JP2013185734A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013185734A
JP2013185734A JP2012050049A JP2012050049A JP2013185734A JP 2013185734 A JP2013185734 A JP 2013185734A JP 2012050049 A JP2012050049 A JP 2012050049A JP 2012050049 A JP2012050049 A JP 2012050049A JP 2013185734 A JP2013185734 A JP 2013185734A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
outer box
refrigerator
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012050049A
Other languages
Japanese (ja)
Inventor
Tomohiro Matsuyama
智洋 松山
Kenichi Okabe
健一 岡部
yoichi Abiru
洋一 阿比留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012050049A priority Critical patent/JP2013185734A/en
Publication of JP2013185734A publication Critical patent/JP2013185734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator having high marketability by preventing a refrigerator wall surface from undulate deformation caused by a heat radiation pipe while improving energy saving performance with the use of a vacuum heat insulating material.SOLUTION: The refrigerator includes: a refrigerator body composed of an outer box 109, an inner box 110 and a forming heat insulating material 111 filled between the outer box and the inner box and equipped with a refrigerant temperature zone and a cooling temperature zone; a vacuum heat insulating material 112 having a groove 114 formed on the surface opposite to the outer wall surface of the refrigerator body; and the heat radiation pipe 113 of cooling cycle arranged in the groove of the vacuum heat insulating material, wherein the vacuum heat insulating material is arranged on the inner surface of the outer box wall surface by intervening a reinforcing member 118 with the outer box. Thus, the energy saving performance is improved by the heat insulating effects of the vacuum heat insulating material, and even when pressure for filling and forming the forming heat insulating material is applied to the heat radiation pipe, the reinforcing member works to prevent protrusion deformation along the heat radiation pipe on the outer box wall surface against the pressure, with prevention of the undulate deformation of the outer box wall surface.

Description

本発明は、断熱箱体に真空断熱材を配設した冷蔵庫に関するものである。   The present invention relates to a refrigerator in which a vacuum heat insulating material is disposed in a heat insulating box.

近年、冷蔵庫の大容量化及び設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁を薄肉化する、機械室のコンデンサ(冷蔵庫下部に配置される)を冷蔵庫壁面に貼り付けている放熱パイプで置き換えて無効スペースを無くする工夫がなされている(例えば、特許文献1参照)。   In recent years, as the demand for larger refrigerators and reduced installation space has increased, the refrigerator insulation wall has been made thinner, replacing the condenser in the machine room (located at the bottom of the refrigerator) with a heat radiating pipe attached to the refrigerator wall. A device has been devised to eliminate the invalid space (see, for example, Patent Document 1).

上記冷蔵庫断熱壁の薄型化と冷蔵庫壁面への放熱パイプの貼り付けによる熱ロス低減のために、最近は真空断熱材が多用され始め、特に放熱パイプを貼り付けている面は当該放熱パイプからの放熱があって庫内側の温度が上がりやすく断熱性を強化する必要があるため真空断熱材を設けることが必須要件になりつつある。   In order to reduce the heat loss by thinning the refrigerator heat insulating wall and attaching the heat radiating pipe to the refrigerator wall, vacuum heat insulating material has recently started to be used frequently. Since there is heat dissipation and the temperature inside the cabinet tends to rise, and it is necessary to enhance the heat insulation, it is becoming an essential requirement to provide a vacuum heat insulating material.

上記真空断熱材は、冷蔵庫壁面側に放熱パイプ配設用の凹型の溝を設け、この溝に放熱パイプを配設して、当該放熱パイプが冷蔵庫壁面に接するように冷蔵庫壁面に密着装備させてある。   The vacuum heat insulating material is provided with a concave groove for disposing the heat radiating pipe on the refrigerator wall surface, and the heat radiating pipe is disposed in the groove so that the heat radiating pipe is in close contact with the refrigerator wall surface. is there.

図6は特許文献1に記載された冷蔵庫を正面から見た配管概略図を示す。図において、20は冷蔵庫の背面、21は冷蔵庫の左側面、22は冷蔵庫の右側面であり、13は冷蔵庫の本体に貼り付けてある放熱パイプである。放熱パイプ13は、冷蔵庫背面及び側面において連続したU字状に折り曲げられており、冷蔵庫本体を構成する鉄板の表面に配設して貼り付けられ、図示しない真空断熱材で覆っている。   FIG. 6 shows a schematic piping diagram of the refrigerator described in Patent Document 1 as seen from the front. In the figure, 20 is the back of the refrigerator, 21 is the left side of the refrigerator, 22 is the right side of the refrigerator, and 13 is a heat radiating pipe attached to the main body of the refrigerator. The heat radiating pipe 13 is bent into a U-shape that is continuous on the back and side surfaces of the refrigerator, and is disposed and affixed to the surface of an iron plate that constitutes the refrigerator body, and is covered with a vacuum heat insulating material (not shown).

そして、上記放熱パイプ13を、冷蔵庫本体の背面や側面の上下方向に長く配設することで、放熱効果を上げ、冷凍サイクルの向上を図って、消費電力量の低減を行っている。また、十分な放熱パイプ13の長さを確保し、機械室17に配置してあるコンデンサ(図示せず)と同等の放熱能力を得ることでコンデンサを無くしコストダウンを図っている。   And the said heat radiating pipe 13 is arrange | positioned long in the up-down direction of the back surface or side surface of a refrigerator main body, the heat-dissipation effect is raised, the improvement of a refrigerating cycle is aimed at, and the amount of power consumption is reduced. Further, by securing a sufficient length of the heat radiating pipe 13 and obtaining a heat radiating capacity equivalent to that of a capacitor (not shown) disposed in the machine room 17, the capacitor is eliminated and the cost is reduced.

