JP2013211303A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2013211303A
JP2013211303A JP2012078889A JP2012078889A JP2013211303A JP 2013211303 A JP2013211303 A JP 2013211303A JP 2012078889 A JP2012078889 A JP 2012078889A JP 2012078889 A JP2012078889 A JP 2012078889A JP 2013211303 A JP2013211303 A JP 2013211303A
Authority
JP
Japan
Prior art keywords
submount
semiconductor element
thermal expansion
linear thermal
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012078889A
Other languages
Japanese (ja)
Inventor
Kazunori Bessho
和典 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2012078889A priority Critical patent/JP2013211303A/en
Priority to PCT/JP2013/058516 priority patent/WO2013146646A1/en
Publication of JP2013211303A publication Critical patent/JP2013211303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Abstract

PROBLEM TO BE SOLVED: To provide a diamond submount structure which can improve characteristics of a semiconductor device and which ensures high thermal conductivity and has an adjusted coefficient of linear thermal expansion.SOLUTION: A semiconductor laser device comprises: a semiconductor element; and a submount part for mounting the semiconductor element. The submount part includes first submount materials and second submount materials which are alternately arranged one by one. A coefficient of linear thermal expansion of the first submount material is smaller than that of the semiconductor element. A coefficient of linear thermal expansion of the second submount material is larger than that of the semiconductor element and larger than that of the first submount material. The following relationship is satisfied at an ambient temperature and also at a bonding temperature with a bonding material that a total length of an entire length of the first submount material and an entire length of the second submount material is equivalent to an entire length of the semiconductor element.

Description

本発明は、半導体レーザ装置に関し、特に、半導体素子を搭載するサブマウント部を備えた半導体レーザ装置に関する。   The present invention relates to a semiconductor laser device, and more particularly, to a semiconductor laser device including a submount portion on which a semiconductor element is mounted.

従来、半導体素子よりも線熱膨張率が小さい材料Aの表裏面に、半導体素子よりも線熱膨張率が大きい材料Bを接合し、各材料の厚さを調整することにより、搭載する半導体素子の線熱膨張率に等しくなるようなサブマウント構造が提案されている。   Conventionally, a semiconductor element to be mounted by bonding a material B having a higher linear thermal expansion coefficient than that of the semiconductor element to the front and back surfaces of the material A having a lower linear thermal expansion coefficient than that of the semiconductor element, and adjusting the thickness of each material. A submount structure has been proposed that is equal to the linear thermal expansion coefficient.

例えば、図4に従来例として示した技術が特許文献1に記載されている。この図4によれば、サブマウント部3は、搭載する半導体素子2と線熱膨張率の異なるサブマウント基板7と、該サブマウント基板7の表面及び裏面に、前記サブマウント部3の線熱膨張率が前記半導体素子2の線熱膨張率に略等しくなるような厚さで被覆された第1の被覆層8、及び、第2の被覆層9を設けることにより、製造時における半導体素子2とサブマウント部3の接合前後の昇降温時及び半導体素子2動作中に発生する熱応力の残留応力を低減できる、とされている。
また、これらに使用される代表的な物質としては、サブマウント基板7に電気絶縁機能を有するダイヤモンド、窒化アルミがあり、サブマウント基板7の表裏面に被覆される第1の被覆層8と第2の被覆層9には、銅や金が使用されている。
For example, Patent Document 1 discloses a technique shown as a conventional example in FIG. According to FIG. 4, the submount unit 3 includes a submount substrate 7 having a linear thermal expansion coefficient different from that of the semiconductor element 2 to be mounted, and the linear heat of the submount unit 3 on the front and back surfaces of the submount substrate 7. By providing the first coating layer 8 and the second coating layer 9 that are coated with such a thickness that the expansion coefficient is substantially equal to the linear thermal expansion coefficient of the semiconductor element 2, the semiconductor element 2 at the time of manufacture is provided. The residual stress of the thermal stress generated during the temperature rise and fall before and after the bonding of the submount 3 and the operation of the semiconductor element 2 can be reduced.
Typical materials used for these include diamond and aluminum nitride having an electrical insulating function in the submount substrate 7. The first cover layer 8 and the first cover layer 8 are coated on the front and back surfaces of the submount substrate 7. Copper or gold is used for the second covering layer 9.

