JP2013201402A - Sheet for manufacturing semiconductor device and semiconductor device manufacturing method - Google Patents

Sheet for manufacturing semiconductor device and semiconductor device manufacturing method Download PDF

Info

Publication number
JP2013201402A
JP2013201402A JP2012070401A JP2012070401A JP2013201402A JP 2013201402 A JP2013201402 A JP 2013201402A JP 2012070401 A JP2012070401 A JP 2012070401A JP 2012070401 A JP2012070401 A JP 2012070401A JP 2013201402 A JP2013201402 A JP 2013201402A
Authority
JP
Japan
Prior art keywords
semiconductor device
adhesive layer
adhesive
lead frame
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070401A
Other languages
Japanese (ja)
Other versions
JP5937397B2 (en
Inventor
Satoru Machii
悟 町井
Atsushi Yamai
敦史 山井
Hidemasa Kasuga
英昌 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2012070401A priority Critical patent/JP5937397B2/en
Priority to CN201310095364.8A priority patent/CN103360971B/en
Priority to TW102110258A priority patent/TWI494409B/en
Priority to KR20130032085A priority patent/KR101485659B1/en
Publication of JP2013201402A publication Critical patent/JP2013201402A/en
Application granted granted Critical
Publication of JP5937397B2 publication Critical patent/JP5937397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive sheet for manufacturing a semiconductor device, which has excellent peelability.SOLUTION: An adhesive sheet 10 for manufacturing a semiconductor device includes a base material and an adhesive layer including a fluorine-containing additive provided on one surface of the base material, and is detachably attached to a lead frame 20 or a wiring board of the semiconductor device. The adhesive layer has surface fluorine recovery calculated by the following formula (1) is 70% and more: surface fluorine recovery (%)=surface fluorine content rate α after recovery÷initial surface fluorine content rate β×100 (1).

Description

本発明は、半導体装置製造用接着シート及び半導体装置の製造方法に関する。  The present invention relates to an adhesive sheet for manufacturing a semiconductor device and a method for manufacturing a semiconductor device.

近年、携帯型パソコン、携帯電話等の電子機器の小型化、多機能化に伴い、電子機器を構成する電子部品の小型化、高集積化の他、電子部品の高密度実装技術が必要になっている。このような背景下、QFP(Quad Flat Package)やSOP(Small Outline Package)等の周辺実装型の半導体装置に代わって、高密度実装が可能なCSP(Chip Scale Package)等の面実装型の半導体装置が注目されている。また、CSPの中でも特にQFN(Quad Flat Non−leaded)パッケージは、従来の半導体装置の製造技術を適用して製造できるため好適であり、主に100ピン以下の少端子型の半導体装置として用いられている。   In recent years, along with the downsizing and multi-functionalization of electronic devices such as portable personal computers and mobile phones, it has become necessary to provide high-density mounting technology for electronic components in addition to downsizing and high integration of electronic components constituting electronic devices. ing. Under such circumstances, instead of peripheral mounting type semiconductor devices such as QFP (Quad Flat Package) and SOP (Small Outline Package), a surface mounting type semiconductor such as CSP (Chip Scale Package) capable of high-density mounting. The device is drawing attention. Among CSPs, a QFN (Quad Flat Non-leaded) package is particularly suitable because it can be manufactured by applying conventional semiconductor device manufacturing technology, and is mainly used as a small terminal type semiconductor device having 100 pins or less. ing.

QFNパッケージの製造方法として、概略下記の方法が知られている。まず、貼着工程において、リードフレームの一方の面に接着シートを貼着し、次いで、ダイアタッチ工程において、リードフレームに複数形成された半導体素子搭載部(ダイパッド部)に、ICチップ等の半導体素子を各々搭載する。次に、ワイヤボンディング工程において、リードフレームの各半導体素子搭載部の外周に沿って配設された複数のリードと半導体素子とをボンディングワイヤにより電気的に接続する。次に、封止工程において、リードフレームに搭載された半導体素子を封止樹脂により封止する。その後、剥離工程において、接着シートをリードフレームから剥離することにより、複数のQFNパッケージが配列されたQFNユニットを形成することができる。最後に、ダイシング工程において、このQFNユニットを各QFNパッケージの外周に沿ってダイシングすることにより、複数のQFNパッケージを製造できる。   As a method for manufacturing a QFN package, the following method is generally known. First, in the attaching step, an adhesive sheet is attached to one surface of the lead frame, and then in the die attaching step, a plurality of semiconductor element mounting portions (die pad portions) formed on the lead frame are attached to a semiconductor such as an IC chip. Each element is mounted. Next, in the wire bonding step, the plurality of leads arranged along the outer periphery of each semiconductor element mounting portion of the lead frame and the semiconductor elements are electrically connected by bonding wires. Next, in the sealing step, the semiconductor element mounted on the lead frame is sealed with a sealing resin. Thereafter, in the peeling step, the QFN unit in which a plurality of QFN packages are arranged can be formed by peeling the adhesive sheet from the lead frame. Finally, in the dicing step, a plurality of QFN packages can be manufactured by dicing the QFN unit along the outer periphery of each QFN package.

従来、QFNパッケージの製造方法においては、シリコーン粘着剤やアクリル粘着剤を使用した半導体装置製造用接着シートが使用されてきたが、これらの半導体装置製造用接着シートを用いると、封止工程で樹脂漏れ(モールドフラッシュ)を生じることがあった。
加えて、ワイヤボンディング工程前にプラズマ処理を施す工程(プラズマクリーニング工程)を設けて、半導体素子及び例えばリードフレームの表面に付着した不純物を除去することにより、ワイヤボンディング特性をさらに高めることが一般化している。従来の半導体装置製造用接着シートを用いた場合、半導体装置製造用接着シートの接着剤露出面表層がプラズマクリーニングにより粗化され、半導体製造用接着シートの剥離時に、半導体装置の接続端子、封止樹脂面への接着剤移行(以下、「糊残り」と表記することがある)が発生することがある。このような糊残りが発生した場合に、封止樹脂により封止した部分や、その近傍のリードの外部接続端子部分に接着剤が付着するため、製造された半導体装置を配線基板等に実装する際に、接続不良が発生するおそれがある。
こうした問題に対し、熱硬化性樹脂成分と、熱可塑性樹脂成分と、フッ素系添加剤とを含有した接着剤層を備えた半導体装置製造用接着シートが提案されている(例えば、特許文献1)。特許文献1の発明によれば、プラズマ処理を施さなくてもワイヤボンディング特性に優れるため、プラズマ処理に起因する糊残りを少なくできる。
Conventionally, in a manufacturing method of a QFN package, an adhesive sheet for manufacturing a semiconductor device using a silicone pressure-sensitive adhesive or an acrylic pressure-sensitive adhesive has been used. When these adhesive sheets for manufacturing a semiconductor device are used, a resin is used in a sealing process. Leakage (mold flash) may occur.
In addition, it has become common to further improve the wire bonding characteristics by providing a plasma treatment process (plasma cleaning process) before the wire bonding process to remove impurities adhering to the surface of the semiconductor element and the lead frame, for example. ing. When a conventional adhesive sheet for manufacturing a semiconductor device is used, the surface layer of the adhesive exposed surface of the adhesive sheet for manufacturing a semiconductor device is roughened by plasma cleaning. Adhesive transfer to the resin surface (hereinafter sometimes referred to as “glue residue”) may occur. When such adhesive residue occurs, the adhesive adheres to the portion sealed with the sealing resin and the external connection terminal portion of the lead in the vicinity thereof, so the manufactured semiconductor device is mounted on a wiring board or the like. Connection failure may occur.
In order to solve these problems, an adhesive sheet for manufacturing a semiconductor device including an adhesive layer containing a thermosetting resin component, a thermoplastic resin component, and a fluorine-based additive has been proposed (for example, Patent Document 1). . According to the invention of Patent Document 1, since the wire bonding characteristics are excellent without performing the plasma treatment, the adhesive residue resulting from the plasma treatment can be reduced.

特開2007−123710号公報JP 2007-123710 A

しかしながら、特許文献1の発明では、糊残りを少なくできるものの、封止樹脂への接着強度が強く、剥離しにくいという問題があった。加えて、半導体装置製造用接着シートには、プラズマクリーニング工程を設けた製造方法において、より小さな剥離力で剥がせるような剥離性が求められている。
そこで、本発明は、剥離性に優れた半導体装置製造用接着シートを目的とする。
However, although the adhesive residue can be reduced in the invention of Patent Document 1, there is a problem that the adhesive strength to the sealing resin is strong and it is difficult to peel off. In addition, the adhesive sheet for manufacturing a semiconductor device is required to have a releasability that can be peeled off with a smaller peeling force in a manufacturing method provided with a plasma cleaning step.
Then, this invention aims at the adhesive sheet for semiconductor device manufacture excellent in peelability.

本発明の半導体装置製造用接着シートは、基材と、該基材の一方の面に設けられた含フッ素添加剤を含有する接着剤層とを備え、半導体装置のリードフレーム又は配線基板に剥離可能に貼着される半導体装置製造用接着シートにおいて、前記接着剤層は、下記(I)式で求められる表面フッ素復元率が70%以上であることを特徴とする。
表面フッ素復元率(%)=復元後表面フッ素含有率α÷初期表面フッ素含有率β×100 ・・・(I)
[(I)式中、復元後表面フッ素含有率αは、接着剤層にアルゴンガス雰囲気下、出力450Wの条件で1分間のプラズマ処理を施し、次いで、接着剤層を220℃で15分間加熱した後の接着剤層の表面のフッ素含有率(atom%)である。初期表面フッ素含有率βは、前記プラズマ処理を施す前の接着剤層の表面のフッ素含有率(atom%)である。]
前記復元後表面フッ素含有率αは、18atom%以上であることが好ましい。
The adhesive sheet for manufacturing a semiconductor device of the present invention includes a base material and an adhesive layer containing a fluorine-containing additive provided on one surface of the base material, and is peeled off from the lead frame or the wiring board of the semiconductor device. In the adhesive sheet for manufacturing a semiconductor device that can be pasted, the adhesive layer has a surface fluorine restoration rate calculated by the following formula (I) of 70% or more.
Surface fluorine recovery rate (%) = restored surface fluorine content α ÷ initial surface fluorine content β × 100 (I)
[In the formula (I), after restoration, the surface fluorine content α is determined by subjecting the adhesive layer to a plasma treatment for 1 minute under an argon gas atmosphere and an output of 450 W, and then heating the adhesive layer at 220 ° C. for 15 minutes. It is the fluorine content rate (atom%) on the surface of the adhesive layer after the treatment. The initial surface fluorine content β is the fluorine content (atom%) of the surface of the adhesive layer before the plasma treatment. ]
The post-restoration surface fluorine content α is preferably 18 atom% or more.

