める件March 6, 2003 Ministry of the Environment Notification No. 19 Establishing Measurement Method for Soil Content Survey 昭和48年2月17日環境庁告示13号 産業廃棄物に含まれる金属等の検定方法February 17, 1973, Environment Agency Notification No.13: Inspection method for metals contained in industrial waste 平成3年8月23日環境庁告示第46号 土壌の汚染に係る環境基準についてAugust 23, 1991 Environmental Agency Notification No. 46 Environmental Standards Concerning Soil Contamination JIS K 0058-1 2005 スラグ類の化学物質試験方法第1部:溶出量試験方法JIS K 0058-1 2005 Test methods for chemical substances in slag Part 1: Elution test method

本発明では、蛍光X線を用いて鉛含有量を測定し、正確な測定結果を得られる、従来の化学分析法より迅速かつ簡易な測定方法の確立を課題とする。   In the present invention, it is an object to establish a measurement method that is faster and simpler than conventional chemical analysis methods that can measure the lead content using fluorescent X-rays and obtain an accurate measurement result.

本発明者らは、前記の課題を解決するために鋭意検討し、蛍光X線分析装置により、短時間かつ高精度で無機酸化物系材料中の微量の鉛含有量を定量する発明に至った。   The present inventors diligently studied in order to solve the above-mentioned problems, and led to an invention for quantifying a trace amount of lead in an inorganic oxide material in a short time and with high accuracy using a fluorescent X-ray analyzer. .

すなわち、本発明者らは、蛍光X線分析法で測定した無機酸化物系材料からのPb−Lβ線のX線強度は、無機酸化物系材料中の鉛含有量と相関があり、蛍光X線分析を用いることで、従来の化学分析法より短時間で精度良く、鉛含有量を定量できることを見出した。   That is, the present inventors have found that the X-ray intensity of the Pb-Lβ ray from the inorganic oxide material measured by the fluorescent X-ray analysis has a correlation with the lead content in the inorganic oxide material, and the fluorescence X It has been found that by using line analysis, the lead content can be quantified in a shorter time and with higher accuracy than conventional chemical analysis methods.

本発明は、上記の知見に基づきなされたものであって、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)無機酸化物系材料からのPb−Lβ線のX線強度を蛍光X線分析法により測定し、あらかじめ作成した鉛含有量が既知である試料からのPb−Lβ線のX線強度と鉛含有量との関係を示す検量線を用いて、無機酸化物系材料中の鉛含有量を定量することを特徴とする無機酸化物系材料中鉛含有量測定方法。   (1) The X-ray intensity of the Pb-Lβ ray from the inorganic oxide-based material is measured by fluorescent X-ray analysis, and the X-ray intensity of the Pb-Lβ ray from the sample whose lead content prepared in advance is known. A method for measuring lead content in an inorganic oxide material, wherein the lead content in the inorganic oxide material is quantified using a calibration curve showing a relationship with the lead content.

(2)前記無機酸化物系材料を、微粉砕し、粉体ブリケット化することを特徴とする前記(1)の無機酸化物系材料中鉛含有量測定方法。   (2) The method for measuring lead content in an inorganic oxide material according to (1), wherein the inorganic oxide material is finely pulverized to form a powder briquette.

(3)前記無機酸化物系材料が、鉄鋼スラグであることを特徴とする前記(1)又は(2)の無機酸化物系材料中鉛含有量測定方法。   (3) The method for measuring lead content in an inorganic oxide material according to (1) or (2), wherein the inorganic oxide material is steel slag.

(4)前記無機酸化物系材料が前記検量線の作成に用いた鉛含有量が既知である試料とマトリクス組成が異なる無機酸化物系材料であって、前記蛍光X線分析法において、バックグラウンド補正と共存元素補正を組み合わせることにより、鉛を定量することを特徴とする前記(1)〜(3)の無機酸化物系材料中鉛含有量測定方法。   (4) The inorganic oxide-based material is an inorganic oxide-based material having a matrix composition different from that of the sample having a known lead content used for preparing the calibration curve. The method for measuring lead content in inorganic oxide materials according to the above (1) to (3), wherein lead is quantified by combining correction and coexisting element correction.

(5)前記(1)〜(4)の無機酸化物系材料中鉛含有量測定方法により定量した鉛含有量に応じて、無機酸化物系材料を分別することを特徴とする無機酸化物系材料分別方法。   (5) An inorganic oxide material characterized in that the inorganic oxide material is fractionated according to the lead content determined by the lead content measurement method in the inorganic oxide material (1) to (4). Material separation method.

(6)前記(1)〜(4)のいずれかの無機酸化物系材料中鉛含有量測定方法により定量した鉛含有量が150μg/g以下となるように分別された無機酸化物系材料を用いて、道路舗装用路盤材料、土木材料、建築材料、セメント原料、肥料、及び耐火物類のいずれか1種以上を製造することを特徴とする無機酸化物系材料製造方法。   (6) An inorganic oxide material separated so that the lead content determined by the lead content measurement method in the inorganic oxide material of any one of (1) to (4) is 150 μg / g or less. A method for producing an inorganic oxide material, comprising: using one or more of roadbed material for road pavement, civil engineering material, building material, cement raw material, fertilizer, and refractory.

本発明では、蛍光X線分析装置を用いて鉛含有量を測定するので、無機酸化物系材料を湿式化学分析処理することなく測定が可能であり、測定を迅速に行うことができる。したがって、本発明を工場での生産ラインに適用することが可能となる。   In the present invention, since the lead content is measured using a fluorescent X-ray analyzer, the inorganic oxide material can be measured without wet chemical analysis treatment, and the measurement can be performed quickly. Therefore, the present invention can be applied to a production line in a factory.

本発明の無機酸化物系材料中鉛含有量測定方法、及び無機酸化物系材料分別方法の処理の流れの一例を示す図である。It is a figure which shows an example of the flow of a process of the lead content measuring method in an inorganic oxide type material of this invention, and an inorganic oxide type material separation method. 鉛の添加方法別の、無機酸化物系材料中の鉛含有量とPb−LβX線強度との関係を示す検量線を示す図である。It is a figure which shows the analytical curve which shows the relationship between lead content in an inorganic oxide type material and Pb-L (beta) X-ray intensity according to the addition method of lead. カルシウム、鉄、ケイ素の含有量が、見かけの鉛含有量に与える影響を示す図である。It is a figure which shows the influence which content of calcium, iron, and silicon has on apparent lead content. 化学分析法により定量した鉛含有量と、Pb−Lβ線強度との関係を示す図である。It is a figure which shows the relationship between lead content quantified by the chemical analysis method, and Pb-L (beta) ray intensity. 化学分析法により定量した鉛含有量と、本発明法の蛍光X線分析装置により定量した鉛含有量との関係を示す図である。It is a figure which shows the relationship between the lead content quantified by the chemical analysis method and the lead content quantified by the fluorescent X-ray analyzer of the method of the present invention.

