JP2013206544A - Cylindrical lithium ion secondary battery - Google Patents

Cylindrical lithium ion secondary battery Download PDF

Info

Publication number
JP2013206544A
JP2013206544A JP2012070811A JP2012070811A JP2013206544A JP 2013206544 A JP2013206544 A JP 2013206544A JP 2012070811 A JP2012070811 A JP 2012070811A JP 2012070811 A JP2012070811 A JP 2012070811A JP 2013206544 A JP2013206544 A JP 2013206544A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
lithium
positive electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070811A
Other languages
Japanese (ja)
Inventor
Yoko Sano
陽子 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012070811A priority Critical patent/JP2013206544A/en
Publication of JP2013206544A publication Critical patent/JP2013206544A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical lithium ion secondary battery having satisfactory over-discharge resistance characteristics, since a positive electrode and a negative electrode are held in a stable potential range in an over-discharged state of the battery without lowering the output thereof.SOLUTION: This cylindrical lithium ion secondary battery 10 has a positive electrode 16 containing a lithium-containing composite oxide expressed by a general formula LiMOor LiMO(M is nickel alone, or a metal obtained by substituting another transition metal for a part of nickel) as a positive electrode active material, and a negative electrode 15 using a carbon material and copper as a negative electrode active material and a negative electrode collector respectively. Metal lithium foil is pasted to the negative electrode 15 or an outer can 11, the lithium is diffused in the carbon material by a potential difference or a concentration difference, the battery is discharged at 0.2 It, a battery voltage reaches 0 V, and 10 days after the battery is held at 0 V, the potential of the negative electrode is not less than 2.0 V and not more than 3.2 V with respect to lithium.

Description

本発明は、電池径および容量が小さい円筒形リチウムイオン二次電池に関し、より詳しくは、円筒形リチウムイオン二次電池の耐過放電特性の向上に関する。   The present invention relates to a cylindrical lithium ion secondary battery having a small battery diameter and capacity, and more particularly to improvement of overdischarge resistance of a cylindrical lithium ion secondary battery.

電池を用いた機器の応用範囲は拡大しており、特に、リチウムイオン電池は軽量、高容量、高出力であるため、パソコンや携帯電話、携帯型電子機器の駆動用電源として広く用いられている。これらの機器の電源としては、従来、直径が20mm程度、高さが50mm程度のものが広く用いられている。   The range of application of battery-based devices is expanding. In particular, lithium-ion batteries are widely used as power sources for driving personal computers, mobile phones, and portable electronic devices because of their light weight, high capacity, and high output. . Conventionally, power supplies for these devices have been widely used having a diameter of about 20 mm and a height of about 50 mm.

近年は、さらに携帯型電子機器の小型化や、眼鏡や補聴器などの高機能化に伴い、小型で高容量、高出力な電源が求められている。特に、眼鏡や補聴器などの使用においては、人の生活において、長時間、身に着ける場合があり、特に軽量で小型の電源が要望されている。具体的には、直径が3〜6mm程度、高さが20〜45mm程度である。   In recent years, along with further downsizing of portable electronic devices and higher functions of glasses, hearing aids, and the like, there has been a demand for power supplies with small size, high capacity, and high output. In particular, when using glasses, hearing aids, and the like, they may be worn for a long time in human life, and a particularly lightweight and compact power supply is desired. Specifically, the diameter is about 3 to 6 mm and the height is about 20 to 45 mm.

従来から広く用いられている、直径が20mm程度、高さが50mm程度のリチウムイオン電池では、一般的に電池が0Vに至ることによる劣化を防止するために、過放電防止機能(セイフティユニット)を電池と共に備えているが、セイフティユニットの大きさが電池に対し十分小さいので、大きさの影響はあまり問題とはならない。また、セイフティユニットは、機器に搭載された電池が所定の電圧に至ると、電池から機器への放電を遮断する。しかし、遮断後もセイフティユニットは電池の電圧をモニターするための微小電流を消費する。従来の電源は、2000mAh程度と非常に高容量であるため、機器の漏れ電流の影響が小さく、セイフティユニットの消費電流のために電池が放電しても、0Vに至るまでの期間が長い。   In a lithium ion battery having a diameter of about 20 mm and a height of about 50 mm, which has been widely used in the past, an overdischarge prevention function (safety unit) is generally provided to prevent deterioration due to the battery reaching 0V. Although equipped with the battery, the size of the safety unit is sufficiently small compared to the battery, so the influence of the size is not a problem. In addition, the safety unit blocks discharge from the battery to the device when the battery mounted on the device reaches a predetermined voltage. However, even after shutting down, the safety unit consumes a minute current for monitoring the battery voltage. Since the conventional power source has a very high capacity of about 2000 mAh, the influence of the leakage current of the device is small, and even if the battery is discharged due to the current consumption of the safety unit, the period until reaching 0 V is long.

一方、直径が3〜6mm程度、高さが20〜45mm程度の電池では、一般的なセイフティユニットは数mm角であり、電池に対し大きいので、電源と共にセイフティユニットを備えると、小型であるメリットが小さくなってしまう。また、機器側に過放電防止機能を備えることにより、小型のメリットを活かすことも可能であるが、容量が5mAhから200mAh程度の電池の場合、待機中の機器の消費電流の影響は非常に大きく、過放電防止機能を備えても、その消費電流のために電池が放電し、0Vに至るまでの期間が著しく短い。   On the other hand, for batteries with a diameter of about 3 to 6 mm and a height of about 20 to 45 mm, the general safety unit is a few mm square and is larger than the battery. Will become smaller. In addition, by providing an overdischarge prevention function on the device side, it is possible to take advantage of the small size, but in the case of a battery with a capacity of about 5 mAh to 200 mAh, the influence of the current consumption of the standby device is very large. Even if the overdischarge prevention function is provided, the battery discharges due to the consumption current, and the period until it reaches 0 V is remarkably short.

従来リチウムイオン電池は0V(過放電)に至ると、正極と負極の単極電位は3.4V付近となる。一般的に負極は集電体として銅を用いている。銅は3.4V以上で溶解と析出が発生する。そのため電池が0V(過放電)に至ると、電池が劣化する。   When a conventional lithium ion battery reaches 0V (overdischarge), the unipolar potential of the positive electrode and the negative electrode is around 3.4V. In general, the negative electrode uses copper as a current collector. Copper dissolves and precipitates at 3.4 V or higher. Therefore, when the battery reaches 0V (over discharge), the battery deteriorates.

例えば特許文献1では、過放電によるリチウムイオン電池の劣化を防止するため、負極に金属リチウム箔を貼付し、電位差あるいは濃度差によりリチウムを炭素材中に拡散させたことを特徴とする非水電解液二次電池が開示されている。これにより、過放電時の負極の電位はリチウムに対して1.5V前後までしか上昇しないため、耐過放電特性を向上させることができると記載されている。   For example, in Patent Document 1, in order to prevent the deterioration of a lithium ion battery due to overdischarge, a metal lithium foil is attached to the negative electrode, and lithium is diffused into the carbon material due to a potential difference or a concentration difference. A liquid secondary battery is disclosed. Accordingly, it is described that the potential of the negative electrode during overdischarge only rises to about 1.5 V with respect to lithium, and thus the overdischarge resistance can be improved.

また特許文献2では、電極間の電圧(電池電圧)がゼロ(過放電)のときの正極と負極のリチウムに対する単極電位が、負極電極の基体(集電体)の基体溶解電位よりも低いレベルであることが提案されている。集電体として、銅よりも溶解電位の高い材料を用いることが記載されている。   In Patent Document 2, the unipolar potential with respect to lithium of the positive electrode and the negative electrode when the voltage between the electrodes (battery voltage) is zero (overdischarge) is lower than the substrate dissolution potential of the substrate (current collector) of the negative electrode. Proposed to be level. It is described that a material having a higher dissolution potential than copper is used as a current collector.

