JP2013184878A - Bioabsorbable implant and method for producing the same - Google Patents

Bioabsorbable implant and method for producing the same Download PDF

Info

Publication number
JP2013184878A
JP2013184878A JP2012053618A JP2012053618A JP2013184878A JP 2013184878 A JP2013184878 A JP 2013184878A JP 2012053618 A JP2012053618 A JP 2012053618A JP 2012053618 A JP2012053618 A JP 2012053618A JP 2013184878 A JP2013184878 A JP 2013184878A
Authority
JP
Japan
Prior art keywords
bioabsorbable
granule
pores
diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053618A
Other languages
Japanese (ja)
Other versions
JP5846972B2 (en
Inventor
Shusuke Oba
秀介 大庭
Shogo Yamaguchi
将吾 山口
Takenori Sawamura
武憲 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012053618A priority Critical patent/JP5846972B2/en
Publication of JP2013184878A publication Critical patent/JP2013184878A/en
Application granted granted Critical
Publication of JP5846972B2 publication Critical patent/JP5846972B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bioabsorbable implant having high usability maintaining a shape not only during compensation operation but also until a completion of the compensating operation even while holding excellent bone binding performance and a method for producing the same.SOLUTION: A bioabsorbable implant is formed of bioabsorbable ceramics and satisfies the following conditions and has a porous structure. A method for bioabsorbable implant is characterized by having a granule preparing step of the bioabsorbable ceramics, a granule mixing step of obtaining a granule mixture by mixing a granule and combustible organic particle in which 50% accumulated particle sizes are together 100 μm or less and 300 μm such that the volume ratio of the combustible organic particle is 20% or more and less than 40%, a shaping step of shaping the granule mixture by a pressure of 200 kg/cmor more, and a sintering step of sintering the shaped body. The condition: the volume ratio of pores having a fine pore size of 3 μm to all of pores is 25% or more and less than 80%, a porosity is 30% or more and less than 40%, and a compression strength is 20 MPa.

Description

この発明は、生体吸収性インプラント及びその製造方法に関し、さらに詳しくは、優れた骨結合能力を保持しつつも補填作業時はもちろん補填作業が完了するまで形状を保持する有用性の高い生体吸収性インプラント、及び、このような有用性の高い生体吸収性インプラントの製造方法に関する。   The present invention relates to a bioabsorbable implant and a method for producing the same, and more particularly, a highly bioabsorbable material that retains its shape until the completion of the filling operation as well as the filling operation while maintaining excellent bone bonding ability. The present invention relates to an implant and a method for producing such a highly useful bioabsorbable implant.

骨又は歯等が欠損した欠損部に新たな骨又は歯等を再生させる治療方法として欠損部に生体インプラントを補填又は配置する方法が開発されている。このような生体インプラントの材料としては、例えば、金属材料、セラミックス、ポリマーとセラミックスとの複合体等が用いられるが、その中でもリン酸カルシウム化合物は生体親和性に優れており、その焼成体は骨組織と化学的に結合され、又は骨組織に置換されることが知られている。   As a treatment method for regenerating new bones or teeth in a defect part in which bones or teeth are lost, a method of filling or arranging a biological implant in the defect part has been developed. As a material for such a biological implant, for example, a metal material, ceramics, a composite of a polymer and ceramics, and the like are used. Among them, a calcium phosphate compound is excellent in biocompatibility, and the fired body is made of bone tissue. It is known to be chemically bonded or replaced with bone tissue.

このような生体インプラントの一例として、特許文献1には、「微細な連続した空孔が全体に亙って均一に分布し、かつ実用上に充分に高い強度を有するリン酸カルシウム多孔体の製造方法を提供」(2頁右欄2行目〜5行目参照。)することを課題として、「結晶質のリン酸カルシウム微粉末に解膠剤を水溶液にして添加し混合する工程と、この混合溶液に起泡剤を添加して連続した微細な空孔を有する多孔性流動体を調整する工程と、この多孔性流動体を乾燥処理してリン酸カルシウムの骨格を有する多孔形成体を作製する工程と、この多孔形成体を加熱して前記解膠剤および起泡剤を分解消失させると共に前記リン酸カルシウム多孔体を焼結する工程とを具備したことを特徴とするリン酸カルシウム多孔体の製造方法」(請求項1等)が記載されている。   As an example of such a bioimplant, Patent Document 1 describes a method for producing a calcium phosphate porous body in which fine continuous vacancies are uniformly distributed throughout the whole and have a sufficiently high strength for practical use. (See page 2, right column, lines 2 to 5). “The process of adding a peptizer as an aqueous solution to crystalline calcium phosphate fine powder and mixing, Adding a foaming agent to prepare a porous fluid having continuous fine pores; drying the porous fluid to produce a porous formed body having a calcium phosphate skeleton; and A method of producing a porous calcium phosphate comprising heating the formed body to decompose and eliminate the peptizer and the foaming agent and sintering the porous calcium phosphate ”(Claim 1 and the like) It has been described.

特許第2597355号公報Japanese Patent No. 2597355

ところで、β−リン酸三カルシウム等の生体吸収性セラミックスで形成された多孔質構造を有する生体吸収性インプラントは、欠損部に補填又は配置されると、多孔質構造中の気孔内部に骨芽細胞等の生体組織及び体液が進入して外側からの分解・吸収に加えて内部からも分解・吸収されるから、生体吸収性インプラントが残存することなく自家骨に欠損部が早期に置換されて緻密な生体吸収性インプラントよりも高い骨結合能力を発揮する。しかし、多孔質構造を有する生体吸収性インプラントは気孔が存在するから緻密な生体吸収性インプラントよりも強度が低くなる。このように生体吸収性インプラントの骨結合能力と強度とは多孔質構造であっても緻密であっても互いに相反する特性であることが知られている。   By the way, when the bioabsorbable implant having a porous structure formed of bioabsorbable ceramics such as β-tricalcium phosphate is compensated or arranged in the defect portion, osteoblasts are placed inside the pores in the porous structure. In addition to decomposition and absorption from the outside through the invasion of living tissues and body fluids, etc., it is also decomposed and absorbed from the inside. Higher bone bonding ability than other bioabsorbable implants. However, a bioabsorbable implant having a porous structure has lower strength than a dense bioabsorbable implant due to the presence of pores. As described above, it is known that the bone-binding ability and strength of a bioabsorbable implant are mutually contradictory characteristics regardless of whether it is a porous structure or a dense structure.

このことは特許文献1の「リン酸カルシウム多孔体の製造方法」で製造された「リン酸カルシウム多孔体」にも当てはまる。すなわち、特許文献1の「リン酸カルシウム多孔体の製造方法」では発泡した多孔性流動体がそのままリン酸カルシウム多孔体の骨格になるから、気孔同士の連通状態は多孔性流動体の発泡倍率すなわち気孔率に支配されることになる。そうすると、この製造方法で製造される「リン酸カルシウム多孔体」において、その気孔同士の連通状態を向上させるために気孔率を高くすると強度が低下し、一方、リン酸カルシウム多孔体の強度を向上させるために気孔率を低くすると気孔同士の連通状態が悪化する。ここで、気孔同士の連通状態が悪化するとリン酸カルシウム多孔体はその内部に体液等が進入しにくくなるから、緻密な生体吸収性インプラントのように内部からの分解・吸収が見込めずに自家骨での置換に長時間を要し、又はリン酸カルシウム多孔体が欠損部に残存することが容易に推測される。   This also applies to the “calcium phosphate porous body” produced by “Method for producing calcium phosphate porous body” in Patent Document 1. That is, since the foamed porous fluid directly becomes a skeleton of the calcium phosphate porous body in the “method for producing a calcium phosphate porous body” of Patent Document 1, the state of communication between pores is governed by the expansion ratio of the porous fluid, that is, the porosity. Will be. Then, in the “calcium phosphate porous body” manufactured by this manufacturing method, the strength decreases when the porosity is increased in order to improve the communication state between the pores, while the pores are increased in order to improve the strength of the calcium phosphate porous body. If the rate is lowered, the state of communication between the pores deteriorates. Here, when the state of communication between the pores deteriorates, the calcium phosphate porous body becomes difficult for body fluids or the like to enter the inside thereof, so that it can not be decomposed and absorbed from the inside like a dense bioabsorbable implant. It is easily estimated that the replacement takes a long time or the porous calcium phosphate remains in the defect portion.

このような状況の下、相反する特性である骨結合能力及び強度が要求される生体吸収性インプラントは骨結合能力と強度とを比較考量のうえ使用部位及び使用方法に十分な配慮が必要となるのが一般的である。例えば、大きな荷重がかからない部位に生じた欠損部で開口が大きな穴形状の欠損部等(この発明において通常欠損部と称することがある。)に補填又は配置される生体吸収性インプラントは強度をある程度犠牲にしても骨結合能力が優先される。その一方で、このような生体吸収性インプラントであっても、欠損部に補填又は配置されるまでに損壊してしまうと生体内に意図しない骨細胞との結合を生じてしまうことがあり、また予め所定の形状に成形された生体吸収性インプラントが損壊してしまうと欠損部に補填又は配置されても骨結合能力を十分に発揮できないことがあるので、欠損部に補填又は配置されるまでの補填作業時に損壊しない程度の強度を保持している必要がある。   Under such circumstances, bioabsorbable implants that require bone-binding ability and strength, which are contradictory properties, require a careful consideration of the site and method of use, taking into account the bone-binding ability and strength. It is common. For example, a bioabsorbable implant that is filled or arranged in a hole-shaped defect having a large opening at a site where a large load is not applied (which may be referred to as a normal defect in this invention) has a certain degree of strength. Even if sacrificed, the ability to bind bone is given priority. On the other hand, even with such a bioabsorbable implant, if it is damaged before it is filled or placed in the defect, it may cause unintentional binding with bone cells in the body, If the bioabsorbable implant that has been pre-formed in a predetermined shape is damaged, even if it is compensated or placed in the defect, it may not be able to fully exert the bone binding ability. It is necessary to maintain a strength that does not cause damage during replenishment work.

一方、形状が複雑な欠損部、小さな開口を有する欠損部、又は、複雑骨折部に配置された固定プレートと生体骨との隙間等(この発明において特異欠損部と称することがある。また、通常欠損部と特異欠損部とを併せて患部と称することがある。)に補填又は配置される生体吸収性インプラントは、補填後に特異欠損部又はその近傍の組織を支持するため等によって、特異欠損部に単に補填又は配置されるのではなく、特異欠損部の奥深くまで密に補填若しくは配置、又は、硬質の器具等を用いて圧入若しくは充填配置されることが多い。したがって、このような特異欠損部に補填又は配置される生体吸収性インプラントには補填作業が完了するまで損壊しないようなより一層高い強度を発揮することが優先される。もっとも、特異欠損部に補填又は配置される生体吸収性インプラントであっても、その強度を優先するあまり骨結合能力を大幅に低下させてしまっては生体吸収性インプラントの材料として生体吸収性セラミックスを用いた意義が没却されてしまう。   On the other hand, a defect having a complicated shape, a defect having a small opening, or a gap between a fixed plate and a living bone arranged in a complex fracture (sometimes referred to as a specific defect in this invention. The bioabsorbable implant that is compensated or arranged in the defect part and the specific defect part together may be referred to as an affected part. In many cases, they are not simply filled or arranged, but densely filled or arranged deeply into the specific defect portion, or press-fitted or filled with a hard instrument or the like. Therefore, priority is given to exerting higher strength so that the bioabsorbable implant to be filled or arranged in such a specific defect portion does not break until the filling operation is completed. However, even for bioabsorbable implants that are filled or placed in specific defects, bioabsorbable ceramics can be used as a material for bioabsorbable implants if their bone-binding ability is greatly reduced, giving priority to their strength. The meaning used will be lost.

このように、生体吸収性インプラントは、骨結合能力及び強度によって使用部位すなわち患部及び使用方法すなわち補填方法に十分な配慮が必要であるが、骨結合能力と強度とを高い水準で両立できれば、その有用性が高くなる。   As described above, the bioabsorbable implant requires careful consideration of the site of use, that is, the affected area and the method of use, that is, the compensation method, depending on the bone bonding ability and strength, but if the bone bonding ability and strength can be compatible at a high level, Increased usefulness.

