JP2013218906A - Phase plate for phase difference transmission electron microscope and manufacturing method therefor - Google Patents

Phase plate for phase difference transmission electron microscope and manufacturing method therefor Download PDF

Info

Publication number
JP2013218906A
JP2013218906A JP2012089090A JP2012089090A JP2013218906A JP 2013218906 A JP2013218906 A JP 2013218906A JP 2012089090 A JP2012089090 A JP 2012089090A JP 2012089090 A JP2012089090 A JP 2012089090A JP 2013218906 A JP2013218906 A JP 2013218906A
Authority
JP
Japan
Prior art keywords
film layer
thick film
phase
colloid
phase plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089090A
Other languages
Japanese (ja)
Inventor
Takumi Sannomiya
工 三宮
Yuichiro Ikenotani
優一郎 池ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2012089090A priority Critical patent/JP2013218906A/en
Publication of JP2013218906A publication Critical patent/JP2013218906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2614Holography or phase contrast, phase related imaging in general, e.g. phase plates

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that since a phase plate has only a single phase modulation structure produced by a serial process, the phase plate is discarded and replaced when the phase modulation structure deteriorates, thus causing manufacturing cost increase of the phase plate, and a problem that damage of the phase modulation structure formed by a focused ion beam method is significant.SOLUTION: A plurality of phase modulation structures S are arranged on a phase plate. For example, several hundreds to several thousands of phase modulation structures S are arranged, at random, on a phase plate having a size of 5 μm × 5 μm, for example.

Description

本発明は位相差透過型電子顕微鏡用位相板及びその製造方法に関する。   The present invention relates to a phase plate for a retardation transmission electron microscope and a method for manufacturing the same.

透過型電子顕微鏡(TEM)において、生物、高分子等の軽元素を含む試料による電子線の散乱吸収が小さいので、高コントラストの像は得られない。このため、このような生物、軽元素を含む試料を高コントラストで観察できる位相差透過型電子顕微鏡が開発された(参照:特許文献1、非特許文献1)。   In a transmission electron microscope (TEM), since the scattering and absorption of an electron beam by a sample containing a light element such as a living organism or a polymer is small, a high-contrast image cannot be obtained. For this reason, a phase difference transmission electron microscope capable of observing samples containing such organisms and light elements with high contrast has been developed (see: Patent Document 1, Non-Patent Document 1).

図11は従来の位相板を含む位相差透過型電子顕微鏡の外観を示す図である。   FIG. 11 is a view showing the appearance of a phase difference transmission electron microscope including a conventional phase plate.

図11において、電子ビームEBが照射される試料101の下に対物レンズ102が設けられ、対物レンズ102の後焦点位置に位相板103が設けられ、位相板103の下に結像面104が設けられている。位相板103は中央部に穴103a及びその周囲部に厚膜層103bを有する。これにより、直接透過波DWは位相板103の穴103aを通過し、他方、散乱波SWは位相板103の厚膜層103bを通過して位相変調する。従って、結像面104において、位相板103の穴103aを通過した直接透過波DWと位相板103の厚膜層103bを通過してπ/2位相が遅延した散乱波SWとが干渉し、正焦点条件で位相コントラスト像(位相差像)を可視化する。この場合、直接透過波DWの強度は散乱波SWの強度より非常に大きい。   In FIG. 11, an objective lens 102 is provided below the sample 101 irradiated with the electron beam EB, a phase plate 103 is provided at the back focal position of the objective lens 102, and an imaging plane 104 is provided below the phase plate 103. It has been. The phase plate 103 has a hole 103a at the center and a thick film layer 103b at the periphery. As a result, the direct transmitted wave DW passes through the hole 103 a of the phase plate 103, while the scattered wave SW passes through the thick film layer 103 b of the phase plate 103 and undergoes phase modulation. Therefore, on the imaging plane 104, the direct transmitted wave DW that has passed through the hole 103a of the phase plate 103 interferes with the scattered wave SW that has passed through the thick film layer 103b of the phase plate 103 and delayed by a π / 2 phase, and is positive. Visualize the phase contrast image (phase contrast image) under the focus condition. In this case, the intensity of the direct transmitted wave DW is much larger than the intensity of the scattered wave SW.

図11の位相板103は、蒸着法、スパッタ法等によりアモルファス炭素層を厚膜層103bとして形成し、このアモルファス炭素層に収束イオンビーム(FIB)法により0.05〜5μm程度の穴103aを開けることにより構成されている。   In the phase plate 103 of FIG. 11, an amorphous carbon layer is formed as a thick film layer 103b by vapor deposition or sputtering, and a hole 103a of about 0.05 to 5 μm is formed in the amorphous carbon layer by a focused ion beam (FIB) method. It is comprised by.

特開2001−273866号公報JP 2001-273866 A

Radostin Danev et al., “Transmission electron microscopy with Zernike phase plate”, Utramicroscopy, 88, 2001, pp.243-252Radostin Danev et al., “Transmission electron microscopy with Zernike phase plate”, Utramicroscopy, 88, 2001, pp.243-252 Seung-Man Yang et al., “Nanomachining by Colloidal Lithography”, Colloidal Lithography, small 2006, 2, No.4, pp.458-475Seung-Man Yang et al., “Nanomachining by Colloidal Lithography”, Colloidal Lithography, small 2006, 2, No.4, pp.458-475

しかしながら、上述の従来の位相板103は以下の課題を有する。   However, the above-described conventional phase plate 103 has the following problems.

