JP2013215021A - Electromagnetic induction device - Google Patents

Electromagnetic induction device Download PDF

Info

Publication number
JP2013215021A
JP2013215021A JP2012083282A JP2012083282A JP2013215021A JP 2013215021 A JP2013215021 A JP 2013215021A JP 2012083282 A JP2012083282 A JP 2012083282A JP 2012083282 A JP2012083282 A JP 2012083282A JP 2013215021 A JP2013215021 A JP 2013215021A
Authority
JP
Japan
Prior art keywords
permanent magnet
permanent magnets
magnetic
permanent
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012083282A
Other languages
Japanese (ja)
Inventor
Shuichi Yokoyama
修一 横山
Akihira Morishita
明平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogakuin University
Original Assignee
Kogakuin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogakuin University filed Critical Kogakuin University
Priority to JP2012083282A priority Critical patent/JP2013215021A/en
Priority to TW102111375A priority patent/TW201347359A/en
Priority to PCT/CN2013/073456 priority patent/WO2013143490A1/en
Priority to CN2013101091906A priority patent/CN103368284A/en
Publication of JP2013215021A publication Critical patent/JP2013215021A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Abstract

PROBLEM TO BE SOLVED: To increase the number of magnetic fluxes interlinking with an armature coil.SOLUTION: A permanent magnet arrangement 111 includes permanent magnets 112 arranged in Halbach array so that directions of magnetic poles varies by 90°. A permanent magnet arrangement 115 includes permanent magnets 116 arranged in Halbach array so that directions of magnetic poles varies by 90°. A distance between the permanent magnet arrangement 111 and the permanent magnet arrangement 115 is set to be 1.2 or more and 1.5 or less times of a square root of a cross section area of the permanent magnets 112, 116. Between the permanent magnet arrangement 111 and the permanent magnet arrangement 115, there is provided an armature coil 131.

Description

本発明は電磁誘導装置に関し、特に、電動機または発電機として使用される電磁誘導装置に関する。   The present invention relates to an electromagnetic induction device, and more particularly to an electromagnetic induction device used as an electric motor or a generator.

電動機(モータ)または発電機の磁場を高めるのに、ハルバッハ配列という永久磁石の配列方法がある。永久磁石をN極とS極とが交互になるように配置した構造だと、磁場が磁石配列の表側と裏側の両方に発生してしまい、磁場を有効に利用できない。これに対して、ハルバッハ配列では、永久磁石の磁極を90°ずつ回転させながら配列しているので、磁石配列の一方の側の磁場が弱まり、その磁石配列の他方の側では、その分磁場が強くなって、永久磁石の配列の片側に強い磁場を発生させることができる。それぞれハルバッハ配列された2列の永久磁石配列(デュアルハルバッハ配列)の間に電機子コイルを配置した永久磁石回転電機(特許文献1参照)やリニア電動機(特許文献2参照)が提案されている。   To increase the magnetic field of an electric motor (motor) or generator, there is a permanent magnet arrangement method called Halbach arrangement. If the permanent magnets are arranged so that the north and south poles are alternately arranged, a magnetic field is generated on both the front side and the back side of the magnet arrangement, and the magnetic field cannot be used effectively. On the other hand, in the Halbach arrangement, the magnetic poles of the permanent magnets are arranged while being rotated by 90 °, so that the magnetic field on one side of the magnet arrangement is weakened, and on the other side of the magnet arrangement, the corresponding magnetic field is reduced accordingly. A strong magnetic field can be generated on one side of the array of permanent magnets. A permanent magnet rotating electric machine (see Patent Document 1) and a linear motor (see Patent Document 2) in which armature coils are arranged between two rows of permanent magnet arrays (dual Halbach array) arranged in Halbach are proposed.

特開2009−201343号公報JP 2009-201343 A 特開2010−154688号公報JP 2010-154688 A

永久磁石デュアルハルバッハ配列界磁を用いたコアレスモータやコアレス発電機では、電機子コイルに鎖交する磁束数をできるだけ大きくすることが望ましいが、従来の構造では、鎖交磁束数が最適化されておらず、さらに大きくすることが望まれている。   In coreless motors and coreless generators using permanent magnet dual Halbach array fields, it is desirable to increase the number of magnetic fluxes linked to the armature coil as much as possible. However, in the conventional structure, the number of flux linkages is optimized. There is no need to make it larger.

本発明の主な目的は、電機子コイルに鎖交する磁束数を大きくできる電磁誘導装置を提供することにある。   A main object of the present invention is to provide an electromagnetic induction device capable of increasing the number of magnetic fluxes linked to an armature coil.

本発明によれば、
互いに対向して配置された第1の永久磁石列と第2の永久磁石列であって、前記第1の永久磁石列は、所定の方向に2πの整数等分ずつ磁極の方向が変化し、前記第2の永久磁石列側の磁場が強めあい前記第2の永久磁石列側と反対側の磁場が弱めあうように前記所定の方向に配列された複数の第1の永久磁石を有し、前記第2の永久磁石列は、前記所定の方向に2πの整数等分ずつ磁極の方向が変化し、前記第1の永久磁石列側の磁場が強めあい前記第1の永久磁石列側と反対側の磁場が弱めあうように前記所定の方向に配列された複数の第2の永久磁石を有する前記第1の永久磁石列と第2の永久磁石列と、
前記第1の永久磁石列と前記第2の永久磁石列との間に配置された電機子コイルと、を備え、
前記第1の永久磁石と前記第2の永久磁石は、前記第1の永久磁石および前記第2の永久磁石の着磁方向に平行な面内において同じ断面積を有し、
前記第1の永久磁石列と前記第2の永久磁石列との間隔が、前記断面積の平方根の1.2倍以上1.5以下である電磁誘導装置が提供される。
According to the present invention,
A first permanent magnet row and a second permanent magnet row arranged opposite to each other, wherein the first permanent magnet row changes the direction of the magnetic pole by an integer equal to 2π in a predetermined direction; A plurality of first permanent magnets arranged in the predetermined direction so that the magnetic field on the second permanent magnet row side is strengthened and the magnetic field on the side opposite to the second permanent magnet row side is weakened; In the second permanent magnet row, the direction of the magnetic poles changes by an integer equal to 2π in the predetermined direction, the magnetic field on the first permanent magnet row side is strengthened, and opposite to the first permanent magnet row side. The first permanent magnet row and the second permanent magnet row having a plurality of second permanent magnets arranged in the predetermined direction so that the magnetic field on the side is weakened;
An armature coil disposed between the first permanent magnet row and the second permanent magnet row,
The first permanent magnet and the second permanent magnet have the same cross-sectional area in a plane parallel to the magnetization direction of the first permanent magnet and the second permanent magnet,
An electromagnetic induction device is provided in which a distance between the first permanent magnet row and the second permanent magnet row is 1.2 times or more and 1.5 or less of a square root of the cross-sectional area.

本発明によれば、電機子コイルに鎖交する磁束数を大きくできる電磁誘導装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetic induction apparatus which can enlarge the magnetic flux number linked with an armature coil is provided.

図1は、等価磁気回路法を適用するデュアルハルバッハ配列界磁の断面図である。FIG. 1 is a sectional view of a dual Halbach array field to which the equivalent magnetic circuit method is applied. 図2は、図1の等価磁気回路を説明するための図である。FIG. 2 is a diagram for explaining the equivalent magnetic circuit of FIG. 図3は、等価磁気回路法を適用する他のデュアルハルバッハ配列界磁の断面図である。FIG. 3 is a cross-sectional view of another dual Halbach array field to which the equivalent magnetic circuit method is applied. 図4は、ギャップ長と鎖交磁束数との関係を示す図である。FIG. 4 is a diagram showing the relationship between the gap length and the number of flux linkages. 図5は、ギャップ長と鎖交磁束数との関係を示す図である。FIG. 5 is a diagram showing the relationship between the gap length and the number of flux linkages. 図6は、本発明の好ましい第1の実施の形態の円筒型3相リニア同期モータ100を説明するための概略斜視図である。FIG. 6 is a schematic perspective view for explaining the cylindrical three-phase linear synchronous motor 100 according to the first preferred embodiment of the present invention. 図7は、図6のA−A線断面図である。7 is a cross-sectional view taken along line AA in FIG. 図8は、図6のB−B線断面図である。8 is a cross-sectional view taken along the line BB in FIG. 図9は、図6のC−C線断面図である。9 is a cross-sectional view taken along the line CC of FIG. 図10は、本発明の好ましい第2の実施の形態の三相同期発電機200を説明するための概略斜視図である。FIG. 10 is a schematic perspective view for explaining a three-phase synchronous generator 200 according to a preferred second embodiment of the present invention. 図11(A)は、着磁方向に平行な面内における三相同期発電機200の概略断面図であり、図11(B)は、電機子コイルの配線を示す図である。FIG. 11A is a schematic cross-sectional view of the three-phase synchronous generator 200 in a plane parallel to the magnetization direction, and FIG. 11B is a diagram showing wiring of armature coils.