したがって、この発明の課題は、優れた骨結合能力を保持しつつも補填作業時はもちろん補填作業が完了するまで形状を保持する有用性の高い生体吸収性インプラント、及び、このような有用性の高い生体吸収性インプラントの製造方法を提供することに、ある。   Therefore, an object of the present invention is to provide a bioabsorbable implant having a high utility that retains the shape until the completion of the supplementary work as well as the supplementary work while maintaining an excellent bone bonding ability, and such usefulness. It is to provide a method for producing a highly bioabsorbable implant.

前記課題を解決するためのこの発明に係る生体吸収性インプラントは、生体吸収性セラミックスで形成され、下記条件(1)〜(3)を満足する多孔質構造を有することを特徴とする。
条件(1):水銀ポロシメータで測定した細孔分布において全気孔に対する3μm以上の細孔径を有する気孔の体積率が25%以上80%未満
条件(2):気孔率が30%以上40%未満
条件(3):直径10mm×高さ10mmの円柱体を試験片としたときの圧縮強度が20MPa以上
A bioabsorbable implant according to the present invention for solving the above-mentioned problems is characterized in that it is formed of a bioabsorbable ceramic and has a porous structure that satisfies the following conditions (1) to (3).
Condition (1): The volume ratio of pores having a pore diameter of 3 μm or more with respect to all pores in the pore distribution measured with a mercury porosimeter is 25% or more and less than 80%. Condition (2): The porosity is 30% or more and less than 40%. (3): Compressive strength is 20 MPa or more when a cylindrical body having a diameter of 10 mm and a height of 10 mm is used as a test piece.

また、前記課題を解決するためのこの発明に係る生体吸収性インプラントの製造方法は、生体吸収性セラミックスの顆粒を調製する顆粒調製工程と、前記顆粒調製工程で得られた顆粒及び可燃性有機粒子を混合して顆粒混合物を得る顆粒混合工程と、前記顆粒混合工程で得られた顆粒混合物をプレス成形して成形体を得る成形工程と、前記成形工程で得られた成形体を焼成する焼成工程とを有し、前記顆粒混合工程で混合される前記顆粒及び前記可燃性有機粒子は50%積算粒子径が共に100μm以上300μm未満であり、前記顆粒混合工程における前記可燃性有機粒子の前記顆粒混合物に対する体積割合が20%以上40%未満であり、前記成形工程におけるプレス成形の圧力が200kg/cm以上であることを特徴とする。 In addition, a method for producing a bioabsorbable implant according to the present invention for solving the above problems includes a granule preparation step for preparing a bioabsorbable ceramic granule, and the granules and combustible organic particles obtained in the granule preparation step. A granule mixing step for obtaining a granule mixture, a molding step for press-molding the granule mixture obtained in the granule mixing step to obtain a molded body, and a firing step for firing the molded body obtained in the molding step The granule and the combustible organic particles mixed in the granule mixing step both have a 50% cumulative particle size of 100 μm or more and less than 300 μm, and the granule mixture of the combustible organic particles in the granule mixing step The volume ratio with respect to is 20% or more and less than 40%, and the pressure of press molding in the molding step is 200 kg / cm 2 or more.

この発明に係る生体吸収性インプラントは、生体吸収性セラミックスで形成され、前記条件(1)〜(3)を満足する多孔質構造を有することを特徴とするから、多孔質構造内で連通する3μm以上の細孔径を有する気孔内に体液等が進入することで表面に加えて内部からも分解・吸収が進行して自家骨に早期に置換され、骨組織の速やかな再生が可能となる。それにもかかわらず、前記多孔質構造を有することを特徴とするこの発明に係る生体吸収性インプラントは、特異欠損部の奥深くまで密に補填又は圧入等されても補填作業が完了するまでその形状を保持するに十分な強度を有している。したがって、この発明に係る生体吸収性インプラントは優れた骨結合能力を保持しつつも補填作業時はもちろん補填作業が完了するまで形状を保持し、高い有用性を有している。   The bioabsorbable implant according to the present invention is made of bioabsorbable ceramics and has a porous structure that satisfies the above conditions (1) to (3). Therefore, the bioabsorbable implant communicates within the porous structure. When a body fluid or the like enters a pore having the above pore diameter, decomposition and absorption progress from the inside in addition to the surface, and is replaced with autologous bone at an early stage, so that bone tissue can be rapidly regenerated. Nevertheless, the bioabsorbable implant according to the present invention having the porous structure has a shape until the filling operation is completed even if it is densely filled or press-fitted deeply into the specific defect portion. It has sufficient strength to hold. Therefore, the bioabsorbable implant according to the present invention retains the shape of the bioabsorbable implant until completion of the filling operation as well as the filling operation while maintaining excellent bone bonding ability, and has high utility.

この発明に係る生体吸収性インプラントの製造方法は、前記顆粒調製工程と前記顆粒混合工程と前記成形工程と前記焼成工程とを有し、顆粒混合工程で混合される前記顆粒及び前記可燃性有機粒子は50%積算粒子径が共に100μm以上300μm未満であり、顆粒混合工程における前記可燃性有機粒子の前記顆粒混合物に対する体積割合が20%以上40%未満であり、前記成形工程におけるプレス成形の圧力が200kg/cm以上であることを特徴とするから、前記条件(1)〜(3)を満たす多孔質構造を生体吸収性セラミックスで形成することができる。したがって、この発明に係る生体吸収性インプラントの製造方法は、この発明に係る生体吸収性インプラントを製造するのに好適であり、優れた骨結合能力を保持しつつも補填作業時はもちろん補填作業が完了するまで形状を保持する有用性の高い生体吸収性インプラントを製造できる。 The method for producing a bioabsorbable implant according to the present invention includes the granule preparation step, the granule mixing step, the molding step, and the firing step, and the granule and the combustible organic particles mixed in the granule mixing step The 50% cumulative particle size is both 100 μm or more and less than 300 μm, the volume ratio of the combustible organic particles to the granule mixture in the granule mixing step is 20% or more and less than 40%, and the press molding pressure in the molding step is Since it is 200 kg / cm < 2 > or more, the porous structure which satisfy | fills the said conditions (1)-(3) can be formed with bioabsorbable ceramics. Therefore, the method for producing a bioabsorbable implant according to the present invention is suitable for producing the bioabsorbable implant according to the present invention. Highly useful bioabsorbable implants that retain their shape until completion can be produced.

図1は、この発明に係る生体吸収性インプラントの一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of a bioabsorbable implant according to the present invention.

この発明に係る生体吸収性インプラントは、生体吸収性セラミックスで形成され、下記条件(1)〜(3)を満足する多孔質構造を有することを特徴とする。この発明に係る生体吸収性インプラントを、図面を参照して、具体的に説明する。
条件(1):水銀ポロシメータで測定した細孔分布において全気孔に対する3μm以上の細孔径を有する気孔の体積率が25%以上80%未満
条件(2):気孔率が30%以上40%未満
条件(3):直径10mm×高さ10mmの円柱体を試験片としたときの圧縮強度が20MPa以上
The bioabsorbable implant according to the present invention is formed of a bioabsorbable ceramic and has a porous structure that satisfies the following conditions (1) to (3). The bioabsorbable implant according to the present invention will be specifically described with reference to the drawings.
Condition (1): The volume ratio of pores having a pore diameter of 3 μm or more with respect to all pores in the pore distribution measured with a mercury porosimeter is 25% or more and less than 80%. Condition (2): The porosity is 30% or more and less than 40%. (3): Compressive strength is 20 MPa or more when a cylindrical body having a diameter of 10 mm and a height of 10 mm is used as a test piece.

この発明に係る生体吸収性インプラントの一例である生体吸収性インプラント1は、図1に示されるように、前記条件(1)〜(3)を満足する多孔質構造を有しており、この生体吸収性インプラント1はその全体が前記多孔質構造となっている。この多孔質構造は3次元網目構造とも称され、生体吸収性インプラント1の骨格を形成する骨格部2としての固体部2と、この固体部2中又は固体部2内に存在する空隙部とで構成されている。この空隙部は、3次元的に分布して骨格部2と共に多孔質構造を形成する大径気孔3と、骨格部2に形成された小径気孔4(図1の断面模式図においては気孔径が小さすぎて明確に図示されない。)とを有している。すなわち、生体吸収性インプラント1は、複数の大径気孔3が3次元的に分布して大径気孔3同士の間に形成された骨格部2を有する多孔体であって骨格部2は複数の小径気孔4を有している。   As shown in FIG. 1, a bioabsorbable implant 1 as an example of a bioabsorbable implant according to the present invention has a porous structure that satisfies the above conditions (1) to (3). The entire resorbable implant 1 has the porous structure. This porous structure is also referred to as a three-dimensional network structure, and includes a solid part 2 as a skeleton part 2 that forms a skeleton of the bioabsorbable implant 1 and a void part that exists in or within the solid part 2. It is configured. The voids are three-dimensionally distributed to form large-diameter pores 3 that form a porous structure with the skeleton 2 and small-diameter pores 4 formed in the skeleton 2 (in the cross-sectional schematic diagram of FIG. It is too small to be clearly shown.) That is, the bioabsorbable implant 1 is a porous body having a skeleton portion 2 in which a plurality of large-diameter pores 3 are three-dimensionally distributed and formed between the large-diameter pores 3, and the skeleton portion 2 includes a plurality of skeleton portions 2. A small-diameter pore 4 is provided.

骨格部2は、生体吸収性セラミックスにより形成され、大径気孔3及び小径気孔4以外の空間を占めている。この骨格部2は多孔質構造の基礎を形成するものであり、その間に大径気孔3が存在し、その内部に小径気孔4が存在している。   The skeleton 2 is formed of bioabsorbable ceramics and occupies a space other than the large diameter pores 3 and the small diameter pores 4. This skeleton 2 forms the basis of a porous structure, and large-diameter pores 3 exist between them, and small-diameter pores 4 exist inside thereof.

大径気孔3は、図1に示されるように、3次元的に分散して多孔質構造を形成し、そのうちの一部が他の大径気孔3に連通せずに単独で存在する独立気孔11として存在し、他の一部が近接する他の大径気孔3に連通すると共に生体吸収性インプラント1の表面に開口する開気孔12にも連通している連通開気孔13として存在しており、図1には図示しないが、大径気孔3の残部が近接する他の大径気孔3に連通しているものの開気孔12には連通していない連通閉気孔として存在していてもよい。この発明において、大径気孔3は少なくとも連通開気孔13として存在していればよく、連通開気孔13に加えて適宜の割合で独立気孔11及び連通閉気孔として存在していてもよい。   As shown in FIG. 1, the large pores 3 are three-dimensionally dispersed to form a porous structure, and some of them are independent pores that do not communicate with the other large pores 3. 11, and a part of other open pores 13 communicate with other large-diameter pores 3 that are close to each other and communicate with open pores 12 that open to the surface of the bioabsorbable implant 1. Although not shown in FIG. 1, the remaining portion of the large-diameter pore 3 may be communicated with another large-diameter pore 3 that is close, but may exist as a closed communication pore that is not communicated with the open pore 12. In the present invention, it is sufficient that the large-diameter pores 3 exist as at least communicating open pores 13, and may exist as independent pores 11 and communicating closed pores in an appropriate ratio in addition to the communicating open pores 13.