特開2010−278364号公報JP 2010-278364 A

しかしながら、図4に示したサブマウント部の構造において、半導体素子からの熱負荷が非常に大きい場合には、サブマウント基板7に、第1の被覆層に加えて第2の被覆層にも熱伝導率が大きい材料が選択される。具体的には、サブマウント基板7にダイヤモンド、第1と第2の被覆層には共に銅が使用される。ダイヤモンドは、線熱膨張率が低く、かつ、高剛性物質であるが、銅はダイヤモンドに対して線熱膨張率が高く、かつ、低剛性物質である。このため、線熱膨張率をGaAs系の半導体素子に合わせるには、銅製の第1の被覆層、並びに、同じく銅製の第2の被覆層の厚みを厚くする必要がある。ところが、係る構成によれば、半導体素子から受けた発熱量をヒートシンクへ排熱する能力が小さくなる。このため、熱伝導率の高いダイヤモンドをサブマウントに使用する利点が低下する、という問題がある。   However, in the structure of the submount portion shown in FIG. 4, if the thermal load from the semiconductor element is very large, the submount substrate 7 is heated not only on the first cover layer but also on the second cover layer. A material with high conductivity is selected. Specifically, diamond is used for the submount substrate 7 and copper is used for the first and second coating layers. Diamond has a low coefficient of linear thermal expansion and is a highly rigid material, but copper has a higher coefficient of linear thermal expansion than diamond and is a low rigidity material. For this reason, in order to match the linear thermal expansion coefficient to the GaAs-based semiconductor element, it is necessary to increase the thickness of the first coating layer made of copper and the second coating layer made of copper. However, according to such a configuration, the ability to exhaust heat generated from the semiconductor element to the heat sink is reduced. For this reason, there exists a problem that the advantage of using a diamond with high heat conductivity for a submount falls.

本発明は、以上のような問題を解決するためになされたものであって、その目的は、半導体レーザ装置の特性向上を図ることができ、高い熱伝導率を確保すると共に、線熱膨張率を調整したダイヤモンドサブマウント構造を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to improve the characteristics of the semiconductor laser device, ensure high thermal conductivity, and increase the linear thermal expansion coefficient. An object of the present invention is to provide a diamond submount structure in which the above is adjusted.

本発明の半導体レーザ装置は、 半導体素子と、該半導体素子を搭載するサブマウント部と、を備えた半導体レーザ装置において、前記サブマウント部は、前記半導体素子と線熱膨張率の異なる1個以上の第1のサブマウント材と、該半導体素子、及び、該第1のサブマウント材より線熱膨張率が大きい1個以上の第2のサブマウント材とから成り、該半導体素子と該第1のサブマウント材とは接合材を介して接合され、該第1のサブマウント材、及び、該第2のサブマウント材は、該半導体素子の長手方向に交互に配置されており、該半導体素子の長さと線熱膨張率をそれぞれL、λ、該第1のサブマウント材の全長と線熱膨張率をそれぞれL1、λ1、該第2のサブマウント材の全長と線熱膨張率をそれぞれL2、λ1とすると、
L=L1+L2 (1)
L×λ=L1×λ1+L2×λ2 (2)
の2式を同時に満たすことを特徴とする半導体レーザ装置。
According to another aspect of the present invention, there is provided a semiconductor laser device comprising: a semiconductor element; and a submount portion on which the semiconductor element is mounted. The submount portion includes one or more different linear thermal expansion coefficients from the semiconductor element. The first submount material, the semiconductor element, and one or more second submount materials having a linear thermal expansion coefficient larger than that of the first submount material, the semiconductor element and the first submount material The first submount material and the second submount material are alternately arranged in the longitudinal direction of the semiconductor element, and the semiconductor element L and λ respectively represent the length and the linear thermal expansion coefficient of the first submount material, and L1 and λ1 represent the total length and the linear thermal expansion coefficient of the first submount material, and L2 represents the total length and the linear thermal expansion coefficient of the second submount material, respectively. , Λ1,
L = L1 + L2 (1)
L × λ = L1 × λ1 + L2 × λ2 (2)
A semiconductor laser device characterized by satisfying the two equations simultaneously.

また、前記半導体素子は、ガリウム砒素(GaAs)から成り、該半導体素子と接合されるサブマウントは、ダイヤモンドから成る第1のサブマウント材と銅から成る第2のサブマウント材とから構成されていることを特徴とする。 The semiconductor element is made of gallium arsenide (GaAs), and the submount joined to the semiconductor element is composed of a first submount material made of diamond and a second submount material made of copper. It is characterized by being.

更には、前記サブマウント部は、複数の該第1のサブマウント材と、該第1のザブマウント材の間に配置された前記第2のサブマウント材と、から成り、該第1のサブマウント材は、前記半導体素子に形成された複数の発光部の近傍で接合材を介して支持するように配置され、該第2のサブマウント材は該半導体素子とは離間して配置されており、
該発光点の数をN、該発光点近傍を支持する該第1のサブマウント材の個々の幅をD1(mm)、該第2のサブマウント材の個々の幅をD2(mm)とするとき
L1(mm)=N×D1(mm) (3)
L2(mm)=(N−1)×D2(mm) (4)
成る式を満たすことを特徴とする。
Furthermore, the submount portion includes a plurality of the first submount materials and the second submount material disposed between the first submount materials, and the first submount is provided. The material is arranged so as to be supported via a bonding material in the vicinity of the plurality of light emitting portions formed in the semiconductor element, and the second submount material is arranged apart from the semiconductor element,
The number of the light emitting points is N, the individual width of the first submount material supporting the vicinity of the light emitting point is D1 (mm), and the individual width of the second submount material is D2 (mm). When L1 (mm) = N x D1 (mm) (3)
L2 (mm) = (N−1) × D2 (mm) (4)
It is characterized by satisfying the following formula.