特開平7−103636号公報JP-A-7-103636

しかしながら上記従来のように真空断熱材を介して放熱パイプ13を冷蔵庫壁面に密着装備した冷蔵庫では、当該放熱パイプ13を密着装備させた部分の冷蔵庫壁面が波打つような状態になってしまうことがあり、外観品位が低下して商品性を落としてしまうことがあった。   However, in the refrigerator in which the heat radiating pipe 13 is closely attached to the refrigerator wall surface through the vacuum heat insulating material as in the conventional case, the portion of the refrigerator wall surface in which the heat radiating pipe 13 is closely attached may be undulated. In some cases, the appearance quality deteriorates and the merchantability is lowered.

すなわち、真空断熱材は非常に高価なものであり、それ単独で使用されることは少なく、冷蔵庫断熱壁として元々使用されている発泡断熱材に重合させて使用し、真空断熱材を薄型化してコスト高になるのを抑制している。また、上記真空断熱材は、ガスの透過を阻止する多層ラミネート構造の外被にシリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材を封入した後、外被袋内のガス(空気)を排気し、真空状にしてヒートシールにより密封して構成してあり、圧縮変形等がほとんど発生せず、剛性もあるものとなっている。そのため冷蔵庫断熱壁は、放熱パイプ13を覆う形で冷蔵庫壁面に真空断熱材を取
り付けた後、発泡ウレタン等の断熱材を発泡充填して形成するのであるが、その際発泡ウレタンの発泡圧力は20〜30kPaと大きく、その発泡圧力を非圧縮性の真空断熱材がその全面で受け、その発泡圧力が放熱パイプ13に加わることになり、その結果、冷蔵庫壁面が耐えられずに放熱パイプ部分が微妙に凸変化し、波打つようになるのであった。
In other words, vacuum insulation is very expensive, and it is rarely used alone, and it is used by polymerizing foam insulation that was originally used as a refrigerator insulation wall to make the vacuum insulation thinner. The cost is suppressed. In addition, the vacuum heat insulating material is a gas (air) in the envelope bag after sealing a core material made of fine powder such as silica and pearlite or inorganic fibers in the envelope of the multilayer laminate structure that prevents gas permeation. Is evacuated, vacuum-sealed and sealed by heat sealing, so that compression deformation and the like hardly occur, and it has rigidity. For this reason, the refrigerator heat insulating wall is formed by attaching a vacuum heat insulating material to the refrigerator wall surface so as to cover the heat radiating pipe 13, and then foaming and filling a heat insulating material such as urethane foam. -30 kPa large, the foaming pressure is received by the incompressible vacuum heat insulating material on the entire surface, and the foaming pressure is applied to the heat radiating pipe 13. It changed to a convex shape and began to wave.

また、製造工程における試験運転の時に放熱パイプ13が温度上昇して放熱パイプ自身が微妙に拡管するが、その拡管寸法を真空断熱材が吸収できないこともあり、その結果冷蔵庫壁面に放熱パイプ13に沿った微妙な凸状が生じ、これが光の加減で波打ったように見えるのであった。   In addition, the temperature of the heat radiating pipe 13 rises during the test operation in the manufacturing process, and the heat radiating pipe itself expands slightly, but the vacuum heat insulating material may not be able to absorb the expanded pipe size. A subtle convex shape was formed along the surface, which appeared to wave with the light.

本発明はこのような点に鑑みてなしたもので、真空断熱材を用いて省エネ性を向上させつつ放熱パイプによる冷蔵庫壁面の波打ち変形を防止して商品性の高い冷蔵庫を提供することを目的としたものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a highly commercial refrigerator by preventing wavy deformation of a refrigerator wall surface by a heat radiating pipe while improving energy saving performance using a vacuum heat insulating material. It is what.

上記目的を達成するため本発明は、外箱と内箱と前記外箱と内箱間に充填される発泡断熱材とから構成されていて、区画された冷蔵温度帯と冷凍温度帯とを備える冷蔵庫本体と、前記冷蔵庫本体の外箱壁面と対向する面に溝を形成した真空断熱材と、前記真空断熱材の前記溝内に配置した冷凍サイクルの放熱パイプとを備え、前記真空断熱材は外箱との間に補強部材を介在させて前記放熱パイプが補強部材を介し外箱壁面の内面と対向するように配置した構成としてある。   In order to achieve the above object, the present invention comprises an outer box, an inner box, and a foam heat insulating material filled between the outer box and the inner box, and includes a partitioned refrigeration temperature zone and a freezing temperature zone. A refrigerator main body, a vacuum heat insulating material having a groove formed on a surface thereof facing the outer box wall surface of the refrigerator main body, and a heat radiating pipe of a refrigeration cycle disposed in the groove of the vacuum heat insulating material, A reinforcing member is interposed between the outer box and the heat radiating pipe so that the heat radiating pipe faces the inner surface of the outer box wall surface through the reinforcing member.

これにより、真空断熱材の断熱効果で省エネ性が向上するともに、真空断熱材を介して発泡断熱材を充填するときの発泡圧力が加わってもその圧力に抗して補強部材が外箱壁面の放熱パイプに沿った凸変形を防止することになり、外箱壁面の波打ち変形を防止できる。   As a result, the heat insulation effect of the vacuum heat insulating material improves the energy saving performance, and even if foaming pressure is applied when filling the foam heat insulating material through the vacuum heat insulating material, the reinforcing member resists the pressure of the outer casing wall surface. Convex deformation along the heat radiating pipe is prevented, and undulation deformation of the outer casing wall surface can be prevented.

本発明は、真空断熱材による高い断熱性確保によって省エネ性が向上するとともに、放熱パイプによる外箱壁面の波打ち変形を防止することができ、商品性の高い冷蔵庫とすることができる。   The present invention can improve energy saving by ensuring high heat insulation with a vacuum heat insulating material, can prevent the outer casing wall surface from being undulated by a heat radiating pipe, and can be a highly commercial refrigerator.