本実施形態は、蛍光X線分析法を用いることによって、無機酸化物系材料中の鉛含有量を簡易かつ迅速に測定する方法に関する。以下、本発明について詳細に説明する。   The present embodiment relates to a method for easily and rapidly measuring the lead content in an inorganic oxide material by using a fluorescent X-ray analysis method. Hereinafter, the present invention will be described in detail.

蛍光X線分析法は、試料にX線管球から発する1次X線を照射し、元素から発生する元素ごとに固有な特性X線のエネルギーと強度を測定することにより、元素の種類や含有量を測定する方法である。この方法を用いれば、簡便に元素の分析が可能であり、試料を非破壊で分析できるので試料の準備が容易であり、しかも迅速に分析することができる。   The X-ray fluorescence analysis method irradiates a sample with primary X-rays emitted from an X-ray tube and measures the energy and intensity of characteristic X-rays unique to each element generated from the element. It is a method of measuring quantity. If this method is used, elemental analysis can be easily performed, and the sample can be analyzed non-destructively. Therefore, the sample is easily prepared and can be analyzed quickly.

本発明に用いる蛍光X線装置は、特に限定されない。一般に、無機酸化物系材料中の鉛は低含有量であるので、分析感度の高い波長分散型の蛍光X線装置が好ましい。   The fluorescent X-ray apparatus used in the present invention is not particularly limited. In general, since lead in inorganic oxide materials has a low content, a wavelength dispersion type fluorescent X-ray apparatus with high analytical sensitivity is preferable.

図1に、本実施形態における処理の流れの一例を表した図を示す。まず、無機酸化物系材料試料を採取する。例えば鉄鋼スラグの様に溶融状態の場合は、スラグサンプラーなどの採取器具を用いて採取する。固体の試料の場合、材料置き場から代表性良く採取する。固体試料の場合は、風乾や105℃に保つことにより、恒量になるまで保持し乾燥させる。   FIG. 1 is a diagram showing an example of a processing flow in the present embodiment. First, an inorganic oxide material sample is collected. For example, when it is in a molten state, such as steel slag, it is collected using a sampling device such as a slag sampler. In the case of a solid sample, collect from the material storage area with good representativeness. In the case of a solid sample, it is kept air-dried or kept at 105 ° C. until it reaches a constant weight and dried.

次に、試料を微粉砕し粉体ブリケット化する。本発明における分析方法である蛍光X線分析法は、試料表面の一定面積に、管球から発生した連続X線を照射し、発生した特性X線を検出し元素種とその含有量を決定する方法であるので、X線照射面の凹凸や元素の偏析などの表面性状が重要である。   Next, the sample is pulverized into powder briquettes. The fluorescent X-ray analysis method, which is an analysis method in the present invention, irradiates a constant area of a sample surface with continuous X-rays generated from a tube, detects the generated characteristic X-rays, and determines element types and their contents. Since it is a method, surface properties such as irregularities on the X-ray irradiated surface and segregation of elements are important.

そこで、試料の偏析をなくし、また試料の表面の物理的性状を同様にするため、試料を粉体ブリケット化するのが好ましい。試料を粉体ブリケット化することで、不均一さを小さくし、測定のばらつきの少ない高精度の定量ができる。   Therefore, in order to eliminate segregation of the sample and to make the physical properties of the surface of the sample similar, it is preferable to form the sample into a powder briquette. By making the sample into a powder briquette, non-uniformity can be reduced and high-precision quantification with little variation in measurement can be performed.

粉体ブリケット法では、まず無機酸化物系材料試料をジョークラッシャー、ハンマー、振動ミル、ボールミル、ジェットミルなどの粉砕機で微粉砕する。無機酸化物系材料試料が純鉄を含む可能性がある場合、粉砕時に微粉砕しにくくなるので、あらかじめ磁石などを用いて除鉄しておくのが好ましい。   In the powder briquette method, first, an inorganic oxide material sample is finely pulverized by a pulverizer such as a jaw crusher, a hammer, a vibration mill, a ball mill, or a jet mill. When the inorganic oxide material sample may contain pure iron, it is difficult to finely pulverize during pulverization. Therefore, it is preferable to remove iron beforehand using a magnet or the like.

微粉砕した無機酸化系物材料試料をリング状、又はキャップ状の試料器に装入した後、粉体プレス機などを用いて一定圧力で加圧成形することにより、蛍光X線分析に供する供試体を作製する。試料が微粉砕される過程で偏析なく混合し、また、どの試料表面も粉体状の試料が圧密された状態となるので、物理的性状も同様となる。   After the finely pulverized inorganic oxide material sample is loaded into a ring-shaped or cap-shaped sample device, it is pressure-molded at a constant pressure using a powder press or the like, and used for fluorescent X-ray analysis. Make a specimen. The sample is mixed without being segregated in the process of being finely pulverized, and since the powdery sample is consolidated on any sample surface, the physical properties are the same.

また、粉砕してプレスするのみの簡便な操作なので、自動化も容易である。粉砕の粒度は75μm以下で細かいほど好ましい。また、プレス圧力は、試料器の大きさ(X線の照射面積)にもよるが、10ton/cm〜30ton/cm程度が適当である。 In addition, since it is a simple operation that only involves crushing and pressing, automation is also easy. The finer the particle size of the pulverization, the smaller the particle size is 75 μm or less. Also, pressing pressure, depending on the sample vessel size (area irradiated with X-rays), 10ton / cm 2 ~30ton / cm 2 about are suitable.

粉体ブリケット法以外の方法で、蛍光X線分析に供することができ、試料代表性の良い方法としては、例えば、微粉砕した無機酸化物系材料試料を白金るつぼなどを用いてアルカリ溶融剤とともに融解しガラス化するガラスビード法がある。しかし、ガラスビード法は、試料の調製が煩雑で時間と手間がかかり、高温溶融時に一部の鉛が無機酸化物系材料試料から揮発逸散する可能性があり、また、鉛の一部がるつぼとして用いる白金と合金化されて無機酸化物系材料試料から失われる可能性があるので、好ましくない。   It can be used for fluorescent X-ray analysis by methods other than the powder briquette method. As a method having good sample representativeness, for example, a finely pulverized inorganic oxide material sample is used together with an alkali melting agent using a platinum crucible or the like. There is a glass bead method that melts and vitrifies. However, in the glass bead method, the preparation of the sample is complicated and time consuming and laborious, and some lead may volatilize and escape from the inorganic oxide material sample when melted at a high temperature. This is not preferable because it may be alloyed with platinum used as a crucible and lost from the inorganic oxide material sample.