本発明の半導体装置の製造方法は、前記の本発明の半導体装置製造用接着シートを用いた半導体装置の製造方法であって、前記リードフレーム又は前記配線基板に前記半導体装置製造用接着シートを貼着する貼着工程と、前記リードフレーム又は前記配線基板にプラズマ処理を施すプラズマクリーニング工程と、前記プラズマクリーニング工程の後、前記接着剤層を加熱する加熱工程と、前記加熱工程の後、前記半導体装置製造用接着シートを前記リードフレーム又は前記配線基板から剥離する剥離工程と、を備えることを特徴とする。   A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device using the adhesive sheet for manufacturing a semiconductor device according to the present invention, wherein the adhesive sheet for manufacturing a semiconductor device is attached to the lead frame or the wiring board. An adhesion step for attaching, a plasma cleaning step for performing plasma treatment on the lead frame or the wiring substrate, a heating step for heating the adhesive layer after the plasma cleaning step, and the semiconductor after the heating step And a peeling step of peeling the device manufacturing adhesive sheet from the lead frame or the wiring board.

本発明の半導体装置製造用接着シートによれば、剥離性に優れる。  According to the adhesive sheet for manufacturing a semiconductor device of the present invention, the peelability is excellent.

本発明の半導体装置の製造方法に用いられるリードフレームの一例を示す平面図である。It is a top view which shows an example of the lead frame used for the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the semiconductor device of this invention.

本発明の半導体装置製造用接着シート(以下、単に接着シートということがある)は、半導体装置のリードフレーム又は配線基板に剥離可能に貼着されるものである。
リードフレームとは、金属板をエッチング又はプレス等により導体パターンを形成したものであり、配線基板とは、電気絶縁性基板の表面(又は内面を含むことがある)に、導体パターンを導電性材料で形成したもののことである。
The adhesive sheet for manufacturing a semiconductor device of the present invention (hereinafter sometimes simply referred to as an adhesive sheet) is detachably attached to a lead frame or a wiring board of a semiconductor device.
A lead frame is a metal plate formed with a conductor pattern by etching or pressing, and a wiring board is a conductive material formed on the surface (or inside surface) of an electrically insulating substrate. It is the one formed by.

本発明の接着シートは、基材と、該基材の一方の面に設けられた接着剤層とを備えるものである。
基材としては、耐熱性のあるもの、例えば、耐熱性樹脂フィルムや金属箔等が挙げられる。
接着シートを用いてQFNパッケージ等の半導体装置を製造する際に、接着シートは、ダイアタッチ工程、ワイヤボンディング工程、封止工程において、150〜250℃の高温に曝される。基材として耐熱性樹脂フィルムを用いる場合、該耐熱性フィルムの熱膨張係数はガラス転移温度(Tg)以上になると急激に増加し、金属製のリードフレームとの熱膨張差が大きくなる。このため、室温に戻した際に、耐熱性フィルムとリードフレームに反りが発生するおそれがある。そして、耐熱性フィルムとリードフレームに反りが発生した場合には、封止工程において、金型の位置決めピンにリードフレームを装着することができず、位置ずれ不良を起こすおそれがある。
従って、基材として耐熱性フィルムを用いる場合、ガラス転移温度が150℃以上の耐熱性フィルムであることが好ましく、さらに180℃以上であることがより好ましい。
また、耐熱性フィルムの150〜250℃における熱膨張係数が5〜50ppm/℃であることが好ましく、さらに10〜30ppm/℃であることがより好ましい。かかる特性を有する耐熱性フィルムとしては、ポリイミド、ポリアミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルエーテルケトン、トリアセチルセルロース、ポリエーテルイミド等からなるフィルムを例示することができる。
The adhesive sheet of this invention is equipped with a base material and the adhesive bond layer provided in one surface of this base material.
Examples of the substrate include those having heat resistance, such as heat resistant resin films and metal foils.
When manufacturing a semiconductor device such as a QFN package using an adhesive sheet, the adhesive sheet is exposed to a high temperature of 150 to 250 ° C. in a die attach process, a wire bonding process, and a sealing process. When a heat-resistant resin film is used as the substrate, the thermal expansion coefficient of the heat-resistant film rapidly increases when the glass transition temperature (Tg) or higher, and the thermal expansion difference from a metal lead frame increases. For this reason, when it returns to room temperature, there exists a possibility that curvature may generate | occur | produce in a heat resistant film and a lead frame. If warpage occurs between the heat-resistant film and the lead frame, the lead frame cannot be mounted on the positioning pins of the mold in the sealing process, which may cause misalignment.
Accordingly, when a heat resistant film is used as the substrate, the glass transition temperature is preferably 150 ° C. or higher, more preferably 180 ° C. or higher.
Moreover, it is preferable that the thermal expansion coefficient in 150-250 degreeC of a heat resistant film is 5-50 ppm / degreeC, and it is more preferable that it is 10-30 ppm / degreeC. Examples of the heat resistant film having such characteristics include films made of polyimide, polyamide, polyether sulfone, polyphenylene sulfide, polyether ketone, polyether ether ketone, triacetyl cellulose, polyether imide, and the like.

また、基材として金属箔を用いる場合においても、前記耐熱性フィルムと同様の理由から、金属箔の150〜250℃における熱膨張係数が5〜50ppm/℃であることが好ましく、さらに10〜30ppm/℃であることがより好ましい。金属としては、金、銀、銅、白金、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、パラジウム、インジウム、錫からなる箔や、これらの金属を主成分とした合金箔、あるいはこれらのメッキ箔が挙げられる。  Moreover, also when using metal foil as a base material, it is preferable that the thermal expansion coefficient in 150-250 degreeC of metal foil is 5-50 ppm / degreeC for the same reason as the said heat resistant film, Furthermore, 10-30 ppm / ° C is more preferable. Metals include gold, silver, copper, platinum, aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, palladium, indium, tin, and alloy foils based on these metals. Or these plating foils are mentioned.

本発明の接着シートを用いて半導体装置を製造する際に、後述する剥離工程における糊残りを防止するためには、基材と接着剤層との接着強度Saと、封止樹脂及びリードフレーム又は配線基板と接着剤層との接着強度Sbとの比(接着強度比)Sa/Sbが1.5以上であることが好ましい。Sa/Sbが1.5未満の場合では、接着シート剥離工程において糊残りが発生しやすくなる。なお、接着強度比Sa/Sbを1.5以上とするためには、耐熱性フィルムの場合には、接着剤層を形成する前に、耐熱性フィルムの接着剤層を形成する側の表面に、コロナ処理、プラズマ処理、プライマー処理、サンドブラスト等、耐熱性フィルムと接着剤層との接着強度Saを高くするような処理をあらかじめ施しておくことが好ましい。また、金属箔の場合では、その製法から圧延金属箔と電解金属箔とに分類されるが、接着強度比Sa/Sbを1.5以上とするために、電解金属箔を用いると共に粗面化された側の面に接着剤層を設けて調整することが好ましい。また、電解金属箔の中でも特に、電解銅箔を用いることが好ましい。  When manufacturing a semiconductor device using the adhesive sheet of the present invention, in order to prevent adhesive residue in the peeling step described later, the adhesive strength Sa between the base material and the adhesive layer, the sealing resin and the lead frame or The ratio (adhesive strength ratio) Sa / Sb of the adhesive strength Sb between the wiring board and the adhesive layer is preferably 1.5 or more. When Sa / Sb is less than 1.5, adhesive residue is likely to occur in the adhesive sheet peeling step. In order to set the adhesive strength ratio Sa / Sb to 1.5 or more, in the case of a heat resistant film, before forming the adhesive layer, on the surface of the heat resistant film on the side where the adhesive layer is formed. It is preferable that a treatment for increasing the adhesive strength Sa between the heat-resistant film and the adhesive layer, such as a corona treatment, a plasma treatment, a primer treatment, and a sand blast, is performed in advance. In the case of a metal foil, it is classified into a rolled metal foil and an electrolytic metal foil depending on the production method. In order to make the adhesive strength ratio Sa / Sb 1.5 or more, the electrolytic metal foil is used and the surface is roughened. It is preferable to adjust by providing an adhesive layer on the surface on the formed side. Moreover, it is preferable to use electrolytic copper foil especially among electrolytic metal foil.

基材の厚さは、材質等を勘案して決定され、例えば、10〜100μmとされる。  The thickness of the substrate is determined in consideration of the material and the like, and is, for example, 10 to 100 μm.

接着剤層は、含フッ素添加剤を含有し、後述する表面フッ素復元率が70%以上となるものである。表面フッ素復元率が70%以上であれば、優れた剥離性を発揮できる。  The adhesive layer contains a fluorine-containing additive, and the surface fluorine restoration rate described later is 70% or more. If the surface fluorine restoration rate is 70% or more, excellent peelability can be exhibited.

接着剤層は、含フッ素添加剤を含有し、かつリードフレーム又は配線基板に対し任意の接着強度を有するものであればよく、例えば、含フッ素添加剤と樹脂とを含有するものが挙げられる。  The adhesive layer only needs to contain a fluorine-containing additive and have an arbitrary adhesive strength to the lead frame or the wiring substrate, and examples thereof include those containing a fluorine-containing additive and a resin.

含フッ素添加剤としては、例えば、パーフルオロアルキル基を含有するスルホン酸塩、パーフルオロアルキル基を含有するカルボン酸塩等のアニオン界面活性剤、パーフルオロアルキルアルキレンオキシド付加物、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基含有オリゴマー、含フッ素基・親水性基・親油性基含有オリゴマー等のノニオン界面活性剤等のフッ素含有界面活性剤等が挙げられ、中でも、ノニオン界面活性剤が好ましく、含フッ素基・親油性基含有オリゴマーがより好ましい。アニオン界面活性剤は、イオン化する官能基が樹脂中で静電気的な相互作用を受けることで、界面活性剤の自由度が下がって表面に出にくくなる。親油性基の例としては、アルキル基、アリル基、ビニル基、アルキルエーテル基、アルキルエステル基、アクリレート基等が挙げられる。これらの含フッ素添加剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。  Examples of fluorine-containing additives include anionic surfactants such as sulfonates containing perfluoroalkyl groups and carboxylates containing perfluoroalkyl groups, perfluoroalkylalkylene oxide adducts, fluorine-containing groups and parent groups. Fluorine-containing surfactants such as nonionic surfactants such as oil-containing group-containing oligomers, fluorine-containing groups / hydrophilic group-containing oligomers, fluorine-containing groups / hydrophilic groups / lipophilic group-containing oligomers, etc. Activators are preferred, and fluorine-containing / lipophilic group-containing oligomers are more preferred. In the anionic surfactant, the functional group to be ionized receives an electrostatic interaction in the resin, so that the degree of freedom of the surfactant is lowered and it is difficult to come out on the surface. Examples of lipophilic groups include alkyl groups, allyl groups, vinyl groups, alkyl ether groups, alkyl ester groups, acrylate groups, and the like. These fluorine-containing additives may be used alone or in combination of two or more.