第1に、位相板103にはシリアルプロセスによって製造される単一の位相変調構造しかなく、従って、この位相変調構造が劣化した場合には、位相板103を廃棄した上、交換することになる。この結果、位相板103の製造コストの上昇を招くという課題がある。   First, the phase plate 103 has only a single phase modulation structure manufactured by a serial process. Therefore, if this phase modulation structure deteriorates, the phase plate 103 is discarded and replaced. . As a result, there is a problem that the manufacturing cost of the phase plate 103 is increased.

第2に、位相板103のアモルファス炭素層で、散乱波のみが吸収され、コントラストが低下するという課題がある。   Second, there is a problem that only the scattered wave is absorbed by the amorphous carbon layer of the phase plate 103 and the contrast is lowered.

第3に、FIB法によって形成される位相変調構造のダメージが大きいという課題がある。   Thirdly, there is a problem that damage to the phase modulation structure formed by the FIB method is large.

上述の課題を解決するために、本発明に係る位相差透過型電子顕微鏡用位相板は、電子ビームの位相を局所的に変換する位相差透過型電子顕微鏡において、複数の位相変調構造がランダムに配置され、各位相変調構造は、厚膜d1を有する厚膜層と、厚膜d2を有する薄膜層とを具備し、厚膜層及び薄膜層の一方は円形形状をなし、厚膜層及び薄膜層の他方によって囲まれており、厚膜d1、d2は
d1>d2≧0
を満足し、厚膜d1、d2の厚膜差は電子ビームの電子波の位相ずれがπ/2×m(m=1,3,5,…)となるように調整されているものである。これにより、1つの位相変調構造が劣化しても位相板を廃棄することはない。
In order to solve the above-mentioned problems, a phase difference transmission electron microscope phase plate according to the present invention is a phase difference transmission electron microscope that locally converts the phase of an electron beam. Each of the phase modulation structures includes a thick film layer having a thick film d1 and a thin film layer having a thick film d2, and one of the thick film layer and the thin film layer has a circular shape, and the thick film layer and the thin film Surrounded by the other of the layers, the thick films d1, d2 are d1> d2 ≧ 0
The thickness difference between the thick films d1 and d2 is adjusted so that the phase shift of the electron wave of the electron beam is π / 2 × m (m = 1, 3, 5,...). . Thereby, even if one phase modulation structure deteriorates, the phase plate is not discarded.

また、本発明に係る位相差透過型電子顕微鏡用位相板の製造方法は、複数のコロイドをランダムに配置してこれらのコロイドを用いたリソグラフィー法によって複数の位相変調構造を形成したものである。つまり、パラレルプロセスによって複数の位相変調構造がランダム配置で構成される。また、位相変調構造の材料、厚さの調整も容易となる。さらに、FIB法を用いないので、位相変調構造のダメージが少ない。   In addition, in the method for manufacturing a phase difference transmission electron microscope phase plate according to the present invention, a plurality of colloids are randomly arranged and a plurality of phase modulation structures are formed by lithography using these colloids. That is, a plurality of phase modulation structures are randomly arranged by a parallel process. In addition, the material and thickness of the phase modulation structure can be easily adjusted. Furthermore, since the FIB method is not used, there is little damage to the phase modulation structure.

本発明によれば、1つの位相変調構造が劣化しても、位相板を廃棄しなくてもよいので、位相板の製造コストを低減できる。また、位相変調構造の材料、厚さの調整が容易なので、吸収特性の調整を容易にできる。さらに、位相変調構造のダメージが少ないので、やはり、位相板の製造コストを低減できる。   According to the present invention, even if one phase modulation structure is deteriorated, it is not necessary to discard the phase plate, so that the manufacturing cost of the phase plate can be reduced. Further, since the material and thickness of the phase modulation structure can be easily adjusted, the absorption characteristics can be easily adjusted. Furthermore, since the damage of the phase modulation structure is small, the manufacturing cost of the phase plate can be reduced.