特開平5−144471号公報JP-A-5-144471 特許第4111714号公報Japanese Patent No. 4111714

従来、過放電における電池の劣化は、原因を負極として考えられ、負極に対し、種々の取り組みがなされてきた。しかしながら、負極の改善による効果が、正極の劣化を引き起こす場合があった。   Conventionally, battery deterioration due to overdischarge is considered to be caused by a negative electrode, and various efforts have been made for the negative electrode. However, the effect of improving the negative electrode sometimes causes deterioration of the positive electrode.

特許文献1では、正極に遷移金属のリチウム含有複合酸化物を用いとあるが、実質的には、活物質としてコバルト酸リチウム(LiCoO)について記載されている。コバルト酸リチウムは、1.5V程度の低い電位においても、比較的安定であるため、過放電時の負極の電位(即ち正極の電位)がリチウムに対して1.5V前後であることにより、耐過放電特性を向上することができる。 In Patent Document 1, a lithium-containing composite oxide of a transition metal is used for a positive electrode, but substantially describes lithium cobaltate (LiCoO 2 ) as an active material. Since lithium cobaltate is relatively stable even at a low potential of about 1.5 V, the negative electrode potential during overdischarge (that is, the positive electrode potential) is around 1.5 V with respect to lithium. Overdischarge characteristics can be improved.

しかしながら、正極活物質として、一般式LiMOあるいはLiMで表されるリチウム含有複合酸化物(但しMはニッケル単独か、ニッケルの一部を他の遷移金属で置換した金属)を用いると、1.9V以下の電位で低い電位ほど、また長期間になるほど、正極活物質の構造が変化し劣化が進行する。そのため、負極にリチウムを貼付け、過放電(電池電圧0V)時の負極の電位(即ち正極の電位)を1.5V程度の低い電位にすると、負極の劣化は抑制されるが、正極が劣化するため、効果を得るのは困難である。 However, when a lithium-containing composite oxide represented by the general formula LiMO 2 or LiM 2 O 4 (where M is nickel alone or a metal obtained by substituting a part of nickel with another transition metal) is used as the positive electrode active material. The structure of the positive electrode active material changes and the deterioration progresses as the electric potential is 1.9 V or less and the electric potential is lower and the electric potential is longer. Therefore, when lithium is pasted on the negative electrode and the potential of the negative electrode during overdischarge (battery voltage 0 V) (that is, the potential of the positive electrode) is set to a low potential of about 1.5 V, the deterioration of the negative electrode is suppressed, but the positive electrode is deteriorated. Therefore, it is difficult to obtain an effect.

特許文献2では、負極の集電体を銅よりも溶解電位の高い材料を用いることにより、耐過放電特性を向上できることが提案されている。しかしながら、特許文献2にあるようなチタニウムやチタニウム合金を用いると、抵抗が高いため出力の低下を招く。特に、直径が3〜6mm程度、高さが20〜45mm程度の小さな電池では、電極が小さいために集電体の抵抗の影響は大きく、出力が大きく低下してしまう。   Patent Document 2 proposes that the overdischarge resistance can be improved by using a negative electrode current collector made of a material having a higher dissolution potential than copper. However, when titanium or a titanium alloy as disclosed in Patent Document 2 is used, the output is lowered due to high resistance. In particular, in a small battery having a diameter of about 3 to 6 mm and a height of about 20 to 45 mm, since the electrodes are small, the influence of the resistance of the current collector is large, and the output is greatly reduced.

そこで、本発明は、出力が低下することなく、電池が過放電状態において、正極および負極が安定な電位範囲にあることにより、良好な耐過放電特性を有する円筒形リチウムイオン二次電池を提供する。   Accordingly, the present invention provides a cylindrical lithium ion secondary battery having good overdischarge resistance characteristics when the positive electrode and the negative electrode are in a stable potential range when the battery is in an overdischarge state without lowering the output. To do.

上記課題を解決するために、本発明は、正極活物質として一般式LiMOあるいはLiMで表されるリチウム含有複合酸化物(但しMはニッケル単独か、ニッケルの一部を他の遷移金属で置換した金属)を含む正極と、負極活物質として炭素材を、負極集電体として銅をそれぞれ用いた負極と、をセパレータを介して対向配置させ巻回してなる電極群が、非水電解液とともに外装缶に収納され、封止された円筒形リチウムイオン二次電池であり、負極は、金属リチウム箔を貼付し、電位差あるいは濃度差により前記リチウムを炭素材中に拡散させ、0.2Itで放電し、電池電圧が0Vに至り、電池が0Vで保持された10日後に、前記負極の電位がリチウムに対し2.0V以上、3.2V以下であることを特徴とする円筒形リチウムイオン二次電池である。 In order to solve the above-described problems, the present invention provides a lithium-containing composite oxide represented by the general formula LiMO 2 or LiM 2 O 4 as a positive electrode active material (where M is nickel alone or a part of nickel is replaced with another transition). An electrode group comprising a positive electrode including a metal substituted with a metal, a negative electrode using a carbon material as a negative electrode active material, and copper as a negative electrode current collector, facing each other through a separator, is non-aqueous. A cylindrical lithium ion secondary battery housed in an outer can together with an electrolytic solution and sealed. A negative electrode has a metallic lithium foil attached thereto, and the lithium is diffused into the carbon material by a potential difference or a concentration difference. 10 days after the discharge of 2 It, the battery voltage reaches 0 V, and the battery is held at 0 V, the potential of the negative electrode is 2.0 V or more and 3.2 V or less with respect to lithium. It is a um ion secondary battery.

本発明の円筒形リチウムイオン二次電池は、過放電状態において、正極および負極が、両者の安定な電位範囲にあるため劣化を抑制できる。また、負極の集電体は銅であるため抵抗が小さく、良好な出力特性を得ることができる。   The cylindrical lithium ion secondary battery of the present invention can suppress deterioration in the overdischarged state because the positive electrode and the negative electrode are in the stable potential range of both. Further, since the current collector of the negative electrode is copper, the resistance is small and good output characteristics can be obtained.

本発明によれば、過放電状態において、正極および負極の劣化が抑制されるため、良好な耐過放電特性有する円筒形リチウムイオン二次電池を提供することができる。   According to the present invention, since the deterioration of the positive electrode and the negative electrode is suppressed in the overdischarge state, it is possible to provide a cylindrical lithium ion secondary battery having good overdischarge resistance.

本発明の一実施の形態に係る円筒形リチウムイオン二次電池の概略縦断面図1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention. 本発明の一実施の形態に係る正極板の縦断面図The longitudinal cross-sectional view of the positive electrode plate which concerns on one embodiment of this invention 本発明の一実施の形態に係る正極板の平面図The top view of the positive electrode plate which concerns on one embodiment of this invention 本発明の一実施の形態に係る負極の巻回の際に中心側である面(巻き内側面)の平面図The top view of the surface (winding inner surface) which is a center side in the case of winding of the negative electrode which concerns on one embodiment of this invention

本発明は、正極活物質として一般式LiMOあるいはLiMで表されるリチウム含有複合酸化物(但しMはニッケル単独か、ニッケルの一部を他の遷移金属で置換した金属)を含む正極と、負極活物質として炭素材を、負極集電体として銅をそれぞれ用いた負極と、を用い、負極は、負極または外装缶に金属リチウム箔を貼付し、電位差あるいは濃度差により前記リチウムを炭素材中に拡散させ、0.2Itで放電し、電池電圧が0Vに至り、電池が0Vで保持された10日後に、前記負極の電位がリチウムに対し2.0V以上、3.2V以下であることにより、過放電状態において正極および負極が、両者の安定な電位範囲にあるため劣化を抑制でき、良好な耐過放電特性の円筒形リチウムイオン二次電池を提供することができる。 The present invention includes a lithium-containing composite oxide represented by the general formula LiMO 2 or LiM 2 O 4 as a positive electrode active material (where M is nickel alone or a metal obtained by substituting part of nickel with another transition metal). Using a positive electrode and a negative electrode using a carbon material as a negative electrode active material and copper as a negative electrode current collector, a metal lithium foil is attached to the negative electrode or an outer can, and the lithium is applied by a potential difference or a concentration difference. After 10 days after diffusion into the carbon material, discharge at 0.2 It, the battery voltage reaches 0 V, and the battery is held at 0 V, the potential of the negative electrode is 2.0 V or more and 3.2 V or less with respect to lithium. Therefore, in the overdischarge state, the positive electrode and the negative electrode are in the stable potential range of both, so that deterioration can be suppressed, and a cylindrical lithium ion secondary battery with good overdischarge resistance can be provided. The

負極集電体は、最外周側に露出部が設けられ、金属リチウム箔は、負極集電体の露出部に貼付し、電位差あるいは濃度差によりリチウムを炭素材中に拡散させることが好ましい。   The negative electrode current collector is preferably provided with an exposed portion on the outermost peripheral side, and the metal lithium foil is preferably attached to the exposed portion of the negative electrode current collector, and lithium is diffused into the carbon material by a potential difference or a concentration difference.