次に、粉体ブリケット化した無機酸化物系材料試料に1次X線を照射し、蛍光X線として得られるPb−Lβ線の強度を測定する。そして、測定結果を、あらかじめ検量線試料を測定することにより求められたPb−Lβ線の強度と鉛含有量との関係を表す検量線式に代入し、鉛含有量を求める。   Next, the powdered briquetted inorganic oxide material sample is irradiated with primary X-rays, and the intensity of Pb-Lβ rays obtained as fluorescent X-rays is measured. Then, the measurement result is substituted into a calibration curve expression representing the relationship between the strength of the Pb-Lβ line and the lead content obtained by measuring a calibration curve sample in advance, and the lead content is obtained.

検量線は、鉛含有量が既知である無機酸化物系材料試料を用いて、蛍光X線分析装置でPb−Lβ線強度を測定することにより、横軸に鉛の含有量、縦軸にPb−Lβ線の強度をプロットし、最小二乗法などにより各プロット間を近似曲線で補完することで求められる。   The calibration curve is obtained by measuring the Pb-Lβ ray intensity with a fluorescent X-ray analyzer using an inorganic oxide material sample whose lead content is known, so that the horizontal axis represents the lead content and the vertical axis represents Pb. -It is calculated | required by plotting the intensity | strength of L (beta) line and complementing between each plot with an approximated curve by the least squares method.

Pb−Lβ線強度は、無機酸化物系材料試料中に存在する主要成分の影響を受けるので、後述の共存元素補正により蛍光X線の信号強度を補正するか、検量線試料に用いる無機酸化物系材料試料中の主要成分の含有量を、実際に測定に供する無機酸化物系材料試料中の主要成分の含有量と同等にしておく必要がある。   Since the Pb-Lβ ray intensity is affected by the main components present in the inorganic oxide material sample, the signal intensity of the fluorescent X-ray is corrected by the coexisting element correction described later, or the inorganic oxide used for the calibration curve sample The content of the main component in the system material sample needs to be equal to the content of the main component in the inorganic oxide material sample actually used for the measurement.

検量線試料として好ましいのは、測定試料と同一の品種・系統から調製した無機酸化物系材料であるが、特に限定されるものではない。鉄鋼スラグ、ごみ溶融スラグ、耐火物などといった鉛を含有する可能性があり、品質管理を行う必要があるものであって、検量線作成用に用いられる試料と実際に管理する試料とが同様の主成分組成であるものを選択すればよい。   Preferable as a calibration curve sample is an inorganic oxide material prepared from the same kind and line as the measurement sample, but is not particularly limited. There is a possibility of containing lead such as steel slag, waste molten slag, refractory, etc., and it is necessary to perform quality control, and the sample used for preparing the calibration curve is the same as the sample actually managed What has a main component composition may be selected.

検量線作成のための鉛含有量が既知である無機酸化物系材料試料としては、無機酸化物系材料の製造プロセスで得られた試料中の鉛含有量を化学分析法によってあらかじめ求めた試料を用いればよい。また、無機酸化物系材料の製造プロセスで得られた試料中の鉛含有量を化学分析法によってあらかじめ求めておいた上で、そこに金属鉛又は鉛化合物を所定量添加し、段階的に鉛含有量の異なる試料を調製して得られたものを用いてもよい。   As the inorganic oxide material sample with a known lead content for preparing a calibration curve, a sample in which the lead content in the sample obtained in the manufacturing process of the inorganic oxide material was obtained in advance by chemical analysis was used. Use it. In addition, the lead content in the sample obtained by the manufacturing process of the inorganic oxide-based material is obtained in advance by chemical analysis, and then a predetermined amount of metallic lead or lead compound is added thereto, and lead is gradually added. You may use what was obtained by preparing the sample from which content differs.

金属鉛又は鉛化合物の添加方法としては、粉体状の金属鉛又は鉛化合物を正確に秤量して添加するか、金属鉛又は鉛化合物を酸溶液などの水溶液に溶解し、この鉛を含む溶液を無機酸化物系材料に所定量散布し、これを電気炉などを用いて乾燥させたものを添加する。   As a method for adding metallic lead or a lead compound, powdery metallic lead or a lead compound is accurately weighed and added, or the metallic lead or lead compound is dissolved in an aqueous solution such as an acid solution, and this lead-containing solution is added. Is sprayed in a predetermined amount on an inorganic oxide material, and then dried by using an electric furnace or the like.

このように、鉛含有量が既知の無機酸化物系材料のPb−Lβ線強度を鉛含有量に対してプロットし最小二乗法により線形近似して得られた検量線を図2に示す。図2の3種類の直線は、それぞれ、無機酸化物系材料の製造プロセスで得られた試料中の鉛含有量を化学分析法によってあらかじめ求めておいた試料による検量線(化学分析法)、鉛を含まない無機酸化物系材料に鉛化合物の一種である酸化鉛を添加して作成した試料による検量線(酸化鉛添加法)、無機酸化物系材料に鉛溶液を添加し、乾燥させた試料による検量線(鉛溶液添加−乾燥法)を示す。   FIG. 2 shows a calibration curve obtained by plotting the Pb-Lβ line intensity of an inorganic oxide material with a known lead content against the lead content and linearly approximating the least square method. Each of the three types of straight lines in FIG. 2 shows a calibration curve (chemical analysis method) using a sample in which the lead content in the sample obtained by the manufacturing process of the inorganic oxide material is obtained in advance by chemical analysis. Calibration curve (lead oxide addition method) using a sample prepared by adding lead oxide, a kind of lead compound, to an inorganic oxide-based material that does not contain lead, and a sample that has been dried by adding a lead solution to the inorganic oxide-based material Shows a calibration curve (lead solution addition-drying method).

いずれの方法で調製した検量線試料でも、0〜200μg/gの鉛含有量で良好な直線性を有し、かつ、同一濃度であればほぼ等しいPb−Lβ線強度となる検量線を得ることができることが分かる。   A calibration curve sample prepared by any method has a good linearity with a lead content of 0 to 200 μg / g, and obtains a calibration curve with almost the same Pb-Lβ line intensity at the same concentration. You can see that

蛍光X線分析法では、試料のマトリクス組成の影響を受けて特性X線が変化するので、マトリクス組成が異なる無機酸化物系材料を分析する場合、バックグラウンド補正と共存元素補正を組み合わせてマトリクス組成の違いによる影響を排除する必要がある。   In the X-ray fluorescence analysis, the characteristic X-ray changes under the influence of the matrix composition of the sample. Therefore, when analyzing inorganic oxide materials with different matrix compositions, the matrix composition is combined with background correction and coexisting element correction. It is necessary to eliminate the influence of the difference.

Pb−Lβ線強度は、無機酸化物系材料試料中に存在する主要成分、特にカルシウム、ケイ素、鉄の影響を大きく受ける。図3に、試料中の主要成分のうち、カルシウム、ケイ素、鉄の濃度を変化させた場合の、見かけの鉛含有量に与える影響を示す。図3は、酸化物試薬を混合して調整した模擬試料による検討結果である。   The Pb-Lβ ray intensity is greatly affected by main components present in the inorganic oxide material sample, particularly calcium, silicon, and iron. FIG. 3 shows the influence on the apparent lead content when the concentration of calcium, silicon, and iron among the main components in the sample is changed. FIG. 3 shows the result of examination using a simulated sample prepared by mixing oxide reagents.