この大径気孔3は、100μm以上の平均気孔径を有している。このように大径気孔3が100μm以上の平均気孔径を有していると、生体吸収性インプラント1が患部に補填されたときに、大径気孔3が体液等を自身の内部まで進入させ、また侵入した体液等を内部に存在する小径気孔4中にも案内することができ、その結果、生体吸収性インプラント1が表面に加えて内部からも分解・吸収して自家骨に早期に置換され、骨組織の速やかな再生が可能となる。一方、大径気孔3は、生体吸収性インプラント1の強度を確保できる点で、300μm以下の平均気孔径を有しているのが好ましい。前記条件(1)〜(3)を満足するこの生体吸収性インプラント1において、大径気孔3は、100μm以上300μm以下の平均気孔径を有しているのが好ましく、この範囲においてほぼ同一の気孔径を有していてもよく、気孔径が分布していてもよい。   The large pore 3 has an average pore diameter of 100 μm or more. Thus, when the large pore 3 has an average pore diameter of 100 μm or more, when the bioabsorbable implant 1 is filled in the affected area, the large pore 3 allows the body fluid or the like to enter inside, Moreover, the invading body fluid and the like can be guided into the small pores 4 existing inside, and as a result, the bioabsorbable implant 1 is decomposed and absorbed from the inside in addition to the surface, and is quickly replaced with autologous bone. The bone tissue can be rapidly regenerated. On the other hand, the large pore 3 preferably has an average pore diameter of 300 μm or less from the viewpoint that the strength of the bioabsorbable implant 1 can be secured. In the bioabsorbable implant 1 satisfying the above conditions (1) to (3), the large pores 3 preferably have an average pore diameter of 100 μm or more and 300 μm or less. It may have a pore diameter, and the pore diameter may be distributed.

このような気孔径の分散状態を有する大径気孔3は、特に骨組織の速やかな再生が可能な優れた骨結合能力を発揮できる点で、100μm以上200μm以下の平均気孔径を有しているのが特に好ましい。   The large pores 3 having such a dispersed state of pore diameters have an average pore diameter of 100 μm or more and 200 μm or less, particularly in that they can exhibit an excellent bone bonding ability that enables rapid regeneration of bone tissue. Is particularly preferred.

大径気孔3の気孔径及び平均気孔径は、通常、後述する可燃性有機粒子の気孔径及び平均粒径より小さい値となる。後述するように可燃性有機粒子は焼成工程において焼失してしまい、焼失した部分が大径気孔3となる。焼成工程において可燃性有機粒子と生体吸収性セラミックスの粒子とにより形成される成形体を焼成すると体積収縮が生じる。したがって、可燃性有機粒子が焼失した後に形成された大径気孔3の体積は可燃性有機粒子の体積より通常小さくなる。また後述する可燃性有機粒子の形状が球状である場合には球状の大径気孔3が形成されやすくなる。したがって、大径気孔3の気孔径及び平均気孔径は、可燃性有機粒子の50%積算粒子径によって調整でき、また、顆粒混合物に対する体積割合、プレス成形の圧力等によっても調整できる。   The pore diameter and average pore diameter of the large-diameter pores 3 are usually smaller than the pore diameter and average particle diameter of combustible organic particles described later. As will be described later, the combustible organic particles are burned off in the baking step, and the burned-out portions become the large-diameter pores 3. When a molded body formed of combustible organic particles and bioabsorbable ceramic particles is fired in the firing step, volume shrinkage occurs. Accordingly, the volume of the large pores 3 formed after the combustible organic particles are burned out is usually smaller than the volume of the combustible organic particles. Further, when the shape of combustible organic particles described later is spherical, spherical large-diameter pores 3 are easily formed. Therefore, the pore diameter and the average pore diameter of the large-diameter pores 3 can be adjusted by the 50% cumulative particle diameter of the combustible organic particles, and can also be adjusted by the volume ratio with respect to the granule mixture, press molding pressure, and the like.

大径気孔3の気孔径及び平均気孔径は、例えば、生体吸収性インプラント1を樹脂に埋包した後、研磨して断面を出し、この断面を走査型電子顕微鏡等で観察し、視野内に観察されたすべての気孔それぞれについて円相当直径を測定し、測定された円相当直径を「大径気孔3の気孔径」とし、この「大径気孔3の気孔径」の算術平均を「大径気孔3の平均気孔径」として、求めることができる。   The pore diameter and the average pore diameter of the large-diameter pore 3 are determined by, for example, embedding the bioabsorbable implant 1 in a resin and polishing it to obtain a cross-section, and observing this cross-section with a scanning electron microscope or the like. For each of the observed pores, the equivalent circle diameter was measured, the measured equivalent circle diameter was defined as “the pore diameter of the large pore 3”, and the arithmetic average of the “large pore 3” was calculated as “large diameter”. The average pore diameter of the pores 3 ”can be obtained.

連通開気孔13及び連通閉気孔を形成する大径気孔3は、生体吸収性インプラント1が相反する特性である優れた骨結合能力と高い強度とを両立できる点で、隣接する大径気孔3同士が連通する連通部14の細孔径が3μm以上100μm以下であるのが好ましく、5μm以上70μm以下であるのが特に好ましい。この細孔径は隣接する大径気孔3同士を接続する連通部14の幅(開口径)であり、水銀ポロシメータを用いて測定することができる。この生体吸収性インプラント1の細孔径を水銀ポロシメータで測定すると、通常、細孔分布において「細孔径3μm」を境界にして「3μm未満の領域」と「3μm以上の領域」とのそれぞれに少なくとも1つのピークが現れる。連通部14の細孔径は、このようにして測定された細孔分布において3μm以上の領域に現れる。大径気孔3の細孔径は後述する可燃性有機粒子の50%積算粒子径及び顆粒混合物に対する体積割合、特にプレス成形の圧力等によって調整できる。   The large-diameter pores 3 that form the open communication pores 13 and the closed communication pores are adjacent to each other with the large-diameter pores 3 adjacent to each other in that the bioresorbable implant 1 can have both excellent bone-binding ability and high strength. The communicating portion 14 that communicates with each other preferably has a pore diameter of 3 μm or more and 100 μm or less, particularly preferably 5 μm or more and 70 μm or less. This pore diameter is the width (opening diameter) of the communicating portion 14 connecting adjacent large-diameter pores 3, and can be measured using a mercury porosimeter. When the pore diameter of the bioabsorbable implant 1 is measured with a mercury porosimeter, it is usually at least 1 for each of the “region of less than 3 μm” and the “region of 3 μm or more” with “pore diameter of 3 μm” as a boundary in the pore distribution. Two peaks appear. The pore diameter of the communicating portion 14 appears in a region of 3 μm or more in the pore distribution measured in this way. The pore diameter of the large pore 3 can be adjusted by the 50% cumulative particle diameter of combustible organic particles described later, the volume ratio with respect to the granule mixture, particularly the pressure of press molding.

小径気孔4は、骨格部2に存在しており、他の小径気孔4に連通せずに単独で存在していてもよく、また他の小径気孔4に連通して存在していてもよい。この小径気孔4は、大径気孔3内を進入してきた体液等が小径気孔4の内部にまでさらに進入することによって、生体吸収性インプラント1の内部からの分解・吸収を促進して骨組織の速やかな再生を可能とすることに貢献する。したがって、小径気孔4は、骨格部2の表面に開口している開気孔に連通しているのが好ましい。この小径気孔4同士が連通する連通部(図示せず)の細孔径(この発明において「小孔細孔径」と称する。図示せず。)は、生体吸収性インプラント1の内部からの分解・吸収を効率よく促進できる点で、3μm未満であるのが好ましく、0.1μm以上3μm未満であるのが特に好ましい。小径気孔4の小孔細孔径は大径気孔3の連通部14の細孔径と基本的に同様にして測定できる。なお、小径気孔4の気孔径及び小孔細孔径は、後述する顆粒混合物の成形圧力、生体吸収性セラミックスの顆粒のタップ充填密度、生体吸収性セラミックスの顆粒に含まれる水分量、焼成温度等によって調整できる。   The small-diameter pores 4 exist in the skeleton part 2, and may exist independently without communicating with the other small-diameter pores 4, or may exist in communication with the other small-diameter pores 4. The small-diameter pore 4 promotes decomposition / resorption from the inside of the bioabsorbable implant 1 by allowing body fluid or the like that has entered the large-diameter pore 3 to further enter the inside of the small-diameter pore 4, thereby promoting the bone tissue. Contributes to enabling prompt reproduction. Therefore, it is preferable that the small diameter pores 4 communicate with the open pores opened on the surface of the skeleton part 2. The pore diameter (referred to as “small pore diameter” in the present invention, not shown) of the communicating portion (not shown) where the small diameter pores 4 communicate with each other is decomposed and absorbed from the inside of the bioabsorbable implant 1. Is preferably less than 3 μm, particularly preferably 0.1 μm or more and less than 3 μm. The small pore diameter of the small pore 4 can be measured basically in the same manner as the pore diameter of the communicating portion 14 of the large pore 3. The pore diameter and small pore diameter of the small pore 4 depend on the molding pressure of the granule mixture, the tap filling density of the bioabsorbable ceramic granules, the amount of moisture contained in the bioabsorbable ceramic granules, the firing temperature, etc. Can be adjusted.

小径気孔4を有する骨格部2と大径気孔3とで形成された多孔質構造は、水銀ポロシメータで測定した細孔分布において全気孔に対する細孔径が3μm以上の気孔すなわち連通部14が3μm以上の大径気孔3の体積率が25%以上80%未満になっている(条件(1))。多孔質構造における連通部14が3μm以上の大径気孔3の体積率が25%未満であると、大きな連通部14で連通された大径気孔3の相対的な存在割合が小さくなって機械的強度は高くなるものの、体液等が多孔質構造の内部まで、また多孔質構造の内部に存在する小径気孔4まで侵入しにくくなり、優れた骨結合能力を発揮できないことがある。このように生体吸収性インプラント1は、小径気孔4に加えて大きな連通部14で連通された大径気孔3を複数有することで骨芽細胞等の生体組織が侵入し易く、速やかに生体組織が形成される。一方、大径気孔3の体積率が80%を超えると、体液等が多孔質構造の内部に進入しやすくなって優れた骨結合能力を発揮できるものの、多孔質構造の機械的強度が低下して特異欠損部への補填作業が完了するまで形状を保持しうる高い機械的強度を発揮できないことがある。生体吸収性インプラント1が相反する特性である優れた骨結合能力と高い強度とを両立して高い有用性を発揮できる点で、好ましくは後述する条件(2)及び条件(3)を満たすことに加えて、連通部14が3μm以上の大径気孔3の体積率は28%以上70%以下であるのが好ましい。なお、大径気孔3の体積率は小径気孔4の全気孔に対する体積率に連動して変化する。   The porous structure formed by the skeleton 2 having the small pores 4 and the large pores 3 has a pore distribution measured by a mercury porosimeter with pores having a pore diameter of 3 μm or more with respect to all the pores, that is, the communication portion 14 is 3 μm or more. The volume ratio of the large-diameter pores 3 is 25% or more and less than 80% (condition (1)). When the volume ratio of the large-diameter pores 3 having a communicating portion 14 of 3 μm or more in the porous structure is less than 25%, the relative existence ratio of the large-diameter pores 3 communicated by the large communicating portion 14 becomes small and mechanical. Although the strength is increased, it is difficult for body fluids or the like to enter the inside of the porous structure or the small-diameter pores 4 existing in the porous structure, so that the excellent bone bonding ability may not be exhibited. As described above, the bioabsorbable implant 1 has a plurality of large-diameter pores 3 communicated with the large communicating portion 14 in addition to the small-diameter pores 4, so that biological tissues such as osteoblasts can easily enter and rapidly It is formed. On the other hand, if the volume ratio of the large-diameter pores 3 exceeds 80%, body fluid and the like can easily enter the inside of the porous structure and exhibit excellent bone bonding ability, but the mechanical strength of the porous structure is reduced. Therefore, there is a case where high mechanical strength that can maintain the shape cannot be exhibited until the filling operation to the specific defect portion is completed. The bioabsorbable implant 1 preferably satisfies the conditions (2) and (3) to be described later, from the viewpoint that both the excellent bone bonding ability and the high strength, which are contradictory properties, can be exhibited and exhibit high usability. In addition, the volume ratio of the large-diameter pores 3 having the communication portion 14 of 3 μm or more is preferably 28% or more and 70% or less. The volume ratio of the large diameter pores 3 changes in conjunction with the volume ratio of the small diameter pores 4 with respect to all the pores.