以下、図面を参照して、本発明の好ましい実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明者達は、磁極を90度ずつ回転して構成されるデュアルハルバッハ界磁について、磁極間ギャップ中央部の平均磁束密度を等価磁気回路を用いて求めた。デュアルハルバッハ配列界磁では永久磁石列の外側で磁束密度が極端に低くなる。また、永久磁石の比透磁率はほぼ空気と同じである。鉄などの強磁性材料を使用しなければ、磁束集中や磁気飽和も発生しない。このため、等価磁気回路で必要な磁束密度を得ることができる。   The inventors have determined the average magnetic flux density at the center of the gap between the magnetic poles using an equivalent magnetic circuit for the dual Halbach field formed by rotating the magnetic poles by 90 degrees. In the dual Halbach field, the magnetic flux density is extremely low outside the permanent magnet array. The relative permeability of the permanent magnet is almost the same as that of air. Unless a ferromagnetic material such as iron is used, magnetic flux concentration and magnetic saturation do not occur. For this reason, a required magnetic flux density can be obtained with an equivalent magnetic circuit.

図1は、等価磁気回路法を適用するデュアルハルバッハ配列界磁10の断面図である。デュアルハルバッハ配列界磁10は、永久磁石13の磁極を第1の直線方向に90度ずつ回転してハルバッハ配列された永久磁石配列12と、永久磁石17の磁極を第1の直線と平行な第2の直線方向に90度ずつ回転してハルバッハ配列された永久磁石配列16とを備えている。   FIG. 1 is a cross-sectional view of a dual Halbach array field 10 to which the equivalent magnetic circuit method is applied. The dual Halbach array field 10 includes a permanent magnet array 12 in which the magnetic poles of the permanent magnets 13 are rotated by 90 degrees in the first linear direction, and the magnetic poles of the permanent magnets 17 are parallel to the first straight line. 2 and a permanent magnet array 16 arranged in a Halbach array by rotating 90 degrees in the linear direction.

永久磁石配列12では、永久磁石配列16側の磁場が強めあい、永久磁石配列16側と反対側の磁場が弱めあうように永久磁石13が配列されている。永久磁石配列16では、永久磁石配列12側の磁場が強めあい、永久磁石配列12側と反対側の磁場が弱めあうように永久磁石17が配列されている。   In the permanent magnet array 12, the permanent magnets 13 are arranged so that the magnetic field on the permanent magnet array 16 side is strengthened and the magnetic field on the opposite side to the permanent magnet array 16 side is weakened. In the permanent magnet arrangement 16, the permanent magnets 17 are arranged so that the magnetic field on the permanent magnet arrangement 12 side strengthens and the magnetic field on the opposite side to the permanent magnet arrangement 12 side weakens.

図1は、永久磁石13、17の着磁方向に平行な面での断面図である。永久磁石13、17は、永久磁石13、17の着磁方向に平行な面(紙面に平行な面)内において、共に正方形の形状を有し、同じ断面積を有している。   FIG. 1 is a cross-sectional view taken along a plane parallel to the magnetization direction of the permanent magnets 13 and 17. The permanent magnets 13 and 17 both have a square shape within the plane parallel to the magnetization direction of the permanent magnets 13 and 17 (a plane parallel to the paper surface) and have the same cross-sectional area.

永久磁石13、17の着磁方向に平行な面(紙面に平行な面)内における永久磁石13、17の断面積の平方根を1として規格化する。断面積の平方根が1なので、永久磁石13、17の断面積も1である。また、永久磁石13、17は、永久磁石13、17の着磁方向に平行な面内において、共に正方形の形状を有しているので、永久磁石13、17の一辺の長さも1となる。永久磁石配列12と永久磁石配列16との間14の間隔(ギャップ長)をaとする。   The square root of the cross-sectional area of the permanent magnets 13 and 17 in the plane parallel to the magnetization direction of the permanent magnets 13 and 17 (plane parallel to the paper surface) is normalized as 1. Since the square root of the cross-sectional area is 1, the cross-sectional areas of the permanent magnets 13 and 17 are also 1. In addition, since the permanent magnets 13 and 17 both have a square shape in a plane parallel to the magnetization direction of the permanent magnets 13 and 17, the length of one side of the permanent magnets 13 and 17 is also 1. A distance (gap length) between the permanent magnet array 12 and the permanent magnet array 16 is defined as a.

図1に示す閉曲線は磁束線である。磁束線の形状から極ピッチ毎に同一の磁束経路が存在することがわかる。この磁束経路を点線で示している。   The closed curve shown in FIG. 1 is a magnetic flux line. It can be seen from the shape of the magnetic flux lines that the same magnetic flux path exists for each pole pitch. This magnetic flux path is indicated by a dotted line.

図1に示すデュアルハルバッハ界磁の等価磁気回路の主磁束は図1の磁束経路を通る。また、磁気回路は磁極中心線XXについて対称に存在するので、一つの経路に係る磁気回路は磁極ごとに線対称に連続する。今、一つの磁気回路を図2のように定義する。図2中、Rは永久磁石13、17の磁気抵抗であり、磁極に垂直な永久磁石の断面積をS、永久磁石の磁極方向の長さをl、真空の透磁率をμとして次式で表される。

ここで、永久磁石の比透磁率は1に近似されている。また、図2中、γは磁石の磁極面から縦方向経路までの距離、δは磁極面からギャップ中の最寄りの横方向経路までの距離のギャップ長に対する比率である。縦方向経路の断面積S、ギャップ中の横方向経路の断面積Sは、

となるから、3つの閉回路主磁束φ、φ、φは次の回路方程式を満足する。
The main magnetic flux of the equivalent magnetic circuit of the dual Halbach field shown in FIG. 1 passes through the magnetic flux path of FIG. In addition, since the magnetic circuit exists symmetrically with respect to the magnetic pole center line XX, the magnetic circuit related to one path continues line-symmetrically for each magnetic pole. Now, one magnetic circuit is defined as shown in FIG. In FIG. 2, R is the magnetic resistance of the permanent magnets 13 and 17, where S is the cross-sectional area of the permanent magnet perpendicular to the magnetic pole, l m is the length in the magnetic pole direction of the permanent magnet, and μ 0 is the permeability of the vacuum. It is expressed by a formula.

Here, the relative magnetic permeability of the permanent magnet is approximated to 1. In FIG. 2, γ is the distance from the magnetic pole surface of the magnet to the longitudinal path, and δ is the ratio of the distance from the magnetic pole surface to the nearest lateral path in the gap to the gap length. The cross-sectional area S v of the longitudinal path and the cross-sectional area S r of the lateral path in the gap are

Therefore, the three closed circuit main magnetic fluxes φ 1 , φ 2 , and φ 3 satisfy the following circuit equation.

(2)式よりαを

として、

となる。
したがって、ギャップ中心線YY上のNS磁極間の平均磁束密度Bavは次式となる。

ここで、Bは永久磁石の残留磁束密度である。
Α from equation (2)

As

It becomes.
Therefore, the average magnetic flux density Bav between the NS magnetic poles on the gap center line YY is expressed by the following equation.

Here, Br is the residual magnetic flux density of the permanent magnet.

図3は、等価磁気回路法を適用する他のデュアルハルバッハ配列界磁20の断面図である。デュアルハルバッハ配列界磁20は、永久磁石23の磁極を周方向に略90度ずつ回転してハルバッハ配列された永久磁石配列22と、永久磁石27の磁極を周方向に略90度ずつ回転してハルバッハ配列された永久磁石配列26とを備えている。   FIG. 3 is a cross-sectional view of another dual Halbach array field 20 to which the equivalent magnetic circuit method is applied. The dual Halbach array field 20 rotates the magnetic poles of the permanent magnets 23 by approximately 90 degrees in the circumferential direction and rotates the magnetic poles of the permanent magnets 27 by approximately 90 degrees in the circumferential direction. And a permanent magnet array 26 arranged in a Halbach array.

永久磁石配列22では、永久磁石配列26側の磁場が強めあい、永久磁石配列26側と反対側の磁場が弱めあうように永久磁石23が配列されている。永久磁石配列26では、永久磁石配列22側の磁場が強めあい、永久磁石配列22側と反対側の磁場が弱めあうように永久磁石27が配列されている。   In the permanent magnet array 22, the permanent magnets 23 are arranged so that the magnetic field on the permanent magnet array 26 side is strengthened and the magnetic field on the side opposite to the permanent magnet array 26 side is weakened. In the permanent magnet array 26, the permanent magnets 27 are arranged so that the magnetic field on the permanent magnet array 22 side is strengthened and the magnetic field on the opposite side to the permanent magnet array 22 side is weakened.

図3は、永久磁石23、27の着磁方向に平行な面での断面図である。永久磁石23、27は、永久磁石23、27の着磁方向に平行な面(紙面に平行な面)内において、共に台形であり、同じ断面積を有している。永久磁石23の数と永久磁石27の数は同じである。永久磁石23の数および永久磁石27の数が、例えば、64個であると、隣り合う永久磁石23同士、または隣り合う永久磁石27同士は、180度に近い略174度の角度で接合することになる。従って、永久磁石23と、永久磁石27は略正方形であるとみなすことができる。   FIG. 3 is a cross-sectional view taken along a plane parallel to the magnetization direction of the permanent magnets 23 and 27. The permanent magnets 23 and 27 are both trapezoidal in the plane parallel to the magnetization direction of the permanent magnets 23 and 27 (the plane parallel to the paper surface) and have the same cross-sectional area. The number of permanent magnets 23 and the number of permanent magnets 27 are the same. When the number of permanent magnets 23 and the number of permanent magnets 27 is, for example, 64, adjacent permanent magnets 23 or adjacent permanent magnets 27 are joined at an angle of approximately 174 degrees close to 180 degrees. become. Therefore, it can be considered that the permanent magnet 23 and the permanent magnet 27 are substantially square.