見かけの鉛含有量は、カルシウム含有量が28質量%、ケイ素含有量が9質量%、鉄含有量が18質量%、鉛含有量が50μg/gとなるよう調製した無機酸化物系材料試料について、鉛含有量が変わらないようにカルシウム、ケイ素、鉄を順次添加してPb−Lβ線の強度を測定し、Pb−Lβ線の強度にあたえる影響として算出した。   The apparent lead content is about 28% by mass of calcium, 9% by mass of silicon, 18% by mass of iron, and 50 μg / g of lead oxide. Then, calcium, silicon, and iron were sequentially added so that the lead content was not changed, and the intensity of the Pb-Lβ line was measured, and the calculation was made as the influence given to the intensity of the Pb-Lβ line.

図3の結果から、Pb−Lβ線強度に対して、カルシウムとケイ素は含有量の増加に応じて正の、鉄は含有量の増加に応じて負の影響を与えることが分かる。この影響を避けるには、検量線に用いる無機酸化物系材料と、実際に含有量を測定したい無機酸化物系材料に関し、測定上の蛍光X線のバックグラウンドを差し引く、いわゆるバックグラウンド補正を行った上で、共存元素濃度に応じた補正、いわゆる共存元素補正を行う必要がある。   From the results in FIG. 3, it can be seen that calcium and silicon have a positive effect on the Pb-Lβ line intensity as the content increases, and iron has a negative effect as the content increases. In order to avoid this effect, so-called background correction is performed on the inorganic oxide material used for the calibration curve and the inorganic oxide material for which the content is actually to be measured. In addition, it is necessary to perform correction according to the coexisting element concentration, that is, so-called coexisting element correction.

共存元素補正には、準ニュートン法を用いた方法や、Lachance−Trailモデルを用いた方法がある。準ニュートン法を用いた方法では、Pb−Lβ線の強度を補正すべき元素であるカルシウム、ケイ素、鉄の濃度から適切な係数を算出し、補正することが可能である。   The coexisting element correction includes a method using a quasi-Newton method and a method using a Lance-Trail model. In the method using the quasi-Newton method, it is possible to calculate and correct an appropriate coefficient from the concentrations of calcium, silicon, and iron, which are elements that should correct the intensity of the Pb-Lβ ray.

具体的には、
(Feの信号強度×a+Siの信号強度×b+Caの信号強度×c)
×Pb−Lβ線の信号強度 ≒ 既知の鉛含有量 …(1)
となるよう、多変量解析を行って係数a、b、cを決定し、これら係数を用いて鉛の信号強度を補正する方法である。
In particular,
(Fe signal strength × a + Si signal strength × b + Ca signal strength × c)
× Pb-Lβ signal intensity ≒ Known lead content (1)
The coefficients a, b, and c are determined by performing multivariate analysis so that the signal strength of lead is corrected using these coefficients.

この補正を行えば、無機酸化物系材料試料中の共存元素の影響による分析値のばらつきは大きく低減できる。例えば図3で用いた試料であれば、カルシウム、ケイ素、鉄の濃度によらず、すべて鉛含有量50±1μg/gの精度で分析可能である。   If this correction is performed, the variation in the analytical value due to the influence of the coexisting elements in the inorganic oxide material sample can be greatly reduced. For example, the samples used in FIG. 3 can be analyzed with an accuracy of 50 ± 1 μg / g of lead content regardless of the concentrations of calcium, silicon, and iron.

以上に基づき、測定したい無機酸化物系材料試料中の鉛含有量は、試料を微粉砕した後に粉体ブリケット法による供試体を作成し、次いで、これを蛍光X線分析に供し、得られたPb−Lβ線の強度を、検量線によって求めたPb−Lβ線の強度と鉛含有量の相関に対しプロットすることにより得られる。   Based on the above, the lead content in the inorganic oxide-based material sample to be measured was obtained by pulverizing the sample and preparing a specimen by the powder briquette method, and then subjecting it to fluorescent X-ray analysis. It is obtained by plotting the intensity of the Pb-Lβ line against the correlation between the intensity of the Pb-Lβ line determined by the calibration curve and the lead content.

本発明の方法によれば、無機酸化物系材料中に0〜200μg/g含まれる鉛を短時間でかつ簡便に測定することが可能となる。また、蛍光X線を用いることで、従来の化学分析法で必要だった煩雑な前処理を必要とせず、短時間で簡便に測定することができる。   According to the method of the present invention, lead contained in an inorganic oxide material in an amount of 0 to 200 μg / g can be easily measured in a short time. In addition, by using fluorescent X-rays, it is possible to measure easily in a short time without the need for complicated pretreatments required in conventional chemical analysis methods.

上記無機酸化物系材料として好ましいものは、鉄鋼製造工程で得られる鉄鋼スラグや無機酸化物系材料工場の製品である。上記の測定方法によって求められた鉛含有量に基づいて、無機酸化物系材料を分別することができる。   Preferable examples of the inorganic oxide material include steel slag obtained in the steel manufacturing process and products of an inorganic oxide material factory. Based on the lead content determined by the above measurement method, the inorganic oxide material can be separated.

無機酸化物系材料の性質は鉛含有量に依存するので、鉛含有量に基づいて無機酸化物系材料を分別することで、無機酸化物系材料の用途や環境影響をより特徴づけることができる。また、このように分別した無機酸化物系材料を使用することで、環境影響のない材料を出荷できるなど、品質をより向上させることができる。   Since the properties of inorganic oxide materials depend on the lead content, the use and environmental impact of inorganic oxide materials can be further characterized by separating the inorganic oxide materials based on the lead content. . Moreover, by using the inorganic oxide-based material thus separated, the quality can be further improved, for example, a material having no environmental influence can be shipped.

本発明の鉛含有量測定方法は従来の化学分析法と異なり、迅速に測定を行うことができるので、工場などでの流れ作業に適している。本実施形態では、工場の生産ラインにおいて鉛含有量を測定する。   Unlike the conventional chemical analysis method, the lead content measuring method of the present invention can be measured quickly, and is suitable for a flow operation in a factory or the like. In this embodiment, lead content is measured in the production line of a factory.

鉛含有量測定用の無機酸化物系材料試料は、ロットごとに分けられた無機酸化物系材料から、そのロットを代表する一部を抜き出す。その測定結果に応じて、試料を抜き出したグループの無機酸化物系材料の鉛含有量を決定する。   The inorganic oxide material sample for lead content measurement extracts a part representing the lot from the inorganic oxide material divided for each lot. In accordance with the measurement result, the lead content of the inorganic oxide material of the group from which the sample is extracted is determined.