本発明の半導体レーザ装置によれば、レーザダイオードなどの半導体素子の線熱膨張率とサブマウント部の線熱膨張率とを等価的に等しくできるので、レーザダイオードなどの半導体素子とダイヤモンドから成るサブマウント部との間に線熱膨張率の違いを緩和する金属被覆層が不要となり、効率良く半導体素子からの熱を排熱できる、といった効果がある。また、ダイヤモンドなど熱伝導率の高い物質からなるサブマウント部の排熱能力を最大限に発揮することが可能となり、半導体素子を効率良く冷却することで、高効率の半導体レーザ装置を提供できる、といった利点もある。 According to the semiconductor laser device of the present invention, the linear thermal expansion coefficient of a semiconductor element such as a laser diode and the linear thermal expansion coefficient of a submount can be made equal to each other. There is no need for a metal coating layer that relaxes the difference in the coefficient of linear thermal expansion between the mounting portion and the heat from the semiconductor element can be efficiently exhausted. In addition, it is possible to maximize the heat removal capability of the submount made of a material having high thermal conductivity such as diamond, and by efficiently cooling the semiconductor element, a highly efficient semiconductor laser device can be provided. There are also advantages.

本発明の第1の実施例に係わる半導体レーザ装置を示す説明用概略図である。1 is an explanatory schematic view showing a semiconductor laser device according to a first embodiment of the present invention. 本発明の第2の実施例に係わる半導体レーザ装置を示す説明用概略図である。It is the schematic for description which shows the semiconductor laser apparatus concerning the 2nd Example of this invention. 本発明の第3の実施例に係わる半導体レーザ装置を示す説明用概略図である。It is the schematic for description which shows the semiconductor laser apparatus concerning the 3rd Example of this invention. 従来の半導体レーザ装置におけるサブマウント構造の一例を示す説明図である。It is explanatory drawing which shows an example of the submount structure in the conventional semiconductor laser apparatus.

本発明の半導体レーザ装置は、例えば、ダイヤモンドから成る第1のサブマウント材と、銅から成る第2のサブマウント材とを複数個、交互に半導体素子の長手方向に並べ、線熱膨張率を調整したサブマウント部を有するものである。以下に具体的な実施例を示す。   In the semiconductor laser device of the present invention, for example, a plurality of first submount materials made of diamond and second submount materials made of copper are alternately arranged in the longitudinal direction of the semiconductor element, and the linear thermal expansion coefficient is increased. It has an adjusted submount. Specific examples are shown below.

図1は、本発明の第1の実施例であって半導体レーザ装置の概略を示す説明図である。図1において、本発明の半導体レーザ装置1は、半導体素子2と、該半導体素子2を搭載するサブマウント部3を備えている。該サブマウント部3は、該半導体素子2と線熱膨張率の異なる1個以上の第1のサブマウント材4(41〜45)と、該半導体素子2、及び、該第1のサブマウント材4より線熱膨張率が大きい1個以上の第2のサブマウント材5(51〜54)から成っている。また、前記半導体素子2と前記第1のサブマウント材4は、接合材11を介して該半導体素子2と接合されている。更に、該第1のサブマウント材4と該第2のサブマウント材5は、隣接する該第1のサブマウント材4と該第2のサブマウント材5と、が接合された構造となっている。   FIG. 1 is an explanatory diagram showing an outline of a semiconductor laser device according to a first embodiment of the present invention. In FIG. 1, a semiconductor laser device 1 of the present invention includes a semiconductor element 2 and a submount portion 3 on which the semiconductor element 2 is mounted. The submount unit 3 includes at least one first submount material 4 (41 to 45) having a linear thermal expansion coefficient different from that of the semiconductor element 2, the semiconductor element 2, and the first submount material. 4 is composed of one or more second submount materials 5 (51 to 54) having a linear thermal expansion coefficient larger than 4. The semiconductor element 2 and the first submount material 4 are bonded to the semiconductor element 2 via a bonding material 11. Further, the first submount material 4 and the second submount material 5 have a structure in which the adjacent first submount material 4 and the second submount material 5 are joined. Yes.