金属リチウム箔は、負極集電体の最外周側に設けられた露出部に貼り付けることが好ましい。負極集電体の最外周側に設けられた露出部に、金属リチウム箔を貼り付ける工程が簡便であり、構成された電極群を用いた電池は、従来の金属リチウム箔を貼り付けていない電極群と同様の製造法で電池を製造できるため、生産工程を変更することがなく好ましい。   The metal lithium foil is preferably attached to the exposed portion provided on the outermost peripheral side of the negative electrode current collector. The process of attaching the metal lithium foil to the exposed portion provided on the outermost peripheral side of the negative electrode current collector is simple, and the battery using the configured electrode group does not have the conventional metal lithium foil attached. Since a battery can be manufactured by the same manufacturing method as the group, it is preferable without changing the production process.

電極群の最外周の曲率半径が3.0mm以下であり、負極集電体は、負極リードが電気的に接続されており、金属リチウム箔の厚みは、負極リードの厚み以下であり、幅は外装缶の内径円周の1/3以下であることにより、直径が3〜6mm程度の小さな電池であっても、貼り付けられた金属リチウム箔が構成された電極群径に影響することがないので好ましい。さらに好ましくは、金属リチウム箔の幅が、負極リードの幅以下である。金属リチウム箔の厚みが、負極リードの厚み以上では、貼り付けられた金属リチウム箔が構成された電極群径を大きくする可能性があるため好ましくない。また、幅が外装缶の内径円周の1/2以上では貼り付けられた金属リチウム箔が構成された電極群径を大きくする可能性があるため好ましくない。   The curvature radius of the outermost circumference of the electrode group is 3.0 mm or less, the negative electrode current collector is electrically connected to the negative electrode lead, the thickness of the metal lithium foil is equal to or less than the thickness of the negative electrode lead, and the width is By being 1/3 or less of the inner diameter circumference of the outer can, even a small battery having a diameter of about 3 to 6 mm does not affect the diameter of the electrode group in which the attached metal lithium foil is configured. Therefore, it is preferable. More preferably, the width of the metal lithium foil is equal to or less than the width of the negative electrode lead. If the thickness of the metal lithium foil is equal to or greater than the thickness of the negative electrode lead, the diameter of the electrode group in which the attached metal lithium foil is configured may be increased. Further, if the width is ½ or more of the inner diameter circumference of the outer can, the diameter of the electrode group in which the adhered metal lithium foil is formed is not preferable.

外装缶と負極集電体とが電気的に接続されており、金属リチウム箔は外装缶内部に貼付し、電位差あるいは濃度差により前記リチウムを炭素材中に拡散させることにより、従来と同様の電極群を用いることができるため、電極群の構成に係わる工程の変更がないため好ましい。   The outer can and the negative electrode current collector are electrically connected, the metal lithium foil is stuck inside the outer can, and the lithium is diffused into the carbon material by a potential difference or a concentration difference. Since a group can be used, there is no change in the process related to the configuration of the electrode group, which is preferable.

金属リチウム箔は、外装缶内部の底部や側部に貼り付けることができる。   A metal lithium foil can be affixed on the bottom part or side part inside an exterior can.

金属リチウム箔は、電極群の最外周側に設けられた露出部、または外装缶内部、のどち
らかまたは両者に貼付けられたことにより、負極炭素材中に拡散させることができる。
The metal lithium foil can be diffused into the negative electrode carbon material by being attached to either or both of the exposed portion provided on the outermost peripheral side of the electrode group and the inside of the outer can.

公称容量が5mAh以上、200mAh以下の電池であることが好ましい。容量が小さいため過放電に至る期間短いので、本発明の構成とすることで過放電に至っても劣化が抑制されるため好ましい。   A battery having a nominal capacity of 5 mAh or more and 200 mAh or less is preferable. Since the capacity is small and the period until overdischarge is short, the configuration of the present invention is preferable because deterioration is suppressed even if overdischarge occurs.

負極に貼り付ける金属リチウム箔の容量は、負極活物質の炭素材の飽和可逆容量に対してその1.2%以上11.0%以下が好ましい。1.2%以上11.0%以下であることで、電池の過放電状態での負極の電位がリチウムに対し2.0V以上、3.2V以下となるため好ましい。1.2%未満では非常に長期にわたり過放電状態が継続された場合に、負極電位が徐々に上昇して3.4V以上に至る可能性があり、それにより負極の溶解析出が発生するため好ましくない。また、11.0%を超えると、正極の電位が1.9V以下に至る可能性があり、それにより正極の劣化を引き起こすため好ましくない。   The capacity of the metal lithium foil attached to the negative electrode is preferably 1.2% or more and 11.0% or less with respect to the saturation reversible capacity of the carbon material of the negative electrode active material. It is preferable that it is 1.2% or more and 11.0% or less because the potential of the negative electrode in an overdischarged state of the battery is 2.0 V or more and 3.2 V or less with respect to lithium. If it is less than 1.2%, when the overdischarge state is continued for a very long time, the potential of the negative electrode may gradually rise to 3.4 V or more, which causes dissolution and precipitation of the negative electrode. Absent. On the other hand, if it exceeds 11.0%, the potential of the positive electrode may reach 1.9 V or less, thereby causing deterioration of the positive electrode.

以下、本発明に係る円筒形リチウムイオン二次電池の一実施の形態を、図面を参照しながら説明する。   Hereinafter, an embodiment of a cylindrical lithium ion secondary battery according to the present invention will be described with reference to the drawings.

図1に示すように、本発明の円筒形リチウムイオン二次電池10は、有底円筒形の外装缶11、外装缶11内に収容された電極群12、および外装缶11を封止する封口板14、絶縁ガスケット13、上部リング31を備えている。   As shown in FIG. 1, a cylindrical lithium ion secondary battery 10 of the present invention includes a bottomed cylindrical outer can 11, an electrode group 12 accommodated in the outer can 11, and a sealing for sealing the outer can 11. A plate 14, an insulating gasket 13, and an upper ring 31 are provided.

電極群12は、負極15と、正極16と、負極15と正極16との間を隔離するセパレータ17とを備えている。この電極群12には非水電解質が接触している。   The electrode group 12 includes a negative electrode 15, a positive electrode 16, and a separator 17 that separates the negative electrode 15 from the positive electrode 16. The electrode group 12 is in contact with a nonaqueous electrolyte.

負極15は、負極リード18が接続されており、負極リード18は外装缶11と接続されている。これにより、負極15は外装缶11と電気的に接続されている。   A negative electrode lead 18 is connected to the negative electrode 15, and the negative electrode lead 18 is connected to the outer can 11. Thereby, the negative electrode 15 is electrically connected to the outer can 11.

外装缶11の底面および側面の外側は外部に露出し、外部負極端子として用いられる。   The outer surface of the bottom surface and side surface of the outer can 11 is exposed to the outside and used as an external negative electrode terminal.

正極16は、正極リード19が接続されており、正極リード19は封口板14と接続されている。これにより、正極16は封口板14と電気的に接続されている。   A positive electrode lead 19 is connected to the positive electrode 16, and the positive electrode lead 19 is connected to the sealing plate 14. Thereby, the positive electrode 16 is electrically connected to the sealing plate 14.