本発明に係る位相差透過型電子顕微鏡用位相板の実施の形態を示す上面図である。It is a top view which shows embodiment of the phase plate for phase difference transmission electron microscopes concerning this invention. 図1の位相板の第1の例を示す斜視図である。It is a perspective view which shows the 1st example of the phase plate of FIG. 図2のディスク型位相変調構造S1の製造方法の第1の例を示す斜視図である。It is a perspective view which shows the 1st example of the manufacturing method of disk type phase modulation structure S1 of FIG. 図2のディスク型位相変調構造S1の製造方法の第2の例を示す斜視図である。It is a perspective view which shows the 2nd example of the manufacturing method of disk type phase modulation structure S1 of FIG. 図1の位相板の第2の例を示す斜視図である。It is a perspective view which shows the 2nd example of the phase plate of FIG. 図5のホール型位相変調構造S2の製造方法を示す斜視図である。FIG. 6 is a perspective view showing a manufacturing method of the hall type phase modulation structure S2 of FIG. 図1の位相板の第3の例を示す斜視図である。It is a perspective view which shows the 3rd example of the phase plate of FIG. 図7のウェル型位相変調構造S3の製造方法を示す斜視図である。FIG. 8 is a perspective view showing a manufacturing method of the well type phase modulation structure S3 of FIG. 図5、図6のホール型位相変調構造S2が実際に形成された位相板の原子間顕微鏡(AFM)像を示す。FIG. 7 shows an atomic microscope (AFM) image of a phase plate on which the Hall type phase modulation structure S2 of FIGS. 5 and 6 is actually formed. 本発明に係るランダムに配置された複数の位相変調構造による位相差像のシミュレーション結果及び従来の単一位相変調構造による位相差像のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the phase difference image by the several phase modulation structure arrange | positioned at random based on this invention, and the simulation result of the phase difference image by the conventional single phase modulation structure. 従来の位相板を含む位相差透過型電子顕微鏡の外観を示す図である。It is a figure which shows the external appearance of the phase difference transmission electron microscope containing the conventional phase plate.

図1は本発明に係る位相差透過型電子顕微鏡用位相板の実施の形態を示す上面図である。図1に示すように、位相板には、複数の位相変調構造Sがランダムに配置されている。たとえば、5μm×5μmのサイズの位相板に、数100から数1000個の位相変調構造Sがランダムに配置されている。   FIG. 1 is a top view showing an embodiment of a phase difference transmission electron microscope phase plate according to the present invention. As shown in FIG. 1, a plurality of phase modulation structures S are randomly arranged on the phase plate. For example, several hundred to several thousand phase modulation structures S are randomly arranged on a phase plate having a size of 5 μm × 5 μm.

図2は図1の位相板の第1の例を示す斜視図である。図2においては、位相変調構造S1は円筒形の厚膜層12及びその外周の薄膜層12’よりなるディスク型をなしており、たとえば炭素により形成される。この厚膜層12は図11の直接透過波を通過させ、薄膜層12’は図11の散乱波SWを通過させる。この場合、厚膜層12と薄膜層12’の膜厚差は図11の電子ビームEBの電子波の位相ずれがπ/2×m(m=1,3,5,…)になるように調整する。ここで、厚膜層12の1次回折光の吸収率を50%、薄膜層12の散乱波SWの吸収率を20%とし、1次回折光の強度は散乱波SWの強度より非常に大きいことを考慮すれば、最大コントラスト(=(最大強度−最小強度)/平均強度)は、図10のシミュレーション像では12.0%と非常に大きくなった。   FIG. 2 is a perspective view showing a first example of the phase plate of FIG. In FIG. 2, the phase modulation structure S1 has a disk shape composed of a cylindrical thick film layer 12 and a thin film layer 12 'on the outer periphery thereof, and is formed of carbon, for example. The thick film layer 12 passes the direct transmitted wave of FIG. 11, and the thin film layer 12 'passes the scattered wave SW of FIG. In this case, the film thickness difference between the thick film layer 12 and the thin film layer 12 ′ is such that the phase shift of the electron wave of the electron beam EB in FIG. 11 is π / 2 × m (m = 1, 3, 5,...). adjust. Here, the absorption factor of the first-order diffracted light of the thick film layer 12 is 50%, the absorption factor of the scattered wave SW of the thin-film layer 12 is 20%, and the intensity of the first-order diffracted light is much larger than the intensity of the scattered wave SW. Considering this, the maximum contrast (= (maximum intensity−minimum intensity) / average intensity) was very large at 12.0% in the simulation image of FIG.

図3は図2のディスク型位相変調構造S1の製造方法の第1の例を示す斜視図である。   FIG. 3 is a perspective view showing a first example of a manufacturing method of the disk type phase modulation structure S1 of FIG.

始めに、図3の(A)を参照すると、基板たとえばガラス基板11上に厚膜層たとえば炭素層12をスパッタリング法、蒸着法、化学的気相成長(CVD)法、分子線ビームエピタキシャル(MBE)法、スプレー法等によって堆積する。   First, referring to FIG. 3A, a thick film layer such as a carbon layer 12 is formed on a substrate such as a glass substrate 11 by sputtering, vapor deposition, chemical vapor deposition (CVD), molecular beam epitaxial (MBE). ) Or spraying.

次に、図3の(B)を参照すると、大きさが同一のコロイド13をランダムに堆積する。コロイド13は数10nm〜数μmの金属、有機物、無機物、生体物質であり、たとえば、有機物としてポリスチレンよりなる。コロイド13の大きさ及び分布は、溶液濃度、堆積時間、イオン強度等によって調整可能であるが(参照:非特許文献2)、コロイド13は、通常、帯電されているので、分布をランダムにできる。   Next, referring to FIG. 3B, colloids 13 having the same size are randomly deposited. The colloid 13 is a metal, an organic material, an inorganic material, or a biological material having a thickness of several tens of nanometers to several μm. The size and distribution of the colloid 13 can be adjusted by the solution concentration, deposition time, ionic strength, etc. (see Non-Patent Document 2), but since the colloid 13 is normally charged, the distribution can be made random. .