そこで、図1の場合と同様に、永久磁石23、27の着磁方向に平行な面(紙面に平行な面)内における永久磁石23、27の断面積の平方根を1として規格化する。断面積の平方根が1なので、永久磁石23、27の断面積も1である。また、永久磁石23、27は、永久磁石23、27の着磁方向に平行な面内において、共に略正方形の形状を有しているとみなすことができるので、永久磁石23、27の一辺の長さも1と近似することができる。なる。永久磁石配列22と永久磁石配列26との間24の間隔(ギャップ長)をaとする。   Therefore, as in the case of FIG. 1, the square root of the sectional area of the permanent magnets 23 and 27 in the plane parallel to the magnetization direction of the permanent magnets 23 and 27 (plane parallel to the paper surface) is normalized as 1. Since the square root of the cross-sectional area is 1, the cross-sectional areas of the permanent magnets 23 and 27 are also 1. In addition, since the permanent magnets 23 and 27 can be regarded as having a substantially square shape in a plane parallel to the magnetization direction of the permanent magnets 23 and 27, The length can also be approximated as 1. Become. An interval 24 (gap length) between the permanent magnet array 22 and the permanent magnet array 26 is a.

このように、図3に示すように、永久磁石23、27の磁極を周方向に90度ずつそれぞれ回転してハルバッハ配列した永久磁石配列22、26を使用した場合も、近似的に図2の等価磁気回路となり、上述の議論がそのまま当てはまることになる。   Thus, as shown in FIG. 3, the permanent magnet arrays 22 and 26 in which the magnetic poles of the permanent magnets 23 and 27 are rotated by 90 degrees in the circumferential direction and Halbach arrays are used are also approximately shown in FIG. It becomes an equivalent magnetic circuit, and the above-mentioned argument is applied as it is.

ギャップ長aを0.25、0.5、1.0、1.5、2.0とした場合の直線YY上のy方向磁束密度Bの磁極間平均値B、γおよびδをパラメータとして(4)式より得られたBavの値を表1に示す。
表1中、γ=0.25、δ=0.25は幾何学的な中心を磁気回路の経路として選択した場合である。また、γ=0.10、δ=0.25はBとBavの誤差を最小にする値、Bτは2次元有限要素法磁界解析による解析値でBの極ピッチ間平均値である。ここで、極ピッチ間の磁束密度が正弦波状に分布していると仮定すると、その磁束密度平均値BavτはBavのl/√2倍である。BτとBavτの誤差はγ=0.20、δ=0.22で最小となる。
When the gap length a is set to 0.25, 0.5, 1.0 , 1.5, and 2.0, the average values B 0 , γ, and δ of the y-direction magnetic flux density B y on the straight line YY are parameters. Table 1 shows the values of B av obtained from the equation (4).
In Table 1, γ = 0.25 and δ = 0.25 correspond to the case where the geometric center is selected as the path of the magnetic circuit. Further, γ = 0.10, δ = 0.25 is B 0 value to minimize the error B av, B tau is the average value between the pole pitch of the B y in the analysis value by two-dimensional finite element method field analysis is there. Here, assuming that the magnetic flux density between the pole pitches is distributed in a sine wave shape, the average magnetic flux density value B avτ is 1 / √2 times B av . Error of B tau and B Avtau is minimized by γ = 0.20, δ = 0.22.

図1に示すように、永久磁石13の磁極を第1の直線方向に90度ずつ回転してハルバッハ配列された永久磁石配列12と、永久磁石17の磁極を第1の直線と平行な第2の直線方向に90度ずつ回転してハルバッハ配列された永久磁石配列16とを備え、永久磁石13と永久磁石17は正方形の形状を有し、同じ断面積を有しているデュアルハルバッハ配列界磁10および、図3に示すように、永久磁石23の磁極を周方向に90度ずつ回転してハルバッハ配列された永久磁石配列22と、永久磁石27の磁極を周方向に90度ずつ回転してハルバッハ配列された永久磁石配列26とを備え、永久磁石23と永久磁石27は略正方形の形状を有し、同じ断面積を有しているデュアルハルバッハ配列界磁20では、上述のように、ギャップ中心線YY上のNS極ピッチ間の平均磁束密度Bavτは、

となる。ここで、Bは永久磁石の残留磁束密度であり、αは

である。
As shown in FIG. 1, the permanent magnet array 12 is arranged in a Halbach array by rotating the magnetic poles of the permanent magnet 13 by 90 degrees in the first linear direction, and the magnetic poles of the permanent magnet 17 are parallel to the first straight line. The permanent magnet 13 and the permanent magnet 17 are square-shaped and have the same cross-sectional area, and the dual Halbach array field is provided. 10 and FIG. 3, the permanent magnet array 22 is rotated by 90 degrees in the circumferential direction by rotating the magnetic poles of the permanent magnet 23 by 90 degrees in the circumferential direction, and the magnetic pole of the permanent magnet 27 is rotated by 90 degrees in the circumferential direction. In the dual Halbach array field 20 having the Halbach array permanent magnet array 26, the permanent magnet 23 and the permanent magnet 27 having a substantially square shape and the same cross-sectional area, as described above, the gap During ~ The average magnetic flux density B Avtau between NS pole pitch on line YY is

It becomes. Here, Br is the residual magnetic flux density of the permanent magnet, and α is

It is.

デュアルハルバッハ界磁のギャップ中に配置される電機子コイルの鎖交磁束数Φは極ピッチあたりの磁路断面積をS、コイル巻回数をNとすれば

となる。
The number of interlinkage magnetic fluxes Φ of the armature coil arranged in the gap of the dual Halbach field is S and the number of coil turns is N.

It becomes.

ギャップ中に配置される電機子コイルは極ピッチの幅でギャップを満たすように製作すると最大の巻回数が得られるので、着磁方向に平行な面内における永久磁石の断面の面積の平方根を1とし、永久磁石が正方形の場合には、正方形の一辺の長さを1とし、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さを1とした場合、Sは界磁の奥行(正方形断面に直行する方向の永久磁石の長さ)lに比例し、Nは奥行lとギャップ長aに比例する。今、比例定数をkとして、

とすれば、

であるから、式(7)、式(8)を式(6)に代入して鎖交磁束数Φは次式で表せる。
When the armature coil arranged in the gap is manufactured so as to fill the gap with the width of the pole pitch, the maximum number of turns can be obtained. Therefore, the square root of the cross-sectional area of the permanent magnet in the plane parallel to the magnetization direction is set to 1. When the permanent magnet is square, the length of one side of the square is 1, and when the permanent magnet is approximately square and can be approximated as a square, the length of one side of the approximated square is 1. In this case, S is proportional to the depth of the field (the length of the permanent magnet in the direction perpendicular to the square cross section) l, and N is proportional to the depth l and the gap length a. Now, if the proportionality constant is k,

given that,

Therefore, by substituting Equations (7) and (8) into Equation (6), the number of flux linkages Φ can be expressed by the following equation.

一方、上述のように、式(5)中、γ=0.20、δ=0.22のとき、式(4‘)のBavτは実際の磁極ピッチ間平均磁束密度を表す計算式となる。したがって、実際の鎖交磁束は、γ=0.20、δ=0.22としたときの式(9)で計算できる。ここで、同式中のkとlは所定の定数であるから、

で定義される関数f(a)が最大となるギャップ長aの値が存在すれば、そのギャップ長でデュアルハルバッハ配列界磁を構成すると最大の鎖交磁束数を得ることができる。
On the other hand, as described above, when γ = 0.20 and δ = 0.22 in equation (5), B avτ in equation (4 ′) is a calculation equation representing the actual average magnetic flux density between magnetic pole pitches. . Therefore, the actual flux linkage can be calculated by equation (9) when γ = 0.20 and δ = 0.22. Here, k and l in the equation are predetermined constants.

If there is a value of the gap length a that maximizes the function f (a) defined by (2), the maximum number of interlinkage magnetic fluxes can be obtained by configuring a dual Halbach array field with that gap length.

f(a)をグラフ化すると図4のようになる。最大値が存在するので、

よりaを求めると、a=1.2となる。すなわち、着磁方向に平行な面内における永久磁石の断面の面積の平方根の1.2倍、永久磁石が正方形の場合には、正方形の一辺の長さの1.2倍、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さの1.2倍、のギャップ長とすれば、所定の巻回数に対して最大の鎖交磁束を得ることができる。
FIG. 4 shows a graph of f (a). Since there is a maximum value,

If a is obtained, a = 1.2. That is, 1.2 times the square root of the cross-sectional area of the permanent magnet in a plane parallel to the magnetization direction, and when the permanent magnet is square, the permanent magnet is approximately 1.2 times the length of one side of the square. If it is a square and can be approximated as a square, the maximum interlinkage magnetic flux can be obtained for a predetermined number of turns if the gap length is 1.2 times the length of one side of the approximated square. Can do.