ここにおいて、該半導体素子2と該第1のサブマウント材4とを接合材11で接合する時、接合材11が溶融する程度の温度まで加熱される。この接合時の温度をT1とすれば、半導体素子2やサブマウント部3を構成している材料の線熱膨張率をT1に乗じた値だけ材料が伸びることになる。仮に、ダイヤモンドと半導体のように線熱膨張率が異なる材料で接合時に各材料の長さが合致するように設計すれば、接合後に室温T0に戻る時点で各材料の線熱膨張率の差から長さ方向に大きな応力が発生することになる。そこで、本実施例では、室温T0でも、接合時の温度T1でも、該第1のサブマウント材4の全長と該第2のサブマウント材2の全長の和が該半導体素子2の全長に等しくなるように調整している。具体的には、該半導体素子2の線熱膨張率よりもが小さな線熱膨張率の該第1のサブマウント材4と、該半導体素子2の線熱膨張率よりも大きな線熱膨張率の該第2のサブマウント材2との長さを調整し、全長としては、熱膨張率差が相殺されて、該半導体素子2の線熱膨張率と等しくなるようにしている。言い換えれば、該半導体素子2の長さ、及び、線熱膨張率をそれぞれL(mm)、λ、とし、該第1のサブマウント材の全長、及び、線熱膨張率をそれぞれL1(mm)、λ1、該第2のサブマウント材の全長、及び、線熱膨張率をそれぞれL2(mm)、λ1とすると、
L(mm)=L1(mm)+L2(mm) (1)
L(mm)×λ=L1(mm)×λ1+L2(mm)×λ2 (2)
の2式を同時に満たす関係となるように長さと材料を設定している。
Here, when the semiconductor element 2 and the first submount material 4 are joined by the joining material 11, the semiconductor element 2 is heated to a temperature at which the joining material 11 is melted. If the temperature at the time of joining is T1, the material will be extended by a value obtained by multiplying the linear thermal expansion coefficient of the material constituting the semiconductor element 2 or the submount portion 3 by T1. If the length of each material is matched at the time of joining with materials having different linear thermal expansion coefficients such as diamond and semiconductor, the difference between the linear thermal expansion coefficients of the respective materials when the temperature returns to room temperature T0 after joining. A large stress is generated in the length direction. Therefore, in this embodiment, the sum of the total length of the first submount material 4 and the total length of the second submount material 2 is equal to the total length of the semiconductor element 2 at both the room temperature T0 and the bonding temperature T1. It is adjusted so that Specifically, the first submount material 4 having a linear thermal expansion coefficient smaller than that of the semiconductor element 2 and a linear thermal expansion coefficient larger than the linear thermal expansion coefficient of the semiconductor element 2 are used. The length of the second submount material 2 is adjusted so that the difference in thermal expansion coefficient is canceled out as the total length so that it becomes equal to the linear thermal expansion coefficient of the semiconductor element 2. In other words, the length and linear thermal expansion coefficient of the semiconductor element 2 are L (mm) and λ, respectively, and the total length and linear thermal expansion coefficient of the first submount material are L1 (mm), respectively. , Λ1, the total length of the second submount material, and the linear thermal expansion coefficient are L2 (mm) and λ1, respectively.
L (mm) = L1 (mm) + L2 (mm) (1)
L (mm) × λ = L1 (mm) × λ1 + L2 (mm) × λ2 (2)
The length and material are set so as to satisfy the relationship satisfying the two equations.

具体例として、GaAs系半導体素子2(外形寸法 厚さ0.3mm×奥行0.3mm×全長3.6mm、発光点数5個、エッジエミッタタイプ)に対しては、以下のような寸法のものとなる。該サブマウント部3は、ダイヤモンド製の第1のサブマウント材1(外形寸法 幅0.543mm×厚さ0.3mm×奥行0.3mm、5個)、 銅製の第2のサブマウント材2(外形寸法 幅0.222mm×厚さ0.2mm×奥行0.3mm、4個)から構成されている。また、該第1のサブマウント材が一端に配置され、次に該第2のサブマウント材を隣接させ、更に再度第1のサブマウント材を配置する。このように、交互に配置してサブマウント部3を構成する。言い換えると、銅製の第2のサブマウントが、ダイヤモンド製の第1のサブマウントで挟持され、該サブマウント部3を形成している。このとき、GaAs系半導体素子2とダイヤモンド製の第1のサブマウント材1は、接合材を介して接合されるが、銅製の第2のサブマウント材は、該半導体素子2とは接合しておらず離間して配置されている。また、このサブマウント部3を形成する第1のサブマウント部は、全長3.6mmのダイヤモンド板から外形寸法 幅0.543mm×厚さ0.3mm×奥行0.3mmの材料を切り出して5個に分断された材料とすることもできる。 As a specific example, for a GaAs-based semiconductor element 2 (outer dimensions: thickness 0.3 mm × depth 0.3 mm × total length 3.6 mm, 5 light emitting points, edge emitter type) Become. The submount portion 3 includes a first submount material 1 made of diamond (outside dimensions width 0.543 mm × thickness 0.3 mm × depth 0.3 mm, 5 pieces), copper second submount material 2 ( Outer dimensions Width 0.222 mm × thickness 0.2 mm × depth 0.3 mm, 4 pieces) In addition, the first submount material is disposed at one end, the second submount material is then adjacently disposed, and the first submount material is disposed again. In this way, the submount portions 3 are configured by being alternately arranged. In other words, the second submount made of copper is sandwiched by the first submount made of diamond to form the submount portion 3. At this time, the GaAs-based semiconductor element 2 and the first diamond submount material 1 are bonded via a bonding material, but the second copper submount material is bonded to the semiconductor element 2. They are spaced apart. Further, the first submount portion forming the submount portion 3 is cut out from a diamond plate having a total length of 3.6 mm by cutting out a material having an outer dimension of width 0.543 mm × thickness 0.3 mm × depth 0.3 mm. It is also possible to use a material divided into pieces.