生産ラインでは、鉛含有量の測定結果に基づいて自動的に無機酸化物系材料を分別できるようなシステムでもよいし、鉛含有量の測定結果を人が判断し、無機酸化物系材料を分別するようなシステムでもよい。従来の化学分析法よりも迅速に測定を行うことで、工場での生産に適用できる。   The production line may be a system that can automatically separate inorganic oxide materials based on the measurement results of lead content, or a person will judge the measurement results of lead content and separate the inorganic oxide materials. Such a system may be used. By measuring faster than conventional chemical analysis methods, it can be applied to production in factories.

測定の結果、ある閾値、例えば土壌汚染対策法に基づく含有量基準である150μg/gの含有量に基づき、鉛含有量が150μg/g以上となった無機酸化物系材料と、鉛含有量が150μg/g未満となった無機酸化物系材料を分別する。   As a result of the measurement, based on a certain threshold, for example, a content standard of 150 μg / g based on the soil contamination countermeasure method, an inorganic oxide material whose lead content is 150 μg / g or more, and a lead content is The inorganic oxide material that has become less than 150 μg / g is separated.

無機酸化物系材料の用途は鉛含有量に依存するため、鉛含有量に応じて無機酸化物系材料を分別することで、より環境安全性の高い性質を持った無機酸化物系材料を得ることができる。   Since the use of inorganic oxide-based materials depends on the lead content, by separating the inorganic oxide-based material according to the lead content, an inorganic oxide-based material with higher environmental safety is obtained. be able to.

鉛含有量が150μg/g以上となった無機酸化物系材料は厳格に管理し、鉛の分離処理を行うか、無害化処理を行うなどして再利用するか、又は、最終処分場などで適切に処理する。鉛含有量が150μg/g未満となった無機酸化物系材料は、用途に合わせた環境基準に基づいた溶出試験を行い、溶出量にあわせて道路舗装用路盤材料、土木材料、建築材料、セメント原料、肥料、耐火物類のいずれか1つ以上に用いる。   Strictly manage inorganic oxide materials with a lead content of 150 μg / g or more and reuse them by separating lead, detoxifying, etc., or at final disposal sites, etc. Handle appropriately. Inorganic oxide materials with a lead content of less than 150 μg / g are subjected to a dissolution test based on environmental standards tailored to the application, and road pavement materials for road paving, civil engineering materials, building materials, cement according to the dissolution amount Used for any one or more of raw materials, fertilizers and refractories.

道路舗装用路盤材料、港湾土木材料、建築材料、セメント原料、耐火物類などは、長期間の利用時に周辺環境への鉛の溶出が起こらないことが必要であり、これらの材料には鉛含有量の低い無機酸化物系材料の使用が重要である。また、土壌汚染対策法に基づく含有量基準の鉛含有量は150μg/gであるが、これに限らず無機酸化物系材料の用途ごとに閾値を設け、管理することもできる。無機酸化物系材料の環境負荷に関し決め細かな管理を行うことにより、安全で安心な材料の出荷が可能となる。   Road pavement materials for road paving, harbor civil engineering materials, building materials, cement raw materials, refractory materials, etc. must be free of lead elution into the surrounding environment when used for a long period of time. These materials contain lead. The use of a low amount of inorganic oxide material is important. Moreover, although the lead content of the content standard based on the soil contamination countermeasure method is 150 μg / g, the present invention is not limited to this, and a threshold value can be provided and managed for each use of the inorganic oxide material. By carefully controlling the environmental load of inorganic oxide materials, it is possible to ship safe and secure materials.

以下本発明の実施例を説明する。   Examples of the present invention will be described below.

まず、Pb−Lβ線のX線強度と鉛含有量との関係を示す検量線を作成するために、鉛含有量が異なる5種類の無機酸化物系材料の標準試料を用意し、化学分析によってあらかじめ無機酸化物系材料中の鉛含有量を求めた。化学分析による鉛含有量の求め方は比較例として後述する。   First, in order to create a calibration curve showing the relationship between the X-ray intensity of Pb-Lβ rays and the lead content, five types of standard samples of inorganic oxide materials with different lead contents are prepared and subjected to chemical analysis. The lead content in the inorganic oxide material was determined in advance. A method for obtaining the lead content by chemical analysis will be described later as a comparative example.

これらの標準試料について、鉛の蛍光X線強度を波長分散型蛍光X線分析装置(株式会社リガク製サイマルティックス14型)を使って測定した。約1gの無機酸化物系材料試料を、粉体試料プレス装置により粉体ブリケット成型したものを蛍光X線分析用の試料とした。   For these standard samples, the fluorescent X-ray intensity of lead was measured using a wavelength dispersive fluorescent X-ray analyzer (simultics type 14 manufactured by Rigaku Corporation). About 1 g of an inorganic oxide material sample formed by powder briquetting using a powder sample press apparatus was used as a sample for fluorescent X-ray analysis.

次に、成型した標準試料に1次X線を照射し、発生する蛍光X線であるPb−Lβ線X線強度を測定した。従来の化学分析法で求めた鉛含有量(X軸)とPb−Lβ線強度(Y軸)の関係を、図4に実線で示す。両者の相関係数は0.999と極めて高く、良好な検量線が得られた。また、定量下限は10μg/g、検出下限は3μg/gであり、10μg/gまでの無機酸化物系材料の選別は十分可能である。   Next, the molded standard sample was irradiated with primary X-rays, and Pb-Lβ-ray X-ray intensity, which was generated fluorescent X-rays, was measured. The relationship between the lead content (X axis) and Pb-Lβ line intensity (Y axis) determined by conventional chemical analysis is shown by a solid line in FIG. The correlation coefficient between them was as extremely high as 0.999, and a good calibration curve was obtained. The lower limit of quantification is 10 μg / g and the lower limit of detection is 3 μg / g, and it is possible to sufficiently select inorganic oxide materials up to 10 μg / g.

なお、図4には、粉末プレス機を用いて粉体ブリケット化した無機酸化物系材料試料と、ガラスビード化した無機酸化物系材料試料とを、蛍光X線分析装置を使いPb−Lβ線の強度を測定した結果をプロットし、最小二乗法による線形近似をそれぞれ実線と破線とで示した。   In FIG. 4, an inorganic oxide material sample formed into a powder briquette using a powder press machine and an inorganic oxide material sample formed into a glass bead are converted into Pb-Lβ rays using a fluorescent X-ray analyzer. The results of the measurement of the intensity were plotted, and the linear approximation by the least square method was shown by a solid line and a broken line, respectively.