次いで、図示しないが、必要に応じてエッチング法によってコロイド13の大きさを縮小させる。エッチング法は、たとえば、反応性イオンエッチング(RIE)法、プラズマエッチング法、紫外線照射法、化学的エッチング法、オゾン照射法である。   Next, although not shown, the size of the colloid 13 is reduced by an etching method as necessary. Examples of the etching method include a reactive ion etching (RIE) method, a plasma etching method, an ultraviolet irradiation method, a chemical etching method, and an ozone irradiation method.

次に、図3の(C)を参照すると、コロイド13をマスクとしてエッチングして炭素層12を所定量だけエッチングして図2の薄膜層12’を形成する。   Next, referring to FIG. 3C, the carbon layer 12 is etched by a predetermined amount by using the colloid 13 as a mask to form the thin film layer 12 'shown in FIG.

次に、図3の(D)を参照すると、コロイド13をたとえば物理的リフトオフ法により除去する。これにより、コロイド13の下の炭素層12が図2の厚膜層となる。   Next, referring to FIG. 3D, the colloid 13 is removed by, for example, a physical lift-off method. Thereby, the carbon layer 12 under the colloid 13 becomes the thick film layer of FIG.

最後に、ガラス基板11を物理的あるいは化学的に剥離することにより図2のディスク型位相変調構造S1を得ることができる。   Finally, the disk-type phase modulation structure S1 of FIG. 2 can be obtained by physically or chemically peeling the glass substrate 11.

図4は図2のディスク型位相変調構造S1の製造方法の第2の例を示す斜視図である。   FIG. 4 is a perspective view showing a second example of the manufacturing method of the disk type phase modulation structure S1 of FIG.

始めに、図4の(A)を参照すると、基板たとえばガラス基板11上に大きさが同一のコロイド13をランダムに堆積する。コロイド13は、図3の(B)の場合と同様に、数10nm〜数μmの金属、有機物、無機物、生体物質であり、たとえば、有機物としてポリスチレンよりなる。コロイド13は、通常、帯電されているので、分布を調整できる。   First, referring to FIG. 4A, colloids 13 having the same size are randomly deposited on a substrate, for example, a glass substrate 11. The colloid 13 is a metal, an organic substance, an inorganic substance, or a biological substance having a thickness of several tens of nm to several μm, as in the case of FIG. 3B. For example, the colloid 13 is made of polystyrene as the organic substance. Since the colloid 13 is normally charged, the distribution can be adjusted.

次に、図4の(B)を参照すると、コロイド13をマスクとしてガラス基板11上に犠牲層14を堆積する。   Next, referring to FIG. 4B, a sacrificial layer 14 is deposited on the glass substrate 11 using the colloid 13 as a mask.

次いで、図示しないが、必要に応じてエッチング法によってコロイド13の大きさを縮小させる。   Next, although not shown, the size of the colloid 13 is reduced by an etching method as necessary.

次に、図4の(C)を参照すると、コロイド13をたとえば物理的リフトオフ法により除去する。   Next, referring to FIG. 4C, the colloid 13 is removed by, for example, a physical lift-off method.

次に、図4の(D)を参照すると、コロイド13の穴をマスクとして薄膜層たとえば炭素層をスパッタリング法等によって堆積して図2の厚膜層12を形成する。   Next, referring to FIG. 4D, a thick film layer 12 shown in FIG. 2 is formed by depositing a thin film layer such as a carbon layer by sputtering or the like using the holes of the colloid 13 as a mask.

次に、図4の(E)を参照すると、犠牲層14を化学的リフトオフ法により除去する。この結果、犠牲層14上の厚膜層12は除去される。   Next, referring to FIG. 4E, the sacrificial layer 14 is removed by a chemical lift-off method. As a result, the thick film layer 12 on the sacrificial layer 14 is removed.

次に、図4の(F)を参照すると、薄膜層たとえば炭素層12’をスパッタリング法等によって堆積して図2の薄膜層12’を形成する。このとき、厚膜層12も少し成長する。   Next, referring to FIG. 4F, a thin film layer such as a carbon layer 12 'is deposited by sputtering or the like to form the thin film layer 12' of FIG. At this time, the thick film layer 12 also grows a little.

最後に、ガラス基板11を物理的あるいは化学的に剥離することにより図2のディスク型位相変調構造S1を得ることができる。   Finally, the disk-type phase modulation structure S1 of FIG. 2 can be obtained by physically or chemically peeling the glass substrate 11.

図5は図1の位相板の第2の例を示す斜視図である。図5においては、位相変調構造S2は中空形つまり穴23aを有する厚膜層23よりなるホール型をなしており、たとえば炭素により形成される。この穴23aは図11の直接透過波DWを通過させ、薄膜層23は図11の散乱波SWを通過させる。この場合、厚膜層23の膜厚は図11の電子ビームEBの電子波の位相ずれがπ/2×m(m=1,3,5,…)になるように調整してある。ここで、厚膜層23の散乱波SWの吸収率を50%とし、直接透過波DWの強度は散乱波SWの強度より非常に大きいことを考慮すれば、最大コントラスト(=(最大強度−最小強度)/平均強度)は、図10のシミュレーション像では4.04%と比較的小さくなった。   FIG. 5 is a perspective view showing a second example of the phase plate of FIG. In FIG. 5, the phase modulation structure S2 has a hollow shape, that is, a hole type formed of the thick film layer 23 having the holes 23a, and is formed of, for example, carbon. The hole 23a allows the direct transmitted wave DW of FIG. 11 to pass therethrough, and the thin film layer 23 allows the scattered wave SW of FIG. 11 to pass therethrough. In this case, the thickness of the thick film layer 23 is adjusted so that the phase shift of the electron wave of the electron beam EB in FIG. 11 is π / 2 × m (m = 1, 3, 5,...). Here, if the absorption factor of the scattered wave SW of the thick film layer 23 is 50% and the intensity of the direct transmitted wave DW is considered to be much larger than the intensity of the scattered wave SW, the maximum contrast (= (maximum intensity−minimum). Intensity) / average intensity) was relatively small at 4.04% in the simulation image of FIG.

図6は図5のホール型位相変調構造S2の製造方法を示す斜視図である。   6 is a perspective view showing a manufacturing method of the Hall type phase modulation structure S2 of FIG.

始めに、図6の(A)を参照すると、基板たとえばガラス基板21上に大きさが同一のコロイド22をランダムに堆積する。コロイド22は図3の(B)の場合と同様に、数10nm〜数μmの金属、有機物、無機物、生体物質であり、たとえば、有機物としてポリスチレンよりなる。コロイド22は、通常、帯電されているので、分布をランダムにできる。   First, referring to FIG. 6A, colloids 22 having the same size are randomly deposited on a substrate, for example, a glass substrate 21. The colloid 22 is a metal, an organic substance, an inorganic substance, or a biological substance having a thickness of several tens of nm to several μm, as in the case of FIG. 3B. For example, the colloid 22 is made of polystyrene as the organic substance. Since the colloid 22 is normally charged, the distribution can be made random.

次に、図6の(B)を参照すると、コロイド22をマスクとしてガラス基板21上に炭素層よりなる厚膜層23をスパッタリング法等によって堆積する。   Next, referring to FIG. 6B, a thick film layer 23 made of a carbon layer is deposited on the glass substrate 21 by a sputtering method or the like using the colloid 22 as a mask.

次いで、図示しないが、必要に応じてエッチング法によってコロイド22の大きさを縮小させる。   Next, although not shown, the size of the colloid 22 is reduced by an etching method as necessary.

次に、図6の(C)を参照すると、コロイド22をたとえば物理的リフトオフ法により除去する。   Next, referring to FIG. 6C, the colloid 22 is removed by, for example, a physical lift-off method.

最後に、ガラス基板21を物理的あるいは化学的に剥離することにより図5のホール型位相変調構造S2を得ることができる。   Finally, the glass substrate 21 is physically or chemically peeled to obtain the Hall type phase modulation structure S2 of FIG.

図7は図1の位相板の第3の例を示す斜視図である。図7においては、位相変調構造S3は穴底の薄膜層24及び厚膜層(厚膜層23+厚膜層24)よりなるウェル型をなしており、たとえば炭素により形成される。穴底の薄膜層24は図11の直接透過波DWに相当する1次回折光を通過させ、厚膜層(厚膜層23+厚膜層24)は図11の散乱波SWを通過させる。この場合、厚膜層(厚膜層23+厚膜層24)の膜厚と穴底の薄膜層24の膜厚との差つまり厚膜層23の膜厚は図11の電子ビームEBの電子波の位相ずれがπ/2×m(m=1,3,5,…)になるように調整してある。ここで、穴底の薄膜層24の1次回折光の吸収率を20%、厚膜層(厚膜層23+厚膜層24)の散乱波SWの吸収率を50%とし、直接透過波DWの強度は散乱波SWの強度より非常に大きいことを考慮すれば、最大コントラスト(=(最大強度−最小強度)/平均強度)は、図10のシミュレーション像では4.90%と比較的大きくなった。   FIG. 7 is a perspective view showing a third example of the phase plate of FIG. In FIG. 7, the phase modulation structure S3 has a well type composed of a thin film layer 24 at the bottom of the hole and a thick film layer (thick film layer 23 + thick film layer 24), and is made of carbon, for example. The thin film layer 24 at the bottom of the hole passes first-order diffracted light corresponding to the direct transmitted wave DW of FIG. 11, and the thick film layer (thick film layer 23 + thick film layer 24) passes the scattered wave SW of FIG. In this case, the difference between the film thickness of the thick film layer (thick film layer 23 + thick film layer 24) and the film thickness of the thin film layer 24 at the bottom of the hole, that is, the film thickness of the thick film layer 23 is the electron wave of the electron beam EB in FIG. Is adjusted to be π / 2 × m (m = 1, 3, 5,...). Here, the absorption factor of the first-order diffracted light of the thin film layer 24 at the bottom of the hole is 20%, and the absorption factor of the scattered wave SW of the thick film layer (thick film layer 23 + thick film layer 24) is 50%. Considering that the intensity is much larger than the intensity of the scattered wave SW, the maximum contrast (= (maximum intensity−minimum intensity) / average intensity) was relatively large at 4.90% in the simulation image of FIG.

図8は図6のウェル型位相変調構造S3の製造方法を示す斜視図である。   FIG. 8 is a perspective view showing a manufacturing method of the well type phase modulation structure S3 of FIG.

図8の(A)、(B)、(C)は図6の(A)、(B)、(C)と同一である。   (A), (B), and (C) of FIG. 8 are the same as (A), (B), and (C) of FIG.

図8の(C)のコロイド22の除去後、図8の(D)を参照すると、薄膜層たとえば炭素層をスパッタリング法等で堆積して図7の穴底及び厚膜層23上厚膜層24に形成する。   After removing the colloid 22 in FIG. 8C, referring to FIG. 8D, a thin film layer such as a carbon layer is deposited by sputtering or the like, and the thick film layer on the hole bottom and thick film layer 23 in FIG. 24.

最後に、ガラス基板21を物理的あるいは化学的に剥離することにより図7のウェル型位相変調構造S3を得ることができる。   Finally, the well-type phase modulation structure S3 of FIG. 7 can be obtained by physically or chemically peeling the glass substrate 21.

尚、図7、図8においては、厚膜層23、厚膜層24は共に炭素層であったが、異ならせることもできる。   In FIGS. 7 and 8, the thick film layer 23 and the thick film layer 24 are both carbon layers, but they may be different.

また、図3、図6、図8のガラス基板上には炭素層を直接形成しているが、ガラス基板上にアルミニウム等による犠牲層を形成することによりガラス基板の剥離を容易にすることができる。   In addition, although the carbon layer is directly formed on the glass substrate of FIGS. 3, 6, and 8, it is possible to facilitate the peeling of the glass substrate by forming a sacrificial layer of aluminum or the like on the glass substrate. it can.

図9はランダムに配置された100nmのポリスチレンコロイドのマスクを用いて図5、図6のホール型位相変調構造S3が実際に形成されたサイズ5.00μm×5.00μmの位相板の原子間力顕微鏡(AFM)像を示す。図9に示すように、複数の位相変調構造S3はランダムに配置される。   FIG. 9 shows an atomic force microscope of a phase plate having a size of 5.00 μm × 5.00 μm in which the Hall type phase modulation structure S3 of FIGS. 5 and 6 is actually formed using a 100 nm polystyrene colloidal mask arranged randomly. AFM) image. As shown in FIG. 9, the plurality of phase modulation structures S3 are randomly arranged.

図10は本発明に係るランダムの複数の位相変調構造配置による位相差像のシミュレーション結果及び従来の単一位相変調構造配置による位相差像のシミュレーション結果を示す。すなわち、本発明に係る複数の位相変調構造配列の場合、高周波域に多少アーチファクトが発生するが、低周波のコントラストには影響がない。これに対し、従来の単一位相変調構造配列の場合の位相変調構造が有限の大きさであることによるアーチファクトの方がはるかに支配的である。   FIG. 10 shows the phase difference image simulation result by the random plural phase modulation structure arrangement according to the present invention and the phase difference image simulation result by the conventional single phase modulation structure arrangement. That is, in the case of a plurality of phase modulation structure arrangements according to the present invention, some artifacts occur in the high frequency range, but the low frequency contrast is not affected. On the other hand, artifacts due to the finite size of the phase modulation structure in the case of the conventional single phase modulation structure array are much more dominant.

11:ガラス基板
12:厚膜層(炭素層)
12’:薄膜層(炭素層)
13:コロイド
14:犠牲層
21:ガラス基板
22:コロイド
23:厚膜層(炭素層)
23a:穴
24:厚膜層(炭素層)
101:試料
102:対物レンズ
103:位相板
103a:穴
103b:薄膜層
104:結像面
S:位相変調構造
DW:直接透過波
SW:散乱波


11: Glass substrate 12: Thick film layer (carbon layer)
12 ': Thin film layer (carbon layer)
13: Colloid 14: Sacrificial layer 21: Glass substrate 22: Colloid 23: Thick film layer (carbon layer)
23a: Hole 24: Thick film layer (carbon layer)
101: Sample 102: Objective lens 103: Phase plate 103a: Hole 103b: Thin film layer 104: Imaging plane S: Phase modulation structure DW: Direct transmission wave SW: Scattering wave


Claims (9)

電子ビームの位相を局所的に変換する位相差透過型電子顕微鏡において、
複数の位相変調構造がランダムに配置され、
前記各位相変調構造は、
厚膜d1を有する厚膜層と、
厚膜d2を有する薄膜層と
を具備し、前記厚膜層及び前記薄膜層の一方は円形形状をなし、前記厚膜層及び前記薄膜層の他方によって囲まれており、前記厚膜d1、d2は
d1>d2≧0
を満足し、前記厚膜d1、d2の厚膜差は前記電子ビームの電子波の位相ずれがπ/2×m(m=1,3,5,…)となるように調整されていることを特徴とする位相差透過型電子顕微鏡用位相板。
In a phase difference transmission electron microscope that locally converts the phase of an electron beam,
A plurality of phase modulation structures are randomly arranged,
Each of the phase modulation structures is
A thick film layer having a thick film d1,
A thin film layer having a thick film d2, wherein one of the thick film layer and the thin film layer has a circular shape and is surrounded by the other of the thick film layer and the thin film layer, and the thick films d1, d2 D1> d2 ≧ 0
The thickness difference between the thick films d1 and d2 is adjusted so that the phase shift of the electron wave of the electron beam is π / 2 × m (m = 1, 3, 5,...). A phase difference transmission electron microscope phase plate.
前記厚膜層は前記電子ビームの直接透過波に相当する1次回折光を透過させるためのものであり、前記厚膜層の外周に設けられた前記薄膜層は前記電子ビームの散乱波を透過させるためのものである請求項1に記載の位相差透過型電子顕微鏡用位相板。   The thick film layer is for transmitting first-order diffracted light corresponding to the direct transmitted wave of the electron beam, and the thin film layer provided on the outer periphery of the thick film layer transmits the scattered wave of the electron beam. The phase plate for a retardation transmission electron microscope according to claim 1, wherein 前記厚膜層は、前記薄膜層に対応する中央に中空を有し、
前記中空は電子ビームの直接透過波を透過させるためのものであり、
前記厚膜層は前記電子ビームの散乱波を透過させるためのものである請求項1に記載の位相差透過型電子顕微鏡用位相板。
The thick film layer has a hollow in the center corresponding to the thin film layer,
The hollow is for transmitting a direct transmitted wave of an electron beam,
The phase plate for a phase difference transmission electron microscope according to claim 1, wherein the thick film layer is for transmitting a scattered wave of the electron beam.
前記薄膜層は前記電子ビームの直接透過波に相当する1次回折光を透過させるためのものであり、前記厚膜層は前記薄膜層の外周に設けられ、前記電子ビームの散乱波を透過させるためのものである請求項1に記載の位相差透過型電子顕微鏡用位相板。   The thin film layer is for transmitting first-order diffracted light corresponding to the direct transmitted wave of the electron beam, and the thick film layer is provided on the outer periphery of the thin film layer and transmits the scattered wave of the electron beam. The phase plate for a phase difference transmission electron microscope according to claim 1, wherein 複数のコロイドをランダムに配置して該コロイドを用いたリソグラフィー法によって複数の位相変調構造を形成する位相差透過型電子顕微鏡用位相板の製造方法。   A method for producing a phase plate for a phase difference transmission electron microscope, wherein a plurality of colloids are randomly arranged and a plurality of phase modulation structures are formed by a lithography method using the colloids. 基板上に厚膜層を形成する工程と、
前記厚膜層上に前記コロイドをランダムに堆積する工程と、
前記コロイドをマスクとして前記厚膜層を所定量だけエッチングする工程と、
前記エッチング後に前記コロイドを除去する工程と、
該コロイド除去後に前記基板を剥離する工程と
を具備する請求項5に記載の位相差透過型電子顕微鏡用位相板の製造方法。
Forming a thick film layer on the substrate;
Randomly depositing the colloid on the thick film layer;
Etching the thick film layer by a predetermined amount using the colloid as a mask;
Removing the colloid after the etching;
The method for producing a phase plate for a retardation transmission electron microscope according to claim 5, further comprising a step of peeling the substrate after removing the colloid.
基板上に前記コロイドをランダムに堆積する工程と、
前記コロイドの堆積後に、前記基板上に犠牲層を堆積する工程と、
前記犠牲層の堆積後に、前記コロイドを除去する工程と、
前記コロイドの除去後に前記基板上及び前記犠牲層上に厚膜層を堆積する工程と、
前記厚膜層の堆積後に前記犠牲層を除去する工程と、
前記犠牲層の除去後に前記基板を剥離する工程と
を具備する請求項5に記載の位相差透過型電子顕微鏡用位相板の製造方法。
Randomly depositing the colloid on a substrate;
Depositing a sacrificial layer on the substrate after depositing the colloid;
Removing the colloid after deposition of the sacrificial layer;
Depositing a thick film layer on the substrate and on the sacrificial layer after removal of the colloid;
Removing the sacrificial layer after depositing the thick film layer;
The method for producing a phase plate for a phase difference transmission electron microscope according to claim 5, further comprising a step of peeling the substrate after removing the sacrificial layer.
基板上に前記コロイドをランダムに堆積する工程と、
前記コロイドの堆積後に、前記基板上に厚膜層を堆積する工程と、
前記厚膜層の堆積後に、前記コロイドを除去する工程と、
前記厚膜層の除去後に、前記基板を剥離する工程と
を具備する請求項5に記載の位相差透過型電子顕微鏡用位相板の製造方法。
Randomly depositing the colloid on a substrate;
Depositing a thick film layer on the substrate after depositing the colloid;
Removing the colloid after deposition of the thick film layer;
The method for producing a phase plate for a phase difference transmission electron microscope according to claim 5, further comprising a step of peeling the substrate after removing the thick film layer.
さらに、前記コロイドの除去後かつ前記基板の剥離前に薄膜層を堆積する工程を具備する請求項8に記載の位相差透過型電子顕微鏡用位相板の製造方法。
Furthermore, the manufacturing method of the phase plate for phase difference transmission electron microscopes of Claim 8 which comprises the process of depositing a thin film layer after the said colloid removal and before peeling of the said board | substrate.
JP2012089090A 2012-04-10 2012-04-10 Phase plate for phase difference transmission electron microscope and manufacturing method therefor Pending JP2013218906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089090A JP2013218906A (en) 2012-04-10 2012-04-10 Phase plate for phase difference transmission electron microscope and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089090A JP2013218906A (en) 2012-04-10 2012-04-10 Phase plate for phase difference transmission electron microscope and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013218906A true JP2013218906A (en) 2013-10-24

Family

ID=49590785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089090A Pending JP2013218906A (en) 2012-04-10 2012-04-10 Phase plate for phase difference transmission electron microscope and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013218906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622934A (en) * 2017-09-22 2018-01-23 中国科学院生物物理研究所 A kind of phase-plate for transmission electron microscope imaging changes transfer device
CN111213220A (en) * 2017-10-17 2020-05-29 安特卫普大学 Spatial phase manipulation of a charged particle beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120255A (en) * 1981-12-31 1983-07-18 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Manufacture of lithographic mask
JPH0273321A (en) * 1988-09-09 1990-03-13 Ricoh Co Ltd Soft focus method
JP2001273866A (en) * 2000-03-27 2001-10-05 Jeol Ltd Thin film phase plate for phase difference electron microscope, the phase difference electron microscope, and an antistatic method for the phase plate
JP2010504421A (en) * 2006-09-21 2010-02-12 富士レビオ株式会社 Method and apparatus for manufacturing a microstructure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120255A (en) * 1981-12-31 1983-07-18 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Manufacture of lithographic mask
JPH0273321A (en) * 1988-09-09 1990-03-13 Ricoh Co Ltd Soft focus method
JP2001273866A (en) * 2000-03-27 2001-10-05 Jeol Ltd Thin film phase plate for phase difference electron microscope, the phase difference electron microscope, and an antistatic method for the phase plate
JP2010504421A (en) * 2006-09-21 2010-02-12 富士レビオ株式会社 Method and apparatus for manufacturing a microstructure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622934A (en) * 2017-09-22 2018-01-23 中国科学院生物物理研究所 A kind of phase-plate for transmission electron microscope imaging changes transfer device
CN107622934B (en) * 2017-09-22 2024-04-12 中国科学院生物物理研究所 Phase plate replacement transfer device for transmission electron microscope imaging
CN111213220A (en) * 2017-10-17 2020-05-29 安特卫普大学 Spatial phase manipulation of a charged particle beam

Similar Documents

Publication Publication Date Title
Hu et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy
Jensen et al. Periodically structured glancing angle deposition thin films
JP2020522009A (en) Broadband achromatic planar optical component with dispersion-designed dielectric metasurface
Winston et al. Neon ion beam lithography (NIBL)
Rogers et al. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging
KR101552940B1 (en) Pellicle film for extreme ultraviolet lithography including graphite-containing thin film
EP2750160B1 (en) Phase plate and method of fabricating same
De Andrade et al. Fast X‐ray Nanotomography with Sub‐10 nm Resolution as a Powerful Imaging Tool for Nanotechnology and Energy Storage Applications
JP5743316B2 (en) TEM adjustment for phase contrast imaging and phase contrast imaging
JP5576356B2 (en) Method for forming an ultra thin sheet suspended on a support member
CN107275204A (en) A kind of nano photoelectric device preparation method based on porous anodic alumina template
JP2011512003A (en) Carbon nanotubes patterned on metal substrates
Ni et al. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography
JP2013218906A (en) Phase plate for phase difference transmission electron microscope and manufacturing method therefor
Thakkar et al. Fabrication of low aspect ratio three-element Boersch phase shifters for voltage-controlled three electron beam interference
Roitman et al. Shaping of electron beams using sculpted thin films
EP2881971B1 (en) Method of producing a freestanding thin film of nano-crystalline graphite
KR101221965B1 (en) Method for forming three dimensional graphene pattern
CN104392902A (en) Method for positioned cutting multi-walled carbon nanotubes
US10775702B2 (en) Optical lithography process adapted for a sample comprising at least one fragile light emitter
Tsai et al. Fabrication of spiral-phase diffractive elements using scanning-electron-beam lithography
Wu et al. 3D Nanoprinting by Electron-Beam with an Ice Resist
Zhu et al. Plasmonic ‘top-hat’nano-star arrays by electron beam lithography
Gennaro et al. JTu3A. 64? 1 Dielectric Metasurfaces made of Vertically Oriented Germanium Ellipses.
Škriniarová et al. Standard AZ 5214E photoresist in laser interference and EBDW lithographies

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160803