本発明の実施の形態1による冷蔵庫を説明する斜視図The perspective view explaining the refrigerator by Embodiment 1 of this invention 同実施の形態1による冷蔵庫を説明する側面断面図Side surface sectional drawing explaining the refrigerator by Embodiment 1 同実施の形態1による冷蔵庫を説明する配管概略図Piping schematic diagram illustrating the refrigerator according to the first embodiment 同実施の形態1による冷蔵庫を説明する図1のA−A‘拡大断面図A-A 'expanded sectional view of FIG. 1 explaining the refrigerator according to the first embodiment 同実施の形態2による冷蔵庫を説明する図1のA−A‘拡大断面図A-A 'expanded sectional view of FIG. 1 explaining the refrigerator according to the second embodiment 従来の冷蔵庫を説明する配管概略図Piping schematic diagram explaining a conventional refrigerator

第1の発明は、外箱と内箱と前記外箱と内箱間に充填される発泡断熱材とから構成されていて、区画された冷蔵温度帯と冷凍温度帯とを備える冷蔵庫本体と、前記冷蔵庫本体の外箱壁面と対向する面に溝を形成した真空断熱材と、前記真空断熱材の前記溝内に配置した冷凍サイクルの放熱パイプとを備え、前記真空断熱材は外箱との間に補強部材を介在させて前記放熱パイプが補強部材を介し外箱壁面の内面と対向するように配置した構成としてあり、真空断熱材の断熱効果で省エネ性が向上するともに、発泡断熱材を充填するときの発泡圧力が真空断熱材を介して加わってもその圧力に抗して補強部材が外箱壁面の放熱パイプに沿った凸変形を防止することになり、外箱壁面の波打ち変形を防止できる。   1st invention is comprised from the outer box, the inner box, and the foam heat insulating material with which it fills between the said outer box and an inner box, The refrigerator main body provided with the refrigeration temperature zone and freezing temperature zone which were divided, A vacuum heat insulating material having a groove formed on a surface of the refrigerator body facing the outer box wall surface, and a refrigeration cycle heat dissipating pipe disposed in the groove of the vacuum heat insulating material, wherein the vacuum heat insulating material is The heat-dissipating pipe is disposed between the reinforcing member and the inner surface of the outer box wall surface with the reinforcing member interposed therebetween. Even if foaming pressure during filling is applied via the vacuum heat insulating material, the reinforcing member resists the pressure and prevents convex deformation along the heat radiating pipe on the outer casing wall surface. Can be prevented.

第2の発明は、第1の発明の補強部材と外箱との間に補強部材の厚みより薄い隙間を設けたものであり、発泡断熱材を充填するときの発泡圧力で補強部材が微妙に外箱壁面側に変位してもこれを吸収して外箱壁面の凸変形を防止することができる。   2nd invention provides the clearance gap thinner than the thickness of a reinforcement member between the reinforcement member of 1st invention, and an outer box, and a reinforcement member is delicately by the foaming pressure at the time of filling a foam heat insulating material. Even if it is displaced to the outer box wall surface side, it can be absorbed to prevent convex deformation of the outer box wall surface.

第3の発明は、第1または第2の発明において、補強部材は外箱の板圧より薄くして、単位当たりの熱蓄積量が外箱の単位当たりの熱蓄積量より少なくなるように構成したものであり、放熱パイプより吸収して蓄積する熱量が少ないので、外箱壁内面側にこもる熱の割合を少なくできて、外箱壁からの放熱を低下させるのを抑制することができ、高い省エネ性を維持できる。   According to a third invention, in the first or second invention, the reinforcing member is made thinner than a plate pressure of the outer box so that a heat accumulation amount per unit is smaller than a heat accumulation amount per unit of the outer box. Because the amount of heat absorbed and accumulated from the heat radiating pipe is small, the ratio of heat trapped on the inner surface of the outer box wall can be reduced, and it is possible to suppress the reduction of heat radiation from the outer box wall, High energy savings can be maintained.

第4の発明は、第1または第3の発明の補強部材は外箱外壁面に密着させて取り付けるとともに、外箱より熱伝導率のよい材料で形成した構成としてあり、補強部材が吸収した放熱パイプの熱を効率よく外箱壁に熱伝導分散させることができ、放熱効果が向上して、省エネ性が一段と高まる。   According to a fourth aspect of the present invention, the reinforcing member of the first or third aspect is attached in close contact with the outer wall surface of the outer box and is formed of a material having better thermal conductivity than the outer box, and the heat dissipation absorbed by the reinforcing member The heat of the pipe can be efficiently conducted and distributed to the outer box wall, improving the heat dissipation effect and further improving the energy saving performance.

第5の発明は、第1〜第4の発明の放熱パイプは冷蔵温度帯の区画で折り返すとともに、真空断熱材および補強部材は冷凍温度帯の区画に設けた構成としてあり、庫外との温度差が大きい冷凍温度帯は真空断熱材で強力に断熱するから、発泡断熱材の厚みを厚くする必要はなく、よって庫内容量を縮減するようなことがなくなるとともに、冷凍温度帯への侵入熱を低減し、消費電力量の低減を図ることができる。   According to a fifth aspect of the present invention, the heat radiating pipe of the first to fourth aspects of the invention is folded back in the compartment of the refrigeration temperature zone, and the vacuum heat insulating material and the reinforcing member are provided in the compartment of the freezing temperature zone, The refrigeration temperature zone where the difference is large is strongly insulated by the vacuum heat insulating material, so there is no need to increase the thickness of the foam heat insulating material, so there is no need to reduce the internal capacity, and the heat that enters the refrigeration temperature zone The power consumption can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の斜視図である。図2は同実施の形態1による冷蔵庫の側面断面図である。図3は同実施の形態1による冷蔵庫の配管概略図である。図4は同実施の形態1による冷蔵庫の図1のA−A‘拡大断面図である。
(Embodiment 1)
FIG. 1 is a perspective view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a side sectional view of the refrigerator according to the first embodiment. FIG. 3 is a schematic piping diagram of the refrigerator according to the first embodiment. 4 is an AA ′ enlarged cross-sectional view of the refrigerator according to Embodiment 1 of FIG.