ハルバッハ配列界磁と電機子コイルは互いに相対運動するので、界磁の永久磁石と電機子コイルが接触しないよう、実際に電機子コイルを界磁ギャップ中に配置する場合にはある程度の隙間を必要とする。また、電機子コイルは電線をボビンに装巻したり、装巻した電線をモールドにより固着して形成される。このため、コイルの厚みのすべてが導体で占められることはなく、永久磁石の正方形断面の一辺の長さを1cmとすれば、界磁とコイル導体間には界磁と対向する面で1mm程度の非導電体が存在することになる。   Since the Halbach array field and armature coils move relative to each other, a certain amount of clearance is required when the armature coils are actually placed in the field gap so that the permanent magnets of the field and the armature coils do not contact each other. And The armature coil is formed by winding an electric wire around a bobbin or fixing the wound electric wire by a mold. Therefore, the entire thickness of the coil is not occupied by the conductor, and if the length of one side of the square cross section of the permanent magnet is 1 cm, the surface facing the field is about 1 mm between the field magnet and the coil conductor. The non-conductor is present.

この場合、着磁方向に平行な面内における永久磁石の断面の面積の平方根を1とし、永久磁石が正方形の場合には、正方形の一辺の長さを1とし、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さを1とした場合、界磁のギャップ中に配置される電機子コイルの巻回数Nは、式(7)の場合と同様にして、

で表せる。したがって、鎖交磁束を最大にするギャップ長は

で定義される関数g(a)を最大にするギャップ長となる。
In this case, the square root of the cross-sectional area of the permanent magnet in the plane parallel to the magnetization direction is 1, and when the permanent magnet is square, the length of one side of the square is 1, and the permanent magnet is substantially square. When it can be approximated as a square, when the length of one side of the approximated square is set to 1, the number of turns N of the armature coil arranged in the field gap is as in the case of Equation (7). Similarly,

It can be expressed as Therefore, the gap length that maximizes the flux linkage is

The gap length that maximizes the function g (a) defined by

g(a)をグラフ化すると図5のようになる。最大値が存在するので、

よりaを求めると、a=1.5となる。すなわち、着磁方向に平行な面内における永久磁石の断面の面積の平方根の1.5倍、永久磁石が正方形の場合には、正方形の一辺の長さの1.5倍、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さの1.5倍、のギャップ長とすれば、所定の巻回数に対して最大の鎖交磁束を得ることができる。
FIG. 5 is a graph of g (a). Since there is a maximum value,

If a is obtained, a = 1.5. That is, 1.5 times the square root of the cross-sectional area of the permanent magnet in a plane parallel to the magnetization direction, and when the permanent magnet is square, the permanent magnet is approximately 1.5 times the length of one side of the square. If it is a square and can be approximated as a square, the maximum flux linkage can be obtained for a given number of turns if the gap length is 1.5 times the length of one side of the approximated square. Can do.

このように、デュアルハルバッハ配列界磁のギャップ長を、着磁方向に平行な面内における永久磁石の断面の面積の平方根の1.2〜1.5倍、永久磁石が正方形の場合には、正方形の一辺の長さの1.2〜1.5倍、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さの1.2〜1.5倍に設定すると、電機子コイルにおいて大きな鎖交磁束数を得ることができる。   Thus, when the gap length of the dual Halbach array field is 1.2 to 1.5 times the square root of the cross section of the permanent magnet in a plane parallel to the magnetization direction, and the permanent magnet is square, When the length of one side of the square is 1.2 to 1.5 times, and the permanent magnet is substantially square and can be approximated as a square, the length of one side of the approximate square is 1.2 to 1.5. When set to double, a large number of flux linkages can be obtained in the armature coil.

(第1の実施の形態)
本発明の好適な第1の実施の形態は、円筒型3相リニア同期モータである。図6は、本発明の好ましい第1の実施の形態の円筒型3相リニア同期モータ100を説明するための概略斜視図である。図7は、図6のA−A線断面図であり、図8は、図6のB−B線断面図であり、図9は、図6のC−C線断面図である。
(First embodiment)
The first preferred embodiment of the present invention is a cylindrical three-phase linear synchronous motor. FIG. 6 is a schematic perspective view for explaining the cylindrical three-phase linear synchronous motor 100 according to the first preferred embodiment of the present invention. 7 is a cross-sectional view taken along line AA in FIG. 6, FIG. 8 is a cross-sectional view taken along line BB in FIG. 6, and FIG. 9 is a cross-sectional view taken along line CC in FIG.

円筒型3相リニア同期モータ100は、円筒状の固定子105と、固定子105の軸方向に可動し、切欠き部を有する円筒状の可動子107と、可動子107に外部の電源108からの電力を供給する駆動装置109とを備えている。   A cylindrical three-phase linear synchronous motor 100 includes a cylindrical stator 105, a cylindrical movable element 107 that is movable in the axial direction of the stator 105, and has a notch, and an external power source 108 connected to the movable element 107. And a driving device 109 for supplying the electric power.

固定子105は、リング状の永久磁石112の磁極がその中心軸を含む断面において90度ずつ回転するように永久磁石112を隣接させて構成される第1の永久磁石列としての外側永久磁石列111と、リング状の永久磁石116の磁極がその中心軸を含む断面において90度ずつ回転するように永久磁石116を隣接させて構成される第2の永久磁石列としての内側永久磁石列115と、内側内面に第1の永久磁石列111が固定される第1の円環状固定部材としての外側パイプ113と、外側面に内側永久磁石列115が固定される第2の円環状固定部材としての内側パイプ117と、可動子107と干渉しないように切欠きが設けられ外側パイプ113と内側パイプ117を固定する固定板123とを備えている。   The stator 105 is an outer permanent magnet array as a first permanent magnet array configured such that the permanent magnets 112 are adjacent to each other so that the magnetic poles of the ring-shaped permanent magnet 112 rotate by 90 degrees in a cross section including the central axis. 111, and an inner permanent magnet row 115 as a second permanent magnet row configured such that the permanent magnets 116 are adjacent to each other so that the magnetic poles of the ring-shaped permanent magnets 116 rotate by 90 degrees in a cross section including the central axis thereof. The outer pipe 113 as a first annular fixing member to which the first permanent magnet row 111 is fixed to the inner inner surface, and the second annular fixing member to which the inner permanent magnet row 115 is fixed to the outer surface. The inner pipe 117 is provided with an outer pipe 113 and a fixing plate 123 for fixing the inner pipe 117 so as not to interfere with the mover 107.

さらに、固定子105では、外側パイプ113の外側上部および外側下部に、ガイド棒121がガイド棒支持部材211、213を介して取り付けられている。ガイド棒121の表面にはガイド棒支持部材211側の端部から当該ガイド棒支持部材211までの範囲で上下に2分割された電極203、205、207、209が固着されており、各電極からの引出し線141は束ねられてガイド棒支持部材211に設けられた導出路143を経由して駆動装置109に導入されている。   Further, in the stator 105, guide rods 121 are attached to the outer upper portion and the outer lower portion of the outer pipe 113 via guide rod support members 211 and 213. Electrodes 203, 205, 207, and 209 that are divided into two portions in the range from the end on the guide rod support member 211 side to the guide rod support member 211 are fixed to the surface of the guide rod 121. The lead wires 141 are bundled and introduced into the driving device 109 via a lead-out path 143 provided in the guide rod support member 211.

可動子107は、三相コイル131が巻装された巻装環133と、巻装環133の両端に固定され切欠き部を有する出力環137と、出力環137の切欠き部を固定する切欠き固定板139と、出力環137の端部に取付けられ巻装環133をガイド棒121に沿って案内するリニアブッシュ135とを備えている。リニアブッシュ135はガイド棒121の表面に設けられた電極203、205、207、209のそれぞれに接触する摺動電極201を具備しており、片端が三相コイル131に接続された引出し線141が出力環137およびリニアブッシュ135に設けられた導出路143を介して摺動電極201に接続されている。これにより、三相コイル131は固定子105側の各電極203、205、207、209を介して駆動装置109と電気的に接続される。ここで、各電極203、205、207、209のそれぞれには、駆動装置109の発生する三相交流電圧に応じた三相交流電流のU相,V相,W相および中性点電流が流れ、三相コイル131が励磁されて所定の推力で可動子107が軸方向に移動する。   The mover 107 includes a winding ring 133 around which the three-phase coil 131 is wound, an output ring 137 having a notch fixed to both ends of the winding ring 133, and a notch for fixing the notch of the output ring 137. A notch fixing plate 139 and a linear bush 135 attached to the end of the output ring 137 and guiding the winding ring 133 along the guide rod 121 are provided. The linear bush 135 includes a sliding electrode 201 that contacts each of the electrodes 203, 205, 207, and 209 provided on the surface of the guide rod 121, and a lead wire 141 having one end connected to the three-phase coil 131. The output ring 137 and the linear bush 135 are connected to the sliding electrode 201 via a lead-out path 143. As a result, the three-phase coil 131 is electrically connected to the driving device 109 via the electrodes 203, 205, 207, and 209 on the stator 105 side. Here, the U-phase, V-phase, W-phase, and neutral point current of the three-phase AC current corresponding to the three-phase AC voltage generated by the drive device 109 flows through each of the electrodes 203, 205, 207, and 209. The three-phase coil 131 is excited and the mover 107 moves in the axial direction with a predetermined thrust.