配合される含フッ素添加剤は、液体であってもよいし、固体であってもよいが、接着剤層の表面フッ素復元率を高め、剥離性をより高める観点から、25℃で液体であるものが好ましい。  The fluorine-containing additive to be blended may be a liquid or a solid, but is liquid at 25 ° C. from the viewpoint of increasing the surface fluorine restoration rate of the adhesive layer and further improving the peelability. Those are preferred.

好適な含フッ素添加剤としては、25℃で液体の含フッ素基・親油性基含有オリゴマーであるメガファックF−552、F−554、F−558(DIC株式会社製)等が挙げられる。  Suitable fluorine-containing additives include, for example, Megafac F-552, F-554, F-558 (manufactured by DIC Corporation) which are liquid fluorine-containing / lipophilic group-containing oligomers at 25 ° C.

接着剤層中の含フッ素添加剤の含有量は、含フッ素添加剤の種類、樹脂の種類や量等を勘案して適宜決定され、例えば、接着剤層中、0.5〜20質量%が好ましく、1〜10質量%がより好ましく、2.5〜5.0質量%がさらに好ましい。上記下限値未満では、剥離性が低下するおそれがあり、上記上限値超では、接着強度が不十分となってモールドフラッシュ特性が低下したり、後述する硬化前接着強度が不十分になるおそれがある。  The content of the fluorine-containing additive in the adhesive layer is appropriately determined in consideration of the type of fluorine-containing additive, the type and amount of resin, and the like, for example, 0.5 to 20% by mass in the adhesive layer. Preferably, 1-10 mass% is more preferable, and 2.5-5.0 mass% is further more preferable. If it is less than the above lower limit value, the peelability may be lowered, and if it exceeds the above upper limit value, the adhesive strength may be insufficient and the mold flash characteristics may be lowered, or the adhesive strength before curing described below may be insufficient. is there.

接着剤層中の樹脂としては、熱可塑性樹脂や熱硬化性樹脂が挙げられる。
熱可塑性樹脂としては、ポリブタジエン、ポリアクリロニトリル、ポリビニルブチラール、ポリアミド、ポリアミドイミド、ポリイミド、ポリエステル、ポリウレタン、アクリルゴム等が挙げられ、中でも、主鎖に反応点を有する反応性エラストマーが好ましい。
Examples of the resin in the adhesive layer include thermoplastic resins and thermosetting resins.
Examples of the thermoplastic resin include polybutadiene, polyacrylonitrile, polyvinyl butyral, polyamide, polyamideimide, polyimide, polyester, polyurethane, and acrylic rubber. Among these, a reactive elastomer having a reactive site in the main chain is preferable.

反応性エラストマーは、カルボキシ基、アミノ基、ビニル基、エポキシ基等の官能基を有する、又は酸無水物を側鎖に有することで、反応性を有する。反応性エラストマーは、弾性樹脂を製造する際に官能基を有するモノマーを共重合させることによって製造できる。また、ビニル結合等の不飽和結合を有する弾性樹脂を製造した後、このビニル基等の不飽和結合にエポキシ基等の官能基を導入することによって製造することができる。なお、官能基を有するモノマーとしては、例えばアクリル酸、メタクリル酸等のビニル結合と官能基を有するモノマーが挙げられる。   The reactive elastomer has reactivity by having a functional group such as a carboxy group, an amino group, a vinyl group, and an epoxy group, or having an acid anhydride in the side chain. The reactive elastomer can be produced by copolymerizing a monomer having a functional group when producing an elastic resin. Moreover, after manufacturing the elastic resin which has unsaturated bonds, such as a vinyl bond, it can manufacture by introduce | transducing functional groups, such as an epoxy group, into unsaturated bonds, such as this vinyl group. In addition, as a monomer which has a functional group, the monomer which has vinyl bonds and functional groups, such as acrylic acid and methacrylic acid, is mentioned, for example.

反応性エラストマーとしては、例えば、カルボキシ基含有スチレン−エチレン−ブチレン−スチレン共重合体、無水マレイン酸含有スチレン−エチレン−ブチレン−スチレン共重合体等のスチレン−エチレン−ブチレン−スチレン共重合体(SEBS)、カルボキシ基含有スチレン−ブタジエン共重合体、無水マレイン酸含有スチレン−ブタジエン共重合体、カルボキシ基含有スチレン−ブタジエン飽和共重合体等のスチレン−ブタジエン共重合体、カルボキシ基含有スチレン−イソプレン共重合体、カルボキシ基含有スチレン−イソプレン飽和共重合体等のスチレン−イソプレン共重合体、エポキシ基含有スチレン系ブロック共重合体、無水マレイン酸含有スチレン−エチレン−ブチレン共重合体等のスチレン系熱可塑性エラストマー;カルボキシ基含有アクリロニトリル−ブタジエン共重合体、アミノ基変性アクリロニトリル−ブタジエン共重合体、水添カルボキシ基含有アクリロニトリル−ブタジエン共重合体等のアクリロニトリル−ブタジエン共重合体(NBR);アミノ基変性ポリオール樹脂、アミノ基変性フェノキシ樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、カルボキシ基含有アクリルゴム、ヒドロキシ基末端飽和共重合ポリエステル樹脂、カルボキシ基末端飽和共重合体ポリエステル樹脂等が挙げられ、中でも、耐熱性等の観点から、スチレン系熱可塑性エラストマーが好ましく、SEBSがより好ましい。なお、「無水マレイン酸含有」とは、酸無水物を側鎖に有することを示す。これらの熱可塑性樹脂は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
なお、熱可塑性樹脂として、フッ素を含有する熱可塑性樹脂(フッ素含有熱可塑性樹脂)を用いてもよい。
Examples of reactive elastomers include styrene-ethylene-butylene-styrene copolymers (SEBS) such as carboxy group-containing styrene-ethylene-butylene-styrene copolymers and maleic anhydride-containing styrene-ethylene-butylene-styrene copolymers. ), Styrene-butadiene copolymer such as carboxy group-containing styrene-butadiene copolymer, maleic anhydride-containing styrene-butadiene copolymer, carboxy group-containing styrene-butadiene saturated copolymer, carboxy group-containing styrene-isoprene copolymer Styrene thermoplastic elastomers such as styrene-isoprene copolymers such as polymers, carboxy group-containing styrene-isoprene saturated copolymers, epoxy group-containing styrene block copolymers, maleic anhydride-containing styrene-ethylene-butylene copolymers ; Acrylonitrile-butadiene copolymer (NBR) such as boxy group-containing acrylonitrile-butadiene copolymer, amino group-modified acrylonitrile-butadiene copolymer, hydrogenated carboxy group-containing acrylonitrile-butadiene copolymer; amino group-modified polyol resin, amino Examples include a group-modified phenoxy resin, a polyvinyl butyral resin, a polyvinyl acetal resin, a carboxy group-containing acrylic rubber, a hydroxy group-terminated saturated polyester resin, and a carboxy group-terminated saturated polyester resin. Styrenic thermoplastic elastomers are preferred, and SEBS is more preferred. Note that “containing maleic anhydride” means having an acid anhydride in the side chain. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
In addition, you may use the thermoplastic resin (fluorine containing thermoplastic resin) containing a fluorine as a thermoplastic resin.

熱硬化性樹脂としては、従来、接着剤層に用いられるものが挙げられ、例えば、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、フェノール樹脂、レゾルシノール樹脂、キシレン樹脂、フラン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、イソシアナート樹脂、エポキシ樹脂、マレイミド樹脂、ナジイミド樹脂等が挙げられる。これらの熱硬化性樹脂は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
また、熱硬化性樹脂として、フッ素を含有する熱硬化性樹脂(フッ素含有熱硬化性樹脂)を用いてもよい。
Thermosetting resins include those conventionally used for adhesive layers, such as urea resins, melamine resins, benzoguanamine resins, acetoguanamine resins, phenol resins, resorcinol resins, xylene resins, furan resins, unsaturated polyesters. Examples thereof include resins, diallyl phthalate resins, isocyanate resins, epoxy resins, maleimide resins, nadiimide resins, and the like. These thermosetting resins may be used alone or in a combination of two or more.
Moreover, you may use the thermosetting resin (fluorine containing thermosetting resin) containing a fluorine as a thermosetting resin.

接着剤層中の樹脂としては、反応性エラストマー、熱硬化性樹脂が好ましく、反応性エラストマーがより好ましい。このような樹脂を硬化剤と併用することで、剥離性をより高め、かつモールドフラッシュ特性を高められる。  As the resin in the adhesive layer, a reactive elastomer and a thermosetting resin are preferable, and a reactive elastomer is more preferable. By using such a resin in combination with a curing agent, the peelability can be further improved and the mold flash characteristics can be improved.

接着剤層中の樹脂の含有量は、樹脂の種類等を勘案して決定され、例えば、80〜98質量%が好ましく、85〜95質量%がより好ましい。上記下限値未満では、接着強度が不十分となって、モールドフラッシュ特性が低下するおそれがあり、上記上限値超では、含フッ素添加剤の含有量が少なくなりすぎて、剥離性が低下するおそれがある。
樹脂中の反応性エラストマーの含有量は、例えば、50質量%以上が好ましく、80質量%以上が好ましい。
The content of the resin in the adhesive layer is determined in consideration of the type of resin and the like, and is preferably 80 to 98% by mass, and more preferably 85 to 95% by mass, for example. If it is less than the above lower limit value, the adhesive strength becomes insufficient and the mold flash property may be deteriorated, and if it exceeds the above upper limit value, the content of the fluorine-containing additive becomes too small and the peelability may be deteriorated. There is.
For example, the content of the reactive elastomer in the resin is preferably 50% by mass or more, and more preferably 80% by mass or more.