図2は、本発明の第2の実施例であって半導体レーザ装置の概略を示す説明図である。図2において、本発明の半導体レーザ装置1は、半導体素子2と、該半導体素子2を搭載するサブマウント部3を備えている。該サブマウント部3は、該半導体素子2と線熱膨張率の異なる1個の第1のサブマウント材4と、該半導体素子2、及び、該第1のサブマウント材4より線熱膨張率が大きい1個以上の第2のサブマウント材5(51〜54)から構成されている。また、該半導体素子2と該第1のサブマウント材4は、接合材11を介して該半導体素子2と接合されている。更に、該第1のサブマウント材4と該第2のサブマウント材5は、1個のダイヤモンド板材に形成されたスリット部に該第2のサブマウント材5が埋め込まれた構造となっている。   FIG. 2 is an explanatory view showing the outline of the semiconductor laser device according to the second embodiment of the present invention. In FIG. 2, the semiconductor laser device 1 of the present invention includes a semiconductor element 2 and a submount portion 3 on which the semiconductor element 2 is mounted. The submount portion 3 includes one first submount material 4 having a linear thermal expansion coefficient different from that of the semiconductor element 2, and the linear thermal expansion coefficient of the semiconductor element 2 and the first submount material 4. It is comprised from 1 or more 2nd submount material 5 (51-54) with large. Further, the semiconductor element 2 and the first submount material 4 are bonded to the semiconductor element 2 via a bonding material 11. Further, the first submount material 4 and the second submount material 5 have a structure in which the second submount material 5 is embedded in a slit portion formed in one diamond plate material. .

ここにおいて、図1の場合と同様に、前述の式(1)、(2)に従う。但し、該第1のサブマウント材1においては、半導体素子2と接合している部分(スリットの長さを除いた部分)を全長として採用する。すなわち、該半導体素子2の長さ、及び、線熱膨張率をそれぞれL(mm)、λ、とし、該第1のサブマウント材の全長(スリットの長さを除く)、及び、線熱膨張率をそれぞれL1(mm)、λ1、該第2のサブマウント材の全長、及び、線熱膨張率をそれぞれL2(mm)、λ1とすると、
L(mm)=L1(mm)+L2(mm) (1)
L(mm)×λ=L1(mm)×λ1+L2(mm)×λ2 (2)
の2式を同時に満たす関係となるように長さと材料を設定している。
Here, as in the case of FIG. 1, the above-described equations (1) and (2) are followed. However, in the first submount material 1, a portion bonded to the semiconductor element 2 (a portion excluding the length of the slit) is employed as the total length. That is, the length of the semiconductor element 2 and the linear thermal expansion coefficient are L (mm) and λ, respectively, the total length of the first submount material (excluding the slit length), and the linear thermal expansion The rates are L1 (mm) and λ1, respectively, the total length of the second submount material, and the linear thermal expansion coefficient are L2 (mm) and λ1, respectively.
L (mm) = L1 (mm) + L2 (mm) (1)
L (mm) × λ = L1 (mm) × λ1 + L2 (mm) × λ2 (2)
The length and material are set so as to satisfy the relationship satisfying the two equations.

具体例として、GaAs系半導体素子2(外形寸法 厚さ0.3mm×奥行0.3mm×全長3.6mm、発光点数5個、エッジエミッタタイプ)に対しては、以下のような寸法のものとなる。該サブマウント部3は、ダイヤモンド製の第1のサブマウント材4として、外形寸法 厚さ0.3mm×奥行0.3mm×全長3.6mm、の1個の板状材料に、幅0.222mm×深さ0.25mmのスリットを4個設けた部材と、該第1のサブマウント材のスリットに銅製の第2のサブマウント材2(外形寸法 幅0.222mm×厚さ0.2mm×奥行0.3mm)を埋め込んだ形状である。このとき、GaAs系半導体素子2とダイヤモンド製の第1のサブマウント材1は、接合材を介して接合されているが、銅製の第2のサブマウント材は、該半導体素子2とは接合しておらず離間して配置されている。また、このサブマウント構造3では、外形寸法 が厚さ0.3mm×奥行0.3mm×全長3.6mmの第1のサブマウント材に形成されたスリットに対して、銅製の第2のサブマウント材2を埋め込むのでは無く、銅を蒸着又は銅メッキすることにより作製してもよい。 As a specific example, for a GaAs-based semiconductor element 2 (outer dimensions: thickness 0.3 mm × depth 0.3 mm × total length 3.6 mm, 5 light emitting points, edge emitter type) Become. The submount portion 3 is a first submount material 4 made of diamond, and is formed into one plate-like material having an outer dimension of thickness 0.3 mm × depth 0.3 mm × total length 3.6 mm, and width 0.222 mm. X A member provided with four slits having a depth of 0.25 mm, and a second submount material 2 made of copper in the slit of the first submount material (external dimensions width 0.222 mm x thickness 0.2 mm x depth) 0.3 mm) is embedded. At this time, the GaAs-based semiconductor element 2 and the first diamond submount material 1 are bonded via the bonding material, but the second copper submount material is bonded to the semiconductor element 2. They are not spaced apart. Further, in this submount structure 3, the second submount made of copper is formed with respect to the slit formed in the first submount material having the outer dimensions of thickness 0.3 mm × depth 0.3 mm × total length 3.6 mm. Instead of embedding the material 2, it may be produced by vapor deposition or copper plating of copper.