ところで、従来の生体インプラント、例えば特許文献1の「リン酸カルシウム多孔体」において気孔率を40%以下に調整しようとすると、多孔性流動体に生じた微細な空孔同士が連続又連接しにくく、「水銀ポロシメータで測定した細孔分布において全気孔に対する3μm以上の細孔径を有する気孔の体積率」を25%まで高めることができない。ところが、この発明に係る生体吸収性インプラントは、前記条件(1)〜(3)を満足するから、特にこの発明に係る生体吸収性インプラントの製造方法で製造され、前記条件(1)〜(3)を満足するから、気孔率を40%以下にしても「水銀ポロシメータで測定した細孔分布において全気孔に対する3μm以上の細孔径を有する気孔の体積率」を25%以上という高い値に調整できる。この大径気孔3の体積率は、後述する生体吸収性セラミックスの顆粒及び可燃性有機粒子それぞれの50%積算粒子径、及び、可燃性有機粒子の顆粒混合物に対する体積割合等によって調整できる。   By the way, when trying to adjust the porosity to 40% or less in a conventional biological implant, for example, “calcium phosphate porous body” of Patent Document 1, the fine pores generated in the porous fluid are difficult to continuously or connect to each other. In the pore distribution measured with a mercury porosimeter, the “volume ratio of pores having a pore diameter of 3 μm or more with respect to all pores” cannot be increased to 25%. However, since the bioabsorbable implant according to the present invention satisfies the above conditions (1) to (3), the bioabsorbable implant according to the present invention is particularly manufactured by the method for producing a bioabsorbable implant according to the present invention, and the conditions (1) to (3 Therefore, even if the porosity is 40% or less, the “volume ratio of pores having a pore diameter of 3 μm or more with respect to all pores in the pore distribution measured with a mercury porosimeter” can be adjusted to a high value of 25% or more. . The volume ratio of the large-diameter pores 3 can be adjusted by the 50% cumulative particle diameter of each of the bioabsorbable ceramic granules and combustible organic particles described later, the volume ratio of the combustible organic particles to the granule mixture, and the like.

連通部14が3μm以上である大径気孔3の全気孔に対する体積率は水銀ポロシメータを用いて測定することができる。この生体吸収性インプラント1の細孔径を水銀ポロシメータで測定すると、前記の通り、通常、細孔分布において「細孔径3μm」を境界にして「3μm未満の領域」と「3μm以上の領域」とのそれぞれに少なくとも1つのピークが現れる。連通部14が3μm以上である大径気孔3の全気孔体積に対する体積率(百分率)は、細孔分布における細孔径3μm以上である大径気孔3の体積を積算して得られる積算体積量を全気孔の体積を積算して得られる全積算体積量で除して算出される。   The volume ratio with respect to all the pores of the large-diameter pores 3 in which the communication portion 14 is 3 μm or more can be measured using a mercury porosimeter. When the pore diameter of the bioabsorbable implant 1 is measured with a mercury porosimeter, as described above, normally, in the pore distribution, “area less than 3 μm” and “area greater than 3 μm” with “pore diameter 3 μm” as a boundary. At least one peak appears in each. The volume ratio (percentage) with respect to the total pore volume of the large-diameter pores 3 in which the communication part 14 is 3 μm or more is the integrated volume amount obtained by integrating the volumes of the large-diameter pores 3 having a pore diameter of 3 μm or more in the pore distribution. It is calculated by dividing the total pore volume by the total volume obtained by integrating the total pore volume.

多孔質構造は、気孔率が30%以上40%未満になっている(条件(2))。多孔質構造における気孔率が30%未満であると、大径気孔3及び小径気孔4の割合が小さくなって特に連通開気孔13及び連通部14の存在割合も小さくなるから機械的強度は高くなるものの優れた骨結合能力を発揮できないことがある。一方、気孔率が40%を超えると、大径気孔3及び小径気孔4の割合が大きくなるから優れた骨結合能力を発揮できるものの特異欠損部への補填作業が完了するまで形状を保持しうる高い機械的強度を発揮できないことがある。生体吸収性インプラント1が優れた骨結合能力と高い強度とを両立して高い有用性を発揮できる点で、好ましくは条件(1)及び後述する条件(3)を満たすことに加えて、気孔率は31%以上39%以下であるのが好ましい。気孔率は、後述する生体吸収性セラミックスの顆粒及び可燃性有機粒子それぞれの50%積算粒子径、及び、可燃性有機粒子の顆粒混合物に対する体積割合、並びに、プレス成形の圧力等によって調整できる。   The porous structure has a porosity of 30% or more and less than 40% (condition (2)). When the porosity in the porous structure is less than 30%, the ratio of the large-diameter pores 3 and the small-diameter pores 4 is reduced, and particularly the existence ratio of the communication open pores 13 and the communication portions 14 is reduced, so that the mechanical strength is increased. However, it may not be able to demonstrate its excellent bone bonding ability. On the other hand, when the porosity exceeds 40%, the ratio of the large diameter pore 3 and the small diameter pore 4 becomes large, so that the excellent bone bonding ability can be exhibited, but the shape can be maintained until the filling operation to the specific defect portion is completed. High mechanical strength may not be achieved. In addition to satisfying the condition (1) and the condition (3) to be described later, the porosity of the bioabsorbable implant 1 is preferable in that it can exhibit both high bone bonding ability and high strength and exhibit high usability. Is preferably 31% or more and 39% or less. The porosity can be adjusted by the 50% cumulative particle diameter of each of the bioabsorbable ceramic granules and the combustible organic particles described later, the volume ratio of the combustible organic particles to the granule mixture, the pressure of the press molding, and the like.

多孔質構造の気孔率は、生体吸収性インプラント1の質量及び体積から算出される見掛け密度と生体吸収性セラミックスの組成から求められる理論密度とから、式:(1−見掛け密度/理論密度)×100%により、算出される。   The porosity of the porous structure is expressed by the formula: (1−apparent density / theoretical density) × from the apparent density calculated from the mass and volume of the bioabsorbable implant 1 and the theoretical density calculated from the composition of the bioabsorbable ceramic. Calculated by 100%.

多孔質構造は、直径10mm×高さ10mmの円柱体の試験片に成形されたときの圧縮強度が20MPa以上である(条件(3))。この多孔質構造は条件(1)及び(2)を満たすから生体吸収性インプラント1は通常欠損部に補填又は配置されるまでの補填作業時等には損壊しない程度の強度を保持しているものの、多孔質構造の圧縮強度が20MPa未満であると特異欠損部への補填作業が完了するまで形状を保持しうる高い機械的強度を発揮できないことがある。生体吸収性インプラント1が特異欠損部への補填作業が完了するまで形状を保持して高い有用性を発揮できる点で、好ましくは条件(1)及び条件(2)を満たすことに加えて、圧縮強度は22MPa以上であるのが好ましい。圧縮強度の上限は特に限定されないが、生体吸収性セラミックスで形成されるこの発明に係る生体吸収性インプラントにおいては現実的には70MPaである。この圧縮強度は、後述する可燃性有機粒子の顆粒混合物に対する体積割合、及び、プレス成形の圧力等によって調整できる。   The porous structure has a compressive strength of 20 MPa or more when it is formed into a cylindrical test piece having a diameter of 10 mm and a height of 10 mm (condition (3)). Since this porous structure satisfies the conditions (1) and (2), the bioabsorbable implant 1 normally has a strength that does not cause damage during filling work until it is filled or placed in the defect. When the compressive strength of the porous structure is less than 20 MPa, high mechanical strength that can maintain the shape may not be exhibited until the filling operation for the specific defect portion is completed. The bioabsorbable implant 1 is preferably compressed in addition to satisfying the condition (1) and the condition (2) in that the bioabsorbable implant 1 can maintain its shape until the completion of the filling operation to the specific defect portion and can exhibit high utility. The strength is preferably 22 MPa or more. The upper limit of the compressive strength is not particularly limited, but in the bioabsorbable implant according to the present invention formed of bioabsorbable ceramics, it is actually 70 MPa. This compressive strength can be adjusted by the volume ratio of the combustible organic particles described later to the granule mixture, the pressure of press molding, and the like.

圧縮強度は、多孔質構造を有する生体吸収性インプラント1と同様に生体吸収性セラミックスで形成された直径10mm×高さ10mmの多孔質構造の円柱体としての試験体を作製し、この試験体にロードセルを用いて0.5mm/minの速さで圧縮応力を負荷して応力−ひずみ曲線を作成し、応力−ひずみ曲線において応力が最大となった点から算出される。   The compressive strength is the same as that of the bioabsorbable implant 1 having a porous structure, and a test body as a cylindrical body having a porous structure of 10 mm in diameter and 10 mm in height formed of bioabsorbable ceramics is prepared. A stress-strain curve is created by applying a compressive stress at a rate of 0.5 mm / min using a load cell, and is calculated from the point at which the stress is maximum in the stress-strain curve.

このような多孔質構造を有する生体吸収性インプラント1は、生体吸収性セラミックスで形成されている。生体吸収性セラミックスは生体内で分解及び吸収され、生体に害を及ぼさないセラミックスである限り特に限定されず、例えば、β−リン酸三カルシウム(β−TCP)、α−リン酸三カルシウム(α−TCP)、リン酸一カルシウム一水和物(MCPM)、無水リン酸一カルシウム(MCPA)、リン酸二カルシウム二水和物(DCPD)、無水リン酸二カルシウム(DCPA)、リン酸八カルシウム(OCP)、リン酸四カルシウム(TTCP)等を挙げることができ、これらのセラミックスのうち2種以上が共存するセラミックスであってもよい。これらの中でも吸収速度の観点からβ−リン酸三カルシウムが好ましい。   The bioabsorbable implant 1 having such a porous structure is formed of bioabsorbable ceramics. The bioabsorbable ceramic is not particularly limited as long as it is a ceramic that is decomposed and absorbed in the living body and does not harm the living body. For example, β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α -TCP), monocalcium phosphate monohydrate (MCPM), anhydrous monocalcium phosphate (MCPA), dicalcium phosphate dihydrate (DCPD), anhydrous dicalcium phosphate (DCPA), octacalcium phosphate (OCP), tetracalcium phosphate (TTCP), and the like, and ceramics in which two or more of these ceramics coexist may be used. Among these, β-tricalcium phosphate is preferable from the viewpoint of absorption rate.

生体吸収性インプラント1の形状は特に限定されず、使用部位及び使用方法に応じて適宜の形状に製造される。例えば、生体吸収性インプラント1は、補填される使用部位の形状と同様の形状、又は、この形状に相当する形状例えば相似形等に成形され、また顆粒状若しくは粒状、粉末状、繊維状、ブロック状若しくはフィルム状等に成形される。生体吸収性インプラント1が優れた骨結合能力と強度とを両立するためには、多孔質構造が前記条件(1)〜(3)を満たすのに十分な寸法又は体積を有するように成形されることが重要であり、例えば、顆粒状、粒状及び粉末状等においては少なくとも0.5mm程度の体積を有しているのが好ましい。 The shape of the bioabsorbable implant 1 is not particularly limited, and the bioabsorbable implant 1 is manufactured in an appropriate shape according to a use site and a use method. For example, the bioabsorbable implant 1 is formed into a shape similar to the shape of the use site to be filled, or a shape corresponding to this shape, such as a similar shape, and is also granular or granular, powdered, fibrous, block Or a film. In order for the bioabsorbable implant 1 to have both excellent bone bonding ability and strength, the porous structure is molded to have a size or volume sufficient to satisfy the above conditions (1) to (3). For example, it is preferable to have a volume of at least about 0.5 mm 3 in the form of granules, granules and powders.

このように、生体吸収性インプラント1は大径気孔3の連通状態を確保しつつも気孔率を低下させて強度を向上させているから、優れた骨結合能力と強度とを両立でき、高い有用性を有している。例えば、生体吸収性インプラント1は、優れた骨結合能力を発揮する多孔質構造を有していても、製造時及び取り扱い時並びに患部への補填作業時等、例えば搬送時、ピックアップ時に損壊しにくいからハンドリング性に優れるうえ、特異欠損部の奥深くまで密に補填若しくは配置又は硬質の器具等を用いて圧入又は充填配置されることもできる。したがって、この発明に係る生体吸収性インプラントは特異補填部に補填させる生体吸収性インプラントとして特に好適に用いられる。   Thus, since the bioabsorbable implant 1 has improved the strength by reducing the porosity while ensuring the communication state of the large-diameter pores 3, it can achieve both excellent bone bonding ability and strength, and is highly useful. It has sex. For example, even if the bioabsorbable implant 1 has a porous structure that exhibits excellent bone bonding ability, it is difficult to be damaged during transportation, pick-up, for example, during manufacturing and handling, and during work on the affected area. In addition to being excellent in handling properties, it can be densely filled or arranged deeply into the specific defect portion, or can be press-fitted or filled using a hard instrument or the like. Therefore, the bioabsorbable implant according to the present invention is particularly preferably used as a bioabsorbable implant to be filled in the specific filling portion.