図2、図3に示すように、正極16は、正極集電体62、および正極集電体62の両面に形成された正極活物質層61を有し、正極リード19が接続されている。正極集電体62の片面に形成された正極活物質層61の厚みは30μm以上、90μm以下が好ましく、30μm以上、70μm以下がさらに好ましい。また、正極16の総厚みは、80μm以上、180μm以下が好ましい。   As shown in FIGS. 2 and 3, the positive electrode 16 includes a positive electrode current collector 62 and a positive electrode active material layer 61 formed on both surfaces of the positive electrode current collector 62, and the positive electrode lead 19 is connected thereto. The thickness of the positive electrode active material layer 61 formed on one surface of the positive electrode current collector 62 is preferably 30 μm or more and 90 μm or less, and more preferably 30 μm or more and 70 μm or less. The total thickness of the positive electrode 16 is preferably 80 μm or more and 180 μm or less.

正極集電体62には、金属箔が用いられ、好ましくは、アルミニウム箔またはアルミニウム合金箔である。電池の小型化および正極集電体62の強度の観点から、正極集電体62は、厚み10μm以上、50μm以下が好ましい。   A metal foil is used for the positive electrode current collector 62, and preferably an aluminum foil or an aluminum alloy foil. From the viewpoint of downsizing of the battery and the strength of the positive electrode current collector 62, the positive electrode current collector 62 preferably has a thickness of 10 μm or more and 50 μm or less.

正極16に含まれる正極活物質は、一般式LiMOあるいはLiMで表されるリチウム含有複合酸化物(但しMはニッケル単独か、ニッケルの一部を他の遷移金属で置換した金属)を含む。 The positive electrode active material contained in the positive electrode 16 is a lithium-containing composite oxide represented by the general formula LiMO 2 or LiM 2 O 4 (where M is nickel alone or a part of nickel is substituted with another transition metal). including.

特に、電池の小型化および高エネルギー密度化の観点から、正極活物質には、一般式:LiNi1−y(式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選ばれる少なくとも一種であり、0<x≦1.2、0.5<y≦1.0)で表されるリチウム含有複合酸化物を用いる
のが好ましい。
In particular, from the viewpoint of battery miniaturization and high energy density, the positive electrode active material includes a general formula: Li x Ni y M 1-y O 2 (where M is Na, Mg, Sc, Y, Mn , Fe, Co, Cu, Zn, Al, Cr, Pb, Sb and B, represented by 0 <x ≦ 1.2 and 0.5 <y ≦ 1.0) It is preferable to use a lithium-containing composite oxide.

また、同様に電池の小型化および高エネルギー密度化の観点から、正極活物質には、一般式:LiNiCo1−y−z(式中、Mは、Mg、Ba、Al、Ti、Sr、Ca、V、Fe、Cu、Bi、Y、Zr、Mo、Tc、Ru、Ta、およびWからなる群より選ばれる少なくとも一種であり、0.9≦x≦1.2、0.3≦y≦0.9、0.05≦z≦0.5、0.01≦1−y−z≦0.3)で表されるリチウム含有複合酸化物を用いるのが好ましい。 Similarly, from the viewpoint of downsizing and high energy density of the battery, the positive electrode active material, the general formula: Li x Ni y Co z M 1-y-z O 2 ( where, M is, Mg, Ba , Al, Ti, Sr, Ca, V, Fe, Cu, Bi, Y, Zr, Mo, Tc, Ru, Ta, and W, and at least 0.9 ≦ x ≦ 1. 2, 0.3 ≦ y ≦ 0.9, 0.05 ≦ z ≦ 0.5, 0.01 ≦ 1-yz ≦ 0.3) is preferably used. .

正極結着剤としては、例えば、フッ素系樹脂、スチレン−ブタジエン系ゴム、フッ素系ゴム、ポリアクリル酸、またはポリフッ化ビニリデンが用いられる。   As the positive electrode binder, for example, fluorine resin, styrene-butadiene rubber, fluorine rubber, polyacrylic acid, or polyvinylidene fluoride is used.

正極結着剤を用いる場合、正極活物質中の正極結着剤の含有量は、正極活物質100質量部あたり1〜5質量部であるのが好ましい。   When using a positive electrode binder, it is preferable that content of the positive electrode binder in a positive electrode active material is 1-5 mass parts per 100 mass parts of positive electrode active materials.

正極導電剤としては、例えば、グラファイト類、カーボンブラック類、炭素繊維、金属繊維、または導電性を有する有機材料が用いられる。   As the positive electrode conductive agent, for example, graphites, carbon blacks, carbon fibers, metal fibers, or conductive organic materials are used.

正極導電剤を用いる場合、正極活物質中の正極導電剤の含有量は、正極活物質100質量部あたり0.5質量部以上、5質量部以下であるのが好ましい。   When the positive electrode conductive agent is used, the content of the positive electrode conductive agent in the positive electrode active material is preferably 0.5 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the positive electrode active material.

正極リード19の材質としては、例えば、アルミニウムを用いるのが好ましく、チタンやニッケル等の金属を用いることもできる。   As the material of the positive electrode lead 19, for example, aluminum is preferably used, and a metal such as titanium or nickel can also be used.

図4に示すように、負極15は、負極集電体51および負極集電体51の両面に形成された負極活物質層52を有し、負極リード18が接続されている。さらに、金属リチウム箔53が、負極集電体の露出部に貼り付けられている。負極活物質層52は位相差があってもよい。負極15の総厚みは、80μm以上、250μm以下が好ましい。   As shown in FIG. 4, the negative electrode 15 has a negative electrode current collector 51 and a negative electrode active material layer 52 formed on both surfaces of the negative electrode current collector 51, and the negative electrode lead 18 is connected thereto. Furthermore, the metal lithium foil 53 is affixed on the exposed part of the negative electrode current collector. The negative electrode active material layer 52 may have a phase difference. The total thickness of the negative electrode 15 is preferably 80 μm or more and 250 μm or less.

金属リチウム箔53は、負極集電体51の最外周側の露出部に貼り付けることが好ましく、最外周側の中心を向いた露出部に貼り付けることが好ましい。また、金属リチウム箔53は、構成した電極群において、負極リード18と共に電極群径に影響を与えない位置に貼り付けることが好ましい。例えば、図4に示すように、金属リチウム箔53と負極リード18が負極集電体51を介して、表裏の位置で重ならないように貼り付けることが好ましい。   The metal lithium foil 53 is preferably attached to the exposed portion on the outermost peripheral side of the negative electrode current collector 51, and is preferably attached to the exposed portion facing the center on the outermost peripheral side. Moreover, it is preferable to affix the metal lithium foil 53 at a position that does not affect the electrode group diameter together with the negative electrode lead 18 in the configured electrode group. For example, as shown in FIG. 4, it is preferable that the metal lithium foil 53 and the negative electrode lead 18 are attached via the negative electrode current collector 51 so as not to overlap at the front and back positions.

負極集電体51には、銅の金属箔が用いられる。負極集電体51として銅を用いることにより、抵抗が低いため高出力が得られる。   A copper metal foil is used for the negative electrode current collector 51. By using copper as the negative electrode current collector 51, a high output can be obtained because the resistance is low.

負極15に含まれる負極活物質は、リチウムイオン二次電池で使用可能な炭素材であればよく、特に限定されない。例えば、従来からリチウムイオン二次電池に用いられている天然黒鉛や人造黒鉛などの黒鉛材料、非晶質炭素材料などが挙げられる。   The negative electrode active material contained in the negative electrode 15 may be any carbon material that can be used in a lithium ion secondary battery, and is not particularly limited. Examples thereof include graphite materials such as natural graphite and artificial graphite conventionally used for lithium ion secondary batteries, and amorphous carbon materials.

負極結着剤は必要に応じて、例えば、スチレンブタジエンゴム、ポリフッ化ビニリデンなどを用いることができるが、これに限定されない。   As the negative electrode binder, for example, styrene butadiene rubber, polyvinylidene fluoride, and the like can be used, but are not limited thereto.

また、必要に応じて、増粘剤として、カルボキシメチルセルロースなどを用いることができるが、これに限定されない。   Moreover, carboxymethylcellulose etc. can be used as a thickener as needed, However, It is not limited to this.

負極リード18の材質としては、銅やニッケル等の金属を用いることができる。   As a material of the negative electrode lead 18, a metal such as copper or nickel can be used.

負極リードの幅は、1mm以上、2mm以下が好ましく、1.5mm以下がさらに好ましい。1mm未満では、集電体への溶接において強度が不十分になるため好ましくなく、2.0mmを超えると、群構成が困難になるため好ましくない。   The width of the negative electrode lead is preferably 1 mm or more and 2 mm or less, and more preferably 1.5 mm or less. If it is less than 1 mm, it is not preferable because the strength becomes insufficient in welding to the current collector, and if it exceeds 2.0 mm, it is not preferable because the group configuration becomes difficult.

また、負極リードの厚みは0.05mm以上、0.15mm以下が好ましく、0.1mm以下が特に好ましい。0.05mm未満では、負極リリードの強度が不十分となるため好ましくなく、0.15mmを超えると、電極群の径の増大に寄与するため好ましくない。   Further, the thickness of the negative electrode lead is preferably 0.05 mm or more and 0.15 mm or less, and particularly preferably 0.1 mm or less. If it is less than 0.05 mm, the strength of the negative electrode relead becomes insufficient, which is not preferable, and if it exceeds 0.15 mm, it contributes to an increase in the diameter of the electrode group, which is not preferable.

非水電解液は、溶質および非水溶媒を含む。   The nonaqueous electrolytic solution includes a solute and a nonaqueous solvent.

溶質は、非水溶媒に溶解する支持塩である。支持塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、テトラフルオロ硼酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(CFSO)、リチウムビス(ペンタフルオロエチルスルホニル)イミド(LiN(CSO)、リチウムビス(トリフルオロメチルスルホニル)(ペンタフルオロエチルスルホニル)イミド(LiN(CFSO)(CSO))、またはリチウムトリス(トリフルオロメチルスルホニル)メチド(LiC(CFSO)が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A solute is a supporting salt that dissolves in a non-aqueous solvent. Examples of the supporting salt include lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis ( Trifluoromethylsulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoroethylsulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), lithium bis (trifluoromethylsulfonyl) (pentafluoro Ethylsulfonyl) imide (LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 )) or lithium tris (trifluoromethylsulfonyl) methide (LiC (CF 3 SO 2 ) 3 ) is used. These may be used alone or in combination of two or more.

非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、γ‐ブチロラクトン(γ‐BL)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、N,N−ジメチルホルムアミド、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルホキシド、ホルムアミド、アセトアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン、ジオキソラン誘導体、スルホラン、メチルスルホラン、プロピレンカーボネート誘導体、またはテトラヒドロフラン誘導体が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), 1,2-dimethoxyethane (DME), 1 , 2-diethoxyethane (DEE), γ-butyrolactone (γ-BL), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), N, N-dimethylformamide, tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide, formamide, acetamide, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, trimethoxymethane, dioxolane, dioxolane derivatives, sulfolane, methyl Rusulfolane, a propylene carbonate derivative, or a tetrahydrofuran derivative is used. These may be used alone or in combination of two or more.

また、例えば、液状電解質、ゲル状電解質、固体状電解質(高分子固体電解質)を非水電解液として用いてもよい。   Further, for example, a liquid electrolyte, a gel electrolyte, or a solid electrolyte (polymer solid electrolyte) may be used as the non-aqueous electrolyte.

セパレータ17としては、例えば微多孔性の薄膜、織布、または不織布が用いられる。これらは、イオン透過度が大きく、適度な機械的強度および絶縁性を有することが好ましい。セパレータ17の材質としては、例えば、ポリプロピレンおよびポリエチレンのようなポリオレフィンが挙げられる。   As the separator 17, for example, a microporous thin film, a woven fabric, or a non-woven fabric is used. These have a high ion permeability and preferably have an appropriate mechanical strength and insulating property. Examples of the material of the separator 17 include polyolefin such as polypropylene and polyethylene.

特に、ポリオレフィンからなる微多孔性の薄膜は、耐久性に優れ、一定の温度に上昇すると孔が閉塞する、いわゆるシャットダウン機能を有するため、リチウムイオン電池などのリチウムイオン二次電池用のセパレータとして好適に用いられる。   In particular, a microporous thin film made of polyolefin is excellent in durability and has a so-called shutdown function that closes the pores when the temperature rises to a certain temperature. Therefore, it is suitable as a separator for lithium ion secondary batteries such as lithium ion batteries. Used for.

セパレータの厚みは、一般的に10μm以上、300μm以下であるが、好ましくは40μm以下、より好ましくは5μm以上、30μm以下である。セパレータは、1種の材料からなる単層膜でもよく、2種以上の材料からなる複合膜または多層膜でもよい。   The thickness of the separator is generally 10 μm or more and 300 μm or less, preferably 40 μm or less, more preferably 5 μm or more and 30 μm or less. The separator may be a single layer film made of one material, or a composite film or multilayer film made of two or more materials.

絶縁ガスケット13の材質には、例えば、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリアミド、ポリイミド、ポリテトラフルオロエチレン、液晶ポリマー、パーフルオロアルコキシエチレンの共重合体が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらを、無機繊維などのフィラーと組み合わせて用いてもよい。絶縁ガスケットは、電池の気密性を高めるために、シール材でコーティングしてもよい。   As the material of the insulating gasket 13, for example, a copolymer of polypropylene, polyethylene, polyphenylene sulfide, polyether ether ketone, polyamide, polyimide, polytetrafluoroethylene, liquid crystal polymer, and perfluoroalkoxyethylene is used. These may be used alone or in combination of two or more. You may use these in combination with fillers, such as an inorganic fiber. The insulating gasket may be coated with a sealing material to increase the airtightness of the battery.

上記実施形態の電極材料および電解液の組成は特に限定されず、公知の材料および組成を適宜選択すればよい。   The composition of the electrode material and the electrolytic solution in the above embodiment is not particularly limited, and known materials and compositions may be appropriately selected.

以下、本発明の実施例を詳細に説明するが、本発明は、これらの実施例に限定されない。   Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

(実施例1)
以下の手順に従って、図1に示す円筒形リチウムイオン二次電池10を作製した。
Example 1
The cylindrical lithium ion secondary battery 10 shown in FIG. 1 was produced according to the following procedure.

(1)正極の作製
正極活物質としてニッケル酸リチウム100質量部、導電剤としてアセチレンブラック4質量部、および結着剤としてポリフッ化ビニリデン4質量部に、分散媒としてN−メチル−2−ピロリドン(NMP)を加え、正極スラリーを調製した。この正極スラリーを正極集電体(厚み15μm)の両面に塗布し、乾燥後、圧延して、正極16(厚み0.14mm)を得た。
(1) Production of positive electrode 100 parts by mass of lithium nickelate as a positive electrode active material, 4 parts by mass of acetylene black as a conductive agent, 4 parts by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone (as a dispersion medium) NMP) was added to prepare a positive electrode slurry. This positive electrode slurry was applied to both surfaces of a positive electrode current collector (thickness: 15 μm), dried and rolled to obtain positive electrode 16 (thickness: 0.14 mm).

正極16は、作製時に、正極活物質層を有しない領域(正極集電体が露出する部分)を設け、正極リード19を接続し、図2および図3に示すような構成とした。   The positive electrode 16 was provided with a region having no positive electrode active material layer (portion where the positive electrode current collector was exposed) at the time of production, and connected to the positive electrode lead 19 to have a configuration as shown in FIGS.