図3は、本発明の第3の実施例であって半導体レーザ装置の概略を示す説明図である。図3において、半導体レーザ装置1は、半導体素子2と該半導体素子2を搭載するサブマウント部3を備えている。本実施例では、該半導体素子2が複数の発光点(エミッター)2aを持っているアレイ型素子であって、5個の発光点2aを備えた場合を示している。また、第1のサブマウント材4は、該半導体素子2に形成された複数の発光点2aの近傍で接合材11を介して支持するように配置されている。すなわち、各発光点2aから最短の位置を支持するために、該発光点2aに対応するように(図中では該発光点2aの直下)に該半導体素子2との間に接合材11を介して複数の該第1のサブマウント材が配置されている。   FIG. 3 is an explanatory diagram showing an outline of a semiconductor laser device according to the third embodiment of the present invention. In FIG. 3, the semiconductor laser device 1 includes a semiconductor element 2 and a submount portion 3 on which the semiconductor element 2 is mounted. In this embodiment, the semiconductor element 2 is an array type element having a plurality of light emitting points (emitters) 2a, and has five light emitting points 2a. Further, the first submount material 4 is disposed so as to be supported via the bonding material 11 in the vicinity of the plurality of light emitting points 2 a formed in the semiconductor element 2. That is, in order to support the shortest position from each light emitting point 2a, the bonding material 11 is interposed between the semiconductor element 2 so as to correspond to the light emitting point 2a (just below the light emitting point 2a in the drawing). A plurality of the first submount materials are arranged.

これら複数の該第1のサブマウント材4の間に該第2のサブマウント材5を配置した構造において、該半導体素子2の発光点の数をN、発光点近傍を支持する該第1のサブマウント材4の各幅をD1(mm)、該第2のサブマウント材5の各幅をD2(mm)とすると、前記式(1)、(2)に加えて、L1(mm)とL2(mm)が以下に示す式の関係にある。
L1(mm)=N×D1(mm) (3)
L2(mm)=(N−1)×D2(mm) (4)
In the structure in which the second submount material 5 is disposed between the plurality of first submount materials 4, the number of the light emitting points of the semiconductor element 2 is N, and the first submount material 5 supports the vicinity of the light emitting points. When each width of the submount material 4 is D1 (mm) and each width of the second submount material 5 is D2 (mm), in addition to the above formulas (1) and (2), L1 (mm) L2 (mm) is in the relationship of the following equation.
L1 (mm) = N × D1 (mm) (3)
L2 (mm) = (N−1) × D2 (mm) (4)

その他の構成については図1に示した第1の実施例の場合と同様に、該サブマウント部3は、該半導体素子2と線熱膨張率の異なる1個以上の第1のサブマウント材4(41〜45)と、該半導体素子2、及び、該第1のサブマウント材4より線熱膨張率が大きい1個以上の第2のサブマウント材5(51〜54)から構成されている。また、前記半導体素子2と前記第1のサブマウント材4は、接合材11を介して該半導体素子2と接合されている。更に、該第1のサブマウント材4と該第2のサブマウント材5は、隣接する該第1のサブマウント材4と該第2のサブマウント材5と、が接合された構造となっている。更には、該半導体素子2の線熱膨張率よりもが小さな線熱膨張率の該第1のサブマウント材4と、該半導体素子2の線熱膨張率よりも大きな線熱膨張率の該第2のサブマウント材2との長さを調整し、全長としては、熱膨張率差が相殺されて、該半導体素子2の線熱膨張率と等しくなるようにしている。 Other configurations are the same as in the case of the first embodiment shown in FIG. 1, the submount portion 3 includes at least one first submount material 4 having a linear thermal expansion coefficient different from that of the semiconductor element 2. (41 to 45) and the semiconductor element 2 and one or more second submount materials 5 (51 to 54) having a linear thermal expansion coefficient larger than that of the first submount material 4. . The semiconductor element 2 and the first submount material 4 are bonded to the semiconductor element 2 via a bonding material 11. Further, the first submount material 4 and the second submount material 5 have a structure in which the adjacent first submount material 4 and the second submount material 5 are joined. Yes. Further, the first submount material 4 having a smaller linear thermal expansion coefficient than the linear thermal expansion coefficient of the semiconductor element 2 and the first submount material 4 having a larger linear thermal expansion coefficient than the linear thermal expansion coefficient of the semiconductor element 2. The length of the second submount material 2 is adjusted so that the difference in thermal expansion coefficient is canceled out as the total length so as to be equal to the linear thermal expansion coefficient of the semiconductor element 2.