ここで、生体吸収性インプラントの通常補填部への補填は、通常補填部に生体吸収性インプラントを装入補填、配置補填し、必要によって手で押圧して、実施される。このとき、通常補填部に生体吸収性インプラントを補填する方法として、例えば、ピンセット等で通常補填部内に生体吸収性インプラントを隙間なく並べる方法、漏斗等を用いて生体吸収性インプラントを重力等で通常補填部に流入させる方法等が挙げられる。一方、生体吸収性インプラントの特異補填部への補填は、生体吸収性インプラントを特異補填部の奥深くまで密に補填若しくは配置又は硬質の器具等を用いて圧入又は充填配置して、実施される。このとき用いられる硬質の器具としては、例えば、金属棒、鎚、ピンセット等が挙げられる。   Here, the filling of the bioabsorbable implant into the normal filling portion is performed by inserting the bioabsorbable implant into the normal filling portion, filling the arrangement, and pressing it by hand as necessary. At this time, as a method for filling the bioabsorbable implant in the normal filling portion, for example, a method of arranging the bioabsorbable implant without gaps in the normal filling portion with tweezers, etc. The method etc. which are made to flow into a compensation part are mentioned. On the other hand, the filling of the bioabsorbable implant into the specific filling portion is performed by densely filling or arranging the bioabsorbable implant deep into the specific filling portion or press-fitting or filling with a hard instrument or the like. Examples of the hard instrument used at this time include a metal rod, a scissors, tweezers, and the like.

この発明に係る生体吸収性インプラントの製造方法を説明する。この発明に係る生体吸収性インプラントの製造方法は、生体吸収性セラミックスの顆粒を調製する顆粒調製工程と、前記顆粒調製工程で得られた顆粒及び可燃性有機粒子を混合して顆粒混合物を得る顆粒混合工程と、前記顆粒混合工程で得られた顆粒混合物をプレス成形して成形体を得る成形工程と、前記成形工程で得られた成形体を焼成する焼成工程とを有している。そして、この発明に係る生体吸収性インプラントの製造方法において、顆粒混合工程で混合される顆粒及び可燃性有機粒子は50%積算粒子径が共に100μm以上300μm未満であり、顆粒混合工程における可燃性有機粒子の顆粒混合物に対する体積割合が20%以上40%未満であり、さらに成形工程におけるプレス成形の圧力が200kg/cm以上である。このようなこの発明に係る生体吸収性インプラントの製造方法によれば、前記条件(1)〜(3)を満たす多孔質構造を生体吸収性セラミックスで形成することができる。したがって、この発明に係る生体吸収性インプラントの製造方法は、前記条件(1)〜(3)を満たす多孔質構造を有するこの発明に係る生体吸収性インプラントを製造するのに好適である。 The manufacturing method of the bioabsorbable implant which concerns on this invention is demonstrated. The method for producing a bioabsorbable implant according to the present invention comprises a granule preparation step for preparing a bioabsorbable ceramic granule, and a granule obtained by mixing the granule obtained in the granule preparation step and the combustible organic particles to obtain a granule mixture A mixing step, a molding step of pressing the granule mixture obtained in the granule mixing step to obtain a molded body, and a firing step of firing the molded body obtained in the molding step. In the method for producing a bioabsorbable implant according to the present invention, the granules and combustible organic particles mixed in the granule mixing step both have a 50% cumulative particle size of 100 μm or more and less than 300 μm, and the combustible organic in the granule mixing step The volume ratio of the particles to the granule mixture is 20% or more and less than 40%, and the press molding pressure in the molding process is 200 kg / cm 2 or more. According to such a method for producing a bioabsorbable implant according to the present invention, a porous structure satisfying the above conditions (1) to (3) can be formed of bioabsorbable ceramics. Therefore, the method for producing a bioabsorbable implant according to the present invention is suitable for producing the bioabsorbable implant according to the present invention having a porous structure that satisfies the above conditions (1) to (3).

この発明に係る生体吸収性インプラントの製造方法の一例(以下、この発明に係る一製造方法と称する。)として生体吸収性インプラント1を製造する方法を具体的に説明する。   A method for manufacturing the bioabsorbable implant 1 will be specifically described as an example of a method for manufacturing the bioabsorbable implant according to the present invention (hereinafter referred to as one manufacturing method according to the present invention).

この発明に係る一製造方法においては、まず、生体吸収性セラミックスの顆粒を調製する顆粒調製工程を実施する。生体吸収性セラミックスの顆粒を調製するための原料としては前述生体吸収性セラミックスを使用することができ、吸収速度の観点からβ−TCPが好ましい。この原料の比表面積は3.5m/g以上であるのが好ましい。原料の比表面積が3.5m/g以上であると、原料粉末の焼結性が良好となり、製造された生体吸収性インプラント1における骨格部2の表面に生体吸収性セラミックスの粒子が互いに接して配列された表面層が形成され易くなる。その結果、患部への補填作業時等に損壊し難い生体吸収性インプラント1を製造することができる。なお、原料の比表面積は比表面積測定装置により測定することができる。 In one manufacturing method according to the present invention, first, a granule preparation step for preparing granules of bioabsorbable ceramics is performed. As the raw material for preparing the bioabsorbable ceramic granules, the above-mentioned bioabsorbable ceramics can be used, and β-TCP is preferable from the viewpoint of absorption rate. The specific surface area of the raw material is preferably 3.5 m 2 / g or more. When the specific surface area of the raw material is 3.5 m 2 / g or more, the sinterability of the raw material powder is improved, and the bioabsorbable ceramic particles are in contact with the surface of the skeleton part 2 in the manufactured bioabsorbable implant 1. Thus, a surface layer arranged in an easy manner is formed. As a result, it is possible to manufacture the bioabsorbable implant 1 that is unlikely to be damaged during the operation of filling the affected area. The specific surface area of the raw material can be measured with a specific surface area measuring device.

生体吸収性セラミックスから顆粒を調製する方法は、顆粒が調製される限り特に限定されず、下方から熱風を送り原料粉体を流動状態に保持しつつバインダ溶液を噴霧することにより原料粉体を凝集造粒させる流動層造粒、原料粉体を撹拌混合しつつバインダ溶液を添加することにより造粒させる撹拌造粒、原料粉体を圧縮成形して顆粒を得る圧縮造粒等を挙げることができる。これらの中でも流動層造粒は平均粒径が数百μmの球状の顆粒を増産できる点で好ましい。流動層造粒及び撹拌造粒において使用されるバインダ溶液は、顆粒を調製することができる限り特に限定されず、例えばポリビニルアルコール、ポリエリレングリコール、及びアクリル酸、メタクリル酸、アクリルアミド等のポリマーを水に溶解した水溶液を挙げることができる。   The method of preparing the granules from the bioabsorbable ceramic is not particularly limited as long as the granules are prepared. The raw powder is agglomerated by spraying the binder solution while keeping the raw powder in a fluid state by sending hot air from below. Fluidized bed granulation for granulation, stirring granulation for granulating by adding a binder solution while stirring and mixing raw material powder, compression granulation for compressing raw material powder to obtain granules, etc. . Among these, fluidized bed granulation is preferable in that it can increase the production of spherical granules having an average particle diameter of several hundreds of μm. The binder solution used in fluidized bed granulation and stirring granulation is not particularly limited as long as granules can be prepared. For example, polyvinyl alcohol, polyerylene glycol, and polymers such as acrylic acid, methacrylic acid, and acrylamide are used. An aqueous solution dissolved in water can be mentioned.

この顆粒調製工程において調製される顆粒は、略球状であり、通常顆粒と称される程度の大きさであればよく、例えば粒径が0.05〜1mmの範囲内、好ましくは50〜900μmの範囲内にあって、後述する顆粒混合工程で要求される50%積算粒子径(メジアン径)が100μm以上300μm未満であるのが好ましい。すなわち、好ましい顆粒調製工程は生体吸収性セラミックスの顆粒をその50%積算粒子径が100μm以上300μm未満となるように調製する工程である。なお、この顆粒調製工程において調製される顆粒の50%積算粒子径が300μm以上である場合には調製された顆粒の粒径を調整する粉砕処理又は解砕処理等を実施することもできる。   The granules prepared in this granule preparation step are substantially spherical and need only have a size that is usually referred to as a granule. For example, the particle diameter is in the range of 0.05 to 1 mm, preferably 50 to 900 μm. It is preferable that the 50% cumulative particle diameter (median diameter) required in the granule mixing step described later is 100 μm or more and less than 300 μm. That is, a preferable granule preparation step is a step of preparing a bioabsorbable ceramic granule so that its 50% cumulative particle diameter is 100 μm or more and less than 300 μm. In addition, when the 50% cumulative particle diameter of the granules prepared in this granule preparation step is 300 μm or more, a pulverization process or a pulverization process for adjusting the particle diameter of the prepared granules can be performed.

顆粒調製工程で調製される顆粒のタップ充填密度は、生体吸収性セラミックスの組成から求められる理論密度の20%以上30%未満であるのが好ましい。顆粒のタップ充填密度が理論密度の20%より小さいと顆粒混合工程や成形工程において顆粒が潰れ易くなって骨格部2内の小径気孔4が減少し、3μm以上の細孔径を有する大径気孔3の体積率が80%以上になるため、生体内において速やかに分解及び吸収され難くなる。また顆粒のタップ充填密度が理論密度の30%以上であると骨格部2が緻密に焼結し、やはり、3μm以上の細孔径を有する大径気孔3の体積率が80%以上になるため、生体内において速やかに分解及び吸収され難くなる。なお、この顆粒調製工程において調製される顆粒のタップ充填密度が理論密度の20%以上30%未満の範囲を逸脱する場合には調製された顆粒の粉砕処理又は解砕処理等を実施して調整することもできる。このタップ充填密度はメスシリンダーに所定量の顆粒を入れ、体積が変化しなくなるまで機械的にタッピングし、メスシリンダーに充填された顆粒の体積を測定し、この体積で顆粒重量を割ることにより算出することができる。なお、生体吸収性セラミックスの顆粒の粒径及びタップ充填密度は造粒条件を調整することにより調整できる。   The tap filling density of the granules prepared in the granule preparation process is preferably 20% or more and less than 30% of the theoretical density obtained from the composition of the bioabsorbable ceramic. When the tap packing density of the granules is smaller than 20% of the theoretical density, the granules are easily crushed in the granule mixing process and the molding process, and the small-diameter pores 4 in the skeleton 2 are reduced, and the large-diameter pores 3 having a pore diameter of 3 μm or more. Since the volume ratio of becomes 80% or more, it becomes difficult to be rapidly decomposed and absorbed in the living body. In addition, when the tap filling density of the granule is 30% or more of the theoretical density, the skeleton part 2 is densely sintered, and the volume ratio of the large pores 3 having a pore diameter of 3 μm or more is also 80% or more. It becomes difficult to be rapidly decomposed and absorbed in the living body. In addition, when the tap filling density of the granules prepared in this granule preparation process deviates from the range of 20% or more and less than 30% of the theoretical density, the prepared granules are adjusted by pulverization or pulverization. You can also This tap filling density is calculated by putting a predetermined amount of granules into a graduated cylinder, tapping mechanically until the volume does not change, measuring the volume of granules filled in the graduated cylinder, and dividing the granule weight by this volume. can do. The particle size and tap filling density of the bioabsorbable ceramic granules can be adjusted by adjusting the granulation conditions.

この発明に係る一製造方法においては、次いで、顆粒調製工程で得られた顆粒と可燃性有機粒子とを混合して顆粒混合物を得る顆粒混合工程を実施する。   In one manufacturing method according to the present invention, a granule mixing step is then performed in which the granules obtained in the granule preparation step and the combustible organic particles are mixed to obtain a granule mixture.