(2)負極の作製
図4に示す負極15を作製した。図4は負極15の巻き内側面の平面図である。負極活物質として人造黒鉛粉末100質量部、結着剤として日本ゼオン製スチレン−メタクリル酸−ブタジエン共重合体を1質量部、増粘剤としてカルボキシメチルセルロース(CMC)1質量部を混合し、これらを脱イオン水に分散させてスラリーを作製した。負極集電体51(厚み10μm)上の両面に塗布し、乾燥後、圧延して、負極15(厚み0.15mm)を得た。
(2) Production of negative electrode A negative electrode 15 shown in FIG. 4 was produced. FIG. 4 is a plan view of the wound inner side surface of the negative electrode 15. 100 parts by mass of artificial graphite powder as a negative electrode active material, 1 part by mass of styrene-methacrylic acid-butadiene copolymer manufactured by Nippon Zeon as a binder, and 1 part by mass of carboxymethyl cellulose (CMC) as a thickener are mixed. A slurry was prepared by dispersing in deionized water. It apply | coated to both surfaces on the negative electrode collector 51 (thickness 10 micrometers), and after drying, it rolled and obtained the negative electrode 15 (thickness 0.15 mm).

なお、負極作製時に、負極15の一方の端部の片面(電極群の最内周における巻回の内側)には、負極活物質層52を有しない領域(負極集電体51が露出する部分)を設けた。また、他方の端部は、負極集電体51の両面に、負極活物質層52を有しない領域(負極集電体51が露出する部分)を設け、負極リード18を接続した。負極リード18は幅1.5mm、厚み0.1mmを用いた。   In addition, at the time of producing the negative electrode, a region having no negative electrode active material layer 52 (a portion where the negative electrode current collector 51 is exposed) is formed on one surface of one end of the negative electrode 15 (inside the winding on the innermost circumference of the electrode group). ). In addition, the other end portion was provided with a region not having the negative electrode active material layer 52 (portion where the negative electrode current collector 51 was exposed) on both surfaces of the negative electrode current collector 51, and the negative electrode lead 18 was connected thereto. The negative electrode lead 18 had a width of 1.5 mm and a thickness of 0.1 mm.

また、負極活物質層52を有しない領域で、正極16と対向せず、構成した電極群において、負極リード18と共に電極群径に影響を与えない位置に金属リチウム箔53を貼り付けた。貼り付けた金属リチウム箔53の容量は炭素材の飽和可逆容量に対し4.9%とした。金属リチウム箔53の寸法は、幅(巻回方向と垂直方向)12mm、長さ(巻回方向)1mm、厚み0.1mmとした。   Further, in a region where the negative electrode active material layer 52 is not provided, the metal lithium foil 53 is pasted at a position which does not face the positive electrode 16 and does not affect the diameter of the electrode group together with the negative electrode lead 18 in the configured electrode group. The capacity of the attached metal lithium foil 53 was 4.9% with respect to the saturation reversible capacity of the carbon material. The dimensions of the metal lithium foil 53 were 12 mm in width (direction perpendicular to the winding direction), 1 mm in length (winding direction), and 0.1 mm in thickness.

なお、負極の飽和可逆容量は以下の要領によって算出した。正極活物質として炭素材料を、負極活物質としてリチウム金属をそれぞれ用い、20℃において、電流密度0.5mA/cmの定電流充放電を上限1.0Vから下限0Vの間で、5サイクル繰り返した。
このときの可逆容量を飽和可逆容量とした。
The saturation reversible capacity of the negative electrode was calculated according to the following procedure. A carbon material is used as the positive electrode active material and lithium metal is used as the negative electrode active material, and constant current charge / discharge at a current density of 0.5 mA / cm 2 is repeated 5 cycles between an upper limit of 1.0 V and a lower limit of 0 V at 20 ° C. It was.
The reversible capacity at this time was defined as a saturated reversible capacity.

(3)電極群の作製
巻芯を用い、巻芯のスリット部にセパレータを挟み込み、折り返して、2枚の構成とし、正極、セパレータ、負極、セパレータが順次重なり、正極合剤形成部と負極合剤形成部が対向するようにして、巻芯を中心にして巻回し、電極群を構成した。巻き終わりは、テープを貼り付け、群を固定した。
(3) Production of electrode group Using a winding core, the separator is sandwiched between the slits of the winding core and folded to form two sheets. The electrode group was configured by winding around the core such that the agent forming portions face each other. At the end of winding, tape was applied to fix the group.

(4)電解液の調製
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)の混合溶媒に、LiPFを溶解させて、非水電解液を得た。ECおよびEMCの質量比は、1:1とした。非水電解液中のLiPFの濃度は1.0mol/Lとした。
(4) Preparation of Electrolytic Solution LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) to obtain a nonaqueous electrolytic solution. The mass ratio of EC and EMC was 1: 1. The concentration of LiPF 6 in the non-aqueous electrolyte was 1.0 mol / L.

(5)円筒形リチウムイオン電池の作製
構成した電極群12を外装缶11に挿入し、負極リード18と外装缶11を接続した。続いて、正極リード19と封口板14を接続した。外装缶11内に、電解液を注液し、封口して電池とした。このようにして、公称容量35mAhの円筒形リチウムイオン二次電池10(直径3.5mm、高さ35mm)を得た。
(5) Production of Cylindrical Lithium Ion Battery The configured electrode group 12 was inserted into the outer can 11 and the negative electrode lead 18 and the outer can 11 were connected. Subsequently, the positive electrode lead 19 and the sealing plate 14 were connected. An electrolyte solution was poured into the outer can 11 and sealed to obtain a battery. In this way, a cylindrical lithium ion secondary battery 10 (diameter 3.5 mm, height 35 mm) having a nominal capacity of 35 mAh was obtained.

(実施例2)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し1.2%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)3mm、長さ(巻回方向)1mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Example 2)
The capacity of the metal lithium foil attached to the negative electrode current collector was 1.2% with respect to the saturation reversible capacity of the carbon material. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a width (winding direction and perpendicular direction) of 3 mm, a length (winding direction) of 1 mm, and a thickness of 0.1 mm.

(実施例3)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し2.4%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)6mm、長さ(巻回方向)1mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Example 3)
The capacity of the metal lithium foil attached to the negative electrode current collector was 2.4% with respect to the saturation reversible capacity of the carbon material. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a width (direction perpendicular to the winding direction) of 6 mm, a length (winding direction) of 1 mm, and a thickness of 0.1 mm.

(実施例4)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し7.3%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)6mm、長さ(巻回方向)3mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
Example 4
The capacity of the metal lithium foil attached to the negative electrode current collector was 7.3% with respect to the saturation reversible capacity of the carbon material. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a width (winding direction and perpendicular direction) of 6 mm, a length (winding direction) of 3 mm, and a thickness of 0.1 mm.

(実施例5)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し11.0%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)9mm、長さ(巻回方向)3mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Example 5)
The capacity of the metal lithium foil attached to the negative electrode current collector was 11.0% with respect to the saturation reversible capacity of the carbon material. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a width (direction perpendicular to the winding direction) of 9 mm, a length (winding direction) of 3 mm, and a thickness of 0.1 mm.

(実施例6)
負極集電体に金属リチウム箔を貼り付けずに電極群を構成した。また、外装缶に電極群を挿入する前に、外装缶内の壁面であって、外装缶の底部から中部にかけて、炭素材の飽和可逆容量に対し4.9%の容量の金属リチウム箔を貼り付けた。金属リチウム箔の寸法は、長さ(電池の高さ方向)16mm、幅(電池の高さと垂直方向)1mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Example 6)
An electrode group was formed without attaching a metal lithium foil to the negative electrode current collector. In addition, before inserting the electrode group into the outer can, a metal lithium foil having a capacity of 4.9% with respect to the saturation reversible capacity of the carbon material is applied to the wall surface in the outer can from the bottom to the middle. I attached. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a length (battery height direction) of 16 mm, a width (battery height and vertical direction) of 1 mm, and a thickness of 0.1 mm. .

(比較例1)
負極集電体に金属リチウム箔を貼り付けずに電極群を構成した以外、実施例1と同様の方法により、電池を作製した。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 except that the electrode group was formed without attaching a metal lithium foil to the negative electrode current collector.

(比較例2)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し0.8%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)2mm、長さ(巻回方向)1mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Comparative Example 2)
The capacity of the metal lithium foil attached to the negative electrode current collector was 0.8% with respect to the saturation reversible capacity of the carbon material. A battery was produced in the same manner as in Example 1, except that the metal lithium foil had a width (direction perpendicular to the winding direction) of 2 mm, a length (winding direction) of 1 mm, and a thickness of 0.1 mm.

(比較例3)
負極集電体に貼り付けた金属リチウム箔の容量は炭素材の飽和可逆容量に対し14.7%とした。金属リチウム箔の寸法は、幅(巻回方向と垂直方向)12mm、長さ(巻回方向)3mm、厚み0.1mmとした以外、実施例1と同様の方法により、電池を作製した。
(Comparative Example 3)
The capacity of the metal lithium foil attached to the negative electrode current collector was 14.7% with respect to the saturation reversible capacity of the carbon material. A battery was fabricated in the same manner as in Example 1, except that the metal lithium foil had a width (direction perpendicular to the winding direction) of 12 mm, a length (winding direction) of 3 mm, and a thickness of 0.1 mm.

(A)正極および負極の単極電位の確認
以上の実施例1から実施例6および比較例1、比較例2の電極群を3個ずつ構成し、リチウム金属を参照電極として、3極式セルを構成した。
(A) Confirmation of the monopolar potential of the positive electrode and the negative electrode The three electrode groups of the above-described Example 1 to Example 6, Comparative Example 1, and Comparative Example 2 are configured, and lithium metal is used as a reference electrode. Configured.

(B)初期容量の確認
以上のようにして作製した実施例および比較例の電池を3個ずつと、(A)で作製した3極式セルの3個ずつを、下記(1)〜(4)の順に充放電した。
(1)0.05Itの定電流で4時間充電した後、電池の閉路電圧が2.5Vに達するまで0.05Cの定電流で放電した。
(2)電池の閉路電圧が4.1Vに達するまで0.1Itの定電流で充電した後、電池の閉路電圧が2.5Vに達するまで0.1Itの定電流で放電した。
(3)電池の閉路電圧が4.1Vに達するまで0.1Itの定電流で充電した後、電池の閉路電圧が2.5Vに達するまで0.1Itの定電流で放電した。
(4)電池の閉路電圧が4.2Vに達するまで0.1Itの定電流で充電した後、電池の閉路電圧が2.5Vに達するまで0.1Itの定電流で放電した。
(B) Confirmation of initial capacity Three batteries of the examples and comparative examples prepared as described above and three of the three-electrode cells prepared in (A) were respectively prepared in the following (1) to (4 ) In this order.
(1) After charging for 4 hours at a constant current of 0.05 It, the battery was discharged at a constant current of 0.05 C until the closed circuit voltage of the battery reached 2.5V.
(2) After charging with a constant current of 0.1 It until the closed circuit voltage of the battery reached 4.1 V, the battery was discharged with a constant current of 0.1 It until the closed circuit voltage of the battery reached 2.5 V.
(3) After charging with a constant current of 0.1 It until the closed circuit voltage of the battery reached 4.1 V, the battery was discharged with a constant current of 0.1 It until the closed circuit voltage of the battery reached 2.5 V.
(4) After charging with a constant current of 0.1 It until the closed circuit voltage of the battery reached 4.2 V, the battery was discharged with a constant current of 0.1 It until the closed circuit voltage of the battery reached 2.5 V.

なお、Itは時間率を表す。設計容量C(mAh)に相当する電気量を時間t(時間)で流す場合、電流値I(mA)はC/tと表される。   In addition, It represents a time rate. When an amount of electricity corresponding to the design capacity C (mAh) is supplied at time t (time), the current value I (mA) is expressed as C / t.

上記(4)の放電において、放電電圧をモニタリングし、放電容量を確認した。全ては良品であり、この時の放電容量を初期容量とした。   In the discharge of (4) above, the discharge voltage was monitored to confirm the discharge capacity. All were good products, and the discharge capacity at this time was defined as the initial capacity.

(C)耐過放電特性評価
20℃の環境下において、0.2Itで放電し、電池電圧が0Vに至ったのち、620Ωの抵抗を接続し、電池を0Vで保持した。
(C) Overdischarge resistance evaluation Under an environment of 20 ° C., the battery was discharged at 0.2 It, and after the battery voltage reached 0 V, a 620Ω resistor was connected, and the battery was held at 0 V.

10日後に3極セルにて、正極と負極の単極電位をモニターした。(表1)に、モニターした3個の3極式セルの単極電位の平均を示す。   Ten days later, the monopolar potential of the positive electrode and the negative electrode was monitored in a tripolar cell. Table 1 shows the average unipolar potential of the three monitored tripolar cells.

また、60日後に、上記(4)の条件にて充放電し、放電電圧をモニタリングすることにより、放電容量を確認し、回復容量とした。(表1)に、確認した3個の電池の初期の容量に対する回復容量の比率を平均で示す。   In addition, after 60 days, charging / discharging was performed under the above condition (4), and the discharge voltage was monitored to confirm the discharge capacity, which was taken as the recovery capacity. In Table 1, the ratio of the recovery capacity to the initial capacity of the three confirmed batteries is shown as an average.

なお、比較例1では60日後に3個のうち1個が内部短絡のため、回復容量は得られなかった。内部短絡した電池を分解したところ、正極側に銅の析出が確認された。   In Comparative Example 1, a recovery capacity could not be obtained because one of the three was internally shorted after 60 days. When the internally short-circuited battery was disassembled, copper deposition was confirmed on the positive electrode side.

表1に示すように、本発明の実施例1から実施例6では、20℃の環境下において、0.2Itで放電し、電池電圧が0Vに至り、電池が0Vで保持された10日後に、負極の電位がリチウムに対し2.0V以上、3.2V以下であった。一方、比較例1では3.4V以上であり、比較例2では1.89Vであった。   As shown in Table 1, in Examples 1 to 6 of the present invention, discharge was performed at 0.2 It in a 20 ° C. environment, the battery voltage reached 0 V, and 10 days after the battery was held at 0 V. The potential of the negative electrode was 2.0 V or more and 3.2 V or less with respect to lithium. On the other hand, in Comparative Example 1, it was 3.4 V or higher, and in Comparative Example 2, it was 1.89 V.

また、60日後の初期に対する回復容量は、本発明の実施例1から実施例5では、60%以上であったのに対し、比較例2および3では54.8%以下と大きく低下しており、比較例1では3個のうち1個が内部短絡していた。実施例1から実施例6では、過放電時の正極及び負極の電位が両者の安定な電位範囲にあったために良好な耐過放電特性を示したと考えられる。   Further, the recovery capacity with respect to the initial value after 60 days was 60% or more in Examples 1 to 5 of the present invention, whereas it was greatly reduced to 54.8% or less in Comparative Examples 2 and 3. In Comparative Example 1, one of the three was internally short-circuited. In Examples 1 to 6, it is considered that the positive and negative electrode potentials at the time of overdischarge were in a stable potential range of both, and thus excellent overdischarge characteristics were exhibited.

一方、比較例1では負極の電位が上昇し、3.4V以上に到ったことにより、負極集電体の銅が溶解析出し、内部短絡が発生したと考えられる。
また、比較例2では、過放電状態が継続された期間に、負極電位が徐々に上昇して3.4V以上に至った可能性があり、負極集電体の銅が溶出し、内部短絡には至らなかったが、負極の抵抗が増大し、容量が大きく低下したと考えられる。
On the other hand, in Comparative Example 1, the potential of the negative electrode increased and reached 3.4 V or higher, so that it was considered that copper of the negative electrode current collector was dissolved and precipitated and an internal short circuit occurred.
Further, in Comparative Example 2, there is a possibility that the negative electrode potential gradually increased to 3.4 V or more during the period in which the overdischarge state was continued, and the copper of the negative electrode current collector was eluted, causing an internal short circuit. However, it is considered that the resistance of the negative electrode increased and the capacity greatly decreased.

比較例3では、正極の電位が1.89Vまで低下したことにより、正極の結晶構造の変化が進行し、容量が大きく低下したと考えられる。   In Comparative Example 3, it is considered that since the potential of the positive electrode decreased to 1.89 V, the change in the crystal structure of the positive electrode progressed and the capacity significantly decreased.