このように、複数の発光点2aを持つアレイ型の半導体素子であっても、上述の関係式(1)〜(4)までを満たすことによって、サブマウント部3にダイヤモンドを利用しても、半導体素子2との線熱膨張率差が無いサブマウント部3を提供できるので、該半導体素子2からの排熱を効率よく行うことができる、といった効果がある。また、ダイヤモンドなど熱伝導率の高い物質からなるサブマウント部3の排熱能力を最大限に発揮することが可能となり、半導体素子2を効率良く冷却することで、高効率の半導体レーザ装置1を提供できる、といった利点もある。 Thus, even if it is an array type semiconductor device having a plurality of light emitting points 2a, even if diamond is used for the submount portion 3 by satisfying the above relational expressions (1) to (4), Since the submount portion 3 having no difference in linear thermal expansion coefficient from the semiconductor element 2 can be provided, there is an effect that the heat exhausted from the semiconductor element 2 can be efficiently performed. In addition, it is possible to maximize the heat removal capability of the submount portion 3 made of a material having high thermal conductivity such as diamond, and the semiconductor element 2 is efficiently cooled, so that the highly efficient semiconductor laser device 1 can be obtained. There is also an advantage that it can be provided.

1 半導体レーザ装置
2 半導体素子
2a 発光点
2b 金メッキ
2c 金−スズ半田
3 サブマウント部
4 第1のサブマウント材
41〜45 第1のサブマウント材
5 第2のサブマウント材
51〜54 第2のサブマウント材
6 半導体装置
7 サブマウント基板
8 第1の被覆層
9 第2の被覆層
11 接合材
DESCRIPTION OF SYMBOLS 1 Semiconductor laser apparatus 2 Semiconductor element 2a Light emission point 2b Gold plating 2c Gold-tin solder 3 Submount part 4 1st submount material 41-45 1st submount material 5 2nd submount material 51-54 2nd Submount material 6 Semiconductor device
7 Submount substrate 8 First covering layer 9 Second covering layer
11 Bonding material

Claims (3)

半導体素子と、
該半導体素子を搭載するサブマウント部と、
を備えた半導体レーザ装置において、
前記サブマウント部は、前記半導体素子と線熱膨張率の異なる1個以上の第1のサブマウント材と、該半導体素子、及び、該第1のサブマウント材より線熱膨張率が大きい1個以上の第2のサブマウント材とから成り、
該半導体素子と該第1のサブマウント材とは接合材を介して接合され、
該第1のサブマウント材、及び、該第2のサブマウント材は、該半導体素子の長手方向に交互に配置されており、
該半導体素子の長さと線熱膨張率をそれぞれL(mm)、λ、該第1のサブマウント材の全長と線熱膨張率をそれぞれL1(mm)、λ1、該第2のサブマウント材の全長と線熱膨張率をそれぞれL2(mm)、λ1とすると、
L(mm)=L1(mm)+L2(mm) (1)
L(mm)×λ=L1(mm)×λ1+L2(mm)×λ2 (2)
の2式を同時に満たすことを特徴とする半導体レーザ装置。
A semiconductor element;
A submount for mounting the semiconductor element;
In a semiconductor laser device comprising:
The submount portion includes one or more first submount materials having a linear thermal expansion coefficient different from that of the semiconductor element, and one semiconductor element and a single linear thermal expansion coefficient larger than that of the first submount material. It consists of the above second submount material,
The semiconductor element and the first submount material are bonded via a bonding material,
The first submount material and the second submount material are alternately arranged in the longitudinal direction of the semiconductor element,
The length and linear thermal expansion coefficient of the semiconductor element are L (mm) and λ, respectively, and the total length and linear thermal expansion coefficient of the first submount material are L1 (mm) and λ1, respectively. When the total length and the linear thermal expansion coefficient are L2 (mm) and λ1, respectively,
L (mm) = L1 (mm) + L2 (mm) (1)
L (mm) × λ = L1 (mm) × λ1 + L2 (mm) × λ2 (2)
A semiconductor laser device characterized by satisfying the two equations simultaneously.
前記半導体素子は、ガリウム砒素(GaAs)から成り、該半導体素子と接合されるサブマウントは、ダイヤモンドから成る第1のサブマウント材と銅から成る第2のサブマウント材とから構成されていることを特徴とする請求項1に記載の半導体レーザ装置。
The semiconductor element is made of gallium arsenide (GaAs), and the submount bonded to the semiconductor element is composed of a first submount material made of diamond and a second submount material made of copper. The semiconductor laser device according to claim 1.
前記サブマウント部は、複数の該第1のサブマウント材と、該第1のザブマウント材の間に配置された前記第2のサブマウント材と、から成り、該第1のサブマウント材は、前記半導体素子に形成された複数の発光部の近傍で接合材を介して支持するように配置され、該第2のザブマウント材は該半導体素子とは離間して配置されており、
該発光点の数をN、該発光点近傍を支持する該第1のサブマウント材の個々の幅をD1(mm)、該第2のサブマウント材の個々の幅をD2(mm)とするとき
L1(mm)=N×D1(mm) (3)
L2(mm)=(N−1)×D2(mm) (4)
成る式を満たすことを特徴とする請求項1に記載の半導体レーザ装置。
The submount portion includes a plurality of the first submount materials and the second submount material disposed between the first submount materials, and the first submount material includes: The second submount material is disposed apart from the semiconductor element, and is disposed so as to be supported through a bonding material in the vicinity of the plurality of light emitting portions formed in the semiconductor element.
The number of the light emitting points is N, the individual width of the first submount material supporting the vicinity of the light emitting point is D1 (mm), and the individual width of the second submount material is D2 (mm). When L1 (mm) = N x D1 (mm) (3)
L2 (mm) = (N−1) × D2 (mm) (4)
The semiconductor laser device according to claim 1, wherein the following equation is satisfied.
JP2012078889A 2012-03-30 2012-03-30 Semiconductor laser device Pending JP2013211303A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012078889A JP2013211303A (en) 2012-03-30 2012-03-30 Semiconductor laser device
PCT/JP2013/058516 WO2013146646A1 (en) 2012-03-30 2013-03-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078889A JP2013211303A (en) 2012-03-30 2012-03-30 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2013211303A true JP2013211303A (en) 2013-10-10