図1から図3に示すように、冷蔵庫本体101は、前方に開口する金属製(例えば鉄板)の外箱109と硬質樹脂製(例えばABS)の内箱110と、外箱109と内箱110の間に発泡充填されたウレタン等の発泡断熱材111からなる断熱箱体で、この本体の上部に設けられた冷蔵室102と、冷蔵室の下に設けられて冷凍温度帯から冷蔵、野菜、チルド等の温度帯に切り替え可能な切替室103と、冷蔵室102の下で切替室103に並列に設けられた製氷室104と、本体下部に設けられた冷凍室106と、並列に設置された切替室103及び製氷室104と冷凍室106の間に設けられた野菜室105で構成されている。切替室103と製氷室104と野菜室105と冷凍室106の前面部は引き出し式の図示しない扉により開閉自由に閉塞されると共に、冷蔵室102の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。   As shown in FIGS. 1 to 3, the refrigerator main body 101 includes a metal (for example, iron plate) outer box 109 that opens forward, a hard resin (for example, ABS) inner box 110, an outer box 109, and an inner box 110. In the heat insulation box body made of foam insulation material 111 such as urethane filled in between, the refrigerator compartment 102 provided in the upper part of the main body, and the refrigerator, vegetables, A switching chamber 103 that can be switched to a temperature range such as chilled, an ice making chamber 104 provided in parallel to the switching chamber 103 under the refrigeration chamber 102, and a freezing chamber 106 provided in the lower part of the main body were installed in parallel. The vegetable compartment 105 is provided between the switching room 103 and the ice making room 104 and the freezing room 106. The switching chamber 103, the ice making chamber 104, the vegetable chamber 105, and the freezer compartment 106 can be opened and closed freely by a drawer door (not shown), and the front of the refrigerator compartment 102 can be opened and closed by a door opening door (not shown), for example. Freely blocked.

冷蔵庫本体101の背面には冷却室があり、冷気を生成する冷却器107と、冷気を各室に供給する冷気送風ファン108とを有し、庫内の温度検知センサー(図示せず)とダンパ等(図示せず)により庫内温度が制御されている。また、冷却器107下方には除霜手段(図示せず)が設置されている。また、冷却器107の材質は、アルミや銅が用いられる。   There is a cooling chamber on the back of the refrigerator main body 101, which includes a cooler 107 that generates cold air and a cold air blower fan 108 that supplies the cold air to each chamber, and a temperature detection sensor (not shown) and a damper inside the refrigerator. Etc. (not shown), the internal temperature is controlled. A defrosting means (not shown) is installed below the cooler 107. The material of the cooler 107 is aluminum or copper.

冷蔵庫本体101は、本体天面奥部に配置された圧縮機115と、コンデンサ(図示せず)と、放熱用の放熱パイプ113と、キャピラリーチューブ116と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。   The refrigerator main body 101 is formed by sequentially connecting a compressor 115, a condenser (not shown), a heat radiating pipe 113, a capillary tube 116, and a cooler 107, which are arranged at the back of the top of the main body, in an annular shape. The refrigerant is sealed in the refrigeration cycle and the cooling operation is performed. In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection.

冷蔵庫本体101の背面及び側面には、放熱用の放熱パイプ113が配設されており、一本のパイプを折り曲げることで放熱長さを確保し、外箱109の壁面や後述する補強部材にアルミテープ等で固定し、貼り付けられている。放熱パイプ113は通常、冷蔵庫本体の外箱各表面に分割され、機械室にて各面のパイプを溶接し、接続している。   A heat radiating pipe 113 is disposed on the back and side surfaces of the refrigerator main body 101, and a heat radiating length is secured by bending one pipe, and aluminum is provided on the wall surface of the outer box 109 and a reinforcing member described later. It is fixed and affixed with tape or the like. The heat radiating pipe 113 is usually divided into each surface of the outer box of the refrigerator main body, and pipes on each surface are welded and connected in the machine room.

図4のように、冷蔵庫壁面には配設してある放熱パイプ113の直線部分に真空断熱材112が貼り付けてある。この真空断熱材112は、ガスの透過を阻止する多層ラミネート構造のフィルムから成る外被袋、シリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材により構成され、芯材を外被に封入した後、外被袋内のガス(空気)を排気し、真空状にしてヒートシールにより密封している。   As shown in FIG. 4, the vacuum heat insulating material 112 is affixed to the linear part of the heat radiating pipe 113 arranged on the refrigerator wall surface. This vacuum heat insulating material 112 is composed of a jacket bag made of a film having a multilayer laminate structure that prevents gas permeation, and a core material made of fine powder such as silica / pearlite or inorganic fibers, and the core material is enclosed in the jacket. After that, the gas (air) in the jacket bag is evacuated, vacuumed and sealed by heat sealing.

上記真空断熱材112の熱伝導率は、0.008から0.0005W/m・Kと断熱性能が非常に優れているため、冷蔵庫本体101の壁厚を薄くしても、庫内に侵入してくる熱量を有効的に削減することが可能となる。通常、真空断熱材112の形状は正方形あるいは長方形の板状体であるが、機械室117部分の冷蔵庫本体101の形状に近似させることで、機械室117の形状に関わらず断熱したい部分に効果的に貼り付けることができるようになるので、総じて断熱箱体の壁厚を薄くして冷蔵庫の設置スペースをより一層縮小し、さらに庫内容量を拡大し、また、冷却システムの消費電力の一層の削減を図ることが可能である。   The heat insulation performance of the vacuum heat insulating material 112 is 0.008 to 0.0005 W / m · K, and the heat insulation performance is very excellent. It becomes possible to effectively reduce the amount of heat coming. Normally, the shape of the vacuum heat insulating material 112 is a square or rectangular plate, but by approximating the shape of the refrigerator body 101 in the machine room 117 part, it is effective for the part to be insulated regardless of the shape of the machine room 117. As a whole, the wall thickness of the heat insulation box is reduced to further reduce the installation space of the refrigerator, further increase the internal capacity, and further increase the power consumption of the cooling system. Reduction is possible.