この顆粒混合工程で用いる生体吸収性セラミックスの顆粒は50%積算粒子径が100μm以上300μm未満である。生体吸収性セラミックスの顆粒が100μm以上300μm未満の50%積算粒子径を有していると、可燃性有機粒子と共同して大径気孔3の連通状態を高めると共に機械的強度も保持できるため好適である。顆粒の50%積算粒子径が100μm未満であると可燃性有機粒子同士の隙間に顆粒が入り込み、気孔が分断され易くなるから大径気孔3同士が連通し難くなるおそれがある。また生体吸収性セラミックスの顆粒の50%積算粒子径が300μm以上であると骨格部2が脆くなって機械的強度が低下するおそれがある。   The bioabsorbable ceramic granules used in the granule mixing step have a 50% cumulative particle size of 100 μm or more and less than 300 μm. It is preferable that the bioabsorbable ceramic granule has a 50% cumulative particle size of 100 μm or more and less than 300 μm because it can increase the communication state of the large pores 3 and maintain the mechanical strength in cooperation with the combustible organic particles. It is. If the 50% cumulative particle diameter of the granules is less than 100 μm, the granules enter the gaps between the combustible organic particles, and the pores are easily divided, so that the large-diameter pores 3 may be difficult to communicate with each other. Further, if the 50% cumulative particle diameter of the bioabsorbable ceramic granules is 300 μm or more, the skeleton 2 may become brittle and the mechanical strength may be reduced.

この工程で用いる可燃性有機粒子は、略球状で、50%積算粒子径が100μm以上300μm未満であり、粒子径が生体吸収性セラミックスの顆粒と同程度であるのが好ましい。この可燃性有機粒子は、焼成工程を経て消失し、生体吸収性インプラント1における大径気孔3を形成する。したがって可燃性有機粒子の粒子径を変化させることにより、大径気孔3の平均気孔径及び大径気孔3同士が連通する連通部14の細孔径を調整することができる。そして、可燃性有機粒子の50%積算粒子径が100μm以上300μm未満であると、生体吸収性セラミックスの顆粒と共同して大径気孔3の連通状態を高めると共に機械的強度も保持できる。このような可燃性有機粒子は後述する焼成工程において焼成残渣のない有機物により形成される粒子である限り特に限定されず、例えばアクリル樹脂、メタクリル樹脂、ポリスチレン樹脂等により形成される略球状のビーズを挙げることができる。   The combustible organic particles used in this step are substantially spherical, preferably have a 50% cumulative particle size of 100 μm or more and less than 300 μm, and have a particle size comparable to that of bioabsorbable ceramic granules. The combustible organic particles disappear through a firing process, and form large-diameter pores 3 in the bioabsorbable implant 1. Therefore, by changing the particle diameter of the combustible organic particles, the average pore diameter of the large-diameter pores 3 and the pore diameter of the communicating portion 14 where the large-diameter pores 3 communicate with each other can be adjusted. When the 50% cumulative particle diameter of the combustible organic particles is 100 μm or more and less than 300 μm, the communication state of the large-diameter pores 3 can be enhanced in cooperation with the bioabsorbable ceramic granules and the mechanical strength can be maintained. Such flammable organic particles are not particularly limited as long as they are particles formed by an organic substance having no baking residue in a baking step described later. For example, substantially spherical beads formed of acrylic resin, methacrylic resin, polystyrene resin, or the like are used. Can be mentioned.

ここで、生体吸収性セラミックスの顆粒及び可燃性有機粒子の50%積算粒子径は、9段重ねの篩を用いて篩に残った顆粒の質量を測定し、粒径の小さい方から質量を積算して全質量の50%になる粒子径を、予め作成した検量線により求めた値とする。   Here, the 50% cumulative particle size of the bioabsorbable ceramic granules and combustible organic particles is measured by measuring the mass of the granules remaining on the sieve using a 9-stage sieve and integrating the mass from the smaller particle size. Then, the particle diameter which becomes 50% of the total mass is set to a value obtained from a calibration curve prepared in advance.

顆粒混合工程において、生体吸収性セラミックスの顆粒と可燃性有機粒子とは、これらが混合されてなる顆粒混合物に対する可燃性有機粒子の体積割合が20%以上40%未満となるように、混合される。このような体積割合で生体吸収性セラミックスの顆粒と可燃性有機粒子とが混合されると、焼成工程で顆粒混合物が体積収縮しても、前記範囲の気孔径及び細孔径を有する大径気孔3を形成でき、条件(1)及び条件(2)を満たすと共に条件(3)をも満たす多孔質構造すなわち生体吸収性インプラント1を製造できる。このように優れた骨結合能力と高い強度とを高い水準で両立した生体吸収性インプラント1を製造できる点で可燃性有機粒子の体積割合は31%以上38%以下であるのが好ましい。   In the granule mixing step, the bioabsorbable ceramic granules and the flammable organic particles are mixed so that the volume ratio of the flammable organic particles to the granule mixture obtained by mixing them is 20% or more and less than 40%. . When the bioabsorbable ceramic granules and the combustible organic particles are mixed in such a volume ratio, even if the granule mixture shrinks in the firing step, the large pores 3 having pore diameters and pore diameters in the above range are used. A porous structure that satisfies the conditions (1) and (2) and also satisfies the condition (3), that is, the bioabsorbable implant 1 can be manufactured. Thus, it is preferable that the volume ratio of the combustible organic particles is 31% or more and 38% or less in that the bioabsorbable implant 1 that achieves both excellent bone bonding ability and high strength at a high level can be manufactured.

顆粒混合工程において、生体吸収性セラミックスの顆粒と可燃性有機粒子との混合方法は均一な顆粒混合物が得られる限り特に限定されず、乾式混合及び湿式混合のいずれで行ってもよく、生体吸収性セラミックスの顆粒の形態維持の観点から乾式混合が好ましい。   In the granule mixing step, the mixing method of the bioabsorbable ceramic granules and the flammable organic particles is not particularly limited as long as a uniform granule mixture is obtained, and may be performed by either dry mixing or wet mixing. From the viewpoint of maintaining the shape of the ceramic granules, dry mixing is preferred.

このように、この発明に係る一製造方法における好ましい顆粒混合工程は、50%積算粒子径が100μm以上300μm未満の顆粒と50%積算粒子径が100μm以上300μm未満の可燃性有機粒子とを、顆粒の体積に対する可燃性有機粒子の体積の割合が20%以上40%未満となる混合割合で、混合して顆粒混合物を得る工程である。   Thus, a preferable granule mixing step in one production method according to the present invention comprises a granule having a 50% cumulative particle size of 100 μm or more and less than 300 μm and a 50% cumulative particle size of 100 μm or more and less than 300 μm. This is a step of obtaining a granule mixture by mixing at a mixing ratio in which the ratio of the volume of combustible organic particles to the volume of 20% or more is less than 40%.

この発明に係る一製造方法においては、次いで、顆粒混合工程で得られた顆粒混合物をプレス成形して成形体を得る成形工程を実施する。プレス成形としては、所望の形状に成形することができる限り特に限定されず、例えば金型プレス、ラバープレス、水中プレス等を挙げることができる。プレス成形は200kg/cm以上の圧力で行う。プレス成形の圧力が200kg/cm未満であると、充填密度が不充分となって所望の機械的強度及び/又は気孔率を有する生体吸収性インプラント1が得られないことがある。したがって、この発明に係る一製造方法においては、顆粒混合物のプレス成形は200kg/cm以上で行う。そうすると、適度に潰れた生体吸収性セラミックスの顆粒と可燃性有機粒子とが密に充填された成形体が得られるから所望の気孔率及び機械的強度を有する生体吸収性インプラント1が得られる。このとき、小径気孔4の気孔径は顆粒混合物の成形圧力、生体吸収性セラミックスの粒径等を調整することによって3μm未満に調整できる。 In the manufacturing method according to the present invention, a molding step is then performed in which the granule mixture obtained in the granule mixing step is press-molded to obtain a molded body. The press molding is not particularly limited as long as it can be molded into a desired shape, and examples thereof include a mold press, a rubber press, and an underwater press. Press molding is performed at a pressure of 200 kg / cm 2 or more. When the press molding pressure is less than 200 kg / cm 2 , the filling density may be insufficient, and the bioabsorbable implant 1 having a desired mechanical strength and / or porosity may not be obtained. Therefore, in one manufacturing method according to the present invention, the granule mixture is pressed at 200 kg / cm 2 or more. If it does so, since the compact | molding | casting with which the granule of the bioabsorbable ceramics and the combustible organic particle which were crushed appropriately will be obtained, the bioabsorbable implant 1 which has a desired porosity and mechanical strength will be obtained. At this time, the pore diameter of the small-diameter pores 4 can be adjusted to less than 3 μm by adjusting the molding pressure of the granule mixture, the particle size of the bioabsorbable ceramic, and the like.

ところで、成形工程におけるプレス成形の圧力の上限値は、生体吸収性セラミックスの顆粒が完全に潰れない程度の圧力に設定される。生体吸収性セラミックスの顆粒が完全に圧潰してしまうと骨格部2が緻密になって小径気孔4が減少し、又は可燃性粒子に基づく隙間が小さくなって大径気孔3同士が連通せず、大径気孔3の体積率及び/又は気孔率が前記所望の範囲から逸脱して速やかに分解および吸収がされ難くなり、骨結合能力が低下することがある。例えば、生体吸収性セラミックスの顆粒としてβ−TCPを用い、また可燃性有機粒子としてアクリル樹脂粒子、メタクリル樹脂粒子又はポリスチレン樹脂粒子を用いる場合には、プレス成形の圧力の上限値は現実的には1000kg/cmとすることができる。 By the way, the upper limit value of the pressure of the press molding in the molding process is set to such a pressure that the bioabsorbable ceramic granules are not completely crushed. When the bioabsorbable ceramic granules are completely crushed, the skeleton 2 becomes dense and the small-diameter pores 4 decrease, or the gaps based on combustible particles become small and the large-diameter pores 3 do not communicate with each other. When the volume ratio and / or porosity of the large-diameter pore 3 deviates from the desired range, it is difficult to be rapidly decomposed and absorbed, and the bone bonding ability may be reduced. For example, when β-TCP is used as a bioabsorbable ceramic granule and acrylic resin particles, methacrylic resin particles or polystyrene resin particles are used as combustible organic particles, the upper limit of the pressure for press molding is practically It can be 1000 kg / cm 2 .

この発明に係る一製造方法においては、次いで、成形工程で得られた成形体を焼成する焼成工程を実施する。成形体の焼成方法は特に限定されないが、前記成形体をまず200〜500℃に加熱して可燃性有機粒子を焼成除去し、脱脂した後に、生体吸収性セラミックスが相転移又は分解する温度未満、かつ相転移又は分解する温度より100℃低い温度以上で30分〜5時間の間焼成する方法が好ましい。例えば、生体吸収性セラミックスとしてβ−TCPを用いる場合には焼成温度は1080〜1150℃に設定されるのが好ましい。成形体の焼成温度が前記範囲内であると大径気孔3の体積率を前記範囲に調整しやすい。一方、生体吸収性セラミックスが相転移又は分解する温度以上の温度で成形体を焼成すると、成形体を構成する生体吸収性セラミックスが相転移又は分解することにより、体積膨張が生じ、そのため骨格部2に形成される気孔の気孔径の拡大、気孔率の上昇及びクラックが発生し、生体吸収性インプラント1の機械的強度が低下するおそれがある。また生体吸収性セラミックスが相転移又は分解する温度より100℃低い温度未満の温度で成形体を焼成すると、顆粒同士及び顆粒内の原料粒子同士の結合が充分に行われず、原料粒子が脱落して生体吸収性インプラント1の機械的強度が低下するおそれがある。   In the manufacturing method according to the present invention, a firing step for firing the molded body obtained in the molding step is then performed. The firing method of the molded body is not particularly limited, but the molded body is first heated to 200 to 500 ° C. to remove flammable organic particles, and after degreasing, the temperature is lower than the temperature at which the bioabsorbable ceramic undergoes phase transition or decomposition, And the method of baking for 30 minutes-5 hours at the temperature below 100 degreeC lower than the temperature which changes or decomposes is preferable. For example, when β-TCP is used as the bioabsorbable ceramic, the firing temperature is preferably set to 1080 to 1150 ° C. When the firing temperature of the molded body is within the above range, the volume ratio of the large pores 3 can be easily adjusted to the above range. On the other hand, when the molded body is fired at a temperature equal to or higher than the temperature at which the bioabsorbable ceramic undergoes phase transition or decomposition, the bioabsorbable ceramic constituting the molded body undergoes phase transition or decomposition, resulting in volume expansion. There is a risk that the pore size of the pores formed in the slab increases, the porosity increases and cracks occur, and the mechanical strength of the bioabsorbable implant 1 decreases. Moreover, when the molded body is fired at a temperature lower than 100 ° C. below the temperature at which the bioabsorbable ceramic undergoes phase transition or decomposition, the granules and the raw material particles in the granules are not sufficiently bonded, and the raw material particles fall off. There exists a possibility that the mechanical strength of the bioabsorbable implant 1 may fall.