粉末プレス機を用いて粉体ブリケット化した試料(本発明例)はPb−Lβ線の強度がほぼ直線状に並んでいるのに対し、粉体ブリケット化していない試料はPb−Lβ線の強度がばらついていることが分かる。ガラスビード化した供試体のPb−Lβ線の強度と鉛含有量との関係を線形近似した相関係数Rは0.989であり、粉体ブリケット法による供試体での検量線の相関係数Rが0.999であることを考えれば、無機酸化物系材料試料を粉体ブリケット化すると測定誤差を少なくできることが分かる。   In the sample (example of the present invention) formed into a powder briquette using a powder press machine, the intensity of the Pb-Lβ line is arranged almost linearly, whereas in the sample not formed into the powder briquette, the intensity of the Pb-Lβ line It can be seen that there are variations. The correlation coefficient R obtained by linear approximation of the relationship between the Pb-Lβ ray intensity and the lead content of the glass beaded specimen is 0.989, and the correlation coefficient of the calibration curve of the specimen by the powder briquette method Considering that R is 0.999, it can be seen that the measurement error can be reduced by converting the inorganic oxide material sample into a powder briquette.

次いで、無機酸化物系材料製造ラインから得られた無機酸化物系材料試料28検体について、検量線標準試料と同様の方法でPb−Lβ線X線強度を測定し、得られたX線強度値を上記検量線に代入して無機酸化物系材料中の鉛含有量を求めた。同じ28検体について、後述する比較例に示す方法でも鉛含有量を求めた。共存元素補正は、カルシウム、ケイ素、鉄に関し、準ニュートン法に基づく補正を行った。本発明により定量した鉛含有量と、比較例の方法で求めた鉛含有量の相関を、図5に示す。   Next, Pb-Lβ-ray X-ray intensity was measured for the 28 specimens of the inorganic oxide-based material sample obtained from the inorganic oxide-based material production line in the same manner as the calibration curve standard sample, and the obtained X-ray intensity value was obtained. Was substituted into the above calibration curve to determine the lead content in the inorganic oxide material. For the same 28 specimens, the lead content was also determined by the method shown in the comparative example described later. Coexisting element correction was performed based on the quasi-Newton method for calcium, silicon, and iron. FIG. 5 shows the correlation between the lead content determined by the present invention and the lead content determined by the method of the comparative example.

本発明の方法で求めた無機酸化物系材料中の鉛含有量と、従来法で求めた鉛含有量はほぼ一致しており、本発明により正確な無機酸化物系材料中の鉛含有量の定量値が得られることが分かる。   The lead content in the inorganic oxide material determined by the method of the present invention is almost the same as the lead content determined by the conventional method. According to the present invention, the lead content in the inorganic oxide material is accurate. It turns out that a quantitative value is obtained.

なお、共存元素補正に関しては、Lachance−Trailモデルを用いた検討も行ったが、結果は同様であった。本発明の方法は、無機酸化物系材料試料を微粉砕した後に粉体プレス機により粉体ブリケットとし、蛍光X線を測定した後は、検量線に代入して計算するのみであり、簡便な分析手法である。   In addition, regarding the coexisting element correction, a study using the Lance-Trail model was performed, but the results were the same. In the method of the present invention, an inorganic oxide-based material sample is finely pulverized and then made into a powder briquette with a powder press machine. After measuring fluorescent X-rays, the calculation is simply performed by substituting into a calibration curve. It is an analysis method.

測定した28検体のうち、土壌汚染対策法に基づく含有量基準である150μg/g以上の鉛含有量が判明した無機酸化物系材料1点に関しては、分別して管理し適切な処理を行うこととした。また、本実施例においては、1検体の無機酸化物系材料試料を分析するのに要した時間は20分であった。   Of the 28 samples measured, one inorganic oxide material with a lead content of 150 μg / g or more, which is the content standard based on the Soil Contamination Countermeasures Law, is separated and managed, and appropriate processing is performed. did. In this example, the time required to analyze one sample of the inorganic oxide material sample was 20 minutes.

次に鉛含有量が約50μg/gの無機酸化物系材料試料を調製し、蛍光X線分析用粉体ブリケット供試体を9点作成した。9点の粉体ブリケット供試体のPb−Lβ線のX線強度を測定し、得られたX線強度と検量線から求めた無機酸化物系材料中の鉛含有量の平均値は49.9μg/gで、相対標準偏差は0.76%となった。このことから、本発明の方法の繰り返し再現性は良好であることが分かる。   Next, an inorganic oxide material sample having a lead content of about 50 μg / g was prepared, and nine powder briquette specimens for fluorescent X-ray analysis were prepared. The X-ray intensity of the Pb-Lβ rays of the nine powder briquette specimens was measured, and the average value of the lead content in the inorganic oxide material determined from the obtained X-ray intensity and calibration curve was 49.9 μg. / G, the relative standard deviation was 0.76%. From this, it can be seen that the repeatability of the method of the present invention is good.

この方法を鉄鋼スラグ製品の製造に適用した。鉄鋼スラグのうち、製鋼スラグは、主に製鉄工程における転炉(酸化精錬)時に発生する。発生量は1チャージ(15〜20分ピッチ)ごとに数十ton程度である。   This method was applied to the manufacture of steel slag products. Among steel slags, steel slag is mainly generated during converters (oxidative refining) in the iron making process. The amount of generation is about several tens of tons for each charge (pitch of 15 to 20 minutes).

路盤材製品などとして出荷する際には、これらを配合・混合させた上で粉砕整粒し、数千〜数万トンの製品ロットとする。本発明に基づき、粗鋼チャージごとにスラグを採取し、蛍光X線分析を行って鉛含有量を管理した。   When shipping as roadbed material products, etc., these are blended and mixed and then pulverized and sized to make a product lot of thousands to tens of thousands of tons. Based on the present invention, slag was sampled for each crude steel charge, and X-ray fluorescence analysis was performed to manage the lead content.

ある製鉄所では、数1000チャージに1件の割合で、スクラップを混入源として土壌環境基準値を超過する含有量の鉛が検出されたので、そのチャージのみ別管理とするために別のヤード(図1の管理ヤード)に分別し、路盤材製品など土壌環境基準が適用される製品には配合しなかった。一年間の管理を実施した結果、製品ロットの検査時の鉛含有量は、基準を超過することが一度もなく、そのまま出荷することができた。   One steelworks detected lead with a content exceeding the soil environmental standard value at a rate of one out of every 1,000 charges, which was a source of scrap. In the management yard in FIG. 1, it was not mixed with products to which soil environmental standards were applied, such as roadbed material products. As a result of one-year management, the lead content at the time of inspection of product lots never exceeded the standard and could be shipped as it was.

[比較例]
本発明の検量線作成のために行った無機酸化物系材料中の鉛含有量を定量する方法を比較例として示す。無機酸化物系材料試料1.0gを正確に秤量し、あらかじめ6規定に調整しておいた塩酸20mLを加え、白金皿の上で弱火でゆっくりと加熱する。
[Comparative example]
A method for quantifying the lead content in the inorganic oxide-based material performed for preparing the calibration curve of the present invention will be shown as a comparative example. Accurately weigh 1.0 g of the inorganic oxide material sample, add 20 mL of hydrochloric acid adjusted to 6 N in advance, and slowly heat on a platinum dish with low heat.