樹脂として、反応性エラストマーや熱硬化性樹脂を用いる場合、接着剤層には硬化剤が配合されてもよい。
硬化剤としては、反応性エラストマーや熱硬化性樹脂の種類に応じて適宜決定され、例えば、ポリイソシアネート等が挙げられる。
接着剤層中の硬化剤の含有量は、硬化剤、反応性エラストマーや熱硬化性樹脂の種類を勘案して適宜決定され、例えば、樹脂100質量部に対し、0.5〜10質量部が好ましい。
When a reactive elastomer or a thermosetting resin is used as the resin, a curing agent may be blended in the adhesive layer.
As a hardening | curing agent, it determines suitably according to the kind of reactive elastomer or thermosetting resin, For example, polyisocyanate etc. are mentioned.
The content of the curing agent in the adhesive layer is appropriately determined in consideration of the types of the curing agent, the reactive elastomer and the thermosetting resin. For example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the resin preferable.

また、接着剤層は、本発明の効果を損なわない範囲で、硬化促進剤や酸化防止剤等の任意成分を含有してもよい。  Further, the adhesive layer may contain optional components such as a curing accelerator and an antioxidant as long as the effects of the present invention are not impaired.

接着剤層は、下記(I)式で求められる表面フッ素復元率が70%以上のものである。接着剤層の表面フッ素復元率は、80%以上が好ましく、90%以上がより好ましく、100%以上であってもよい。表面フッ素復元率が上記下限値以上であれば、優れた剥離性を発揮できる。加えて、表面フッ素復元率が上記下限値以上であれば、接着剤層に対して過剰な含フッ素添加物を配合する必要がないため、硬化前接着強度が適切なものとなり、貼着工程においてリードフレーム又は配線基板への貼着性が十分なものとなって、作業性が良好になる。
なお、表面フッ素復元率は、含フッ素添加剤の種類や量、樹脂の種類や量を組み合わせることで調節される。
The adhesive layer has a surface fluorine restoration rate of 70% or more determined by the following formula (I). The surface fluorine restoration rate of the adhesive layer is preferably 80% or more, more preferably 90% or more, and may be 100% or more. If the surface fluorine restoration rate is not less than the above lower limit value, excellent peelability can be exhibited. In addition, if the surface fluorine restoration rate is equal to or more than the above lower limit value, it is not necessary to blend an excessive fluorine-containing additive with respect to the adhesive layer, so that the adhesive strength before curing becomes appropriate, and in the attaching step Adhesiveness to a lead frame or a wiring board becomes sufficient, and workability is improved.
The surface fluorine restoration rate is adjusted by combining the type and amount of the fluorine-containing additive and the type and amount of the resin.

表面フッ素復元率(%)=復元後表面フッ素含有率α÷初期表面フッ素含有率β×100 ・・・(I)
[(I)式中、復元後表面フッ素含有率αは、接着剤層にアルゴンガス雰囲気下、出力450Wの条件で1分間のプラズマ処理を施し、次いで、接着剤層を220℃で15分間加熱した後の接着剤層の表面のフッ素含有率(atom%)である。初期表面フッ素含有率βは、前記プラズマ処理を施す前の接着剤層の表面のフッ素含有率(atom%)である。]
Surface fluorine recovery rate (%) = restored surface fluorine content α ÷ initial surface fluorine content β × 100 (I)
[In the formula (I), after restoration, the surface fluorine content α is determined by subjecting the adhesive layer to a plasma treatment for 1 minute under an argon gas atmosphere and an output of 450 W, and then heating the adhesive layer at 220 ° C. for 15 minutes. It is the fluorine content rate (atom%) on the surface of the adhesive layer after the treatment. The initial surface fluorine content β is the fluorine content (atom%) of the surface of the adhesive layer before the plasma treatment. ]

復元後表面フッ素含有率αは、18atom%以上が好ましく、20atom%以上がより好ましい。上記下限値未満では、接着シートの剥離性が低下するおそれがある。  The surface fluorine content α after restoration is preferably 18 atom% or more, and more preferably 20 atom% or more. If it is less than the said lower limit, there exists a possibility that the peelability of an adhesive sheet may fall.

初期表面フッ素含有率βは、50atom%以下が好ましく、30atom%以下がより好ましい。上記上限値超では、硬化前接着強度が不十分となって、後述する貼着工程で、リードフレームや配線基板への貼着性が低下する。  The initial surface fluorine content β is preferably 50 atom% or less, and more preferably 30 atom% or less. If it exceeds the above upper limit value, the adhesive strength before curing becomes insufficient, and the sticking property to the lead frame or the wiring board is lowered in the sticking step described later.

反応性エラストマーや熱硬化性樹脂と硬化剤とを含有する熱硬化型の接着剤層を備える接着シートにおいて、リードフレーム又は配線基板に対する熱硬化前の接着剤層の25℃における接着強度(硬化前接着強度)は、0.05N/20mm以上が好ましい。硬化前接着強度が上記下限値以上であれば、接着剤層を熱硬化させなくてもリードフレーム又は配線基板に対して適度な接着強度で貼着される。このため、後述する貼着工程において接着剤層を加熱する必要がなく、貼着工程を簡便化できる。リードフレーム又は配線基板に対する25℃における接着強度の上限は、特に限定されない。   In an adhesive sheet comprising a thermosetting adhesive layer containing a reactive elastomer or thermosetting resin and a curing agent, the adhesive strength of the adhesive layer before thermosetting to the lead frame or wiring board at 25 ° C. (before curing) The adhesive strength is preferably 0.05 N / 20 mm or more. If the adhesive strength before curing is equal to or higher than the above lower limit value, the adhesive layer is adhered to the lead frame or the wiring board with an appropriate adhesive strength without thermosetting the adhesive layer. For this reason, it is not necessary to heat an adhesive bond layer in the sticking process mentioned below, and a sticking process can be simplified. The upper limit of the adhesive strength at 25 ° C. with respect to the lead frame or the wiring board is not particularly limited.

接着剤層の熱膨張係数、熱伝導率、表面タック、接着性等を調整するために、接着剤層に無機又は有機フィラーを添加してもよい。無機フィラーとしては、粉砕型シリカ、溶融型シリカ、アルミナ、酸化チタン、酸化ベリリウム、酸化マグネシウム、炭酸カルシウム、窒化チタン、窒化珪素、窒化硼素、硼化チタン、硼化タングステン、炭化珪素、炭化チタン、炭化ジルコニウム、炭化モリブデン、マイカ、酸化亜鉛、カーボンブラック、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン等からなるフィラー、あるいはこれらの表面にトリメチルシロキシル基等を導入したもの等を例示することができる。また、有機フィラーとしては、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド、ナイロン、シリコーン樹脂等からなるフィラーが挙げられる。   In order to adjust the thermal expansion coefficient, thermal conductivity, surface tack, adhesion, etc. of the adhesive layer, an inorganic or organic filler may be added to the adhesive layer. As the inorganic filler, pulverized silica, fused silica, alumina, titanium oxide, beryllium oxide, magnesium oxide, calcium carbonate, titanium nitride, silicon nitride, boron nitride, titanium boride, tungsten boride, silicon carbide, titanium carbide, Fillers made of zirconium carbide, molybdenum carbide, mica, zinc oxide, carbon black, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, antimony trioxide, etc., or those with a trimethylsiloxyl group introduced on their surface, etc. It can be illustrated. Moreover, as an organic filler, the filler which consists of a polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide, nylon, silicone resin etc. is mentioned.

接着剤層の厚さは、特に限定されないが、例えば、2〜20μmとされる。  Although the thickness of an adhesive bond layer is not specifically limited, For example, you may be 2-20 micrometers.

接着シートは、接着剤層上に剥離可能な保護フィルムが貼着され、リードフレーム又は配線基板等への貼着直前に保護フィルムを剥離する構成とされてもよい。この場合には、接着シートが製造されてから使用されるまでの間に、接着剤層が損傷されることが防止される。保護フィルムとしては離型性を有するものであればよく、例えば、ポリエステル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等のフィルムや、これらフィルムの表面をシリコーン樹脂又はフッ素化合物で離型処理したフィルム等が挙げられる。  The adhesive sheet may be configured such that a protective film that can be peeled off is stuck on the adhesive layer, and the protective film is peeled off immediately before sticking to a lead frame or a wiring board. In this case, the adhesive layer is prevented from being damaged after the adhesive sheet is manufactured and used. Any protective film may be used as long as it has releasability, and examples thereof include films such as polyester, polyethylene, polypropylene, polyethylene terephthalate, and films obtained by releasing the surface of these films with a silicone resin or a fluorine compound. .

接着シートの製造方法としては、基材上に接着剤を塗布し、乾燥させるキャスティング法や、接着剤を離型性フィルム上に一旦塗布し、乾燥させた後、基材上に転写させるラミネート法等が好適である。なお、接着剤層を構成する成分を、有機溶剤、例えばトルエン、キシレン、クロルベンゼン等の芳香族系、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の非プロトン系極性溶剤、テトラヒドロフラン等の単独あるいは混合物に溶解して接着剤塗布液として用いることが好ましい。  As a method for producing an adhesive sheet, a casting method in which an adhesive is applied on a base material and dried, or a laminating method in which the adhesive is once applied on a release film, dried and then transferred onto the base material. Etc. are suitable. The components constituting the adhesive layer are organic solvents, for example, aromatic solvents such as toluene, xylene, chlorobenzene, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. It is preferable to use the aprotic polar solvent, tetrahydrofuran or the like alone or in a mixture as an adhesive coating solution.

本発明の接着シートを用いた半導体の製造方法は、リードフレーム又は配線基板に接着シートを貼着する貼着工程と、リードフレーム又は配線基板にプラズマ処理を施すプラズマクリーニング工程と、プラズマクリーニング工程の後、接着剤層を加熱する加熱工程と、加熱工程の後、接着シートを前記リードフレーム又は前記配線基板から剥離する剥離工程とを備えるものである。   A method of manufacturing a semiconductor using the adhesive sheet of the present invention includes an attaching step of attaching an adhesive sheet to a lead frame or a wiring substrate, a plasma cleaning step of performing plasma treatment on the lead frame or the wiring substrate, and a plasma cleaning step. Then, the heating process which heats an adhesive bond layer, and the peeling process which peels an adhesive sheet from the said lead frame or the said wiring board after a heating process are provided.