このような真空断熱材112において、その真空断熱材112には放熱パイプ埋め込み用溝114が設けてあり、例えばU字断面形状で溝幅4.2mm、溝深さ4.0mmの溝が設けてある。この溝114に放熱パイプ113、例えばパイプ外径4.0mmの放熱パイプ113を嵌合挿入してある。118は上記真空断熱材112と冷蔵庫の外箱109の壁面との間に介在させた板状の補強部材で、その外周縁適所を両面テープ(図示せず)によって複数個所外箱109の壁面に固定してあり、両面テープ以外の部分は外箱壁面との間にテープの厚み分の隙間、すなわち補強部材118の厚みより薄い隙間119が形成されている。また、上記補強部材118はその板厚を0.3〜0.4mmとして外箱109の壁厚より薄く設定してある。なお、上記真空断熱材112は補強部材118に接着剤等で密着固定される。また、上記補強部材118は当然のことながら、内・外箱110、109間に発泡充填された発泡断熱材111の発泡圧力に耐えられる剛性を持たせてあり、発泡断熱材111の発泡圧力によって凸変形することのないようにしてある。   In such a vacuum heat insulating material 112, the heat insulating pipe embedding groove 114 is provided in the vacuum heat insulating material 112. For example, a groove having a U-shaped cross section with a groove width of 4.2 mm and a groove depth of 4.0 mm is provided. is there. A heat radiating pipe 113, for example, a heat radiating pipe 113 having a pipe outer diameter of 4.0 mm is fitted and inserted into the groove 114. Reference numeral 118 denotes a plate-like reinforcing member interposed between the vacuum heat insulating material 112 and the wall surface of the outer box 109 of the refrigerator. A plurality of appropriate outer peripheral edges are attached to the wall surface of the outer box 109 by double-sided tape (not shown). A fixed gap and a gap 119 thinner than the thickness of the reinforcing member 118 is formed between the portion other than the double-sided tape and the wall surface of the outer box. The reinforcing member 118 has a plate thickness of 0.3 to 0.4 mm and is set thinner than the wall thickness of the outer box 109. The vacuum heat insulating material 112 is firmly fixed to the reinforcing member 118 with an adhesive or the like. Of course, the reinforcing member 118 is rigid enough to withstand the foaming pressure of the foam heat insulating material 111 filled between the inner and outer boxes 110 and 109, depending on the foaming pressure of the foam heat insulating material 111. The convex deformation is avoided.

一方、前記放熱パイプ113は野菜室部分の冷蔵温度帯部分で折り曲げられており、最下段の冷凍温度帯部分は放熱パイプ113を配設していないので、被覆率が大きくできる真空断熱材を貼り付けてある。また、冷蔵庫背面方向には、冷却室があるため放熱パイプ113は冷却室前面までの配設としている。   On the other hand, since the heat radiating pipe 113 is bent at the refrigeration temperature zone portion of the vegetable compartment, and the refrigeration temperature zone portion at the bottom is not provided with the heat radiating pipe 113, a vacuum heat insulating material capable of increasing the covering rate is pasted. It is attached. Further, since there is a cooling chamber in the rear direction of the refrigerator, the heat radiating pipe 113 is arranged up to the front surface of the cooling chamber.

なお、上記冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室105は冷蔵室102と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。冷凍室106は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。冷蔵室102や野菜室105は庫内をプラス温度で設定されるので、冷蔵温度帯と呼ばれる。また、冷凍室106や製氷室104は庫内をマイナス温度で設定されるので、冷凍温度帯と呼ばれる。   The refrigerator compartment 102 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it is not frozen for refrigerated storage. The vegetable room 105 is often set to a temperature setting of 2 ° C. to 7 ° C., which is the same as or slightly higher than that of the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The freezer compartment 106 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state. The refrigerator compartment 102 and the vegetable compartment 105 are called refrigeration temperature zones because the interior is set at a plus temperature. In addition, the freezer compartment 106 and the ice making compartment 104 are called freezing temperature zones because the interior is set at a minus temperature.

次に冷蔵庫の冷却について説明する。例えば冷凍室106が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になっ
た場合に、圧縮機115が起動し冷却が開始される。圧縮機115から吐出された高温高圧の冷媒は、最終的に機械室117に配置されたドライヤ(図示せず)まで到達する間、特に外箱109に設置される放熱パイプ113において、外箱109の外側の空気や庫内の発泡断熱材111との熱交換により、冷却されて液化する。
Next, cooling of the refrigerator will be described. For example, when the freezer compartment 106 rises in temperature due to intrusion heat from outside air and door opening and closing, and the freezer compartment sensor (not shown) reaches the start temperature or higher, the compressor 115 is started and cooling is started. Is done. While the high-temperature and high-pressure refrigerant discharged from the compressor 115 finally reaches the dryer (not shown) disposed in the machine chamber 117, the outer casing 109 particularly in the heat radiating pipe 113 installed in the outer casing 109. It is cooled and liquefied by heat exchange with the outside air and the foamed heat insulating material 111 inside.

液化した冷媒はキャピラリーチューブ116で減圧されて、冷却器107に流入し冷却器107周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン108により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機115に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機115の運転が停止する。   The liquefied refrigerant is decompressed by the capillary tube 116, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air that has undergone heat exchange is blown into the cabinet by a nearby cool air blower fan 108 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 115. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 115 stops.