Family

ID=49259897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078889A Pending JP2013211303A (en) 2012-03-30 2012-03-30 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JP2013211303A (en)
WO (1) WO2013146646A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115479A1 (en) * 2015-12-28 2017-07-06 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2020053686A (en) * 2015-02-05 2020-04-02 トゥー‐シックス・インコーポレイテッド Composite substrate having alternating pattern of diamond and metal or metal alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957916B2 (en) * 2017-03-21 2021-11-02 三菱マテリアル株式会社 Thermoelectric conversion module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175476A (en) * 1984-02-22 1985-09-09 Toshiba Corp Manufacture of integrated semiconductor device
US5325384A (en) * 1992-01-09 1994-06-28 Crystallume Structure and method for mounting laser diode arrays
JP2863678B2 (en) * 1992-09-28 1999-03-03 三菱電機株式会社 Semiconductor laser device and method of manufacturing the same
DE19821544A1 (en) * 1998-05-14 1999-12-16 Jenoptik Jena Gmbh Diode laser component with heat sink providing less thermal expansion stress
JP2009158645A (en) * 2007-12-26 2009-07-16 Sony Corp Laser module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053686A (en) * 2015-02-05 2020-04-02 トゥー‐シックス・インコーポレイテッド Composite substrate having alternating pattern of diamond and metal or metal alloy
WO2017115479A1 (en) * 2015-12-28 2017-07-06 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JPWO2017115479A1 (en) * 2015-12-28 2018-03-08 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
GB2560446A (en) * 2015-12-28 2018-09-12 Mitsubishi Electric Corp Semiconductor device and method for manufacturing semiconductor device
GB2560446B (en) * 2015-12-28 2021-03-10 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2013146646A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US7801190B2 (en) Carrier for a vertical arrangement of laser diodes with a stop
US9450380B2 (en) Semiconductor laser light source
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
JP7220751B2 (en) Edge-emitting laser bar
KR200476144Y1 (en) All-angle light emitting element having high heat dissipating efficiency
JP2017017297A (en) Semiconductor device and laser equipment
JP2013211303A (en) Semiconductor laser device
JP2009141094A (en) Semiconductor laser device
JP6652856B2 (en) Semiconductor laser module and method of manufacturing the same
JP5444289B2 (en) Metal base and manufacturing method thereof
JP5380135B2 (en) Multi-beam semiconductor laser device
JP2015153963A (en) Heat sink and semiconductor laser device having the same
JP2007073549A (en) Semiconductor laser module, semiconductor laser stack and process for fabricating semiconductor laser module
WO2016117539A1 (en) Laser light source device and method for manufacturing same
JP6678427B2 (en) Laser light source device
JP2015176925A (en) semiconductor device
JP2015179759A (en) semiconductor device
WO2010131498A1 (en) Laser diode element
WO2013118800A1 (en) Semiconductor device
JP2015032706A (en) Semiconductor device and method for manufacturing the same
JP2014183155A (en) Semiconductor laser device
JP2007073550A (en) Semiconductor laser module and semiconductor laser stack
JP2006013038A (en) Semiconductor laser array device
JP2016186997A (en) Semiconductor laser device and method for manufacturing the same