外側永久磁石配列111の永久磁石112の数と内側永久磁石配列115の永久磁石116の数は同じである、外側永久磁石配列111の永久磁石112のうち径方向に着磁した永久磁石112の磁極方向と、永久磁石配列115の永久磁石116のうち径方向に着磁した永久磁石116の磁極方向は、同じ半径上に配置されているもの同士は同じである。外側永久磁石配列111の永久磁石112のうち軸方向に着磁した永久磁石112の磁極方向と、内側永久磁石配列115の永久磁石116のうち軸方向に着磁した永久磁石116の磁極方向は、同じ半径上に配置されているもの同士は反対である。   The number of permanent magnets 112 in the outer permanent magnet array 111 and the number of permanent magnets 116 in the inner permanent magnet array 115 are the same, and the magnetic poles of the permanent magnets 112 magnetized in the radial direction among the permanent magnets 112 in the outer permanent magnet array 111. The direction and the magnetic pole direction of the permanent magnet 116 magnetized in the radial direction among the permanent magnets 116 of the permanent magnet array 115 are the same when arranged on the same radius. The magnetic pole direction of the permanent magnet 112 magnetized in the axial direction among the permanent magnets 112 in the outer permanent magnet array 111 and the magnetic pole direction of the permanent magnet 116 magnetized in the axial direction among the permanent magnets 116 in the inner permanent magnet array 115 are: Those arranged on the same radius are opposite.

外側永久磁石配列111では、永久磁石112の磁極を軸方向に90度ずつ回転させながら配列しているので、配列の一方の側(本実施の形態では外側)の磁場が弱まり、その配列の他方の側(本実施の形態では内側、内側永久磁石配列115側)では、その分磁場が強くなって、外側永久磁石配列111の片側(本実施の形態では内側)に強い磁場を発生させることができる。また、内側永久磁石配列115では、永久磁石116の磁極を軸方向に90度ずつ回転させながら配列しているので、配列の一方の側(本実施の形態では内側)の磁場が弱まり、その配列の他方の側(本実施の形態では外側、外側永久磁石配列111側)では、その分磁場が強くなって、内側永久磁石配列115の片側(本実施の形態では外側)に強い磁場を発生させることができる。   In the outer permanent magnet arrangement 111, the magnetic poles of the permanent magnets 112 are arranged while being rotated by 90 degrees in the axial direction, so that the magnetic field on one side of the arrangement (outside in the present embodiment) is weakened, and the other of the arrangement On the other side (in this embodiment, on the inner side, on the inner permanent magnet array 115 side), the magnetic field becomes stronger, and a strong magnetic field can be generated on one side of the outer permanent magnet array 111 (in this embodiment, on the inner side). it can. Further, in the inner permanent magnet array 115, the magnetic poles of the permanent magnets 116 are arrayed while being rotated by 90 degrees in the axial direction, so that the magnetic field on one side of the array (in this embodiment, the inner side) is weakened. On the other side (outside in this embodiment, outside permanent magnet array 111 side), the magnetic field is increased correspondingly, and a strong magnetic field is generated on one side (outside in this embodiment) of the inside permanent magnet array 115. be able to.

このように外側磁石配列111と内側永久磁石配列115とを構成しているので、外側永久磁石配列111と内側永久磁石配列115との間の空間の磁場は強くなり、その一方では、外側永久磁石配列111の外側と内側永久磁石配列115の内側には、磁場は殆ど漏れなくなる。そして、外側永久磁石列111と内側永久磁石列115との間の空隙中に半径方向の磁束が極めて多く分布するようになる。半径方向の磁束が極めて多く分布するこの空隙中に三相コイル131が配置されており、磁束の大部分が三相コイル131と直角に鎖交するので、駆動装置109から供給される電力を効率よく推力に変換できる。このように、三相コイル131が配置される領域の磁場が強くなるので、三相コイル131に鉄心を使用しなくても、三相コイル131が強く励磁され、大きい推力で可動子107を軸方向に移動することができる。そして、鉄心を使用しないので、コギングをなくすかまたは小さくできる。   Since the outer magnet array 111 and the inner permanent magnet array 115 are thus configured, the magnetic field in the space between the outer permanent magnet array 111 and the inner permanent magnet array 115 becomes stronger, while on the other hand, the outer permanent magnet The magnetic field hardly leaks outside the array 111 and inside the inner permanent magnet array 115. Then, an extremely large amount of radial magnetic flux is distributed in the gap between the outer permanent magnet row 111 and the inner permanent magnet row 115. The three-phase coil 131 is disposed in the gap in which a large amount of magnetic flux in the radial direction is distributed, and most of the magnetic flux is linked to the three-phase coil 131 at a right angle, so that the power supplied from the drive device 109 is efficiently used. Can be converted into thrust well. Thus, since the magnetic field in the region where the three-phase coil 131 is disposed becomes strong, the three-phase coil 131 is strongly excited without using an iron core for the three-phase coil 131, and the movable element 107 is pivoted with a large thrust. Can move in the direction. And since an iron core is not used, cogging can be eliminated or reduced.

外側永久磁石配列111は、半径方向と厚み方向に着磁された断面が正方形のリング状永久磁石112を積み重ねて構成されている。また、内側永久磁石配列115は、半径方向と厚み方向に着磁された断面が正方形のリング状永久磁石116を積み重ねて構成されている。外側永久磁石配列111で構成される外側円筒界磁と、内側永久磁石配列115で構成される内側円筒界磁でデュアルハルバッハ界磁が構成されている。外側円筒界磁と内側円筒界磁、それぞれの円筒界磁の中心軸は重なっている。外側円筒界磁の内面と前記内側円筒界磁の外面との距離がハルバッハ界磁のギャップ長となっており、このギャップ長は、リング永久磁石112、116の着磁方向に平行な面内における正方形断面の面積の平方根(永久磁石112、116の正方形断面の1辺の長さに相当)の1.2倍に設定されている。本実施の形態では、個々の電機子コイル131は所定の厚さで永久磁石112、116の正方形断面の1辺の長さの略1.3倍(4/3倍)の幅の絶縁被膜銅帯をリング状に巻装して構成されている。このような構成では寸法精度と占積率が高く、界磁ギャップ長がほぼ導体で埋まるように構成しても当該界磁と電機子コイルが接触することはない。このため、上述の式(10)に基づいて電機子コイル131の磁束鎖交数を最大にでき、1Aあたりの軸推力が増大する。   The outer permanent magnet array 111 is configured by stacking ring-shaped permanent magnets 112 having a square cross section magnetized in the radial direction and the thickness direction. The inner permanent magnet array 115 is formed by stacking ring-shaped permanent magnets 116 having a square cross section magnetized in the radial direction and the thickness direction. A dual Halbach field is composed of an outer cylindrical field composed of the outer permanent magnet array 111 and an inner cylindrical field composed of the inner permanent magnet array 115. The central axes of the outer cylindrical field and the inner cylindrical field overlap each other. The distance between the inner surface of the outer cylindrical field and the outer surface of the inner cylindrical field is the gap length of the Halbach field, and this gap length is in a plane parallel to the magnetization direction of the ring permanent magnets 112 and 116. The square root of the area of the square section (equivalent to the length of one side of the square section of the permanent magnets 112 and 116) is set to 1.2 times. In the present embodiment, each armature coil 131 has a predetermined thickness and an insulating coated copper having a width approximately 1.3 times (4/3 times) the length of one side of the square cross section of the permanent magnets 112 and 116. A belt is wound in a ring shape. In such a configuration, the dimensional accuracy and the space factor are high, and even if the field gap length is substantially filled with a conductor, the field and the armature coil do not contact each other. For this reason, the number of magnetic flux linkages of the armature coil 131 can be maximized based on the above formula (10), and the axial thrust per 1A is increased.

上述の実施の形態では、三相コイル131が、半径方向の磁束が極めて多く分布する空隙中に配置されるので磁束の大部分が三相コイル131と直角に鎖交し、より少ない電流で大きな推力が発生する。外側永久磁石配列111では、永久磁石112の磁極を軸方向に90度ずつ回転させながら配列して、外側永久磁石配列111の外側の磁場が弱まり、外側永久磁石配列111の内側では、その分磁場が強くなって、外側永久磁石配列111の内側に強い磁場を発生させ、また、内側永久磁石配列115では、永久磁石116の磁極を軸方向に90度ずつ回転させながら配列して、内側永久磁石配列115の内側の磁場が弱まり、内側永久磁石配列115の外側では、その分磁場が強くなって、内側永久磁石配列115の外側に強い磁場を発生させたが、磁極を軸方向に90度ずつ回転させなくても、例えば、45度ずつ回転させてもよく、軸方向に2πの整数等分ずつ磁極の方向が変化するように複数の第1の永久磁石を軸方向に配列して、第1の永久磁石の配列の内側の磁場が強めあい、外側の磁場が弱めあうようにし、軸方向に2πの整数等分ずつ磁極の方向が第1の永久磁石の配列とは反対方向に変化するように複数の第2の永久磁石を軸方向に配列して、第1の永久磁石の配列の内側に配置し、第2の永久磁石の配列の外側の磁場が強めあい、内側の磁場が弱めあうように配置してもよい。   In the above-described embodiment, the three-phase coil 131 is arranged in a gap in which a large amount of magnetic flux in the radial direction is distributed. Thrust is generated. In the outer permanent magnet arrangement 111, the magnetic poles of the permanent magnets 112 are arranged while being rotated by 90 degrees in the axial direction, and the magnetic field outside the outer permanent magnet arrangement 111 is weakened. Becomes stronger and generates a strong magnetic field inside the outer permanent magnet array 111. In the inner permanent magnet array 115, the magnetic poles of the permanent magnets 116 are arranged while being rotated by 90 degrees in the axial direction. The magnetic field inside the array 115 is weakened, and the magnetic field is increased correspondingly outside the inner permanent magnet array 115, and a strong magnetic field is generated outside the inner permanent magnet array 115. However, the magnetic poles are each 90 degrees in the axial direction. For example, a plurality of first permanent magnets may be arranged in the axial direction so that the direction of the magnetic poles changes by an integer equal to 2π in the axial direction. The magnetic field on the inner side of the first permanent magnet array is strengthened and the outer magnetic field is weakened, and the direction of the magnetic pole is changed in the direction opposite to the first permanent magnet array by an integer equal to 2π in the axial direction. A plurality of second permanent magnets are arranged in the axial direction so as to be arranged inside the first permanent magnet arrangement, the magnetic field outside the second permanent magnet arrangement is strengthened, and the inner magnetic field is You may arrange so that it may weaken.

(第2の実施の形態)
本発明の好適な第2の実施の形態は、三相同期発電機である。図10は、本発明の好ましい第2の実施の形態の三相同期発電機200を説明するための概略斜視図である。図11(A)は、着磁方向に平行な面内における断面図であり、図11(B)は、電機子コイルの配線を示す図である。
(Second Embodiment)
A preferred second embodiment of the present invention is a three-phase synchronous generator. FIG. 10 is a schematic perspective view for explaining a three-phase synchronous generator 200 according to a preferred second embodiment of the present invention. FIG. 11A is a cross-sectional view in a plane parallel to the magnetization direction, and FIG. 11B is a diagram showing the wiring of the armature coil.

本実施の形態の発電機200は、回転子250と固定子260とを備えている。回転子250にシャフト240を取り付け、シャフト240を回転させるようにすれば、発電機を構成することができる。回転子250は、永久磁石配列210、220を備えている。固定子260は、コイル配列230を備えている。永久磁石配列210、220はそれぞれリング状に構成され、コイル配列230もそれぞれリング状に構成されている。永久磁石配列210、220およびコイル配列230は同心円状に配置されている。永久磁石配列220は、永久磁石配列20の内側に設けられている。   The generator 200 of this embodiment includes a rotor 250 and a stator 260. If the shaft 240 is attached to the rotor 250 and the shaft 240 is rotated, a generator can be configured. The rotor 250 includes permanent magnet arrays 210 and 220. The stator 260 includes a coil array 230. The permanent magnet arrays 210 and 220 are each configured in a ring shape, and the coil array 230 is also configured in a ring shape. The permanent magnet arrays 210 and 220 and the coil array 230 are arranged concentrically. The permanent magnet array 220 is provided inside the permanent magnet array 20.

永久磁石配列210、220は、それぞれ永久磁石211、221の磁極を90°ずつ回転させながら配列したハルバッハ配列となっている。   The permanent magnet arrays 210 and 220 are Halbach arrays in which the magnetic poles of the permanent magnets 211 and 221 are respectively rotated by 90 °.

永久磁石配列210の永久磁石211の数と永久磁石配列220の永久磁石221の数は同じである、永久磁石配列210の永久磁石211のうち径方向に着磁した永久磁石211の磁極方向と、永久磁石配列220の永久磁石221のうち径方向に着磁した永久磁石221の磁極方向は、同じ半径上に配置されているもの同士は同じである。永久磁石配列210の永久磁石211のうち周方向に着磁した永久磁石211の磁極方向と、永久磁石配列220の永久磁石221のうち周方向に着磁した永久磁石221の磁極方向は、同じ半径上に配置されているもの同士は反対である。   The number of permanent magnets 211 in the permanent magnet array 210 is the same as the number of permanent magnets 221 in the permanent magnet array 220, and the magnetic pole direction of the permanent magnet 211 magnetized in the radial direction among the permanent magnets 211 in the permanent magnet array 210; Among the permanent magnets 221 in the permanent magnet array 220, the magnetic poles of the permanent magnets 221 magnetized in the radial direction are the same as those disposed on the same radius. The magnetic pole direction of the permanent magnet 211 magnetized in the circumferential direction of the permanent magnets 211 of the permanent magnet array 210 and the magnetic pole direction of the permanent magnet 221 magnetized in the circumferential direction of the permanent magnets 221 of the permanent magnet array 220 are the same radius. The ones placed above are the opposite.

永久磁石配列210では、永久磁石211の磁極を周方向に略90°ずつ回転させながら配列しているので、配列の一方の側(本実施の形態では外側)の磁場が弱まり、その配列の他方の側(本実施の形態では内側)では、その分磁場が強くなって、永久磁石211の配列210の片側(本実施の形態では内側)に強い磁場を発生させることができる。また、永久磁石配列220では、永久磁石221の磁極を周方向に略90°ずつ回転させながら配列しているので、配列の一方の側(本実施の形態では内側)の磁場が弱まり、その配列の他方の側(本実施の形態で外側)では、その分磁場が強くなって、永久磁石221の配列220の片側(本実施例では外側)に強い磁場を発生させることができる。   In the permanent magnet arrangement 210, the magnetic poles of the permanent magnets 211 are arranged while being rotated by approximately 90 ° in the circumferential direction, so that the magnetic field on one side (outside in the present embodiment) of the arrangement is weakened, and the other of the arrangement On the other side (inner side in the present embodiment), the magnetic field is increased correspondingly, and a strong magnetic field can be generated on one side (inner side in the present embodiment) of the array 210 of the permanent magnets 211. Further, in the permanent magnet arrangement 220, the magnetic poles of the permanent magnets 221 are arranged while being rotated by approximately 90 ° in the circumferential direction, so that the magnetic field on one side (in the present embodiment) of the arrangement is weakened. On the other side (outside in the present embodiment), the magnetic field is increased correspondingly, and a strong magnetic field can be generated on one side (outside in the present embodiment) of the array 220 of the permanent magnets 221.

このように永久磁石配列210と永久磁石配列220とを構成しているので、永久磁石配列210と永久磁石配列220との間の空間の磁場は強くなり、その一方では、永久磁石配列210の外側と永久磁石配列220の内側には、磁場は殆ど漏れなくなる。そして、この永久磁石配列210と永久磁石配列220との間にコイル配列230を配置しているので、高い電圧を発生することができる。このように、コイル配列230が配置される領域の磁場が強くなるので、コイル配列230を構成するコイル231に鉄心を使用しなくても、高い電圧を発生することができるようになる。そして、鉄心を使用しないので、コギングをなくすかまたは小さくできる。なお、図11(B)に示すように、コイル配列230は複数のコイル231がU相−V相−W相の順に巻かれてY結線しており、3相交流を発生する。   Since the permanent magnet array 210 and the permanent magnet array 220 are thus configured, the magnetic field in the space between the permanent magnet array 210 and the permanent magnet array 220 becomes strong, while the outside of the permanent magnet array 210. The magnetic field hardly leaks inside the permanent magnet array 220. Since the coil array 230 is arranged between the permanent magnet array 210 and the permanent magnet array 220, a high voltage can be generated. Thus, since the magnetic field in the region where the coil array 230 is arranged becomes strong, a high voltage can be generated without using an iron core for the coil 231 constituting the coil array 230. And since an iron core is not used, cogging can be eliminated or reduced. As shown in FIG. 11B, in the coil array 230, a plurality of coils 231 are wound in the order of U phase-V phase-W phase and Y-connected to generate a three-phase alternating current.