以上のように構成された冷蔵庫について、以下その動作、作用について説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

冷蔵庫の内・外箱110、109間にウレタン等の発泡断熱材111を発泡充填したとき、前述したように真空断熱材112に発泡圧力が加わり、その発泡圧力がほぼ非圧縮性の真空断熱材112を介して放熱パイプ113に加わるが、その圧力に抗して補強部材118が外箱壁面の放熱パイプに沿った凸変形を抑制して、外箱壁面の波打ち変形を防止する。すなわち、真空断熱材112は圧縮変形せず放熱パイプ113に対応する部分が内箱110側に位置する発泡断熱材111を圧縮するような形で微妙に盛り上がって発泡圧力を吸収し、外箱109の壁面は放熱パイプ113に沿って凸状に変形して波打ったような状態になることはなくなる。   When the foam heat insulating material 111 such as urethane is foamed and filled between the inner and outer boxes 110 and 109 of the refrigerator, a foaming pressure is applied to the vacuum heat insulating material 112 as described above, and the foaming pressure is substantially incompressible vacuum heat insulating material. The reinforcing member 118 resists the pressure and suppresses the convex deformation along the heat radiating pipe on the outer casing wall surface, thereby preventing the wavy deformation of the outer casing wall surface. That is, the vacuum heat insulating material 112 is not compressed and deformed, and the portion corresponding to the heat radiating pipe 113 is slightly raised so as to compress the foam heat insulating material 111 positioned on the inner box 110 side to absorb the foaming pressure. The wall surface is not deformed into a convex shape along the heat radiating pipe 113 and thus does not become a wavy state.

一方、冷蔵庫は製造工程の中で試運転され性能確認されるのであるが、その際、放熱パイプ113は冷蔵庫の冷却運転によって放熱パイプ113には高温高圧の冷媒が流れ高温になり、その管径が微妙に拡管する。この拡管による寸法変化は非圧縮性の真空断熱材112では吸収されないため、外箱109の壁面側に向かうことになるが、この放熱パイプ113と外箱109の壁面との間には補強部材118があり、この補強部材118がその寸法変化圧力に抗して平面度を確保する。すなわち、発泡圧力が加わる場合と同様、真空断熱材112は圧縮変形せず放熱パイプ113に対応する部分が内箱110側に位置する発泡断熱材111を圧縮するような形で微妙に盛り上がって、外箱109の壁面は放熱パイプ113に沿って凸状に変形して波打ったような状態になることはなくなる。   On the other hand, the refrigerator is trial run in the manufacturing process and its performance is confirmed. At that time, the heat radiating pipe 113 is heated to a high temperature and high pressure through the heat radiating pipe 113 due to the cooling operation of the refrigerator, and the pipe diameter becomes high. Expand the tube slightly. Since the dimensional change due to the expansion is not absorbed by the incompressible vacuum heat insulating material 112, the dimensional change is directed toward the wall surface of the outer box 109, but the reinforcing member 118 is interposed between the heat radiating pipe 113 and the wall surface of the outer box 109. The reinforcing member 118 ensures flatness against the dimensional change pressure. That is, as in the case where foaming pressure is applied, the vacuum heat insulating material 112 is not compressed and deformed, and the portion corresponding to the heat radiating pipe 113 is slightly raised in a form that compresses the foam heat insulating material 111 located on the inner box 110 side, The wall surface of the outer box 109 will not be deformed into a convex shape along the heat radiating pipe 113 and become wavy.

また、上記補強部材118は外箱109の壁面との間に当該補強部材118より薄い隙間119が形成されているので、発泡断熱材を充填するときの発泡圧力等で補強部材118が微妙に外箱壁面側に変位してもこれを吸収して外箱壁面の凸変形を防止することができる。   In addition, since a gap 119 thinner than the reinforcing member 118 is formed between the reinforcing member 118 and the wall surface of the outer box 109, the reinforcing member 118 is delicately removed by the foaming pressure or the like when filling the foam heat insulating material. Even if it is displaced to the box wall surface side, it can be absorbed and the convex deformation of the outer box wall surface can be prevented.

加えて、上記補強部材118は外箱109の板圧より薄くしてあるから、単位当たりの熱蓄積量が外箱109の単位当たりの熱蓄積量より少なくなる。したがって、補強部材118が放熱パイプ113より吸収して蓄積する熱量が少なくなるので、外箱109の壁内面側にこもる熱の割合を少なくでき、外箱109の壁面からの放熱を低下させることを抑制できる。   In addition, since the reinforcing member 118 is thinner than the plate pressure of the outer box 109, the heat accumulation amount per unit is smaller than the heat accumulation amount per unit of the outer box 109. Accordingly, since the amount of heat that the reinforcing member 118 absorbs and accumulates from the heat radiating pipe 113 is reduced, the proportion of heat that is trapped on the wall inner surface side of the outer box 109 can be reduced, and heat radiation from the wall surface of the outer box 109 can be reduced. Can be suppressed.

更にこの実施の形態の冷蔵庫では、上記放熱パイプ113は冷蔵温度帯の区画で折り返すとともに、真空断熱材112および補強部材118は冷凍温度帯の区画に設けた構成としてあり、庫外との温度差が大きい冷凍温度帯は真空断熱材112で強力に断熱するから、発泡断熱材111の厚みを厚くする必要はなく、よって庫内容量を縮減するようなことがなくなるとともに、冷凍温度帯への侵入熱を低減し、消費電力量の低減を図ることができる。   Furthermore, in the refrigerator of this embodiment, the heat radiating pipe 113 is folded back in the compartment of the refrigeration temperature zone, and the vacuum heat insulating material 112 and the reinforcing member 118 are provided in the compartment of the refrigeration temperature zone. The large freezing temperature zone is strongly insulated by the vacuum heat insulating material 112, so there is no need to increase the thickness of the foam heat insulating material 111, so that there is no need to reduce the internal capacity and the penetration into the freezing temperature zone Heat can be reduced and power consumption can be reduced.