本発明の電池は、各種の電子機器、特に、各種の携帯型電子機器における電源として好適に用いることができる。   The battery of the present invention can be suitably used as a power source in various electronic devices, in particular, various portable electronic devices.

10 円筒形リチウムイオン二次電池
11 外装缶
12 電極群
13 絶縁ガスケット
14 封口板
15 負極
16 正極
17 セパレータ
18 負極リード
19 正極リード
31 上部リング
51 負極集電体
52 負極活物質層
53 金属リチウム箔
61 正極活物質層
62 正極集電体
DESCRIPTION OF SYMBOLS 10 Cylindrical lithium ion secondary battery 11 Exterior can 12 Electrode group 13 Insulation gasket 14 Sealing plate 15 Negative electrode 16 Positive electrode 17 Separator 18 Negative electrode lead 19 Positive electrode lead 31 Upper ring 51 Negative electrode current collector 52 Negative electrode active material layer 53 Metal lithium foil 61 Positive electrode active material layer 62 Positive electrode current collector

Claims (5)

正極活物質として一般式LiMOあるいはLiMで表されるリチウム含有複合酸化物(但しMはニッケル単独か、ニッケルの一部を他の遷移金属で置換した金属)を含む正極と、負極活物質として炭素材を、負極集電体として銅をそれぞれ用いた負極と、をセパレータを介して対向配置させ巻回してなる電極群が、非水電解液とともに外装缶に収納されており、前記外装缶と、前記負極集電体と、が電気的に接続され、封止された円筒形リチウムイオン二次電池であり、
前記負極、または前記外装缶には、金属リチウム箔を貼付し、電位差あるいは濃度差により前記リチウムを前記炭素材中に拡散させ、
0.2Itで放電し、電池電圧が0Vに至り、電池が0Vで保持された10日後に、前記負極の電位がリチウムに対し2.0V以上、3.2V以下である円筒形リチウムイオン二次電池。
A positive electrode containing a lithium-containing composite oxide represented by the general formula LiMO 2 or LiM 2 O 4 as a positive electrode active material (where M is nickel alone or a metal in which a part of nickel is substituted with another transition metal), and a negative electrode An electrode group formed by placing a carbon material as an active material and a negative electrode using copper as a negative electrode current collector, and facing each other through a separator, is housed in an outer can together with a non-aqueous electrolyte, An outer can and the negative electrode current collector are electrically connected and sealed cylindrical lithium ion secondary battery,
A metal lithium foil is attached to the negative electrode or the outer can, and the lithium is diffused into the carbon material by a potential difference or a concentration difference.
Cylindrical lithium ion secondary in which the potential of the negative electrode is 2.0 V or more and 3.2 V or less with respect to lithium 10 days after discharging at 0.2 It, the battery voltage reaches 0 V, and the battery is held at 0 V battery.
前記負極集電体は、最外周側に露出部が設けられ、
前記金属リチウム箔は、前記負極集電体の露出部に貼付し、電位差あるいは濃度差により前記リチウムを炭素材中に拡散させたことを特徴とする請求項1記載の円筒形リチウムイオン二次電池。
The negative electrode current collector is provided with an exposed portion on the outermost periphery side,
2. The cylindrical lithium ion secondary battery according to claim 1, wherein the metal lithium foil is attached to an exposed portion of the negative electrode current collector, and the lithium is diffused into the carbon material by a potential difference or a concentration difference. .
前記電極群の最外周の曲率半径が3.0mm以下であり、
前記負極集電体は、負極リードが電気的に接続されており、
前記金属リチウム箔の厚みは前記負極リードの厚み以下であり、幅は外装缶の内径円周の1/3以下であることを特徴とする請求項1または2に記載の円筒形リチウムイオン二次電池。
The radius of curvature of the outermost periphery of the electrode group is 3.0 mm or less,
The negative electrode current collector has a negative electrode lead electrically connected thereto,
3. The cylindrical lithium ion secondary according to claim 1, wherein the thickness of the metal lithium foil is equal to or less than the thickness of the negative electrode lead, and the width is equal to or less than 3 of the inner circumference of the outer can. battery.
公称容量が5mAh以上、200mAh以下である請求項1〜3のいずれか一項に記載の円筒形リチウムイオン二次電池。 The cylindrical lithium ion secondary battery according to any one of claims 1 to 3, wherein a nominal capacity is 5 mAh or more and 200 mAh or less. 前記金属リチウム箔の容量は、前記負極活物質の炭素材の飽和可逆容量に対して、その1.2%以上11.0%以下である請求項1〜4のいずれか一項に記載の円筒形リチウムイオン二次電池。 The cylinder according to any one of claims 1 to 4, wherein a capacity of the metal lithium foil is 1.2% or more and 11.0% or less with respect to a saturation reversible capacity of the carbon material of the negative electrode active material. Lithium ion secondary battery.
JP2012070811A 2012-03-27 2012-03-27 Cylindrical lithium ion secondary battery Pending JP2013206544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070811A JP2013206544A (en) 2012-03-27 2012-03-27 Cylindrical lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070811A JP2013206544A (en) 2012-03-27 2012-03-27 Cylindrical lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013206544A true JP2013206544A (en) 2013-10-07

Family

ID=49525456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070811A Pending JP2013206544A (en) 2012-03-27 2012-03-27 Cylindrical lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013206544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078423A (en) * 2021-03-30 2021-07-06 国联汽车动力电池研究院有限责任公司 Voltage-temperature coupling measurement method and device
US11121374B2 (en) 2017-11-30 2021-09-14 Lg Chem, Ltd. Positive electrode for lithium secondary battery and lithium secondary battery including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144473A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JPH0794211A (en) * 1993-09-21 1995-04-07 Matsushita Electric Ind Co Ltd Manufacture of battery and electrode plate for battery
JP2002075454A (en) * 2000-08-23 2002-03-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JP2005085556A (en) * 2003-09-05 2005-03-31 Sanyo Electric Co Ltd Lithium ion battery and its manufacturing method
JP2005235617A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144473A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JPH0794211A (en) * 1993-09-21 1995-04-07 Matsushita Electric Ind Co Ltd Manufacture of battery and electrode plate for battery
JP2002075454A (en) * 2000-08-23 2002-03-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary cell
JP2005085556A (en) * 2003-09-05 2005-03-31 Sanyo Electric Co Ltd Lithium ion battery and its manufacturing method
JP2005235617A (en) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd Lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121374B2 (en) 2017-11-30 2021-09-14 Lg Chem, Ltd. Positive electrode for lithium secondary battery and lithium secondary battery including same
JP7034406B2 (en) 2017-11-30 2022-03-14 エルジー エナジー ソリューション リミテッド Positive electrode for lithium secondary battery and lithium secondary battery containing it
CN113078423A (en) * 2021-03-30 2021-07-06 国联汽车动力电池研究院有限责任公司 Voltage-temperature coupling measurement method and device
CN113078423B (en) * 2021-03-30 2023-09-26 国联汽车动力电池研究院有限责任公司 Voltage-temperature coupling measurement method and device thereof

Similar Documents

Publication Publication Date Title
JP5315591B2 (en) Positive electrode active material and battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5070753B2 (en) battery
JP4837614B2 (en) Lithium secondary battery
WO2014132660A1 (en) Lithium ion secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP3705728B2 (en) Non-aqueous electrolyte secondary battery
US20170288271A1 (en) Electrolyte solutions for rechargeable batteries
CN102376946A (en) Anode active material and lithium battery comprising anode active material
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5412843B2 (en) battery
JP2014167886A (en) Battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2009212021A (en) Electrode for electrochemical element, nonaqueous secondary battery, and battery system
JP2012124026A (en) Nonaqueous electrolyte secondary battery
KR20150095451A (en) Lithium battery
JP7003775B2 (en) Lithium ion secondary battery
JP2013206544A (en) Cylindrical lithium ion secondary battery
JP5748972B2 (en) Non-aqueous electrolyte secondary battery pack
JP2003045433A (en) Nonaqueous secondary battery
JP5786137B2 (en) Cylindrical lithium ion secondary battery
JP2014071987A (en) Cylindrical lithium-ion secondary battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125