本実施の形態では、回転軸240の周囲に永久磁石211、221をハルバッハ配列にして構成される内、外の2組の磁石列201、220でデュアルハルバッハ配列界磁が構成されている。個々の永久磁石211、221は半径方向断面(着磁方向に平行な面内における断面)でその面積が略等しく、外側磁石列210を構成する永久磁石211の内面と内側磁石列220を構成する永久磁石221の外面は互いに対向している。外側磁石列210を構成する永久磁石211および内側磁石列220を構成する永久磁石221の個々の半径方向断面がともに台形であり、それぞれ64個でデュアルハルバッハ配列界磁を構成している。電機子コイル231はデュアルハルバッハ配列界磁のギャップ中に配置されるが、外側磁石列210と内側磁石列220はともに64角形であり、隣り合う永久磁石211、221同士のギャップ面には接続角度が存在する。本実施の形態の三相同期発電機200では、電機子コイル231の半径方向断面は外形が長方形であり、その幅が回転軸中心から永久磁石211、221の2つを見込む角度である。また、電機子コイル231は絶縁被膜丸銅線を鍔付ボビンに巻装して構成されている。外側磁石列210を構成する永久磁石211の内面と内側磁石列220を構成する永久磁石221の外面との距離がハルバッハ界磁のギャップ長となっている。このギャップ長は、接続角、ボビンの鍔の厚さ、界磁永久磁石211、221とボビンの鍔との隙間を勘案し、永久磁石211、221の着磁方向に平行な面内における台形断面の面積の平方根(永久磁石211、221の正方形であると近似した場合の正方形の1辺の長さに相当)の1.5倍に設定されている。すなわち、対向する永久磁石211、221同士の対向面で囲まれる界磁ギャップの半径方向断面の台形面積を個々の永久磁石の半径方向断面の台形面積の1.5倍となるように界磁ギャップ長が設定されている。本実施の形態では界磁が64角形となるため、上述の接続角は略174°となり、永久磁石211、221の半径方向断面の形状は略正方形とみなすことができる。したがって、式(12)に基づき、本実施の形態における同期発電機において電機子コイルの磁束鎖交数を最大にでき、所定の定格回転数における発電電圧が増大する。   In the present embodiment, the permanent magnets 211 and 221 are arranged around the rotating shaft 240 in a Halbach array, and the dual two Halbach array field is configured by the two outer magnet rows 201 and 220. Each of the permanent magnets 211 and 221 has a radial cross section (a cross section in a plane parallel to the magnetization direction) and has substantially the same area, and forms the inner magnet row 220 and the inner surface of the permanent magnet 211 constituting the outer magnet row 210. The outer surfaces of the permanent magnets 221 are opposed to each other. The individual radial cross sections of the permanent magnet 211 constituting the outer magnet row 210 and the permanent magnet 221 constituting the inner magnet row 220 are both trapezoidal, and 64 pieces each constitute a dual Halbach array field. The armature coil 231 is arranged in the gap of the dual Halbach array field, but the outer magnet array 210 and the inner magnet array 220 are both hexagonal, and a connection angle is formed on the gap surface between the adjacent permanent magnets 211 and 221. Exists. In the three-phase synchronous generator 200 of the present embodiment, the armature coil 231 has a rectangular cross section in the radial direction, and its width is an angle at which two permanent magnets 211 and 221 are expected from the center of the rotation axis. The armature coil 231 is configured by winding an insulating coated copper wire around a flanged bobbin. The distance between the inner surface of the permanent magnet 211 constituting the outer magnet row 210 and the outer surface of the permanent magnet 221 constituting the inner magnet row 220 is the Halbach field gap length. This gap length is a trapezoidal section in a plane parallel to the magnetization direction of the permanent magnets 211 and 221 in consideration of the connection angle, the thickness of the bobbin ridge, and the gap between the field permanent magnets 211 and 221 and the bobbin ridge. Is set to 1.5 times the square root (corresponding to the length of one side of the square when approximated to be the square of the permanent magnets 211 and 221). That is, the field gap is set so that the trapezoidal area of the radial cross section of the field gap surrounded by the opposing surfaces of the opposing permanent magnets 211 and 221 is 1.5 times the trapezoidal area of the radial cross section of each permanent magnet. The length is set. In this embodiment, since the field has a hexagonal shape, the above-mentioned connection angle is approximately 174 °, and the shape of the cross section in the radial direction of the permanent magnets 211 and 221 can be regarded as a substantially square shape. Therefore, based on Expression (12), the number of flux linkages of the armature coils can be maximized in the synchronous generator in the present embodiment, and the generated voltage at a predetermined rated rotational speed increases.

上述の実施の形態では、発電機200の永久磁石配列210では、永久磁石211の磁極を周方向に略90°ずつ回転させながら配列して、配列の外側の磁場が弱まり、その配列の内側では、その分磁場が強くなって、永久磁石211の配列210の内側に強い磁場を発生させ、また、永久磁石配列220では、永久磁石221の磁極を周方向に略90°ずつ回転させながら配列して、配列の内側の磁場が弱まり、その配列の外側では、その分磁場が強くなって、永久磁石221の配列220の外側に強い磁場を発生させたが、磁極を周方向に略90°ずつ回転させなくても、例えば、略45°ずつ回転させてもよく、周方向に2πの整数等分ずつ磁極の方向が変化するように複数の第1の永久磁石を周方向に配列して、第1の永久磁石の配列の内側の磁場が強めあい、外側の磁場が弱めあうようにし、周方向に2πの整数等分ずつ磁極の方向が第1の永久磁石とは反対方向に変化するように複数の第2の永久磁石を周方向に配列して、第1の永久磁石の配列の内側に配置し、第2の永久磁石の配列の外側の磁場が強めあい、内側の磁場が弱めあうように配置してもよい。   In the above-described embodiment, in the permanent magnet arrangement 210 of the generator 200, the magnetic poles of the permanent magnets 211 are arranged while being rotated by approximately 90 ° in the circumferential direction, and the magnetic field outside the arrangement is weakened. Accordingly, the magnetic field becomes stronger, and a strong magnetic field is generated inside the arrangement 210 of the permanent magnets 211. In the permanent magnet arrangement 220, the magnetic poles of the permanent magnets 221 are arranged while being rotated by about 90 ° in the circumferential direction. As a result, the magnetic field inside the array is weakened, and the magnetic field is increased correspondingly outside the array, and a strong magnetic field is generated outside the array 220 of the permanent magnets 221, but the magnetic poles are approximately 90 ° in the circumferential direction. Without rotating, for example, it may be rotated by approximately 45 °, and a plurality of first permanent magnets are arranged in the circumferential direction so that the direction of the magnetic poles changes by an integer equal to 2π in the circumferential direction, Of the first permanent magnet array A plurality of second permanent magnets are formed so that the inner magnetic field is strengthened and the outer magnetic field is weakened, and the direction of the magnetic pole is changed in the opposite direction to the first permanent magnet by an integer equal to 2π in the circumferential direction. May be arranged in the circumferential direction, arranged inside the first permanent magnet arrangement, and arranged such that the magnetic field outside the second permanent magnet arrangement strengthens and the inner magnetic field weakens.

以上説明したように、デュアルハルバッハ配列界磁のギャップ長を、着磁方向に平行な面内における永久磁石の断面の面積の平方根の1.2〜1.5倍、永久磁石が正方形の場合には、正方形の一辺の長さの1.2〜1.5倍、永久磁石が略正方形であり、正方形であると近似できる場合には、近似した正方形の一辺の長さの1.2〜1.5倍に設定することにより、電機子コイルにおいて大きな鎖交磁束数を得ることができる。その結果、発電機の場合、最小の磁石量で最大の電圧を発生する。また、モータでは最小の磁石量で最大のトルクが発生する。また、デュアルハルバッハ配列界磁の永久磁石量を最小化できるので装置の低コスト化および省資源化に貢献できる。   As described above, the gap length of the dual Halbach array field is 1.2 to 1.5 times the square root of the sectional area of the permanent magnet in a plane parallel to the magnetization direction, and the permanent magnet is square. Is 1.2 to 1.5 times the length of one side of the square, and if the permanent magnet is approximately square and can be approximated to be a square, the length of one side of the approximate square is 1.2 to 1 By setting it to 5 times, a large number of flux linkages can be obtained in the armature coil. As a result, the generator generates the maximum voltage with the minimum amount of magnets. Further, the motor generates the maximum torque with the minimum magnet amount. Further, since the amount of permanent magnets in the dual Halbach array field can be minimized, it is possible to contribute to cost reduction and resource saving of the apparatus.

以上、本発明の種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。従って、本発明の範囲は、次の特許請求の範囲によってのみ限定されるものである。   While various typical embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Accordingly, the scope of the invention is limited only by the following claims.

112 永久磁石
111 永久磁石配列
116 永久磁石
115 永久磁石配列
131 電機子コイル
112 Permanent magnet 111 Permanent magnet array 116 Permanent magnet 115 Permanent magnet array 131 Armature coil

Claims (5)