すなわち、本実施の形態のように、冷凍室106が下方に設置され、冷蔵室102が上方に設置された冷蔵庫のレイアウト構成は使い勝手の観点からよく用いられているが、このレイアウト構成では冷凍室106が下方に設置されているため、冷蔵庫本体壁面に貼り付けている放熱パイプ113の折り曲げ位置は冷凍室部分になる。真空断熱材112の信頼性確保の理由から、放熱パイプ埋め込み用溝を直線以外の曲げ形状で作成することは困難であるため、放熱パイプ113の折り曲げ部近傍までしか真空断熱材112を貼り付けることができない。そのため、従来では外気との温度差の大きい冷凍室部分の放熱パイプ折り曲げ部分に真空断熱材112を貼り付けることができず、冷凍室部分の被覆率を大きく取ることができないため、侵入熱を低減するため冷蔵庫断面壁を厚くしなければならず、庫内容量を低下させるという課題があった。   That is, as in the present embodiment, the refrigerator layout configuration in which the freezer compartment 106 is installed downward and the refrigerator compartment 102 is installed upward is often used from the viewpoint of usability. In this layout configuration, the freezer compartment is used. Since 106 is installed below, the folding position of the heat radiating pipe 113 attached to the wall surface of the refrigerator main body is the freezer compartment. Since it is difficult to create the groove for radiating the heat pipe in a bent shape other than a straight line for the reason of ensuring the reliability of the vacuum heat insulating material 112, the vacuum heat insulating material 112 is attached only to the vicinity of the bent portion of the heat radiating pipe 113. I can't. Therefore, conventionally, the vacuum heat insulating material 112 cannot be attached to the bent portion of the heat radiating pipe in the freezer compartment having a large temperature difference from the outside air, and the coverage of the freezer compartment cannot be increased, thereby reducing intrusion heat. Therefore, the refrigerator cross-section wall has to be thickened, and there is a problem of reducing the internal capacity.

しかしながらこの実施の形態では、冷蔵庫壁面の放熱パイプ113の折り曲げ位置を冷蔵温度帯とすることで、本来、外気との温度差が大きく庫内への侵入熱量も大きい冷凍室106にはそのほぼ全域に真空断熱材112を貼り付け真空断熱材112の被覆率を高くすることができる。この真空断熱材112は、従来のウレタン等の発泡断熱材111に対し、約10分の1程度の熱伝導率であるため、冷蔵庫内への侵入熱量が低減でき、省エネを行うことができる。また、冷蔵庫上下の放熱パイプ折り曲げ位置の間にある、直線部分に真空断熱材112を貼り付けることで、更に侵入熱量を低減でき、省エネを行うことができる。   However, in this embodiment, the folding position of the heat radiating pipe 113 on the refrigerator wall surface is set to a refrigeration temperature zone, so that the freezer compartment 106 inherently has a large temperature difference from the outside air and a large amount of heat intruding into the refrigerator. The vacuum heat insulating material 112 can be attached to the vacuum heat insulating material 112 to increase the coverage. Since this vacuum heat insulating material 112 has a thermal conductivity of about one-tenth that of the conventional foam heat insulating material 111 such as urethane, the amount of heat entering the refrigerator can be reduced and energy can be saved. Moreover, by sticking the vacuum heat insulating material 112 to the straight line portion between the refrigeration pipe bending positions at the top and bottom of the refrigerator, the amount of intrusion heat can be further reduced and energy can be saved.

また、冷凍温度帯で挟まれた冷蔵温度帯で放熱パイプ113を折り曲げることで、冷凍室とは逆に冷蔵温度帯(本実施例では野菜室)の放熱パイプ113からの侵入熱量で庫内温度の過度な低下を防止することができる。特に低外気においては冷蔵庫のレイアウト上、上下を冷凍温度帯に挟まれているため温度補償用のヒータ通電率が大きくなっていたが、容量および通電率を下げることでコストダウンを図ることができる。   In addition, by bending the heat radiating pipe 113 in the refrigeration temperature zone sandwiched between the refrigeration temperature zones, the internal temperature is determined by the amount of intrusion heat from the heat radiating pipe 113 in the refrigeration temperature zone (vegetable room in this embodiment) contrary to the freezer compartment. Can be prevented from excessively decreasing. Especially in low outside air, the heater commutation rate for temperature compensation has been increased because the upper and lower sides are sandwiched between the refrigeration temperature zones due to the layout of the refrigerator, but the cost can be reduced by reducing the capacity and the energization rate. .

なお、放熱パイプ113の配設において、放熱パイプ113が冷蔵庫背面の冷却器107とかぶらないようにすることで、温度の高い冷媒が通過する放熱パイプ113と冷却器107との熱交換を防止することができ、放熱パイプ内での冷媒の急激な液化凝縮を防止することで冷却システムの信頼性の確保や非定常な音の発生を低減することができる。特に真空断熱材を介さない部分については効果的である。   In the arrangement of the heat radiating pipe 113, the heat radiating pipe 113 is not hung on the cooler 107 on the back of the refrigerator, thereby preventing heat exchange between the heat radiating pipe 113 through which the high-temperature refrigerant passes and the cooler 107. In addition, by preventing rapid liquefaction condensation of the refrigerant in the heat radiating pipe, it is possible to ensure the reliability of the cooling system and reduce the occurrence of unsteady sound. This is particularly effective for portions that do not involve a vacuum heat insulating material.

なお、放熱パイプ113の折り曲げの間隔を小さく調節することで十分な放熱能力を確保でき、外付けのコンデンサを廃止することができ、材料のコストダウンや溶接箇所の低減による工数削減の効果を図ることができる。   In addition, by adjusting the bending interval of the heat radiating pipe 113 to be small, it is possible to secure a sufficient heat radiating capability, to eliminate the external capacitor, and to achieve the effects of reducing the cost of materials and reducing the number of welding points. be able to.

(実施の形態2)
この実施の形態では、図5のように、補強部材118は例えばアルミ・鉄の材料で板状に形成して外箱109の熱伝導率と同等かこれより良好な熱伝導率を持たせてあり、かつ、外箱109の壁面に接着剤等によって密着固定してある。その他の構成は実施の形態1と同様であり、詳細な説明は省略する。
(Embodiment 2)
In this embodiment, as shown in FIG. 5, the reinforcing member 118 is formed in a plate shape with, for example, an aluminum / iron material and has a thermal conductivity equal to or better than the thermal conductivity of the outer box 109. In addition, it is firmly fixed to the wall surface of the outer box 109 with an adhesive or the like. Other configurations are the same as those of the first embodiment, and detailed description thereof is omitted.