以下、本発明の接着シートを用いた半導体装置の製造方法の一例について、図1〜2を参照して説明する。図1は、半導体素子を搭載する側から見たリードフレームの平面図であり、図2(a)〜(f)は、図1に示すリードフレームを用いてQFNパッケージを製造する方法を示す工程図であって、図1のリードフレームのA−A’断面図である。
なお、以下の説明では、含フッ素添加剤と反応性エラストマーと硬化剤とを含有する熱硬化型の接着剤層を備える接着シートを用い、リードフレームを貼着対象としてQFNパッケージを製造する場合を例にして説明する。
Hereinafter, an example of the manufacturing method of the semiconductor device using the adhesive sheet of this invention is demonstrated with reference to FIGS. FIG. 1 is a plan view of a lead frame as viewed from the side on which a semiconductor element is mounted, and FIGS. 2A to 2F are steps showing a method of manufacturing a QFN package using the lead frame shown in FIG. FIG. 2 is a cross-sectional view of the lead frame of FIG. 1 along AA ′.
In the following description, a case where a QFN package is manufactured by using an adhesive sheet having a thermosetting adhesive layer containing a fluorine-containing additive, a reactive elastomer, and a curing agent, with a lead frame as an object to be bonded. An example will be described.

本実施形態の半導体装置の製造方法は、リードフレームに接着シートを貼着する貼着工程と、リードフレームに半導体素子を搭載するダイアタッチ工程と、リードフレームにプラズマ処理を施すプラズマクリーニング工程と、半導体素子とリードフレームのリードとを電気的に接続するワイヤボンディング工程と、接着シートの接着剤層を加熱する加熱工程と、封止樹脂で半導体素子を封止する封止工程と、リードフレームから接着シートを剥離してQFNユニットを得る剥離工程と、QFNユニットを分割してQFNパッケージを得るダイシング工程とを備えるものである。なお、接着シートの接着剤層を加熱する加熱工程は、ワイヤボンディング工程の中に含まれてもよい。  The manufacturing method of the semiconductor device of the present embodiment includes an attaching step of attaching an adhesive sheet to the lead frame, a die attaching step of mounting a semiconductor element on the lead frame, a plasma cleaning step of performing plasma treatment on the lead frame, From the lead frame, a wire bonding step for electrically connecting the semiconductor element and the lead of the lead frame, a heating step for heating the adhesive layer of the adhesive sheet, a sealing step for sealing the semiconductor element with a sealing resin, It comprises a peeling step for peeling the adhesive sheet to obtain a QFN unit, and a dicing step for dividing the QFN unit to obtain a QFN package. In addition, the heating process which heats the adhesive bond layer of an adhesive sheet may be included in a wire bonding process.

まず、図1に示す概略構成のリードフレーム20を用意する。リードフレーム20は、ICチップ等の半導体素子を搭載する複数の半導体素子搭載部(ダイパッド部)21がマトリックス状に形成され、各半導体素子搭載部21の外周に沿って多数のリード22が形成されたものである。
リードフレーム20の材質としては、従来公知のものが挙げられ、例えば、銅板の表面に、ニッケルメッキ層とパラジウムメッキ層と金メッキ層とがこの順に設けられたものが挙げられる。
First, a lead frame 20 having a schematic configuration shown in FIG. 1 is prepared. In the lead frame 20, a plurality of semiconductor element mounting portions (die pad portions) 21 for mounting semiconductor elements such as IC chips are formed in a matrix, and a large number of leads 22 are formed along the outer periphery of each semiconductor element mounting portion 21. It is a thing.
Examples of the material of the lead frame 20 include conventionally known materials. For example, a material in which a nickel plating layer, a palladium plating layer, and a gold plating layer are provided in this order on the surface of a copper plate.

図2(a)に示すように、リードフレーム20の一方の面(下面)に、接着シート10を接着剤層(図示略)がリードフレーム20に当接するように貼着する(貼着工程)。接着シート10をリードフレーム20に貼着する方法としては、ラミネート法等が好適である。この際、リードフレーム20に接着剤層が当接した状態で、接着剤層を任意の温度で加熱してもよい。この加熱により、接着剤層が硬化して、リードフレーム20に接着シート10がより強固に貼着される。また、接着剤層の硬化前接着強度が十分である場合には、貼着工程で接着剤層を加熱するのに代えて、後述のダイアタッチ工程で加熱処理を施すことで接着剤層を硬化してもよい。半導体装置の生産性を高める観点からは、ダイアタッチ工程で接着剤層を硬化することが好ましい。  As shown in FIG. 2A, the adhesive sheet 10 is adhered to one surface (lower surface) of the lead frame 20 so that the adhesive layer (not shown) contacts the lead frame 20 (adhesion step). . As a method for adhering the adhesive sheet 10 to the lead frame 20, a laminating method or the like is suitable. At this time, the adhesive layer may be heated at an arbitrary temperature while the adhesive layer is in contact with the lead frame 20. By this heating, the adhesive layer is cured, and the adhesive sheet 10 is more firmly attached to the lead frame 20. In addition, when the adhesive layer has sufficient adhesive strength before curing, the adhesive layer is cured by performing a heat treatment in a die attach process described below instead of heating the adhesive layer in the attaching process. May be. From the viewpoint of increasing the productivity of the semiconductor device, it is preferable to cure the adhesive layer in the die attach process.

図2(b)に示すように、リードフレーム20の半導体素子搭載部21における接着シート10が貼着されていない側に、ダイアタッチ剤(図示略)を介してICチップ等の半導体素子30を載置する。その後、100〜200℃程度に加熱して、ダイアタッチ剤を硬化し、半導体素子30を半導体素子搭載部21に固定して搭載する(ダイアタッチ剤硬化処理。以上、ダイアタッチ工程。)。ここで、接着剤層中の含フッ素添加剤は、貼着工程又はダイアタッチ工程で加熱されると、接着剤層の表面に偏在することとなる。  As shown in FIG. 2B, a semiconductor element 30 such as an IC chip is attached to the side of the semiconductor element mounting portion 21 of the lead frame 20 where the adhesive sheet 10 is not attached via a die attach agent (not shown). Place. Then, it heats to about 100-200 degreeC, a die attach agent is hardened, and the semiconductor element 30 is fixed and mounted in the semiconductor element mounting part 21 (die attach agent hardening process. As mentioned above, a die attach process). Here, the fluorine-containing additive in the adhesive layer is unevenly distributed on the surface of the adhesive layer when heated in the sticking step or the die attach step.

接着シート10やダイアタッチ剤等から発生するアウトガス成分がリードフレーム20や半導体素子30に付着していると、ワイヤボンディング工程においてワイヤの接合不良による歩留低下を生じやすい。そこで、ダイアタッチ工程の後、ワイヤボンディング工程の前に、リードフレーム20や半導体素子30にプラズマ処理を施す(プラズマクリーニング工程)。プラズマ処理としては、例えば、接着シート10が貼着され半導体素子30が搭載されたリードフレーム20(以下、仕掛品ということがある)をアルゴンガス、又はアルゴンガスと水素ガスとの混合ガス等の雰囲気でプラズマ照射する方法が挙げられる。プラズマ処理におけるプラズマの照射出力は、例えば、150〜600Wとされる。また、プラズマ処理の時間は、例えば、0.01〜5分間とされる。
プラズマ処理が施されると、接着剤層は、含フッ素添加剤が偏在していた表面層が切削されて、接着剤層の表面の含フッ素添加剤の量が減少する。この時点で、接着剤層の表面においては、剥離性を高めるための含フッ素添加剤の量が不十分となり、接着シート10の剥離性が低下する。
If an outgas component generated from the adhesive sheet 10 or the die attach agent or the like is attached to the lead frame 20 or the semiconductor element 30, the yield is likely to decrease due to poor bonding of the wires in the wire bonding process. Therefore, plasma processing is performed on the lead frame 20 and the semiconductor element 30 after the die attach process and before the wire bonding process (plasma cleaning process). As the plasma treatment, for example, a lead frame 20 (hereinafter sometimes referred to as work-in-process) on which the adhesive sheet 10 is attached and the semiconductor element 30 is mounted is made of argon gas or a mixed gas of argon gas and hydrogen gas. A method of plasma irradiation in an atmosphere can be mentioned. The plasma irradiation output in the plasma processing is, for example, 150 to 600 W. Moreover, the time of plasma processing shall be 0.01-5 minutes, for example.
When the plasma treatment is performed, the surface of the adhesive layer where the fluorine-containing additive is unevenly distributed is cut, and the amount of the fluorine-containing additive on the surface of the adhesive layer is reduced. At this time, on the surface of the adhesive layer, the amount of the fluorine-containing additive for improving the peelability becomes insufficient, and the peelability of the adhesive sheet 10 is lowered.

図2(c)に示すように、半導体素子30とリードフレーム20のリード22とを金ワイヤ等のボンディングワイヤ31で電気的に接続する(ワイヤボンディング工程)。本工程は、仕掛品をヒーターブロック上で150〜250℃程度に加熱しながら行われる。本工程における加熱時間は、例えば、5〜30分間とされる。本実施形態においては、ワイヤボンディング工程が、接着剤層を加熱する加熱工程を兼ねている。
ワイヤボンディング工程で仕掛品が加熱されると、接着剤層中に分散している含フッ素添加剤が接着剤層の表面に移行する。ここで、接着剤層の表面フッ素復元率が70%以上であるため、接着剤層の表面の含フッ素添加剤の量は、剥離性を高めるのに十分な量となる。そして、後述の剥離工程において接着シート10は、リードフレーム20及び封止樹脂40から剥離しやすくなる。
As shown in FIG. 2C, the semiconductor element 30 and the lead 22 of the lead frame 20 are electrically connected by a bonding wire 31 such as a gold wire (wire bonding process). This step is performed while heating the work-in-process to about 150 to 250 ° C. on the heater block. The heating time in this step is, for example, 5 to 30 minutes. In the present embodiment, the wire bonding process also serves as a heating process for heating the adhesive layer.
When the work-in-process is heated in the wire bonding process, the fluorine-containing additive dispersed in the adhesive layer moves to the surface of the adhesive layer. Here, since the surface fluorine restoration rate of the adhesive layer is 70% or more, the amount of the fluorine-containing additive on the surface of the adhesive layer is an amount sufficient to enhance the peelability. And in the peeling process mentioned later, the adhesive sheet 10 becomes easy to peel from the lead frame 20 and the sealing resin 40.

図2(d)に示すように、図2(c)に示す仕掛品を金型内に載置し、封止樹脂(モールド材)を用いてトランスファーモールド(金型成型)することにより、半導体素子30を封止樹脂40により封止する(封止工程)。封止樹脂としては、従来公知のものが用いられ、例えば、エポキシ樹脂及び無機フィラー等の混合物が挙げられる。  As shown in FIG. 2 (d), the work in process shown in FIG. 2 (c) is placed in a mold, and transfer molding (molding) is performed using a sealing resin (molding material). The element 30 is sealed with the sealing resin 40 (sealing process). A conventionally well-known thing is used as sealing resin, For example, mixtures, such as an epoxy resin and an inorganic filler, are mentioned.