次いで、フッ化水素酸10mLを加える。再び加熱し、加熱分解を継続する。さらに、過塩素酸10mLを添加し、白煙が生じ試料溶液が乾固したら加熱をやめ、放冷する。なお、白煙が生じる前に分解液が乾固した場合、飛散する可能性があるので大変危険である。   Then 10 mL of hydrofluoric acid is added. Heat again and continue pyrolysis. Furthermore, 10 mL of perchloric acid is added. When white smoke is generated and the sample solution is dried, heating is stopped and the mixture is allowed to cool. In addition, if the decomposition solution is dried before white smoke is generated, it may be scattered, which is very dangerous.

乾固状態の試料に6規定の塩酸10mLを追加し、残留物を溶解した後、蒸留水を添加して全量を50mLに定容する。溶液中の鉛含有量は、フレームレス原子吸光法で定量する。すなわち、黒鉛炉に試料溶液を滴下し、硝酸パラジウム等のマトリックスモディファイアとともに一定の昇温速度で昇温させ、試料中の鉛を灰化、原子化させる。   Add 10 mL of 6N hydrochloric acid to the dried sample, dissolve the residue, and add distilled water to bring the total volume to 50 mL. The lead content in the solution is quantified by flameless atomic absorption. That is, a sample solution is dropped into a graphite furnace, and the temperature of the sample is increased together with a matrix modifier such as palladium nitrate at a constant temperature increase rate, and lead in the sample is ashed and atomized.

原子化して気体状となった鉛に、光源としてホロカソードランプを用い、波長283.3nm又は217.0nmの光を透過させると、基底状態にある鉛原子が光を吸収する。すなわち、原子蒸気中の原子の数に応じて吸光が起こる。   When a hollow cathode lamp is used as a light source and light having a wavelength of 283.3 nm or 217.0 nm is transmitted to lead atomized into a gaseous state, lead atoms in the ground state absorb light. That is, light absorption occurs according to the number of atoms in the atomic vapor.

この吸光の度合を測定し、試料中の鉛含有量を求めた。検量線試料5検体、実試料28検体の無機酸化物系材料試料を上記従来分析法に従って鉛含有量を求めたところ、すべての分析を完了するのに6日間かかった。   The degree of this absorption was measured to determine the lead content in the sample. When the lead content of 5 samples of calibration curve samples and 28 samples of actual samples was determined according to the above conventional analysis method, it took 6 days to complete all analyses.

この分析方法は手間と時間がかかるので、製鉄工程において15〜20分ピッチで数十ton程度産出する製鋼スラグの管理には使用できなかった。そのため、製鋼スラグを管理することなく混合・配合、粉砕整粒して路盤材などの鉄鋼スラグ製品とした。その結果、基準を超過するロットがあり、ロット全体を再処理せざるを得なかった。   Since this analysis method requires labor and time, it could not be used for the management of steelmaking slag produced in the steelmaking process at a pitch of 15 to 20 minutes and about several tens of tons. Therefore, steel slag products such as roadbed materials were prepared by mixing, blending, pulverizing and sizing without managing steelmaking slag. As a result, there was a lot that exceeded the standard, and the entire lot had to be reprocessed.

本発明の鉛含有量測定方法は短時間で行うことができるので、本発明の鉛含有量測定法を無機酸化物系材料製造工場の流れ作業に適用し、無機酸化物系材料を鉛含有量別に選別することができる。このように選別された無機酸化物系材料を各用途に用いることでより品質の優れた製品を作ることができる。   Since the lead content measuring method of the present invention can be performed in a short time, the lead content measuring method of the present invention is applied to the flow work of the inorganic oxide material manufacturing factory, and the inorganic oxide material is used as the lead content. Can be sorted separately. By using the inorganic oxide-based material thus selected for each application, a product with better quality can be produced.

また、新たに開発された製造プロセスにより調製した無機酸化物系材料に本発明を適用すれば、鉛含有量に基づく環境影響を考慮した無機酸化物系材料の効率的な選定が実施可能となるので、新技術の開発現場でも実用的な手法となる。   In addition, if the present invention is applied to an inorganic oxide material prepared by a newly developed manufacturing process, it is possible to efficiently select an inorganic oxide material in consideration of environmental effects based on the lead content. Therefore, it becomes a practical method even at the development site of new technology.

Claims (6)

無機酸化物系材料からのPb−Lβ線のX線強度を蛍光X線分析法により測定し、あらかじめ作成した鉛含有量が既知である試料からのPb−Lβ線のX線強度と鉛含有量との関係を示す検量線を用いて、無機酸化物系材料中の鉛含有量を定量することを特徴とする無機酸化物系材料中鉛含有量測定方法。   The X-ray intensity of Pb-Lβ rays from inorganic oxide materials is measured by fluorescent X-ray analysis, and the X-ray intensity and lead content of Pb-Lβ rays from samples that have been prepared in advance are known. A method for measuring lead content in an inorganic oxide material, wherein the lead content in the inorganic oxide material is quantified using a calibration curve indicating the relationship between the lead content and the inorganic oxide material. 前記無機酸化物系材料を、微粉砕し、粉体ブリケット化することを特徴とする請求項1に記載の無機酸化物系材料中鉛含有量測定方法。   The method for measuring lead content in an inorganic oxide material according to claim 1, wherein the inorganic oxide material is finely pulverized to form a powder briquette. 前記無機酸化物系材料が、鉄鋼スラグであることを特徴とする請求項1又は2に記載の無機酸化物系材料中鉛含有量測定方法。   The method for measuring lead content in an inorganic oxide material according to claim 1 or 2, wherein the inorganic oxide material is steel slag. 前記無機酸化物系材料が前記検量線の作成に用いた鉛含有量が既知である試料とマトリクス組成が異なる無機酸化物系材料であって、前記蛍光X線分析法において、バックグラウンド補正と共存元素補正を組み合わせることにより、鉛を定量することを特徴とする請求項1〜3のいずれか1項に記載の無機酸化物系材料中鉛含有量測定方法。   The inorganic oxide material is an inorganic oxide material having a different matrix composition from the sample whose lead content used to prepare the calibration curve is different, and coexisting with background correction in the fluorescent X-ray analysis method. The method for measuring lead content in inorganic oxide materials according to any one of claims 1 to 3, wherein lead is quantified by combining element correction. 請求項1〜4のいずれか1項に記載の無機酸化物系材料中鉛含有量測定方法により定量した鉛含有量に応じて、無機酸化物系材料を分別することを特徴とする無機酸化物系材料分別方法。   The inorganic oxide material is classified according to the lead content determined by the lead content measurement method in the inorganic oxide material according to any one of claims 1 to 4. System material separation method. 請求項1〜4のいずれか1項に記載の無機酸化物系材料中鉛含有量測定方法により定量した鉛含有量が150μg/g以下となるように分別された無機酸化物系材料を用いて、道路舗装用路盤材料、土木材料、建築材料、セメント原料、肥料、及び耐火物類のいずれか1種以上を製造することを特徴とする無機酸化物系材料製造方法。   Using the inorganic oxide material sorted so that the lead content determined by the lead content measurement method in the inorganic oxide material according to any one of claims 1 to 4 is 150 µg / g or less. A method for producing an inorganic oxide material, comprising producing any one or more of roadbed pavement materials, civil engineering materials, building materials, cement raw materials, fertilizers, and refractories.
JP2011128168A 2011-06-08 2011-06-08 Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material Pending JP2012255689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128168A JP2012255689A (en) 2011-06-08 2011-06-08 Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128168A JP2012255689A (en) 2011-06-08 2011-06-08 Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material