このように上記補強部材118は外箱109より熱伝導率のよい材料で形成してあるから、補強部材118が吸収した放熱パイプ113の熱を効率よく外箱109の壁面に熱伝導分散させることができ、放熱効果が向上して、省エネ性が一段と高まる。   As described above, the reinforcing member 118 is formed of a material having better thermal conductivity than the outer box 109, so that the heat of the heat radiating pipe 113 absorbed by the reinforcing member 118 can be efficiently conducted to the wall surface of the outer box 109. The heat dissipation effect is improved and the energy saving performance is further enhanced.

以上のように、本発明は、真空断熱材による高い断熱性確保によって省エネが向上するとともに、放熱パイプによる外箱壁面の波打ち変形を防止することができ、商品性の高い冷蔵庫とすることができて、冷凍機器全般に適用することができる。   As described above, the present invention can improve energy saving by ensuring high heat insulation with a vacuum heat insulating material, and can prevent the wavy deformation of the outer casing wall surface due to the heat radiating pipe, and can be a highly commercial refrigerator. Therefore, it can be applied to all refrigeration equipment.

101 冷蔵庫本体
102 冷蔵室
103 切替室
104 製氷室
105 野菜室
106 冷凍室
107 冷却器
108 冷気送風ファン
109 外箱
110 内箱
111 発泡断熱材
112 真空断熱材
113 放熱パイプ
114 放熱パイプ埋め込み用溝
115 圧縮機
118 補強部材
119 隙間
DESCRIPTION OF SYMBOLS 101 Refrigerator body 102 Refrigeration room 103 Switching room 104 Ice making room 105 Vegetable room 106 Freezer room 107 Cooler 108 Cooling air fan 109 Outer box 110 Inner box 111 Foam insulation material 112 Vacuum insulation material 113 Heat radiation pipe 114 Radiation pipe embedding groove 115 Compression Machine 118 Reinforcement member 119 Clearance

Claims (5)

外箱と内箱と前記外箱と内箱間に充填される発泡断熱材とから構成されていて、区画された冷蔵温度帯と冷凍温度帯とを備える冷蔵庫本体と、前記冷蔵庫本体の外箱壁面と対向する面に溝を形成した真空断熱材と、前記真空断熱材の前記溝内に配置した冷凍サイクルの放熱パイプとを備え、前記真空断熱材は外箱との間に補強部材を介在させて当該外箱壁面の内面に配置した冷蔵庫。 A refrigerator body comprising an outer box, an inner box, and a foam heat insulating material filled between the outer box and the inner box, and having a partitioned refrigeration temperature zone and a freezing temperature zone, and the outer box of the refrigerator body A vacuum heat insulating material having a groove formed on a surface facing the wall surface, and a heat radiation pipe of a refrigeration cycle disposed in the groove of the vacuum heat insulating material, the vacuum heat insulating material interposing a reinforcing member between the outer box and the vacuum heat insulating material A refrigerator that is arranged on the inner surface of the outer box wall surface. 補強部材と外箱との間に補強部材の厚みより薄い隙間を設けた請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein a gap thinner than the thickness of the reinforcing member is provided between the reinforcing member and the outer box. 補強部材は外箱の板圧より薄くして、単位当たりの熱蓄積量が外箱の単位当たりの熱蓄積量より少なくなるようにした請求項1または2記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein the reinforcing member is made thinner than a plate pressure of the outer box so that a heat accumulation amount per unit is smaller than a heat accumulation amount per unit of the outer box. 補強部材は外箱外壁面に密着させて取り付けるとともに、外箱より熱伝導率のよい材料で形成した請求項1または3記載の冷蔵庫。 The refrigerator according to claim 1 or 3, wherein the reinforcing member is attached in close contact with the outer wall surface of the outer box, and is formed of a material having better thermal conductivity than the outer box. 放熱パイプは冷蔵温度帯の区画で折り返すとともに、真空断熱材および補強部材は冷凍温度帯の区画に設けた請求項1〜4のいずれか1項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the heat radiating pipe is folded back in the compartment of the refrigeration temperature zone, and the vacuum heat insulating material and the reinforcing member are provided in the compartment of the freezing temperature zone.
JP2012050049A 2012-03-07 2012-03-07 Refrigerator Pending JP2013185734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050049A JP2013185734A (en) 2012-03-07 2012-03-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050049A JP2013185734A (en) 2012-03-07 2012-03-07 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013185734A true JP2013185734A (en) 2013-09-19

Family

ID=49387321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050049A Pending JP2013185734A (en) 2012-03-07 2012-03-07 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013185734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059642A (en) * 2013-09-20 2015-03-30 パナソニック株式会社 Vacuum heat insulation material and refrigerator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059642A (en) * 2013-09-20 2015-03-30 パナソニック株式会社 Vacuum heat insulation material and refrigerator using the same

Similar Documents

Publication Publication Date Title
JP5903567B2 (en) refrigerator
JP6074817B2 (en) refrigerator
JP6192634B2 (en) Insulated box, refrigerator and hot water storage device provided with the insulated box
JP4696906B2 (en) refrigerator
JP5578266B1 (en) refrigerator
JP2008116161A (en) Refrigerator
JP2008116126A (en) Refrigerator
JP2015040634A (en) Vacuum heat insulation material and refrigerator
JP2010169302A (en) Refrigerator
WO2015025477A1 (en) Refrigerator
TW201719097A (en) Vacuum heat-insulating material and refrigerator
JP5945708B2 (en) refrigerator
JP2013185735A (en) Refrigerator
JP2013185734A (en) Refrigerator
JP3942856B2 (en) refrigerator
JP2013185730A (en) Refrigerator
WO2020134972A1 (en) Refrigerator
JP6225324B2 (en) Heat insulation box
JP2005172307A (en) Refrigerator
JP2005009825A (en) Refrigerator
JP2010038483A (en) Refrigerator
JP2007198621A (en) Refrigerator and manufacturing method of heat insulating housing for refrigerator
JP6314311B2 (en) refrigerator
JP6379348B2 (en) refrigerator
JP6402352B2 (en) refrigerator