この焼成工程において成形体が焼成されることにより、成形体における可燃性有機粒子が消失して大径気孔3を有する生体吸収性セラミックスの多孔質構造が形成される。そして、多孔質構造の骨格部2には多数の小径気孔4が形成される。   By firing the compact in this firing step, the combustible organic particles in the compact disappear and the porous structure of the bioabsorbable ceramics having the large pores 3 is formed. A large number of small-diameter pores 4 are formed in the skeleton portion 2 having a porous structure.

このようにして前記条件(1)〜(3)を満たす多孔質構造の生体吸収性インプラント1が製造される。   In this way, the bioabsorbable implant 1 having a porous structure that satisfies the conditions (1) to (3) is manufactured.

この発明に係る生体吸収性インプラント及び生体吸収性インプラントの製造方法は、前記した例に限定されることはなく、本願発明の目的を達成することができる範囲において、種々の変更が可能である。例えば、生体吸収性インプラント1はその全体が前記多孔質構造を有しているが、この発明に係る生体吸収性インプラントはその一部が前記多孔質構造を有していてもよい。   The bioabsorbable implant and the method for producing the bioabsorbable implant according to the present invention are not limited to the above-described examples, and various modifications can be made within a range in which the object of the present invention can be achieved. For example, the bioabsorbable implant 1 as a whole has the porous structure, but the bioabsorbable implant according to the present invention may partially have the porous structure.

(実施例1〜10及び比較例1〜3)
<生体吸収性インプラントの製造>
1.顆粒調製工程
生体吸収性セラミックスであるβ−リン酸三カルシウム(β−TCP)の粉末を原料として流動層造粒により略球状の顆粒を調製した。このとき、バインダ水溶液として8質量%ポリビニルアルコール水溶液を使用し、造粒の条件を変化させることにより、粒径が0.05〜1mmの範囲内にあって第1表及び第2表に示されるように、生体吸収性セラミックスの顆粒の50%積算粒子径(μm)、及び、生体吸収性セラミックスの顆粒の理論密度に対するタップ充填密度の比率が異なる種々の生体吸収性セラミックスの顆粒を調製した。なお、生体吸収性セラミックスの顆粒の50%積算粒子径は9段重ねの篩を用いて篩に残った顆粒の質量を測定し、粒径の小さい方から質量を積算して全質量の50%になる粒子径を求めた。生体吸収性セラミックスの顆粒のタップ充填密度は容積20ccのメスシリンダーに10g前後の顆粒を入れ、5cmの高さから垂直に落とすタッピング操作を500回行い、顆粒の体積の変化が認められないことを確認した後に体積を読み取り、生体吸収性セラミックスの顆粒の質量を生体吸収性セラミックスの顆粒の体積で除することにより算出した。このとき、生体吸収性セラミックスの顆粒の理論密度を3.07g/cmとして生体吸収性セラミックスの顆粒の理論密度に対するタップ充填密度の比率を算出した。β−TCPの粉末の比表面積は比表面積測定装置(Mountech社製MacSorb HM)により測定したところ、いずれも3.5m/g以上であった。
(Examples 1-10 and Comparative Examples 1-3)
<Manufacture of bioabsorbable implant>
1. Granule Preparation Step A substantially spherical granule was prepared by fluidized bed granulation using a powder of β-tricalcium phosphate (β-TCP) which is a bioabsorbable ceramic. At this time, an 8 mass% polyvinyl alcohol aqueous solution is used as the binder aqueous solution, and the particle size is in the range of 0.05 to 1 mm by changing the granulation conditions, as shown in Tables 1 and 2. As described above, various bioabsorbable ceramic granules having different ratios of 50% cumulative particle diameter (μm) of bioabsorbable ceramic granules and tap packing density to theoretical density of bioabsorbable ceramic granules were prepared. The 50% cumulative particle size of the bioabsorbable ceramic granule is determined by measuring the mass of the granule remaining on the sieve using a 9-stage sieve and integrating the mass from the smaller particle size to 50% of the total mass. The particle diameter to be obtained was determined. The tap filling density of the bioabsorbable ceramic granule is about 500 g in a 20 cc graduated cylinder. The tapping operation is performed 500 times and dropped vertically from a height of 5 cm. No change in the granule volume is observed. After confirmation, the volume was read and calculated by dividing the mass of the bioabsorbable ceramic granule by the volume of the bioabsorbable ceramic granule. At this time, the ratio of the tap filling density to the theoretical density of the bioabsorbable ceramic granule was calculated by setting the theoretical density of the bioabsorbable ceramic granule to 3.07 g / cm 2 . The specific surface area of the powder of β-TCP was 3.5 m 2 / g or more as measured by a specific surface area measuring device (MacSorb HM manufactured by Mounttech).

2.顆粒混合工程
可燃性有機粒子として50%積算粒子径が246μmである球状のブチルメタクリレート粒子を準備し、これらのブチルメタクリレート粒子と得られた生体吸収性セラミックスの顆粒とを均一になるように混合して顆粒混合物を得た。このとき、第1表及び第2表に示されるようにブチルメタクリレート粒子の顆粒混合物に対する体積割合を変化させた。なお、ブチルメタクリレート粒子の50%積算粒子径は生体吸収性セラミックスの顆粒と同様にして求めた。
2. Granule mixing step Spherical butyl methacrylate particles with a 50% cumulative particle size of 246 μm are prepared as combustible organic particles, and these butyl methacrylate particles and the resulting bioabsorbable ceramic granules are mixed uniformly. To obtain a granule mixture. At this time, as shown in Tables 1 and 2, the volume ratio of the butyl methacrylate particles to the granule mixture was changed. The 50% cumulative particle size of the butyl methacrylate particles was determined in the same manner as the bioabsorbable ceramic granules.

3.成形工程
得られた顆粒混合物を金型に充填し、第1表及び第2表に示される成形圧でプレス成形して円柱状の成形体を得た。
3. Molding Step The obtained granule mixture was filled in a mold and press-molded with the molding pressure shown in Tables 1 and 2 to obtain a cylindrical molded body.

4.焼成工程
得られた成形体を220℃で3時間加熱してブチルメタクリレート粒子を焼成除去し、次いで450℃で2時間加熱して脱脂した。この脱脂処理の後に昇温速度100℃/時間で1100℃まで昇温し、この温度に維持したまま3時間焼成して生体吸収性インプラントを製造した。
4). Firing step The obtained molded body was heated at 220 ° C. for 3 hours to remove butyl methacrylate particles by baking, and then heated at 450 ° C. for 2 hours for degreasing. After this degreasing treatment, the temperature was increased to 1100 ° C. at a temperature increase rate of 100 ° C./hour, and the bioabsorbable implant was manufactured by firing for 3 hours while maintaining this temperature.

<評価>
1.3μm以上の細孔径を有する気孔の体積率(条件(1))
製造した各生体吸収性インプラントを水銀ポロシメータ(マイクロメリティックス社製オートポアIV9510)を用いて細孔分布を測定した。いずれの生体吸収性インプラントについても、細孔分布において細孔径が3μm未満の領域に1つのピークと3μm以上の領域に少なくとも1つのピークとが観測された。この細孔分分布において前記のようにして3μm以上の細孔径を有する気孔の全気孔に対する体積率(百分率)を算出し、また3μm未満の細孔径を有する気孔の全気孔に対する体積率(百分率)を算出した。その結果を第1表及び第2表に示した。
<Evaluation>
Volume ratio of pores having a pore diameter of 1.3 μm or more (condition (1))
The pore distribution was measured for each manufactured bioabsorbable implant using a mercury porosimeter (Autopore IV9510 manufactured by Micromeritics). For any bioabsorbable implant, in the pore distribution, one peak was observed in the region where the pore diameter was less than 3 μm and at least one peak was observed in the region of 3 μm or more. In this pore distribution, the volume ratio (percentage) of pores having a pore diameter of 3 μm or more as described above is calculated, and the volume ratio (percentage) of pores having a pore diameter of less than 3 μm to all pores. Was calculated. The results are shown in Tables 1 and 2.

2.気孔率(条件(2))
各生体吸収性インプラントの質量及び寸法により算出される体積から見掛け密度を算出した。この見掛け密度とβ−TCPの理論密度3.07g/cmとから気孔率を算出して第1表及び第2表に示した。
2. Porosity (Condition (2))
The apparent density was calculated from the volume calculated from the mass and dimensions of each bioabsorbable implant. The porosity was calculated from this apparent density and the theoretical density of β-TCP of 3.07 g / cm 2 and shown in Tables 1 and 2.

3.圧縮強度(条件(3))
前記「生体吸収性インプラントの製造」と基本的に同様にして直径10mm×高さ10mmの円柱体を成す生体吸収性インプラントの試験体を作製し、この試験体にロードセルを用いて0.5mm/minの速さで圧縮応力を負荷して応力−ひずみ曲線を作成し、この応力−ひずみ曲線において応力が最大となった点を生体吸収性インプラントの圧縮強度とした。その結果を第1表及び第2表に示した。
3. Compressive strength (condition (3))
A test specimen of a bioabsorbable implant comprising a cylindrical body having a diameter of 10 mm and a height of 10 mm was produced basically in the same manner as in the above-mentioned “Manufacture of bioabsorbable implant”, and 0.5 mm / A stress-strain curve was created by applying a compressive stress at a rate of min, and the point at which the stress was maximum in this stress-strain curve was taken as the compressive strength of the bioabsorbable implant. The results are shown in Tables 1 and 2.

4.大径気孔3の平均気孔径
得られた生体吸収性インプラントを樹脂に埋包した後、研磨して断面を出し、この断面を走査型電子顕微鏡(日本電子株式会社製JSM−6460LA)で観察し(50倍)、視野にあるすべての気孔についてそれぞれ円を想定して直径を測定した。大径気孔3の平均気孔径として大径気孔3に相当する気孔の測定値を算術平均して求めたところ、すべての生体吸収性インプラントにおいて、その平均気孔径は100μm以上200μm以下であった。
4). Average pore diameter of large pore 3 After embedding the obtained bioabsorbable implant in resin, it was polished to give a cross section, and this cross section was observed with a scanning electron microscope (JSM-6460LA manufactured by JEOL Ltd.). The diameter was measured assuming a circle for all pores in the field of view (50 times). When the average pore diameter of the large pores 3 was obtained by arithmetically averaging the measured pores corresponding to the large pores 3, the average pore diameter was 100 μm or more and 200 μm or less in all the bioabsorbable implants.