Publications (1)

Publication Number Publication Date
JP2012255689A true JP2012255689A (en) 2012-12-27

Family

ID=47527385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128168A Pending JP2012255689A (en) 2011-06-08 2011-06-08 Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material

Country Status (1)

Country Link
JP (1) JP2012255689A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206515A (en) * 2013-04-16 2014-10-30 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
JP2017116535A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
JP2018010008A (en) * 2017-09-13 2018-01-18 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
CN113466079A (en) * 2021-06-30 2021-10-01 重庆钢铁股份有限公司 Method for detecting component content of steel slag
EP4063842A1 (en) 2021-03-22 2022-09-28 JEOL Ltd. X-ray spectrum analysis apparatus and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769279B2 (en) * 1990-08-06 1995-07-26 株式会社島津製作所 X-ray fluorescence analysis method
JPH1183688A (en) * 1997-09-10 1999-03-26 Nippon Steel Corp Method for automatic analysis of iron-making raw material and slag and facility therefor
JP2001091481A (en) * 1999-09-20 2001-04-06 Horiba Ltd Background correction method for fluorescent x-ray analyzer
JP2002071590A (en) * 2000-09-04 2002-03-08 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2004184123A (en) * 2002-11-29 2004-07-02 Shimadzu Corp Fluorometric x-ray analyzing method
JP2007136393A (en) * 2005-11-21 2007-06-07 Jfe Steel Kk Treatment method of elution component-containing substance, stabilization material, and its manufacturing method
JP2008168289A (en) * 2006-12-11 2008-07-24 Sumitomo Metal Ind Ltd Detoxification method of heavy metal-containing basic waste
JP2010190584A (en) * 2009-02-16 2010-09-02 Panasonic Corp Method and device for measuring hazardous element concentration
JP2011102698A (en) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd Material analyzer for steel pipe
JP2011226811A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Elution testing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769279B2 (en) * 1990-08-06 1995-07-26 株式会社島津製作所 X-ray fluorescence analysis method
JPH1183688A (en) * 1997-09-10 1999-03-26 Nippon Steel Corp Method for automatic analysis of iron-making raw material and slag and facility therefor
JP2001091481A (en) * 1999-09-20 2001-04-06 Horiba Ltd Background correction method for fluorescent x-ray analyzer
JP2002071590A (en) * 2000-09-04 2002-03-08 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2004184123A (en) * 2002-11-29 2004-07-02 Shimadzu Corp Fluorometric x-ray analyzing method
JP2007136393A (en) * 2005-11-21 2007-06-07 Jfe Steel Kk Treatment method of elution component-containing substance, stabilization material, and its manufacturing method
JP2008168289A (en) * 2006-12-11 2008-07-24 Sumitomo Metal Ind Ltd Detoxification method of heavy metal-containing basic waste
JP2010190584A (en) * 2009-02-16 2010-09-02 Panasonic Corp Method and device for measuring hazardous element concentration
JP2011102698A (en) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd Material analyzer for steel pipe
JP2011226811A (en) * 2010-04-15 2011-11-10 Nippon Steel Corp Elution testing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李桂云 他: "能量色散X−射・・・(Determination of seven components in slag from smelting lead blast frunace by", 冶金分析, vol. 28, no. 9, JPN6014013912, 2008, CN, pages 16 - 19, ISSN: 0002786284 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206515A (en) * 2013-04-16 2014-10-30 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
JP2017116535A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
JP2018010008A (en) * 2017-09-13 2018-01-18 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
EP4063842A1 (en) 2021-03-22 2022-09-28 JEOL Ltd. X-ray spectrum analysis apparatus and method
CN113466079A (en) * 2021-06-30 2021-10-01 重庆钢铁股份有限公司 Method for detecting component content of steel slag
CN113466079B (en) * 2021-06-30 2023-05-16 重庆钢铁股份有限公司 Method for detecting content of steel slag components

Similar Documents

Publication Publication Date Title
JP2012255689A (en) Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material
Funari et al. Solid residues from Italian municipal solid waste incinerators: A source for “critical” raw materials
Tiwari et al. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique
Pöykiö et al. Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment
Zhang et al. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples
Bernasconi et al. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash
Izquierdo et al. Influence of the co-firing on the leaching of trace pollutants from coal fly ash
Usmani et al. Characterization, partitioning, and potential ecological risk quantification of trace elements in coal fly ash
Zhao et al. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China
Wang et al. Acid rain-dependent detailed leaching characteristics and simultaneous immobilization of Pb, Zn, Cr, and Cd from hazardous lead-zinc tailing
Norris et al. A technique for sequential leaching of coal and fly ash resulting in good recovery of trace elements
Choi et al. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution
CN111122562A (en) Method for determining TFe content in steel slag magnetic separation powder
Sun et al. A new method (ball milling and sodium sulfide) for mechanochemical treatment of soda ash chromite ore processing residue
Tong et al. Investigation of controlling factors on toxic metal leaching behavior in municipal solid wastes incineration fly ash
Yu et al. Experimental study on the stabilization of heavy metals in fly ash from municipal solid waste incineration by N-30 alkaline silica sol
Ohbuchi et al. X‐ray fluorescence analysis of sludge ash from sewage disposal plant
Sofilić et al. Natural radioactivity in steel slag aggregate
Bożym Assessment of leaching of heavy metals from landfilled foundry waste during exploitation of the heaps
Sofilić et al. Radionuclides in steel slag intended for road construction
Di Bella et al. Risk assessment of bottom ash from fuel oil power plant of Italy: mineralogical, chemical and leaching characterization
Rahman et al. Investigation of Heavy Metals and Radionuclide’s Impact on Environment Due to The Waste Products of Different Iron Processing Industries in Chittagong, Bangladesh
JP2020165962A (en) Ore sample analysis method
Gwenzi et al. Potential leaching of heavy metals from pristine and accelerated weathered slag from recycling of automobile lead-acid batteries
JP6562452B2 (en) Coal ash sorting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118