図2(e)に示すように、接着シート10を封止樹脂40及びリードフレーム20から剥離することにより、複数のQFNパッケージ50が配列されたQFNユニット60を得る(剥離工程)。この際、接着剤層の表面に、十分量の含フッ素添加剤が存在しているため、リードフレーム20及び封止樹脂40から接着シート10を容易に剥離できる。  As shown in FIG. 2E, the adhesive sheet 10 is peeled from the sealing resin 40 and the lead frame 20 to obtain a QFN unit 60 in which a plurality of QFN packages 50 are arranged (peeling step). At this time, since a sufficient amount of the fluorine-containing additive is present on the surface of the adhesive layer, the adhesive sheet 10 can be easily peeled from the lead frame 20 and the sealing resin 40.

図2(f)に示すように、QFNユニット60を各QFNパッケージ50の外周に沿ってダイシングすることにより、複数のQFNパッケージ50を得る(ダイシング工程)。   As shown in FIG. 2F, a plurality of QFN packages 50 are obtained by dicing the QFN unit 60 along the outer periphery of each QFN package 50 (dicing step).

上述したように、本実施形態の接着シート10を用いてQFNパッケージ等の半導体装置を製造することにより、プラズマクリーニング工程を設けても、接着シート10がリードフレーム20及び封止樹脂40から容易に剥離される。このため、作業効率を高めて半導体装置の生産性を高められ、糊残りによる半導体装置の不良品化を防止できる。  As described above, by manufacturing a semiconductor device such as a QFN package using the adhesive sheet 10 of the present embodiment, the adhesive sheet 10 can be easily removed from the lead frame 20 and the sealing resin 40 even if a plasma cleaning process is provided. It is peeled off. For this reason, it is possible to increase the work efficiency and increase the productivity of the semiconductor device, and to prevent the defective semiconductor device due to the adhesive residue.

なお、上述の実施形態では、リードフレームを用いたQFNパッケージの製造方法を例にして説明したが、本発明はこれに限定されず、リードフレームを用いたQFNパッケージ以外の半導体装置の製造方法、配線基板を用いた半導体装置の製造方法にも適用できる。  In the above-described embodiment, the QFN package manufacturing method using the lead frame has been described as an example. However, the present invention is not limited thereto, and the semiconductor device manufacturing method other than the QFN package using the lead frame, The present invention can also be applied to a method for manufacturing a semiconductor device using a wiring board.

上述の実施形態では、ワイヤボンディング工程が加熱工程を兼ねているが、本発明はこれに限定されず、例えば、接着剤層を加熱する加熱工程が、プラズマクリーニング工程とワイヤボンディング工程との間、又はワイヤボンディング工程と封止工程との間に、独立して設けられていてもよい。
加熱工程における加熱温度は、フッ素化合物等の種類等に応じて決定され、例えば、150〜250℃程度とされる。また加熱工程における加熱時間は、含フッ素化合物の種類等に応じて決定され、例えば、5〜30分間とされる。
In the above-described embodiment, the wire bonding process also serves as the heating process, but the present invention is not limited to this. For example, the heating process for heating the adhesive layer is performed between the plasma cleaning process and the wire bonding process. Alternatively, it may be provided independently between the wire bonding step and the sealing step.
The heating temperature in the heating step is determined according to the type of fluorine compound and the like, and is, for example, about 150 to 250 ° C. Moreover, the heating time in a heating process is determined according to the kind etc. of a fluorine-containing compound, for example, is 5 to 30 minutes.

以下に実施例を用いて本発明を説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(使用原料)
<含フッ素添加剤>
メガファックF−554:含フッ素基・親油性基含有オリゴマーであるノニオン界面活性剤、25℃で液体、DIC株式会社製。
モディパーF600:メタクリル酸エステルとアクリル酸フッ化アルキルとのブロックコポリマー、25℃で固体(粉体)、日油株式会社製。
(Raw materials used)
<Fluorine-containing additive>
Megafac F-554: Nonionic surfactant which is a fluorine-containing group / lipophilic group-containing oligomer, liquid at 25 ° C., manufactured by DIC Corporation.
Modiper F600: block copolymer of methacrylic acid ester and fluorinated alkyl acrylate, solid at 25 ° C. (powder), manufactured by NOF Corporation.

<反応性エラストマー>
タフテックM−1943:無水マレイン酸含有SEBS、S/EB比=20/80、酸価=10mgCHONa/g、旭化成ケミカルズ株式会社製。
タフテックM−1911:無水マレイン酸含有SEBS、S/EB比=30/70、酸価=2mgCHONa/g、旭化成ケミカルズ株式会社製。
<その他の樹脂>
ルミフロンLF200F:フッ素含有熱硬化性樹脂、旭硝子株式会社製。
<Reactive elastomer>
Tuftec M-1943: maleic anhydride-containing SEBS, S / EB ratio = 20/80, acid value = 10 mg CH 3 ONa / g, manufactured by Asahi Kasei Chemicals Corporation.
Tuftec M-1911: maleic anhydride-containing SEBS, S / EB ratio = 30/70, acid value = 2 mg CH 3 ONa / g, manufactured by Asahi Kasei Chemicals Corporation.
<Other resins>
Lumiflon LF200F: fluorine-containing thermosetting resin, manufactured by Asahi Glass Co., Ltd.

<硬化剤>
デュラネートTSA−100:イソシアネート、旭化成ケミカルズ株式会社製。
<酸化防止剤>
IRGANOX1010FF:BASF社製。
スミライザーGS(F):住友化学株式会社製。
<Curing agent>
Duranate TSA-100: Isocyanate, manufactured by Asahi Kasei Chemicals Corporation.
<Antioxidant>
IRGANOX1010FF: manufactured by BASF
Sumilyzer GS (F): manufactured by Sumitomo Chemical Co., Ltd.

(実施例1〜3、比較例1〜4)
表1の組成に従い、各原料を適量のトルエンに分散して接着剤塗布液を調製した。
次に、耐熱性基材としてポリイミド樹脂フィルム(東レ・デュポン株式会社製、商品名:カプトン100EN、厚さ25μm、ガラス転移温度300℃以上、熱膨張係数16ppm/℃)を用い、その上に乾燥後の厚さが5μmになるように、上記接着剤塗布液を塗布した。接着剤塗布液を塗布した後、150℃で3分間乾燥させ、各例の接着シートを得た。得られた接着シートについて、表面フッ素含有率及び接着強度を測定し、モールドフラッシュの有無及び糊残りの有無を評価した。
(Examples 1-3, Comparative Examples 1-4)
According to the composition in Table 1, each raw material was dispersed in an appropriate amount of toluene to prepare an adhesive coating solution.
Next, a polyimide resin film (manufactured by Toray DuPont Co., Ltd., trade name: Kapton 100EN, thickness 25 μm, glass transition temperature 300 ° C. or higher, coefficient of thermal expansion 16 ppm / ° C.) is used as a heat-resistant substrate, and drying is performed thereon. The adhesive coating solution was applied so that the subsequent thickness was 5 μm. After apply | coating the adhesive agent coating liquid, it was made to dry at 150 degreeC for 3 minute (s), and the adhesive sheet of each case was obtained. About the obtained adhesive sheet, the surface fluorine content and the adhesive strength were measured, and the presence or absence of mold flash and the presence or absence of adhesive residue were evaluated.

(測定方法)
<表面フッ素含有率の測定>
接着剤層を上向きにし、各例の接着シートを恒温器(パーフェクトオーブン PHH−201、エスペック株式会社製)に入れ、175℃で1時間加熱して、接着剤層を硬化させた。硬化させた接着剤層の表面フッ素含有率を後述する≪表面フッ素含有率の測定方法≫により測定し、初期表面フッ素含有率βとした。
次いで、接着剤層を上向きにして、接着シートをプラズマクリーナー装置(YES−G1000、YIELD ENGINEERING SYSTEM社製)に設置し、アルゴンガス雰囲気(アルゴンガス100質量%雰囲気)下、出力450Wの条件で、接着剤層に1分間のプラズマ処理を施した。プラズマ処理が施された直後の接着剤層の表面フッ素含有率を後述する≪表面フッ素含有率の測定方法≫により測定し、プラズマ処理後の表面フッ素含有率とした。
プラズマ処理が施された接着剤層を上向きにして、接着シートをホットプレート(EC−1200、井内盛栄堂製)に載せ、220℃で15分間加熱した。加熱終了後、25℃で24時間静置した後、接着剤層の表面フッ素含有率を後述する≪表面フッ素含有率の測定方法≫により測定し、復元後表面フッ素含有率αとした。
(Measuring method)
<Measurement of surface fluorine content>
With the adhesive layer facing upward, the adhesive sheet of each example was placed in a thermostat (Perfect Oven PHH-201, manufactured by Espec Corp.) and heated at 175 ° C. for 1 hour to cure the adhesive layer. The surface fluorine content of the cured adhesive layer was measured by the << surface fluorine content measurement method >> described below, and was defined as the initial surface fluorine content β.
Next, with the adhesive layer facing upward, the adhesive sheet was placed in a plasma cleaner device (YES-G1000, manufactured by YIELD ENGINEERING SYSTEM), under an argon gas atmosphere (argon gas 100 mass% atmosphere) under the condition of an output of 450 W, The adhesive layer was subjected to a plasma treatment for 1 minute. The surface fluorine content of the adhesive layer immediately after the plasma treatment was measured according to << Method for measuring surface fluorine content >> described later, and was defined as the surface fluorine content after the plasma treatment.
The adhesive sheet on which the plasma treatment was performed was faced up, and the adhesive sheet was placed on a hot plate (EC-1200, manufactured by Inoue Seieido) and heated at 220 ° C. for 15 minutes. After completion of the heating, the mixture was allowed to stand at 25 ° C. for 24 hours, and then the surface fluorine content of the adhesive layer was measured by “Method for measuring surface fluorine content” described later, and the surface fluorine content α after restoration was used.

≪表面フッ素含有率の測定方法≫
走査型X線光電子分光分析装置(XPS/ESCA、Quantera SXM、アルバック・ファイ株式会社製)を用い、下記条件で接着剤層の表面を測定した。表面フッ素含有率(atom%)は、炭素、窒素、酸素、フッ素、ケイ素及び金の合計100atom%に対する含有率として表されたものである。なお、各例における表面フッ素含有率の測定においては、いずれもケイ素及び金が検出されなかった。
≪Measurement method of surface fluorine content≫
The surface of the adhesive layer was measured using a scanning X-ray photoelectron spectrometer (XPS / ESCA, Quantera SXM, ULVAC-PHI Co., Ltd.) under the following conditions. The surface fluorine content (atom%) is expressed as a content with respect to a total of 100 atom% of carbon, nitrogen, oxygen, fluorine, silicon and gold. In the measurement of the surface fluorine content in each example, neither silicon nor gold was detected.

測定条件
X線源:単色化AlKα
X線出力:25.0W
X線照射径:φ100μm
測定領域:Point100μm
光電子取り込み角:45deg
WideScan:280.0e;1.000eV/Step
Measurement conditions X-ray source: Monochromatic AlKα
X-ray output: 25.0W
X-ray irradiation diameter: φ100μm
Measurement area: Point 100 μm
Photoelectron capture angle: 45 deg
WideScan: 280.0e; 1.000eV / Step

<接着強度の測定>
リードフレームとして、銅板にニッケルメッキ層とパラジウムメッキ層と金メッキ層とをこの順で設けた下記仕様のもの(32QFN(CD194、メッキ;PD2L+Au)32LQFNPADSIZE3.0SQMM、新光電気工業株式会社製)を用いた。ペーパーカッター(紙押さえNS型、内田洋行社製)を用いて、各例の接着シートを50mm×60mmに裁断した。卓上ラミネーター(MAII−700、大成ラミネーター株式会社製)を用いて、25℃、速度=1.0m/min、圧力=0.37N/mmの条件で、裁断された接着シートをリードフレームに貼着した(貼着工程)。なお、実施例3、比較例1及び比較例4については、25℃での貼着性が不足していたため、80℃でリードフレームに貼着した。
接着シートが貼着されたリードフレームを恒温器(パーフェクトオーブン PHH−201、エスペック株式会社製)に入れ、175℃で1時間加熱して、接着剤層を硬化させた(ダイアタッチ工程におけるダイアタッチ剤硬化処理に相当)。
次いで、接着剤層を上向きにして、接着シートをプラズマクリーナー装置(YES−G1000、YIELD ENGINEERING SYSTEM社製)に設置し、アルゴンガス雰囲気下、出力450Wの条件で、接着剤層に1分間のプラズマ処理を施した(プラズマクリーニング工程)。
プラズマクリーニング工程の後、接着シートを下側にし、接着シートが貼着されたリードフレームをホットプレート(EC−1200、井内盛栄堂製)に載せ、220℃で15分間加熱した(ワイヤボンディング工程に相当)。
ワイヤボンディング工程終了後、トランスファーモールディングプレス(TEP12−16、藤和精機株式会社製)を用い、加熱温度175℃、樹脂圧力69MPa、金型圧力14MPaの条件で、接着シートが貼着されたリードフレームを封止樹脂(KMC−3520L、信越化学工業株式会社製)で封止した(封止工程)。封止工程後、25℃で24時間静置した後、後述する≪樹脂封止後リードフレームとの接着強度の測定方法≫により樹脂封止後リードフレームとの接着強度を測定した。
<Measurement of adhesive strength>
As the lead frame, the following specification (32QFN (CD194, plating: PD2L + Au) 32LQFNPADSIZE3.0SQMM, manufactured by Shinko Electric Industry Co., Ltd.) in which a nickel plating layer, a palladium plating layer, and a gold plating layer were provided in this order on a copper plate was used. . The adhesive sheet of each example was cut into 50 mm x 60 mm using a paper cutter (paper press NS type, manufactured by Uchida Yoko Co., Ltd.). Using a table laminator (MAII-700, manufactured by Taisei Laminator Co., Ltd.), the cut adhesive sheet is attached to the lead frame under the conditions of 25 ° C., speed = 1.0 m / min, pressure = 0.37 N / mm. (Sticking process). In addition, about Example 3, the comparative example 1, and the comparative example 4, since the sticking property in 25 degreeC was insufficient, it stuck on the lead frame at 80 degreeC.
The lead frame with the adhesive sheet attached was placed in a thermostat (Perfect Oven PHH-201, manufactured by Espec Co., Ltd.) and heated at 175 ° C. for 1 hour to cure the adhesive layer (die attach in the die attach process) Equivalent to agent curing treatment).
Next, with the adhesive layer facing upward, the adhesive sheet was placed in a plasma cleaner device (YES-G1000, manufactured by YIELD ENGINEERING SYSTEM), and plasma was applied to the adhesive layer for 1 minute under an argon gas atmosphere at an output of 450 W. Treatment was performed (plasma cleaning step).
After the plasma cleaning step, the adhesive sheet is placed on the lower side, and the lead frame with the adhesive sheet attached is placed on a hot plate (EC-1200, manufactured by Inoue Seieido) and heated at 220 ° C. for 15 minutes (in the wire bonding step) Equivalent).
After completion of the wire bonding process, a transfer molding press (TEP12-16, manufactured by Towa Seiki Co., Ltd.) is used to attach the lead frame to which the adhesive sheet is attached under the conditions of a heating temperature of 175 ° C., a resin pressure of 69 MPa, and a mold pressure of 14 MPa. Sealing was performed with a sealing resin (KMC-3520L, manufactured by Shin-Etsu Chemical Co., Ltd.) (sealing step). After the sealing step, the mixture was allowed to stand at 25 ° C. for 24 hours, and then the adhesive strength with the lead frame after resin sealing was measured by a “method for measuring the adhesive strength with the lead frame after resin sealing” described later.

リードフレームの仕様
外寸:55mm×58mm
用途:QFN用
QFNの配列:8×8個(計64個)のマトリックス配列
パッケージサイズ:5mm×5mm
ピン数:32
Lead frame specifications External dimensions: 55mm x 58mm
Application: For QFN QFN array: 8 x 8 (total 64) matrix array Package size: 5mm x 5mm
Number of pins: 32

≪樹脂封止後リードフレームとの接着強度の測定方法≫
万能引張試験機(AGS−100B、株式会社島津製作所製)を用い、測定温度25℃、剥離角度90°、剥離速度50mm/minで引張試験を行い、樹脂封止後リードフレームとの接着強度を測定した。
≪Measurement method of adhesive strength with lead frame after resin sealing≫
Using a universal tensile testing machine (AGS-100B, manufactured by Shimadzu Corporation), a tensile test is performed at a measurement temperature of 25 ° C., a peeling angle of 90 °, and a peeling speed of 50 mm / min. It was measured.

<硬化前接着強度の測定方法>
各例の接着シート(20mm幅)を銅板(銅ストライクメッキ板ELA601、25mm×100mm、新光電気工業株式会社製)に、卓上ラミネーター(MAII−700、大成ラミネーター株式会社製)を用いて、25℃、速度=1.0m/min、圧力=0.37N/mmで貼着して測定試料とした。この測定試料について、万能引張試験機(AGS−100B、株式会社島津製作所製)を用い、測定温度25℃、剥離角度90°、剥離速度50mm/minで引張試験を行い、硬化前接着強度を測定した。なお、実施例3については、25℃での貼着性が不足していたため、80℃で銅板に貼着したものを測定試料とした。
<Measurement method of adhesive strength before curing>
The adhesive sheet (20 mm width) of each example was placed on a copper plate (copper strike plating plate ELA601, 25 mm × 100 mm, manufactured by Shinko Electric Industries Co., Ltd.) using a table laminator (MAII-700, manufactured by Taisei Laminator Co., Ltd.) at 25 ° C. The sample was adhered at a speed of 1.0 m / min and a pressure of 0.37 N / mm. This measurement sample was subjected to a tensile test using a universal tensile testing machine (AGS-100B, manufactured by Shimadzu Corporation) at a measurement temperature of 25 ° C., a peeling angle of 90 °, and a peeling speed of 50 mm / min to measure the adhesive strength before curing. did. In addition, about Example 3, since the sticking property in 25 degreeC was insufficient, what was stuck to the copper plate at 80 degreeC was used as the measurement sample.

<モールドフラッシュ発生の有無>
上記の<接着強度の測定>において、接着強度を測定し終えた後、リードフレームにおける接着シートの貼着面を光学顕微鏡(デジタルマイクロスコープVHX−500、株式会社キーエンス製)で観察して、モールドフラッシュ発生の有無を判断した。表中、1つのリードフレーム(64個のQFNパッケージ)中でモールドフラッシュの認められたQFNパッケージの数を記載した。
<Mold flash occurrence>
In the above <Measurement of Adhesive Strength>, after measuring the adhesive strength, the adhesion surface of the adhesive sheet on the lead frame is observed with an optical microscope (Digital Microscope VHX-500, manufactured by Keyence Corporation), and molded. The presence or absence of flash was judged. In the table, the number of QFN packages in which mold flash is recognized in one lead frame (64 QFN packages) is shown.

<糊残りの有無>
上記の<接着強度の測定>において、接着強度を測定し終えた後、樹脂封止後リードフレームへの糊残りの有無を光学顕微鏡(デジタルマイクロスコープVHX−500、株式会社キーエンス製)で確認した。表中、1つのリードフレーム(64個のQFNパッケージ)中で糊残りの認められたQFNパッケージの数を記載した。
<With or without glue residue>
In the above <Measurement of Adhesive Strength>, after measuring the adhesive strength, the presence or absence of adhesive residue on the lead frame after resin sealing was confirmed with an optical microscope (Digital Microscope VHX-500, manufactured by Keyence Corporation). . In the table, the number of QFN packages in which adhesive residue is recognized in one lead frame (64 QFN packages) is shown.

Figure 2013201402
Figure 2013201402

表1に示すように、各例共に、表面フッ素含有率は、プラズマクリーニング工程を経ることで減少することが確認できた。
本発明を適用した実施例1〜3は、樹脂封止後リードフレームとの接着強度が15N/50mm以下であり、容易に剥離できるものであった。加えて、実施例1〜3は、いずれもモールドフラッシュの発生がなく、糊残りがなかった。
一方、表面フッ素復元率が70%未満の比較例1〜4は、樹脂封止後リードフレームとの接着強度が15N/50mm超であり、剥離しにくいものであった。
これらの結果から、本発明を適用することで、剥離工程において優れた剥離性を発揮できることが確認された。
As shown in Table 1, it was confirmed that the surface fluorine content decreased in each example through the plasma cleaning process.
In Examples 1 to 3 to which the present invention was applied, the adhesive strength with the lead frame after resin sealing was 15 N / 50 mm or less, and it was easily peelable. In addition, all of Examples 1 to 3 had no mold flash and no adhesive residue.
On the other hand, Comparative Examples 1 to 4 having a surface fluorine restoration rate of less than 70% had an adhesive strength with the lead frame after resin sealing of more than 15 N / 50 mm and were difficult to peel off.
From these results, it was confirmed that excellent releasability can be exhibited in the peeling step by applying the present invention.

10 半導体装置製造用接着シート
20 リードフレーム
30 半導体素子
31 ボンディングワイヤ
40 封止樹脂
50 QFNパッケージ
DESCRIPTION OF SYMBOLS 10 Adhesive sheet for semiconductor device manufacture 20 Lead frame 30 Semiconductor element 31 Bonding wire 40 Sealing resin 50 QFN package

Claims (3)

基材と、該基材の一方の面に設けられた含フッ素添加剤を含有する接着剤層とを備え、半導体装置のリードフレーム又は配線基板に剥離可能に貼着される半導体装置製造用接着シートにおいて、
前記接着剤層は、下記(I)式で求められる表面フッ素復元率が70%以上であることを特徴とする半導体装置製造用接着シート。
表面フッ素復元率(%)=復元後表面フッ素含有率α÷初期表面フッ素含有率β×100 ・・・(I)
[(I)式中、復元後表面フッ素含有率αは、接着剤層にアルゴンガス雰囲気下、出力450Wの条件で1分間のプラズマ処理を施し、次いで、接着剤層を220℃で15分間加熱した後の接着剤層の表面のフッ素含有率(atom%)である。初期表面フッ素含有率βは、前記プラズマ処理を施す前の接着剤層の表面のフッ素含有率(atom%)である。]
A semiconductor device manufacturing adhesive comprising a base material and an adhesive layer containing a fluorine-containing additive provided on one surface of the base material, and peelably attached to a lead frame or a wiring board of a semiconductor device In the sheet,
The adhesive layer has a surface fluorine restoration rate calculated by the following formula (I) of 70% or more, and is an adhesive sheet for manufacturing a semiconductor device.
Surface fluorine recovery rate (%) = restored surface fluorine content α ÷ initial surface fluorine content β × 100 (I)
[In the formula (I), after restoration, the surface fluorine content α is determined by subjecting the adhesive layer to a plasma treatment for 1 minute under an argon gas atmosphere and an output of 450 W, and then heating the adhesive layer at 220 ° C. for 15 minutes. It is the fluorine content rate (atom%) on the surface of the adhesive layer after the treatment. The initial surface fluorine content β is the fluorine content (atom%) of the surface of the adhesive layer before the plasma treatment. ]
前記復元後表面フッ素含有率αは、18atom%以上であることを特徴とする請求項1に記載の半導体装置製造用接着シート。   2. The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein the post-restoration surface fluorine content α is 18 atom% or more. 請求項1又は2に記載の半導体装置製造用接着シートを用いた半導体装置の製造方法であって、
前記リードフレーム又は前記配線基板に前記半導体装置製造用接着シートを貼着する貼着工程と、
前記リードフレーム又は前記配線基板にプラズマ処理を施すプラズマクリーニング工程と、
前記プラズマクリーニング工程の後、前記接着剤層を加熱する加熱工程と、
前記加熱工程の後、前記半導体装置製造用接着シートを前記リードフレーム又は前記配線基板から剥離する剥離工程と、を備えることを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device using the adhesive sheet for manufacturing a semiconductor device according to claim 1 or 2,
An adhering step of adhering the adhesive sheet for manufacturing the semiconductor device to the lead frame or the wiring board;
A plasma cleaning step of performing plasma treatment on the lead frame or the wiring substrate;
A heating step of heating the adhesive layer after the plasma cleaning step;
After the heating step, a peeling step of peeling the semiconductor device manufacturing adhesive sheet from the lead frame or the wiring substrate is provided.
JP2012070401A 2012-03-26 2012-03-26 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device Active JP5937397B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012070401A JP5937397B2 (en) 2012-03-26 2012-03-26 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
CN201310095364.8A CN103360971B (en) 2012-03-26 2013-03-22 Semiconductor device manufacture bonding sheet and semiconductor device and manufacture method thereof
TW102110258A TWI494409B (en) 2012-03-26 2013-03-22 Adhesive sheet for manufacturing semiconductor device, and semiconductor device manufacturing method using the same
KR20130032085A KR101485659B1 (en) 2012-03-26 2013-03-26 Adhesive sheet for manufacturing semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070401A JP5937397B2 (en) 2012-03-26 2012-03-26 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2013201402A true JP2013201402A (en) 2013-10-03
JP5937397B2 JP5937397B2 (en) 2016-06-22

Family

ID=49363268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070401A Active JP5937397B2 (en) 2012-03-26 2012-03-26 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device

Country Status (4)

Country Link
JP (1) JP5937397B2 (en)
KR (1) KR101485659B1 (en)
CN (1) CN103360971B (en)
TW (1) TWI494409B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187247A1 (en) * 2018-03-30 2019-10-03 リンテック株式会社 Warpage prevention laminate for cured sealing body and method for producing cured sealing body
JP2020043195A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Semiconductor device manufacturing method
JPWO2019187249A1 (en) * 2018-03-30 2021-04-01 リンテック株式会社 A laminate for preventing warpage of a cured sealant and a method for manufacturing a cured sealant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281190A (en) * 2016-08-29 2017-01-04 无锡万能胶粘剂有限公司 The glue spraying that a kind of bonding force is strong
US9972509B2 (en) * 2016-09-12 2018-05-15 Win Semiconductors Corp. Anti-plasma adhesive tape and manufacturing method
WO2020196224A1 (en) * 2019-03-26 2020-10-01 リンテック株式会社 Release sheet
CN117511426B (en) * 2024-01-05 2024-04-12 深圳市长松科技有限公司 Film for packaging and blocking water vapor, semiconductor film packaging method and structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207994A (en) * 2002-01-16 2003-07-25 Canon Inc Charging member, image forming device and process cartridge
JP2007123710A (en) * 2005-10-31 2007-05-17 Tomoegawa Paper Co Ltd Semiconductor device, its manufacturing method, and adhesive sheet for manufacturing the same,

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839019B2 (en) * 1996-08-23 1998-12-16 日本電気株式会社 Method for manufacturing semiconductor device
US20030190466A1 (en) * 2002-04-03 2003-10-09 Katsuji Nakaba Adhesive sheet for producing semiconductor devices
JP4654062B2 (en) * 2005-03-30 2011-03-16 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP4538398B2 (en) 2005-10-31 2010-09-08 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2011236261A (en) 2010-05-06 2011-11-24 Furukawa Electric Co Ltd:The Adhesive film for semiconductor, and method of manufacturing the semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207994A (en) * 2002-01-16 2003-07-25 Canon Inc Charging member, image forming device and process cartridge
JP2007123710A (en) * 2005-10-31 2007-05-17 Tomoegawa Paper Co Ltd Semiconductor device, its manufacturing method, and adhesive sheet for manufacturing the same,

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187247A1 (en) * 2018-03-30 2019-10-03 リンテック株式会社 Warpage prevention laminate for cured sealing body and method for producing cured sealing body
WO2019187248A1 (en) * 2018-03-30 2019-10-03 リンテック株式会社 Warpage prevention laminate for cured sealing body and method for producing cured sealing body
KR20200138149A (en) * 2018-03-30 2020-12-09 린텍 가부시키가이샤 Laminate for preventing warpage of the cured encapsulant, and method for producing the cured encapsulant
JPWO2019187249A1 (en) * 2018-03-30 2021-04-01 リンテック株式会社 A laminate for preventing warpage of a cured sealant and a method for manufacturing a cured sealant
JPWO2019187248A1 (en) * 2018-03-30 2021-04-08 リンテック株式会社 A method for manufacturing a laminated body for preventing warping of a cured sealant and a cured sealant.
JPWO2019187247A1 (en) * 2018-03-30 2021-04-15 リンテック株式会社 A method for manufacturing a laminated body for preventing warping of a cured sealant and a cured sealant.
JP7240378B2 (en) 2018-03-30 2023-03-15 リンテック株式会社 Laminate for preventing warp of cured sealant, and method for manufacturing cured sealant
JP7240377B2 (en) 2018-03-30 2023-03-15 リンテック株式会社 Laminate for preventing warp of cured sealant, and method for manufacturing cured sealant
JP7240376B2 (en) 2018-03-30 2023-03-15 リンテック株式会社 Laminate for preventing warp of cured sealant, and method for manufacturing cured sealant
KR102576309B1 (en) 2018-03-30 2023-09-07 린텍 가부시키가이샤 Laminate for curing prevention of curing encapsulation body, and manufacturing method of curing encapsulation body
JP2020043195A (en) * 2018-09-10 2020-03-19 日立化成株式会社 Semiconductor device manufacturing method
JP7187906B2 (en) 2018-09-10 2022-12-13 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
KR101485659B1 (en) 2015-01-22
TWI494409B (en) 2015-08-01
CN103360971A (en) 2013-10-23
TW201350557A (en) 2013-12-16
KR20130109069A (en) 2013-10-07
CN103360971B (en) 2015-12-23
JP5937397B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937398B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP5937397B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
KR100618640B1 (en) Adhesive sheet for producing semiconductor device, semiconductor device and manufacturing method thereof
JP4654062B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP4863690B2 (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device and manufacturing method thereof
WO2018207408A1 (en) Temporary protective film for semiconductor sealing molding
KR100633849B1 (en) Adhesive sheet for producing semiconductor devices
JP4538398B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
TWI745485B (en) Adhesive film, dicing die-bonding film, manufacturing method of semiconductor device, and semiconductor device
JP2013201403A (en) Adhesive sheet for manufacturing semiconductor device and semiconductor device manufacturing method
JP4421204B2 (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device using the same, and manufacturing method
JP2006318999A (en) Adhesive film for manufacturing semiconductor device
JP4251807B2 (en) Adhesive sheet for semiconductor device manufacturing
JP3779601B2 (en) Mask sheet for semiconductor device assembly
JP2002275435A (en) Masking sheet for assembling semiconductor device and method for assembling semiconductor device
JP2021125516A (en) Adhesive sheet for manufacturing semiconductor device
JP2020150076A (en) Adhesive sheet for semiconductor device production
JP3857953B2 (en) Adhesive sheet for semiconductor device manufacturing
JP4031721B2 (en) Adhesive sheet for semiconductor device manufacturing
JP2002338910A (en) Pressure-sensitive adhesive sheet for manufacturing semiconductor device
KR100776313B1 (en) Adhesive sheet for producing semiconductor device, semiconductor device, and production method for semiconductor device
CN116848635A (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250