5.骨結合能力
生体吸収性インプラントにおいて、気孔率が例えば30%以上であると多孔質構造中に大径気孔3及び小径気孔4からなる空隙部が比較的多くなるから、患部に補填されたときにこれら空隙部に骨芽細胞等の生体組織及び体液が進入しやすくなることをこの発明の発明者らは見出している。したがって、気孔率が30%以上の実施例1〜10並びに比較例1及び3の生体吸収性インプラントは優れた骨結合能力を発揮することが容易に推測される。さらに、大径気孔3が100μm以上200μm以下の平均気孔径を有していると、患部に補填されたときに多孔質構造中の大径気孔内部に生体組織及び体液が進入して生体吸収性インプラントの外側からの分解・吸収に加えて内部からも分解・吸収されて生体吸収性インプラントが残存することなく自家骨に患部が早期に置換されて高い骨結合能力を発揮することが容易に推測される。
5. Bone-binding ability In a bioresorbable implant, when the porosity is, for example, 30% or more, there are relatively many voids made up of large pores 3 and small pores 4 in the porous structure. The inventors of the present invention have found that biological tissues such as osteoblasts and body fluids can easily enter these voids. Therefore, it is easily estimated that the bioabsorbable implants of Examples 1 to 10 and Comparative Examples 1 and 3 having a porosity of 30% or more exhibit excellent bone bonding ability. Furthermore, when the large pores 3 have an average pore diameter of 100 μm or more and 200 μm or less, the biological tissue and body fluid enter the large pores in the porous structure when the affected part is filled, and the bioabsorbable Easily speculate that the affected part will be replaced early in the autologous bone without losing the bioresorbable implant in addition to the decomposition / absorption from the inside of the implant in addition to the decomposition / absorption from the outside of the implant, and exhibit high bone-binding ability. Is done.

6.生体吸収性インプラントの観察
実施例1〜10の生体吸収性インプラントを倍率1000倍で走査型顕微鏡で観察したところ、骨格部2の断面には複数の小径気孔4が存在していたことが確認できた。
6). Observation of Bioabsorbable Implants When the bioabsorbable implants of Examples 1 to 10 were observed with a scanning microscope at a magnification of 1000 times, it was confirmed that a plurality of small-diameter pores 4 were present in the cross section of the skeleton 2. It was.

7.生体吸収性インプラントの損壊評価
生体吸収性インプラントを特異補填部に金属製器具等を用いて圧入又は充填配置する際に生体吸収性インプラントが損壊することなく特異欠損部の奥深くまで密に圧入補填するためには生体吸収性インプラントには少なくとも20MPaの圧縮強度が必要であること、またピックアップ等の補填作業時等に形状を保持するためには生体吸収性インプラントには少なくとも5Mpa以上の圧縮強度が必要であることを、この発明の発明者らは確認している。したがって、製造した生体吸収性インプラントの圧縮強度が20MPa以上である実施例1〜10並びに比較例2の生体吸収性インプラントは、補填作業時はもちろん、特異補填部への補填作業が完了するまで形状を保持できる。
7). Damage assessment of bioabsorbable implants When a bioabsorbable implant is press-fitted or filled using a metal instrument or the like to the specific filling part, the bioabsorbable implant is densely pressed deeply into the specific defect part without being damaged. Therefore, the bioabsorbable implant must have a compressive strength of at least 20 MPa, and the bioabsorbable implant must have a compressive strength of at least 5 MPa in order to maintain the shape during supplementary work such as pick-up. The inventors of the present invention have confirmed that this is the case. Therefore, the bioabsorbable implants of Examples 1 to 10 and Comparative Example 2 in which the compressive strength of the manufactured bioabsorbable implant is 20 MPa or more are shaped until the filling operation to the specific filling portion is completed as well as the filling operation. Can be held.

8.総合評価
製造した生体吸収性インプラントについて、骨結合能力の優越、及び、特異補填部への補填作業が完了するまで形状を保持できるか否かを基準にして、総合的に評価した。具体的には、優れた骨結合能力を発揮すると共に特異補填部への補填作業が完了するまで形状を保持できることが明らかに推測できる場合を「◎」、優れた骨結合能力を発揮する一方で、補填作業時等に形状を保持できるものの特異補填部への補填作業が完了するまで形状を保持できそうにないことが容易に推測される場合を「×」とし、特異補填部への補填作業が完了するまで形状を保持ものの、骨結合能力が明らかに劣る場合を「××」とした。その結果を第1表及び第2表に示す。
8). Comprehensive evaluation The manufactured bioabsorbable implant was comprehensively evaluated based on the superiority of the bone-binding ability and whether or not the shape could be maintained until completion of the supplementary work on the specific compensation part. Specifically, when demonstrating excellent bone bonding ability and clearly presuming that the shape can be maintained until the completion of the filling operation to the specific filling part, “◎”, while exhibiting excellent bone bonding ability If the shape can be retained at the time of compensation work, etc., but it is easily estimated that the shape cannot be retained until the compensation work for the singular compensation part is completed. Although the shape was maintained until the completion of the test, the case where the bone bonding ability was clearly inferior was designated as “XX”. The results are shown in Tables 1 and 2.

Figure 2013184878
Figure 2013184878

Figure 2013184878
Figure 2013184878

第1表及び第2表に示されるように、条件(1)〜(3)をすべて満足する実施例1〜10の生体吸収性インプラントは、いずれも、優れた骨結合能力を発揮するにもかかわらず補填作業が完了するまで形状を保持することができ、有用性が高いことがわかった。   As shown in Tables 1 and 2, the bioabsorbable implants of Examples 1 to 10 that satisfy all of the conditions (1) to (3) all exhibit excellent bone bonding ability. Regardless, it was found that the shape can be maintained until the filling operation is completed, which is highly useful.

1 生体吸収性インプラント
2 骨格部(固体部)
3 大径気孔
4 小径気孔
11 独立気孔
12 開気孔
13 連通開気孔
14 連通部
1 Bioabsorbable implant 2 Skeletal part (solid part)
3 Large-diameter pores 4 Small-diameter pores 11 Independent pores 12 Open pores 13 Communication open pores 14 Communication part

Claims (4)

生体吸収性セラミックスで形成され、下記条件(1)〜(3)を満足する多孔質構造を有することを特徴とする生体吸収性インプラント。
条件(1):水銀ポロシメータで測定した細孔分布において全気孔に対する3μm以上の細孔径を有する気孔の体積率が25%以上80%未満
条件(2):気孔率が30%以上40%未満
条件(3):直径10mm×高さ10mmの円柱体を試験片としたときの圧縮強度が20MPa以上
A bioabsorbable implant formed of a bioabsorbable ceramic and having a porous structure satisfying the following conditions (1) to (3).
Condition (1): The volume ratio of pores having a pore diameter of 3 μm or more with respect to all pores in the pore distribution measured with a mercury porosimeter is 25% or more and less than 80%. Condition (2): The porosity is 30% or more and less than 40%. (3): Compressive strength is 20 MPa or more when a cylindrical body having a diameter of 10 mm and a height of 10 mm is used as a test piece.
前記生体吸収性セラミックスは、β−リン酸三カルシウムであることを特徴とする請求項1に記載の生体吸収性インプラント。   The bioabsorbable implant according to claim 1, wherein the bioabsorbable ceramic is β-tricalcium phosphate. 生体吸収性セラミックスの顆粒を調製する顆粒調製工程と、
前記顆粒調製工程で得られた顆粒及び可燃性有機粒子を混合して顆粒混合物を得る顆粒混合工程と、
前記顆粒混合工程で得られた顆粒混合物をプレス成形して成形体を得る成形工程と、
前記成形工程で得られた成形体を焼成する焼成工程と、
を有し、
前記顆粒混合工程で混合される前記顆粒及び前記可燃性有機粒子は50%積算粒子径が共に100μm以上300μm未満であり、
前記顆粒混合工程における前記可燃性有機粒子の前記顆粒混合物に対する体積割合が20%以上40%未満であり、
前記成形工程におけるプレス成形の圧力が200kg/cm以上であることを特徴とする生体吸収性インプラントの製造方法。
A granule preparation process for preparing bioabsorbable ceramic granules;
A granule mixing step of mixing the granules obtained in the granule preparation step and the combustible organic particles to obtain a granule mixture;
A molding step for obtaining a molded body by press molding the granule mixture obtained in the granule mixing step;
A firing step of firing the molded body obtained in the molding step;
Have
The granules and the combustible organic particles mixed in the granule mixing step have a 50% cumulative particle diameter of both 100 μm or more and less than 300 μm,
The volume ratio of the combustible organic particles to the granule mixture in the granule mixing step is 20% or more and less than 40%,
A method for producing a bioabsorbable implant, wherein a pressure of press molding in the molding step is 200 kg / cm 2 or more.
前記生体吸収性セラミックスは、β−リン酸三カルシウムであることを特徴とする請求項3に記載の生体吸収性インプラントの製造方法。   The said bioabsorbable ceramics is (beta) -tricalcium phosphate, The manufacturing method of the bioabsorbable implant of Claim 3 characterized by the above-mentioned.
JP2012053618A 2012-03-09 2012-03-09 Bioabsorbable implant and method for producing the same Expired - Fee Related JP5846972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053618A JP5846972B2 (en) 2012-03-09 2012-03-09 Bioabsorbable implant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053618A JP5846972B2 (en) 2012-03-09 2012-03-09 Bioabsorbable implant and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013184878A true JP2013184878A (en) 2013-09-19
JP5846972B2 JP5846972B2 (en) 2016-01-20

Family

ID=49386641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053618A Expired - Fee Related JP5846972B2 (en) 2012-03-09 2012-03-09 Bioabsorbable implant and method for producing the same

Country Status (1)

Country Link
JP (1) JP5846972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196649A (en) * 2019-06-04 2020-12-10 学校法人千葉工業大学 Porous ceramics and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158175A (en) * 1986-01-07 1987-07-14 住友大阪セメント株式会社 Porous ceramic formed body for substitute bone and manufacture
JPH07194688A (en) * 1993-12-29 1995-08-01 Ngk Spark Plug Co Ltd Biomedical implant material and its manufacturing method
JP2001046490A (en) * 1999-08-10 2001-02-20 Ngk Spark Plug Co Ltd Manufacture of bioimplant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158175A (en) * 1986-01-07 1987-07-14 住友大阪セメント株式会社 Porous ceramic formed body for substitute bone and manufacture
JPH07194688A (en) * 1993-12-29 1995-08-01 Ngk Spark Plug Co Ltd Biomedical implant material and its manufacturing method
JP2001046490A (en) * 1999-08-10 2001-02-20 Ngk Spark Plug Co Ltd Manufacture of bioimplant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196649A (en) * 2019-06-04 2020-12-10 学校法人千葉工業大学 Porous ceramics and method for producing the same
WO2020246451A1 (en) * 2019-06-04 2020-12-10 学校法人千葉工業大学 Porous ceramic, and method for producing porous ceramic
CN113795474A (en) * 2019-06-04 2021-12-14 学校法人千叶工业大学 Porous ceramic and method for producing porous ceramic
JP7037157B2 (en) 2019-06-04 2022-03-16 学校法人千葉工業大学 Porous ceramics and manufacturing method of porous ceramics
CN113795474B (en) * 2019-06-04 2023-08-18 学校法人千叶工业大学 Porous ceramic and method for producing porous ceramic

Also Published As

Publication number Publication date
JP5846972B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
Sánchez-Salcedo et al. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
Descamps et al. Manufacture of macroporous β-tricalcium phosphate bioceramics
Dellinger et al. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering
Descamps et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural
Ghomi et al. Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties
Mbarki et al. Hydroxyapatite bioceramic with large porosity
WO2021039892A1 (en) Medical calcium carbonate composition, related medical compositions, and production methods therefor
Barinov et al. Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration
JP2021118906A (en) Bone substitute material
JP4699902B2 (en) Calcium phosphate ceramic porous body and method for producing the same
CN114761048B (en) Collagen matrix or particle blend of bone substitute material
JP5846972B2 (en) Bioabsorbable implant and method for producing the same
KR101397043B1 (en) Preparation Method of Porous Bone Substitutes
JP5783864B2 (en) Bioabsorbable implant and method for producing the same
Swain Processing of porous hydroxyapatite scaffold
JP6005046B2 (en) Porous body and method for producing porous body
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
JPH0415062A (en) Living body material with multiphase structure and its manufacture
KR20180055960A (en) A core-shell structured scaffold for hard tissue regeneration with two crystalline phase and preparing method thereof
Porsani et al. Beta-phosphate tricalcium colloidal processing
JP5793045B2 (en) Method for producing ceramic porous body
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material
Bakunova et al. A method of fabrication of porous carbonated hydroxyapatite scaffolds for bone tissue engineering
JP2004284898A (en) Calcium phosphate porous body and method of manufacturing the same
JP2011125653A (en) Composite biological material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees