JP2007198621A - Refrigerator and manufacturing method of heat insulating housing for refrigerator - Google Patents

Refrigerator and manufacturing method of heat insulating housing for refrigerator Download PDF

Info

Publication number
JP2007198621A
JP2007198621A JP2006014867A JP2006014867A JP2007198621A JP 2007198621 A JP2007198621 A JP 2007198621A JP 2006014867 A JP2006014867 A JP 2006014867A JP 2006014867 A JP2006014867 A JP 2006014867A JP 2007198621 A JP2007198621 A JP 2007198621A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
refrigerator
outer box
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006014867A
Other languages
Japanese (ja)
Inventor
Shuhei Sugimoto
修平 杉本
Tsuyoki Hirai
剛樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006014867A priority Critical patent/JP2007198621A/en
Publication of JP2007198621A publication Critical patent/JP2007198621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve recycling properties by dispensing with an aluminum tape attached to a radiation pipe and to prevent the deformation of the appearance of a refrigerator in a refrigerator-freezer. <P>SOLUTION: In this refrigerator having a vacuum heat insulating material 105 closely kept into contact with an outer casing 102 and having a recessed groove on an outer casing 102 face, and the radiation pipe 120 disposed in the recessed groove 121 of the vacuum heat insulating material 105, the radiation pipe 120 is disposed in the recessed groove 121 of the vacuum heat insulating material 105, then the vacuum heat insulating material 105 is attached to the outer casing 102, and urethane is charged, thus air existing in a clearance is removed, volumetric expansion and contraction caused by ambient temperature fluctuation can be reduced, a load applied to the outer casing 102 of the refrigerator can be reduced, and the deformation can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外箱と内箱の間隙に断熱材を発泡充填して成る断熱箱体から構成された冷蔵庫に関するものである。   The present invention relates to a refrigerator composed of a heat insulating box formed by foaming and filling a heat insulating material in a gap between an outer box and an inner box.

近年、冷蔵庫の大容量化および設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁を薄肉化する、さらには、真空断熱材を配置挿入させ、断熱性能の向上を図っている(例えば、特許文献1参照)。   In recent years, as the demand for large-capacity refrigerators and installation space reductions increases, the refrigerator heat insulation walls are made thinner, and further, vacuum insulation materials are arranged and inserted to improve heat insulation performance (for example, Patent Document 1). reference).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図9は、従来の冷蔵庫の断熱箱体の外観斜視図を示す。図10は、従来の冷蔵庫の図9におけるC−C’要部断面図を示す。図11は、従来の冷蔵庫の断熱箱体の製造工程チャートを示す。図12は、従来の冷蔵庫の断熱箱体の断熱壁の構成斜視図を示す。   FIG. 9 shows an external perspective view of a conventional heat insulation box of a refrigerator. FIG. 10 is a cross-sectional view of the main part of C-C ′ in FIG. 9 of the conventional refrigerator. FIG. 11 shows a manufacturing process chart of a conventional heat insulation box of a refrigerator. FIG. 12: shows the structure perspective view of the heat insulation wall of the heat insulation box of the conventional refrigerator.

図9、10に示すように、従来の冷蔵庫1の断熱壁構造は、冷蔵庫1の外壁を形成する外箱2と、冷蔵庫の庫内壁を形成する内箱3と、外箱2と内箱3の間に発泡充填させたウレタン断熱材4、ウレタン断熱材4内に配置した真空断熱材5からなる断熱箱体6と、断熱箱体6の外箱2内面側に配置した冷蔵庫冷却装置の放熱パイプ10(図示せず)により構成される。   As shown in FIGS. 9 and 10, the heat insulating wall structure of the conventional refrigerator 1 includes an outer box 2 that forms the outer wall of the refrigerator 1, an inner box 3 that forms the inner wall of the refrigerator, an outer box 2, and an inner box 3. Heat insulation box 6 composed of urethane heat insulating material 4 foam-filled in between, vacuum heat insulating material 5 disposed in urethane heat insulating material 4, and heat radiation of refrigerator cooling device disposed on inner surface side of outer box 2 of heat insulating box 6 It is comprised by the pipe 10 (not shown).

真空断熱材5は、ガスの透過を阻止する多層ラミネート構造のフィルムから成る外被袋、シリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材により構成され、芯材を外被に封入した後、外被袋内のガス(空気)を排気し、真空状にしてヒートシールにより密封している。この真空断熱材5の熱伝導率は、0.008から0.0005W/m・Kと断熱性能が非常に優れているため、断熱箱体6の壁厚を薄くしても、庫内に侵入してくる熱量を有効的に削減することが可能となる。また一般的に真空断熱材5の固定場所は曲面が多い内箱3よりも比較的平面部が多い外箱2の内面側に取り付けられる。外箱に固定する際、放熱パイプとの干渉を回避するため、逃がし溝20を設ける。   The vacuum heat insulating material 5 is composed of a jacket bag made of a film having a multilayer laminate structure that prevents gas permeation, and a core material made of fine powder such as silica and pearlite or inorganic fibers, and the core material is enclosed in the jacket. After that, the gas (air) in the jacket bag is evacuated, vacuumed and sealed by heat sealing. The thermal conductivity of the vacuum heat insulating material 5 is 0.008 to 0.0005 W / m · K, which is very excellent in heat insulating performance. Therefore, even if the wall thickness of the heat insulating box 6 is reduced, the heat insulating box 6 penetrates into the cabinet. It is possible to effectively reduce the amount of heat generated. In general, the vacuum heat insulating material 5 is fixed to the inner surface side of the outer box 2 having a relatively larger number of flat surfaces than the inner box 3 having a larger curved surface. When fixing to the outer box, an escape groove 20 is provided to avoid interference with the heat radiating pipe.

放熱パイプ10は一般に銅管または鉄管からなり、外箱2の内面側にアルミテープ30等によって取り付けられている。この理由として、圧縮機(図示せず)から搬送される高温高圧ガスを凝縮させるべく、外箱2と放熱パイプ10を接地させ接触抵抗を低減し、放熱能力を確保する必要がある。また高温になった放熱パイプから庫内への侵入熱量を低減するべく、放熱パイプ(銅管や鉄管)を庫内側から隔離させる必要がある。さらに冷蔵庫1表面の露着き防止のため、外箱2表面温度は庫外の雰囲気温度に対して極力低下させないように、放熱パイプの熱を外箱2へ効果的に伝達させなければならない等が挙げられる。   The heat radiating pipe 10 is generally made of a copper tube or an iron tube, and is attached to the inner surface side of the outer box 2 with an aluminum tape 30 or the like. For this reason, in order to condense the high-temperature and high-pressure gas conveyed from the compressor (not shown), it is necessary to ground the outer box 2 and the heat radiating pipe 10 to reduce contact resistance and to secure heat radiating capability. In addition, in order to reduce the amount of heat entering the interior from the heat-dissipating pipe that has become hot, it is necessary to isolate the heat-dissipating pipe (copper pipe or iron pipe) from the inside of the warehouse. Furthermore, in order to prevent the surface of the refrigerator 1 from being deposited, the heat of the heat radiating pipe must be effectively transferred to the outer box 2 so that the surface temperature of the outer box 2 does not decrease as much as the ambient temperature outside the refrigerator. Can be mentioned.

以上より、断熱箱体106の組み立て工程を図11および図12を用いて説明すると、まず外箱2内面側に放熱パイプ20の配置を決め、仮固定する(A1)。次に放熱パイプ20を外箱2内面にアルミテープ40を以って密着固定する(A2)。次に真空断熱材5の逃がし溝30に放熱パイプ10が嵌まり込むように真空断熱材5を調整しながら外箱2内面に取付ける(A3)。つぎに外箱2と内箱3を勘合し、ウレタン発泡時の漏れを防ぐシールを施す(A4)。最後に所定位置からウレタン断熱材4を注入発泡して断熱箱体6を完成させる(A5)。   From the above, the assembly process of the heat insulating box 106 will be described with reference to FIGS. 11 and 12. First, the arrangement of the heat radiating pipe 20 is determined on the inner surface side of the outer box 2 and temporarily fixed (A1). Next, the heat radiating pipe 20 is tightly fixed to the inner surface of the outer box 2 with an aluminum tape 40 (A2). Next, the vacuum heat insulating material 5 is attached to the inner surface of the outer box 2 while adjusting the vacuum heat insulating material 10 so that the heat radiating pipe 10 fits into the escape groove 30 of the vacuum heat insulating material 5 (A3). Next, the outer box 2 and the inner box 3 are fitted together and a seal is applied to prevent leakage during urethane foaming (A4). Finally, the urethane heat insulating material 4 is injected and foamed from a predetermined position to complete the heat insulating box 6 (A5).

以上の従来構成より、真空断熱材5の逃がし溝20により真空断熱材5の位置決めを行い、組立作業性を向上させることができる。
実開昭61−002128号公報
With the above conventional configuration, the vacuum heat insulating material 5 can be positioned by the escape groove 20 of the vacuum heat insulating material 5 to improve the assembly workability.
Japanese Utility Model Publication No. 61-002128

近年、自然環境保護の観点から、冷蔵庫においても部品のリサイクル性向上が掲げられているが、上記従来の構成では、放熱パイプ20を外箱2内面に設置するため、アルミテープ40を使用し、密着固定している。このアルミテープ40は、外箱2から剥がす場合、粘着性が強いため、剥がすための負荷が大きい、あるいは剥がれない可能性もある。以上より、冷蔵庫1解体時に外箱と放熱パイプ20を分離する際、アルミテープ40さらには放熱パイプ20が外箱2に残る可能性が高く、リサイクル性を大きく低下させるという課題があった。   In recent years, from the viewpoint of protecting the natural environment, improvement in the recyclability of parts has been raised even in refrigerators. However, in the conventional configuration described above, in order to install the heat radiating pipe 20 on the inner surface of the outer box 2, an aluminum tape 40 is used, Closely fixed. When the aluminum tape 40 is peeled off from the outer box 2, since the adhesiveness is strong, there is a possibility that the load for peeling off is large or that the aluminum tape 40 is not peeled off. From the above, when the outer box and the heat radiating pipe 20 are separated when the refrigerator 1 is disassembled, there is a high possibility that the aluminum tape 40 and the heat radiating pipe 20 remain in the outer box 2, and the recyclability is greatly reduced.

また、上記従来の構成では、組立工法上、外箱に放熱パイプ20をアルミテープ40にて固定した上で真空断熱材5を放熱パイプ20に嵌めこむため、逃がし溝30を真空断熱材5に設ける必要があった。ここで放熱パイプ20が真空断熱材5に接触しないよう、嵌め合わせシロを放熱パイプ20外径以上の余剰空間(例えば放熱パイプ20外径の2倍から3倍)に確保する必要があった。以上より、余剰空間に滞留する空気が周囲の温度変化により圧力変動を引き起こし、外箱2に対して水平方向の圧力がかかり外箱自体の外観変形を生じさせるという課題があった。   Further, in the above-described conventional configuration, in order to fit the vacuum heat insulating material 5 into the heat radiating pipe 20 after fixing the heat radiating pipe 20 to the outer box with the aluminum tape 40 in the assembling method, the escape groove 30 is formed in the vacuum heat insulating material 5. It was necessary to install. Here, it is necessary to secure a fitting fit in an excess space (for example, 2 to 3 times the outer diameter of the heat radiating pipe 20) that is larger than the outer diameter of the heat radiating pipe 20 so that the heat radiating pipe 20 does not contact the vacuum heat insulating material 5. As described above, there is a problem that the air staying in the surplus space causes a pressure fluctuation due to a change in ambient temperature, and a pressure in the horizontal direction is applied to the outer box 2 to cause appearance deformation of the outer box itself.

本発明は、従来の技術的課題を克服するものであり、放熱パイプに貼り付けるアルミテープを廃止することによりリサイクル性の高い冷蔵庫を提供することを目的とする。   An object of the present invention is to overcome a conventional technical problem and to provide a highly recyclable refrigerator by eliminating an aluminum tape attached to a heat radiating pipe.

さらに、凹型溝と放熱パイプを密着設置できることにより、外箱の外観変形を防止する冷蔵庫を提供することを目的とする。   Furthermore, it aims at providing the refrigerator which prevents the external appearance deformation | transformation of an outer case by being able to install a recessed groove and a heat radiating pipe closely.

上記従来の課題を解決するために、本発明の冷蔵庫は、外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝に備えられた放熱パイプとを有し、前記放熱パイプは、前記真空断熱材の凹型溝内に設置された上で外箱に真空断熱材を取付けた状態でウレタン断熱材が発泡充填されたものである。   In order to solve the above-described conventional problems, the refrigerator of the present invention is a refrigerator having an outer box, an inner box, and a heat insulating wall composed of a urethane heat insulating material filled between the inner box and the outer box. A vacuum heat insulating material provided in close contact with the outer box between the outer box and the inner box and having a concave groove formed on the outer box side, and a heat radiation pipe provided in the concave groove of the vacuum heat insulating material The heat radiating pipe is installed in the recessed groove of the vacuum heat insulating material and is filled with urethane heat insulating material in a state where the vacuum heat insulating material is attached to the outer box.

また、本発明の冷蔵庫は、外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝内に備えられた放熱パイプとを有し、前記放熱パイプは、ウレタン断熱材の発泡圧力のみで前記外箱と前記真空断熱剤との間に挟持されたものである。   Further, the refrigerator of the present invention is a refrigerator having a heat insulating wall composed of an outer box, an inner box, and a urethane heat insulating material filled between the inner box and the outer box, the outer box and the inner box, A vacuum heat insulating material provided in close contact with the outer box and having a concave groove formed on the outer box side, and a heat radiating pipe provided in the concave groove of the vacuum heat insulating material. The pipe is sandwiched between the outer box and the vacuum heat insulating material only by the foaming pressure of the urethane heat insulating material.

これによって、真空断熱材の凹型溝を放熱パイプの形状に成形することにより、放熱パイプと凹型溝の距離を狭小化でき、従来の隙間を無くすことができる。さらに放熱パイプは真空断熱材に固定、一体化されたのち、外箱に固定されることから、従来放熱パイプを外箱に固定するアルミテープ等の固定部材を廃止することができるという作用を有する。   Thus, by forming the concave groove of the vacuum heat insulating material into the shape of the heat radiating pipe, the distance between the heat radiating pipe and the concave groove can be reduced, and the conventional gap can be eliminated. Furthermore, since the heat radiating pipe is fixed and integrated with the vacuum heat insulating material, and then fixed to the outer box, it has the effect that the fixing member such as an aluminum tape for fixing the heat radiating pipe to the outer box can be eliminated. .

本発明の冷蔵庫は、放熱パイプと外箱との固定部材をなくすことができるので、リサイクル性を向上することができる。   Since the refrigerator of this invention can eliminate the fixing member of a heat radiating pipe and an outer box, it can improve recyclability.

また、本発明の冷蔵庫は、放熱パイプと真空断熱材との距離を狭小化できるので、外箱の外観変形を防止することができる。   Moreover, since the refrigerator of this invention can narrow the distance of a heat radiating pipe and a vacuum heat insulating material, it can prevent the external appearance deformation | transformation of an outer case.

請求項1に記載の発明は、外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝に備えられた放熱パイプとを有し、前記放熱パイプは、前記真空断熱材の凹型溝内に設置された上で外箱に真空断熱材を取付けた状態でウレタン断熱材が発泡充填されたものである。   The invention according to claim 1 is a refrigerator having a heat insulating wall composed of an outer box, an inner box, and a urethane heat insulating material filled between the inner box and the outer box. The outer box and the inner box A vacuum heat insulating material provided in close contact with the outer box and having a concave groove formed on the outer box side, and a heat radiation pipe provided in the concave groove of the vacuum heat insulating material. The pipe is installed in the concave groove of the vacuum heat insulating material and is filled with urethane heat insulating material in a state where the vacuum heat insulating material is attached to the outer box.

これによって、放熱パイプと真空断熱材の凹型溝の距離を狭小化でき、従来の大きな隙間を無くすことができる。この結果、隙間に介在する空気がなくなり、周囲の温度変動による体積膨張、収縮も減少し、冷蔵庫の外箱に与える荷重も減少し外観変形を防止できる。   As a result, the distance between the heat radiating pipe and the concave groove of the vacuum heat insulating material can be reduced, and the conventional large gap can be eliminated. As a result, there is no air in the gap, volume expansion and contraction due to ambient temperature fluctuations are reduced, load applied to the outer box of the refrigerator is reduced, and appearance deformation can be prevented.

請求項2に記載の発明は、外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝内に備えられた放熱パイプとを有し、前記放熱パイプは、ウレタン断熱材の発泡圧力のみで前記外箱と前記真空断熱剤との間に挟持されたものである。   The invention according to claim 2 is a refrigerator having a heat insulating wall composed of an outer box, an inner box, and a urethane heat insulating material filled between the inner box and the outer box. The outer box and the inner box A vacuum heat insulating material provided in close contact with the outer box and a concave groove formed on the outer box side, and a heat dissipating pipe provided in the concave groove of the vacuum heat insulating material, The heat radiating pipe is sandwiched between the outer box and the vacuum heat insulating material only by the foaming pressure of the urethane heat insulating material.

これによって、放熱パイプを外箱に固定する手段として従来用いられたアルミテープを廃止することができ、その結果、冷蔵庫のリサイクル性を向上させることができる。   Thereby, the aluminum tape conventionally used as a means for fixing the heat radiating pipe to the outer box can be eliminated, and as a result, the recyclability of the refrigerator can be improved.

また、請求項3に記載の発明は、請求項1または請求項2に記載の冷蔵庫に加えて、凹型溝の高さと放熱パイプの外径が所定の関係であることにより、放熱パイプと外箱が密着する面積が増し、放熱能力を増加させることができる。また、アルミテープを廃止してリサイクル性を向上させることができる。   In addition to the refrigerator according to claim 1 or 2, the invention according to claim 3 has a predetermined relationship between the height of the concave groove and the outer diameter of the heat radiating pipe, so that the heat radiating pipe and the outer box Can increase the area of contact and increase the heat dissipation capability. Also, aluminum tape can be eliminated to improve recyclability.

請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の冷蔵庫に加えて、凹型溝内に熱伝導部材を注入したことにより、放熱パイプと真空断熱材の凹型溝の距離をさらに狭小化でき、従来の大きな隙間を無くすことができる。この結果、隙間に介在する空気がなくなり、周囲の温度変動による体積膨張、収縮も減少し、外箱に与える荷重も減少し冷蔵庫の外観変形を防止できる。かつ放熱パイプから外箱への熱抵抗が減少し、放熱パイプから外箱への熱伝導量が増加した結果、冷蔵庫の放熱能力を増加させることができる。   In addition to the refrigerator according to any one of claims 1 to 3, the invention according to claim 4 is a concave shape of the heat radiating pipe and the vacuum heat insulating material by injecting a heat conducting member into the concave groove. The distance between the grooves can be further reduced, and the conventional large gap can be eliminated. As a result, there is no air intervening in the gap, volume expansion and contraction due to ambient temperature fluctuations are reduced, load applied to the outer box is also reduced, and deformation of the external appearance of the refrigerator can be prevented. In addition, the heat resistance from the heat radiating pipe to the outer box is reduced, and the amount of heat conduction from the heat radiating pipe to the outer box is increased. As a result, the heat radiating capacity of the refrigerator can be increased.

請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の冷蔵庫に加えて、放熱パイプの断面形状を扁平としたことにより、請求項1から請求項4のいずれか一項に記載の効果に加えて、さらに真空断熱材の凹型溝の深さを浅くでき、その結果、真空断熱材の溝加工による性能劣化を防止でき、さらに冷蔵庫の吸熱負荷量の増加による性能劣化を低減することができる。   In addition to the refrigerator according to any one of claims 1 to 4, the invention according to claim 5 has any one of claims 1 to 4 by flattening the cross-sectional shape of the heat radiating pipe. In addition to the effect described in the above item 1, the depth of the concave groove of the vacuum heat insulating material can be further reduced. As a result, the performance deterioration due to the groove processing of the vacuum heat insulating material can be prevented, and further, the endothermic load of the refrigerator can be increased. Performance degradation can be reduced.

請求項6に記載の発明は、外壁と、内壁と、前記内箱と前記外箱と間に充填されるウレタン断熱材と、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝内に構成された放熱パイプとを有した断熱壁において、前記放熱パイプを真空断熱材の凹型溝に備えた後、前記外壁に前記放熱パイプが備えられた真空断熱材を取付け、その後に断熱材を注入するものである。   The invention according to claim 6 is in close contact with the outer box between the outer wall, the inner wall, the urethane heat insulating material filled between the inner box and the outer box, and the outer box and the inner box. And a heat insulating wall having a vacuum heat insulating material having a concave groove formed on the outer box side and a heat radiating pipe configured in the concave groove of the vacuum heat insulating material. After being provided in the concave groove, a vacuum heat insulating material provided with the heat radiating pipe is attached to the outer wall, and then the heat insulating material is injected.

これによって、真空断熱材を外壁内面に取り付ける際の取りつけ行程を省くことができ、取りつけに纏わる設備コストを低減でき、かつ取付け工数も削減できる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
As a result, it is possible to omit the mounting process when the vacuum heat insulating material is attached to the inner surface of the outer wall, and it is possible to reduce the equipment cost for mounting and reduce the number of mounting steps.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の同実施の形態1による冷蔵庫の外観斜視図、図2は同実施の形態による冷蔵庫の図1におけるA−A’要部断面図、図3は同実施の形態による冷蔵庫の図1におけるB−B’要部断面図、図4は同実施の形態による冷蔵庫の断熱箱体製造工程のチャート、図5は同実施の形態による冷蔵庫の図4のB1,B2工程を示す概略斜視図、図6は同実施の形態による冷蔵庫の放熱パイプと外箱の接触面積特性を示す図である。
(Embodiment 1)
1 is an external perspective view of a refrigerator according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the main part AA ′ in FIG. 1 of the refrigerator according to the first embodiment, and FIG. 3 is a diagram of the refrigerator according to the first embodiment. BB 'main part sectional drawing in FIG. 1, FIG. 4 is the chart of the heat insulation box body manufacturing process of the refrigerator by the same embodiment, FIG. 5 is the outline which shows B1, B2 process of FIG. 4 of the refrigerator by the same embodiment. FIG. 6 is a perspective view and FIG. 6 is a diagram showing the contact area characteristics of the heat radiating pipe and the outer box of the refrigerator according to the embodiment.

以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings.

なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。   In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図1および図2より、前方に開口する鋼板製の外箱102、硬質樹脂製の内箱103、外箱102と内箱103間に発泡充填されたウレタン断熱材104からなる断熱壁によって形成された熱箱体106は、庫内仕切り壁107により区分けされた冷蔵室108、冷凍室109、野菜室110、切替室111、そして製氷室112を構成している。   1 and 2, it is formed by a heat insulating wall made of a steel heat-insulated outer box 102, a hard resin inner box 103, and a urethane heat insulating material 104 filled between the outer box 102 and the inner box 103 by foaming. The heat box 106 constitutes a refrigeration room 108, a freezing room 109, a vegetable room 110, a switching room 111, and an ice making room 112 that are separated by a partition wall 107.

また、冷蔵室108の温度を検知する冷蔵室センサ113と、冷凍室109の温度を検知する冷凍室センサ114と、冷蔵室105への冷気を調整する冷蔵室ダンパ115(図示せず)と、冷蔵庫101の冷凍サイクルを構成する野菜室110背面を中心に配置された蒸発器116と、蒸発器を通風させるファン117と、冷蔵庫101外部の背面上部に設置された圧縮機118を配設する機械室119からなる。   In addition, a refrigerating room sensor 113 for detecting the temperature of the refrigerating room 108, a freezing room sensor 114 for detecting the temperature of the freezing room 109, a refrigerating room damper 115 (not shown) for adjusting the cold air to the refrigerating room 105, Machine which arrange | positions the evaporator 116 arrange | positioned centering on the back of the vegetable compartment 110 which comprises the refrigerating cycle of the refrigerator 101, the fan 117 which ventilates an evaporator, and the compressor 118 installed in the back upper part of the refrigerator 101 exterior. It consists of chamber 119.

冷蔵室108は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室110は冷蔵室108と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。   The refrigerator compartment 108 is normally set at 1 to 5 ° C. with the temperature that does not freeze for refrigerated storage as the lower limit. The vegetable room 110 is often set to a temperature setting of 2 ° C. to 7 ° C. that is the same as or slightly higher than that of the refrigerator compartment 108. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.

冷凍室109は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。   The freezer compartment 109 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state.

以上のように構成された本実施の形態の冷蔵庫について、以下その動作を図2、図3、図4、図5、図6にて説明する。   The operation of the refrigerator of the present embodiment configured as described above will be described below with reference to FIGS. 2, 3, 4, 5, and 6.

冷蔵庫101の運転が開始される条件は、冷蔵室センサ113もしくは冷凍室センサ114温度が起動温度以上の場合であり、また運転が停止する条件は、冷蔵室センサ113および冷凍室センサ114の両方が停止温度以下の場合である。   The condition for starting the operation of the refrigerator 101 is when the temperature of the refrigerator compartment sensor 113 or the freezer compartment sensor 114 is equal to or higher than the starting temperature, and the condition for stopping the operation is that both the refrigerator compartment sensor 113 and the freezer compartment sensor 114 are operated. This is the case of the stop temperature or lower.

まず冷凍室109の冷却について説明する。冷凍室109が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ114が起動温度以上になった場合に、圧縮機118が起動し冷却が開始される。圧縮機118から吐出された高温高圧の冷媒は、前述した配管経路を通過し、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特に外箱102に設置される放熱パイプ120において、外箱102の外側の空気や庫内のウレタン断熱材104との熱交換により、冷却されて液化する。   First, cooling of the freezer compartment 109 will be described. When the inside temperature of the freezer compartment 109 rises due to intrusion heat from outside air, door opening and closing, etc., and the freezer compartment sensor 114 reaches the start temperature or higher, the compressor 118 is started and cooling is started. The high-temperature and high-pressure refrigerant discharged from the compressor 118 passes through the above-mentioned piping path and is installed in the outer box 102 in particular while finally reaching the dryer (not shown) disposed in the machine room 119. The heat radiating pipe 120 is cooled and liquefied by heat exchange with the air outside the outer box 102 and the urethane heat insulating material 104 in the warehouse.

次に液化した冷媒はキャピラリチューブ140で減圧されて、蒸発器116に流入し蒸発器116周辺の庫内空気との熱交換により庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機118に戻る。庫内が冷却されて冷凍室センサ114の温度が停止温度以下になり、かつ冷蔵室センサ113の温度が停止温度以下になった場合に圧縮機118の運転が停止する。   Next, the liquefied refrigerant is decompressed by the capillary tube 140, flows into the evaporator 116, and cools the interior by heat exchange with the interior air around the evaporator 116. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 118. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor 114 becomes equal to or lower than the stop temperature, and the temperature of the refrigerator compartment sensor 113 becomes equal to or lower than the stop temperature, the operation of the compressor 118 is stopped.

つぎに冷蔵室108の冷却について説明する。冷凍室109と同様に、庫内温度が上昇して冷蔵室センサ113温度が起動温度以上になった場合に、冷蔵室ダンパ(図示せず)が開き、圧縮機118の運転が開始される。蒸発器116の冷気が送風ファン117により冷蔵室108内に流入して庫内空気温度が冷却されて、冷蔵室センサ113温度が停止温度以下になり、かつ冷凍室センサ114温度が停止温度以下の場合に圧縮機118の運転が停止する。また冷蔵室108と蒸発器116間の風路にある冷蔵室ダンパは、冷蔵室108温度が停止温度以下で全閉し、仮に冷凍室109の温度が停止温度以上で圧縮機118の運転が継続しても、冷蔵室108温度がこの時点の温度よりも低下しないようにして、凍結を防止している。   Next, cooling of the refrigerator compartment 108 will be described. Similar to the freezer compartment 109, when the internal temperature rises and the temperature of the refrigerating compartment sensor 113 becomes equal to or higher than the starting temperature, the refrigerating compartment damper (not shown) is opened and the compressor 118 is started to operate. The cool air from the evaporator 116 flows into the refrigerating chamber 108 by the blower fan 117 to cool the internal air temperature, the refrigerating chamber sensor 113 temperature becomes lower than the stop temperature, and the freezer compartment sensor 114 temperature falls below the stop temperature. In this case, the operation of the compressor 118 is stopped. Further, the refrigerator compartment damper in the air path between the refrigerator compartment 108 and the evaporator 116 is fully closed when the temperature of the refrigerator compartment 108 is lower than the stop temperature, and the operation of the compressor 118 is continued if the temperature of the freezer compartment 109 is higher than the stop temperature. Even so, freezing is prevented by preventing the temperature of the refrigerator compartment 108 from dropping below the temperature at this point.

図3、図4、図5より、断熱壁の製造方法を構成とともに説明すると、まず製造工程の補助工程において、真空断熱材105の外箱102内面側にある凹型溝131が、たとえばU字断面形状で溝幅4.2mm、溝深さ4.0mmとなる。この凹型溝131に放熱パイプ120、例えばパイプ外径4.0mmを勘合挿入すると、凹型溝131は隙間なく、真空断熱材105に圧着、固定される(B1)。   3, 4, and 5, the manufacturing method of the heat insulating wall will be described together with the configuration. First, in the auxiliary process of the manufacturing process, the concave groove 131 on the inner surface side of the outer box 102 of the vacuum heat insulating material 105 has, for example, a U-shaped cross section. In shape, the groove width is 4.2 mm and the groove depth is 4.0 mm. When a heat radiating pipe 120, for example, a pipe outer diameter of 4.0 mm is fitted and inserted into the concave groove 131, the concave groove 131 is crimped and fixed to the vacuum heat insulating material 105 without any gap (B1).

つぎに、放熱パイプ120と一体となった真空断熱材105を外箱102内面へ移動し、例えば接着剤等により外箱102と固定する。また反対側の外箱102内面にも真空断熱材105を固定する(B2)。   Next, the vacuum heat insulating material 105 integrated with the heat radiating pipe 120 is moved to the inner surface of the outer box 102 and fixed to the outer box 102 with an adhesive or the like, for example. Further, the vacuum heat insulating material 105 is also fixed to the inner surface of the outer box 102 on the opposite side (B2).

つぎに、内箱103を外箱102に勘合して、ウレタン断熱材の発泡時の発泡漏れを防止するため、勘合隙間にシール材を注入する。その後、冶具にて内箱及び外箱を固定する(B3)。   Next, the inner box 103 is fitted into the outer box 102, and a sealing material is injected into the fitting gap in order to prevent foam leakage during foaming of the urethane heat insulating material. Then, an inner box and an outer box are fixed with a jig (B3).

最後に、ウレタン断熱材104を断熱壁に注入し、発泡させ、断熱壁を完成させる(B4)。   Finally, the urethane heat insulating material 104 is injected into the heat insulating wall and foamed to complete the heat insulating wall (B4).

以上の製造方法により、放熱パイプ120と真空断熱材105の凹型溝131の隙間を狭小化でき、従来の大きな隙間を無くすことができる。この結果、隙間に介在する空気がなくなり、周囲の温度変動による体積膨張、収縮も減少し、冷蔵庫の外箱に与える荷重も減少し冷蔵庫の外観変形を防止できる。   With the above manufacturing method, the gap between the heat radiating pipe 120 and the concave groove 131 of the vacuum heat insulating material 105 can be narrowed, and the conventional large gap can be eliminated. As a result, there is no air intervening in the gap, volume expansion and contraction due to ambient temperature fluctuations are reduced, load applied to the outer box of the refrigerator is reduced, and deformation of the refrigerator appearance can be prevented.

また、真空断熱材105を外壁102内面に取り付ける際の取りつけ精度を低下させることで、取りつけに纏わる設備コストを低減でき、かつ取付け工数も削減できる。   Moreover, the installation cost at the time of attaching can be reduced by reducing the mounting precision at the time of attaching the vacuum heat insulating material 105 to the inner surface of the outer wall 102, and an installation man-hour can also be reduced.

さらに、断熱箱体106内部のウレタン断熱材発泡工程(B4)について、詳細説明すると、この断熱箱体106の前面を下、背面を上にした状態で、発泡変形防止用の固定冶具を外箱102の外郭および内箱103の内郭に当接させる。つぎに背面の任意の注入口(図示せず)からウレタン断熱材104の原液を注入し、前面側へ滴下させる。ウレタン断熱材は数秒後に発泡を開始し、上方すなわち背面側に向かって発泡が促進され、気泡上のウレタン断熱材が流動して所定の空間を充填し、ウレタン断熱材の硬化が完了した時点で断熱箱体106が完成する。   Further, the urethane heat insulating material foaming step (B4) inside the heat insulation box 106 will be described in detail. With the front surface of the heat insulation box body 106 facing down and the back surface facing up, the fixing jig for preventing foam deformation is placed in the outer box. The outer shell 102 is brought into contact with the inner shell of the inner box 103. Next, a stock solution of the urethane heat insulating material 104 is injected from an arbitrary injection port (not shown) on the back surface, and dropped onto the front surface side. When the urethane insulation starts to foam after a few seconds, the foaming is promoted upward, that is, toward the back side, and the urethane insulation on the bubbles flows to fill the predetermined space, and when the urethane insulation is completely cured. The heat insulation box 106 is completed.

この時、真空断熱材106の庫内側面において、ウレタン断熱材104の発泡圧力が外箱102側へ付加され、凹型溝131に勘合された放熱パイプ120も外箱102側へ荷重がかかり、外箱102内面に密着固定される。この結果、放熱パイプ120を外箱102に固定する手段として従来用いられたアルミテープ40を廃止することができ、冷蔵庫101のリサイクル性を向上させることができる。   At this time, the foaming pressure of the urethane heat insulating material 104 is applied to the outer box 102 side on the inner side surface of the vacuum heat insulating material 106, and the heat radiating pipe 120 fitted into the concave groove 131 is also loaded to the outer box 102 side. It is closely fixed to the inner surface of the box 102. As a result, the aluminum tape 40 conventionally used as means for fixing the heat radiating pipe 120 to the outer box 102 can be eliminated, and the recyclability of the refrigerator 101 can be improved.

また、本実施例において、凹型溝131の深さを4.0mmとしたが、図6より、凹型溝131深さが放熱パイプ120より大きい場合、たとえば5.0mmの場合でも、発泡圧力による押しつけ荷重が大きいため、接触面積は4.0mmと同等レベルとなる。以上より、放熱パイプ120と凹型溝131深さが所定の関係である場合、放熱パイプ120と外箱102が密着する面積が増し、放熱能力を増加させ、冷蔵庫101の省エネを実現させることができる。   In this embodiment, the depth of the concave groove 131 is set to 4.0 mm. However, as shown in FIG. 6, even when the depth of the concave groove 131 is larger than the heat radiating pipe 120, for example, 5.0 mm, it is pressed by the foaming pressure. Since the load is large, the contact area is equivalent to 4.0 mm. From the above, when the depth of the heat radiating pipe 120 and the recessed groove 131 is in a predetermined relationship, the area where the heat radiating pipe 120 and the outer box 102 are in close contact with each other is increased, the heat radiating capacity is increased, and energy saving of the refrigerator 101 can be realized. .

(実施の形態2)
図7は本発明の形態2による冷蔵庫の図1におけるB−B’要部断面図、図8は同実施の形態による冷蔵庫の断熱箱体製造工程のチャートである。
(Embodiment 2)
FIG. 7 is a cross-sectional view of the BB ′ main part in FIG. 1 of the refrigerator according to the second embodiment of the present invention, and FIG. 8 is a chart of the heat insulating box manufacturing process of the refrigerator according to the same embodiment.

以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、本実施の形態における冷凍冷蔵庫の構成は、断熱箱体の放熱パイプ及び真空断熱材を除いて実施の形態1と同一構成であり、説明を省略する。   Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. In addition, the structure of the refrigerator-freezer in this Embodiment is the same structure as Embodiment 1 except the heat radiating pipe of a heat insulation box, and a vacuum heat insulating material, and abbreviate | omits description.

図7、図8より、断熱箱体206の製造方法を構成とともに説明すると、まず補助工程において、外箱202内表面側に凹型溝231を有する真空断熱材205において、凹型溝231は、たとえばU字断面形状で溝幅5.2mm、溝深さ2.5mmとなる。この溝にゲル状の熱伝導部材250を注入する(B0)。   7 and 8, the manufacturing method of the heat insulating box 206 will be described together with the structure. First, in the auxiliary process, in the vacuum heat insulating material 205 having the concave groove 231 on the inner surface side of the outer box 202, the concave groove 231 is, for example, U The cross-sectional shape has a groove width of 5.2 mm and a groove depth of 2.5 mm. A gel-like heat conduction member 250 is injected into this groove (B0).

つぎにこの凹型溝231に放熱パイプ220、例えば幅5.0mm、高さ2.5mmの扁平断面を有するパイプを勘合挿入すると、凹型溝231の隙間はなくなり、真空断熱材205に圧着、固定される(B1)。   Next, when a heat radiating pipe 220, for example, a pipe having a flat cross section with a width of 5.0 mm and a height of 2.5 mm is fitted and inserted into the concave groove 231, there is no gap in the concave groove 231, and it is crimped and fixed to the vacuum heat insulating material 205. (B1).

つぎに、放熱パイプ220と一体となった真空断熱材205を外箱202内面へ移動し、例えば接着剤により外箱202と固定する。また反対側に位置する外箱202内面にも真空断熱材205を固定する(B2)。   Next, the vacuum heat insulating material 205 integrated with the heat radiating pipe 220 is moved to the inner surface of the outer box 202 and fixed to the outer box 202 with an adhesive, for example. Further, the vacuum heat insulating material 205 is also fixed to the inner surface of the outer box 202 located on the opposite side (B2).

つぎに、内箱203を外箱202に勘合して、ウレタン断熱材の発泡時の発泡漏れを防止するため、勘合隙間にシール材を注入する。その後、冶具にて内箱203及び外箱202を固定する(B3)。   Next, the inner box 203 is fitted into the outer box 202, and a sealing material is injected into the fitting gap in order to prevent foam leakage during foaming of the urethane heat insulating material. Then, the inner box 203 and the outer box 202 are fixed with a jig (B3).

最後に、ウレタン断熱材204を断熱箱体206内部に注入、発泡させ、断熱箱体206を完成させる(B4)。   Finally, the urethane heat insulating material 204 is injected into the heat insulating box 206 and foamed to complete the heat insulating box 206 (B4).

以上の製造方法により、放熱パイプ220と真空断熱材205の凹型溝231の隙間を狭小化でき、従来の大きな隙間を無くすことができる。この結果、隙間に介在する空気が排除され、この部位の空気が冷蔵庫201の外観に与える変形を防止できる。   With the above manufacturing method, the gap between the heat radiating pipe 220 and the concave groove 231 of the vacuum heat insulating material 205 can be narrowed, and the conventional large gap can be eliminated. As a result, the air intervening in the gap is eliminated, and the deformation of the air at this portion on the appearance of the refrigerator 201 can be prevented.

また、放熱パイプ220から外箱202への熱抵抗が減少し、放熱パイプ220から外箱202への熱伝導量が増加した結果、冷蔵庫101の放熱能力を増加させることができる。   Further, the heat resistance from the heat radiating pipe 220 to the outer box 202 is reduced, and the amount of heat conduction from the heat radiating pipe 220 to the outer box 202 is increased. As a result, the heat radiating capacity of the refrigerator 101 can be increased.

また、真空断熱材205の凹型溝231の深さを浅くでき、その結果、真空断熱材205の溝加工による性能劣化を防止でき、さらに冷蔵庫101の吸熱負荷量の増加による性能劣化を抑制することができる。   Moreover, the depth of the concave groove 231 of the vacuum heat insulating material 205 can be reduced, and as a result, performance deterioration due to groove processing of the vacuum heat insulating material 205 can be prevented, and further performance deterioration due to an increase in the endothermic load of the refrigerator 101 can be suppressed. Can do.

以上のように、本発明にかかる冷蔵庫および冷蔵庫用断熱箱体の製造方法は、リサイクル性の向上並びに冷蔵庫の外観変形を防止することができ、かつ放熱パイプの放熱能力増加による省エネを実現することができることにより、冷蔵庫に限らず放熱パイプを備えた他の冷凍空調機器等の用途にも適用できる。   As described above, the refrigerator and the method for manufacturing a refrigerator heat insulation box according to the present invention can improve recyclability and prevent external deformation of the refrigerator, and realize energy saving by increasing the heat dissipation capacity of the heat dissipation pipe. Therefore, the present invention can be applied not only to the refrigerator but also to other refrigeration and air-conditioning equipment including a heat radiating pipe.

本発明の実施の形態1による冷蔵庫の外観傾斜図External appearance inclination figure of the refrigerator by Embodiment 1 of this invention 同実施の形態の冷蔵庫の図1におけるA−A’要部断面図A-A 'principal part sectional drawing in FIG. 1 of the refrigerator of the embodiment 同実施の形態の冷蔵庫の図1におけるB−B’要部断面図B-B 'principal part sectional drawing in FIG. 1 of the refrigerator of the embodiment 同実施の形態の冷蔵庫の断熱箱体製造工程のチャートChart of manufacturing process of heat insulation box of refrigerator in same embodiment 同実施の形態の冷蔵庫の図4のB1,B2工程を示す概略斜視図The schematic perspective view which shows B1, B2 process of FIG. 4 of the refrigerator of the embodiment 同実施の形態の冷蔵庫の放熱パイプと外箱の接触面積特性を示す図The figure which shows the contact area characteristic of the heat radiating pipe and outer box of the refrigerator of the embodiment 本発明の実施の形態2による冷蔵庫の図1におけるB−B’要部断面図B-B 'principal part sectional drawing in FIG. 1 of the refrigerator by Embodiment 2 of this invention 同実施の形態の冷蔵庫の断熱箱体製造工程のチャートChart of manufacturing process of heat insulation box of refrigerator in same embodiment 従来の冷蔵庫の断熱箱体の外観斜視図External perspective view of heat insulation box of conventional refrigerator 従来の冷蔵庫の図9におけるC−C’要部断面図C-C 'principal part sectional drawing in FIG. 9 of the conventional refrigerator 従来の冷蔵庫の断熱箱体の製造工程チャートManufacturing process chart of conventional refrigerator heat insulation box 従来の冷蔵庫の断熱箱体の断熱壁の構成斜視図Configuration perspective view of heat insulation wall of heat insulation box of conventional refrigerator

符号の説明Explanation of symbols

101 冷蔵庫
102,202 外箱
103,203 内箱
104,204 ウレタン断熱材
105,205 真空断熱材
106,206 断熱箱体
120,220 放熱パイプ
131,231 凹型溝
250 熱伝導部材
DESCRIPTION OF SYMBOLS 101 Refrigerator 102,202 Outer box 103,203 Inner box 104,204 Urethane heat insulating material 105,205 Vacuum heat insulating material 106,206 Heat insulating box body 120,220 Radiation pipe 131,231 Concave groove 250 Thermal conduction member