互いに対向して配置された第1の永久磁石列と第2の永久磁石列であって、前記第1の永久磁石列は、所定の方向に2πの整数等分ずつ磁極の方向が変化し、前記第2の永久磁石列側の磁場が強めあい前記第2の永久磁石列側と反対側の磁場が弱めあうように前記所定の方向に配列された複数の第1の永久磁石を有し、前記第2の永久磁石列は、前記所定の方向に2πの整数等分ずつ磁極の方向が変化し、前記第1の永久磁石列側の磁場が強めあい前記第1の永久磁石列側と反対側の磁場が弱めあうように前記所定の方向に配列された複数の第2の永久磁石を有する前記第1の永久磁石列と第2の永久磁石列と、
前記第1の永久磁石列と前記第2の永久磁石列との間に配置された電機子コイルと、を備え、
前記第1の永久磁石と前記第2の永久磁石は、前記第1の永久磁石および前記第2の永久磁石の着磁方向に平行な面内において同じ断面積を有し、
前記第1の永久磁石列と前記第2の永久磁石列との間隔が、前記断面積の平方根の1.2倍以上1.5以下である電磁誘導装置。
A first permanent magnet row and a second permanent magnet row arranged opposite to each other, wherein the first permanent magnet row changes the direction of the magnetic pole by an integer equal to 2π in a predetermined direction; A plurality of first permanent magnets arranged in the predetermined direction so that the magnetic field on the second permanent magnet row side is strengthened and the magnetic field on the side opposite to the second permanent magnet row side is weakened; In the second permanent magnet row, the direction of the magnetic poles changes by an integer equal to 2π in the predetermined direction, the magnetic field on the first permanent magnet row side is strengthened, and opposite to the first permanent magnet row side. The first permanent magnet row and the second permanent magnet row having a plurality of second permanent magnets arranged in the predetermined direction so that the magnetic field on the side is weakened;
An armature coil disposed between the first permanent magnet row and the second permanent magnet row,
The first permanent magnet and the second permanent magnet have the same cross-sectional area in a plane parallel to the magnetization direction of the first permanent magnet and the second permanent magnet,
The electromagnetic induction device wherein an interval between the first permanent magnet row and the second permanent magnet row is 1.2 times or more and 1.5 or less of a square root of the cross-sectional area.
前記複数の第1の永久磁石の磁極の方向が前記所定の方向に90度ずつ回転するように前記複数の第1の永久磁石が前記所定の方向に配列され、
前記複数の第2の永久磁石の磁極の方向が前記所定の方向に90度ずつ回転するように前記複数の第2の永久磁石が前記所定の方向に配列され、
前記複数の第1の永久磁石の磁極の方向と前記複数の第2の永久磁石の磁極の方向が、前記所定の方向と垂直な方向については同じ方向であり、前記所定の方向の磁極の方向については反対方向である請求項1記載の電磁誘導装置。
The plurality of first permanent magnets are arranged in the predetermined direction so that the magnetic pole directions of the plurality of first permanent magnets rotate by 90 degrees in the predetermined direction,
The plurality of second permanent magnets are arranged in the predetermined direction so that the magnetic pole directions of the plurality of second permanent magnets rotate by 90 degrees in the predetermined direction,
The direction of the magnetic poles of the plurality of first permanent magnets and the direction of the magnetic poles of the plurality of second permanent magnets are the same in the direction perpendicular to the predetermined direction, and the direction of the magnetic poles in the predetermined direction The electromagnetic induction device according to claim 1, which is in the opposite direction.
前記所定の方向が直線方向である請求項1または2記載の電磁誘導装置。   The electromagnetic induction device according to claim 1, wherein the predetermined direction is a linear direction. 前記所定の方向が周方向である請求項1または2記載の電磁誘導装置。   The electromagnetic induction device according to claim 1, wherein the predetermined direction is a circumferential direction. 前記電磁誘導装置が電動機または発電機である請求項1乃至4のいずれか一項に記載の電磁誘導装置。   The electromagnetic induction device according to any one of claims 1 to 4, wherein the electromagnetic induction device is an electric motor or a generator.
JP2012083282A 2012-03-30 2012-03-30 Electromagnetic induction device Pending JP2013215021A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012083282A JP2013215021A (en) 2012-03-30 2012-03-30 Electromagnetic induction device
TW102111375A TW201347359A (en) 2012-03-30 2013-03-29 Electromagnetic induction device
PCT/CN2013/073456 WO2013143490A1 (en) 2012-03-30 2013-03-29 Electromagnetic induction device
CN2013101091906A CN103368284A (en) 2012-03-30 2013-03-29 Electromagnetic induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083282A JP2013215021A (en) 2012-03-30 2012-03-30 Electromagnetic induction device

Publications (1)

Publication Number Publication Date
JP2013215021A true JP2013215021A (en) 2013-10-17

Family

ID=49258243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083282A Pending JP2013215021A (en) 2012-03-30 2012-03-30 Electromagnetic induction device

Country Status (4)

Country Link
JP (1) JP2013215021A (en)
CN (1) CN103368284A (en)
TW (1) TW201347359A (en)
WO (1) WO2013143490A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027208A (en) * 2013-07-27 2015-02-05 株式会社アテック Electromagnetic induction device
CN104578635A (en) * 2015-01-09 2015-04-29 浙江大学 Asymmetric double-stator cylindrical permanent magnet linear motor
DE102015213727A1 (en) 2015-01-22 2016-07-28 Santest Co., Ltd. SWING PULL MOTOR AND SWING PULL MOTOR USING DIRECTIVE SERVO VALVE
KR20160139896A (en) * 2015-05-29 2016-12-07 재단법인 중소조선연구원 magnetic flux concentration type linear generator comprising composite material
KR20170132215A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
JP2018064371A (en) * 2016-10-12 2018-04-19 株式会社アテック Dual Halbach array field
KR20190021659A (en) * 2017-08-23 2019-03-06 세메스 주식회사 Tower lift
WO2019202765A1 (en) * 2018-04-17 2019-10-24 Kyb株式会社 Cylindrical linear motor
JP2019187226A (en) * 2018-04-17 2019-10-24 Kyb株式会社 Cylindrical linear motor
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US11650082B2 (en) 2018-04-06 2023-05-16 Murata Machinery, Ltd. Position detection system and travel system
US11735345B2 (en) 2021-05-28 2023-08-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing Halbach magnet array

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953784A (en) * 2015-06-25 2015-09-30 金陵科技学院 Double-rotor type low-speed cylindrical permanent magnet linear generator
CN106374718B (en) * 2016-10-28 2019-06-18 华中科技大学 Concentrated magnetic replaces pole vernier magneto and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992498A (en) * 1995-09-26 1997-04-04 Shin Etsu Chem Co Ltd Magnetic circuit for inserted light source device
JP4728639B2 (en) * 2004-12-27 2011-07-20 株式会社デンソー Electric wheel
KR20110074561A (en) * 2008-09-23 2011-06-30 에어로바이론먼트, 인크. Flux concentrator for ironless motor
JP5404029B2 (en) * 2008-12-25 2014-01-29 株式会社東芝 Linear motor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027208A (en) * 2013-07-27 2015-02-05 株式会社アテック Electromagnetic induction device
CN104578635A (en) * 2015-01-09 2015-04-29 浙江大学 Asymmetric double-stator cylindrical permanent magnet linear motor
DE102015213727B4 (en) * 2015-01-22 2020-12-10 Santest Co., Ltd. VOICE COIL MOTOR AND DIRECT ACTING SERVO VALVE USING THE VOICE COIL MOTOR
DE102015213727A1 (en) 2015-01-22 2016-07-28 Santest Co., Ltd. SWING PULL MOTOR AND SWING PULL MOTOR USING DIRECTIVE SERVO VALVE
US9685850B2 (en) 2015-01-22 2017-06-20 Santest Co., Ltd. Voice coil motor and direct-acting servo valve using the voice coil motor
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
KR20170132215A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
KR101702026B1 (en) * 2015-05-29 2017-02-02 재단법인 중소조선연구원 magnetic flux concentration type linear generator comprising composite material
KR20160139896A (en) * 2015-05-29 2016-12-07 재단법인 중소조선연구원 magnetic flux concentration type linear generator comprising composite material
JP2018064371A (en) * 2016-10-12 2018-04-19 株式会社アテック Dual Halbach array field
KR20190021659A (en) * 2017-08-23 2019-03-06 세메스 주식회사 Tower lift
KR102020232B1 (en) * 2017-08-23 2019-09-10 세메스 주식회사 Tower lift
US11650082B2 (en) 2018-04-06 2023-05-16 Murata Machinery, Ltd. Position detection system and travel system
WO2019202765A1 (en) * 2018-04-17 2019-10-24 Kyb株式会社 Cylindrical linear motor
JP2019187226A (en) * 2018-04-17 2019-10-24 Kyb株式会社 Cylindrical linear motor
US11735345B2 (en) 2021-05-28 2023-08-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing Halbach magnet array

Also Published As

Publication number Publication date
CN103368284A (en) 2013-10-23
TW201347359A (en) 2013-11-16
WO2013143490A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP2013215021A (en) Electromagnetic induction device
JP6781489B2 (en) Electromagnetic device
JP2019024296A (en) Rotary electric machine
KR101255960B1 (en) Mechanically commutated switched reluctance motor
JP6192854B2 (en) Rotation angle detection device, rotating electric machine, and elevator hoisting machine
JP2013005683A (en) Stator and motor
CN108141090A (en) Electric rotating machine
CN102545429A (en) Motor system
KR20130031006A (en) Mechanically commutated switched reluctance motor
KR20130021210A (en) Mechanically commutated switched reluctance motor
US20170040855A1 (en) Rotor for a rotary electric machine
JP2014155373A (en) Multi-gap rotary electric machine
WO2016004823A1 (en) Stator, brushless direct current motor, three-phase switch reluctance motor and shaded pole motor
US20080290754A1 (en) AC Motor
US20100052460A1 (en) Electrical rotating machine
JP6415029B2 (en) Electromagnetic induction device
JP5698715B2 (en) Axial gap type brushless motor
KR101682408B1 (en) Electric motor
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
KR20160091057A (en) Electromagnetic induction apparatus
JP2014192951A (en) Dynamo-electric machine, electric motor unit and generator unit
JP2015512241A (en) Electric machine
JP5403003B2 (en) Coreless brushless motor
JP2014197957A (en) Multi-gap type synchronous motor
JP2018108007A (en) Generator decreasing magnetic force resistance