Claims (6)

外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝に備えられた放熱パイプとを有し、前記放熱パイプは、前記真空断熱材の凹型溝内に設置された上で外箱に真空断熱材を取付けた状態でウレタン断熱材が発泡充填された冷蔵庫。   In the refrigerator having a heat insulating wall composed of an outer box, an inner box, and a urethane heat insulating material filled between the inner box and the outer box, the outer box is in close contact with the outer box. And a vacuum heat insulating material having a concave groove formed on the outer box side, and a heat radiating pipe provided in the concave groove of the vacuum heat insulating material, the heat radiating pipe being a concave shape of the vacuum heat insulating material. A refrigerator in which urethane heat insulating material is foam-filled with a vacuum heat insulating material attached to the outer box after being installed in the groove. 外箱と、内箱と、前記内箱と前記外箱と間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝内に備えられた放熱パイプとを有し、前記放熱パイプは、ウレタン断熱材の発泡圧力のみで前記外箱と前記真空断熱剤との間に挟持された冷蔵庫。   In the refrigerator having a heat insulating wall composed of an outer box, an inner box, and a urethane heat insulating material filled between the inner box and the outer box, the outer box is in close contact with the outer box. And a heat insulating pipe provided in the concave groove of the vacuum heat insulating material, and the heat radiating pipe is a foam of urethane heat insulating material. A refrigerator sandwiched between the outer box and the vacuum heat insulating material only by pressure. 凹型溝の高さと放熱パイプの外径が所定の関係であることを特徴とする請求項1または請求項2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the height of the concave groove and the outer diameter of the heat radiating pipe have a predetermined relationship. 凹型溝内に熱伝導部材を注入したことを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein a heat conducting member is injected into the concave groove. 放熱パイプの断面形状を扁平としたことを特徴とする請求項1から請求項4のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 4, wherein a cross-sectional shape of the heat radiating pipe is flattened. 外壁と、内壁と、前記内箱と前記外箱と間に充填されるウレタン断熱材と、前記外箱と前記内箱との間で前記外箱に密着して備えられるとともに前記外箱側に凹型溝が形成された真空断熱材と、前記真空断熱材の凹型溝内に構成された放熱パイプとを有した断熱壁において、前記放熱パイプを真空断熱材の凹型溝に備えた後、前記外壁に前記放熱パイプが備えられた真空断熱材を取付け、その後に断熱材を注入する冷蔵庫用断熱箱体の製造方法。   An outer wall, an inner wall, a urethane heat insulating material filled between the inner box and the outer box, and a close contact with the outer box between the outer box and the inner box and provided on the outer box side In a heat insulating wall having a vacuum heat insulating material having a concave groove formed therein and a heat radiating pipe configured in the concave groove of the vacuum heat insulating material, the outer wall is provided with the heat radiating pipe in the concave groove of the vacuum heat insulating material. The manufacturing method of the heat insulation box for refrigerators which attaches the vacuum heat insulating material with which the said heat radiating pipe was equipped, and inject | pours a heat insulating material after that.
JP2006014867A 2006-01-24 2006-01-24 Refrigerator and manufacturing method of heat insulating housing for refrigerator Pending JP2007198621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014867A JP2007198621A (en) 2006-01-24 2006-01-24 Refrigerator and manufacturing method of heat insulating housing for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014867A JP2007198621A (en) 2006-01-24 2006-01-24 Refrigerator and manufacturing method of heat insulating housing for refrigerator

Publications (1)

Publication Number Publication Date
JP2007198621A true JP2007198621A (en) 2007-08-09

Family

ID=38453394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014867A Pending JP2007198621A (en) 2006-01-24 2006-01-24 Refrigerator and manufacturing method of heat insulating housing for refrigerator

Country Status (1)

Country Link
JP (1) JP2007198621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087948A (en) * 2010-10-15 2012-05-10 Toshiba Corp Refrigerator
EP2339277B1 (en) 2009-12-22 2019-06-05 LG Electronics Inc. Refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116272A (en) * 1984-11-13 1986-06-03 松下冷機株式会社 Heat-insulating box body
JPS6212488U (en) * 1985-07-03 1987-01-26
JP2004020148A (en) * 2002-06-20 2004-01-22 Matsushita Refrig Co Ltd Refrigerator and manufacturing method of refrigerator
JP2005090810A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116272A (en) * 1984-11-13 1986-06-03 松下冷機株式会社 Heat-insulating box body
JPS6212488U (en) * 1985-07-03 1987-01-26
JP2004020148A (en) * 2002-06-20 2004-01-22 Matsushita Refrig Co Ltd Refrigerator and manufacturing method of refrigerator
JP2005090810A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339277B1 (en) 2009-12-22 2019-06-05 LG Electronics Inc. Refrigerator
JP2012087948A (en) * 2010-10-15 2012-05-10 Toshiba Corp Refrigerator

Similar Documents

Publication Publication Date Title
US11598573B2 (en) Vacuum adiabatic body and refrigerator
US11920857B2 (en) Vacuum adiabatic body and refrigerator
US11796246B2 (en) Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
JP4696906B2 (en) refrigerator
JP5903567B2 (en) refrigerator
CN102878746B (en) Refrigerator
JP6192634B2 (en) Insulated box, refrigerator and hot water storage device provided with the insulated box
JP2007198622A (en) Refrigerator
JP3493009B2 (en) refrigerator
WO2003089859A1 (en) Refrigerator
JP5578266B1 (en) refrigerator
US20060250061A1 (en) Kimchi refrigerator
JP2008116126A (en) Refrigerator
JP4196851B2 (en) refrigerator
JP2004125394A (en) Refrigerator
JP2007198621A (en) Refrigerator and manufacturing method of heat insulating housing for refrigerator
JP4218514B2 (en) refrigerator
JP5945708B2 (en) refrigerator
JP2005069613A (en) Refrigerator
JP3942856B2 (en) refrigerator
JP2013185730A (en) Refrigerator
JPH09269177A (en) Refrigerator
JP2005164200A (en) Refrigerator
WO2020134972A1 (en) Refrigerator
JP2005009825A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A131 Notification of reasons for refusal

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301