JP2011125653A - Composite biological material - Google Patents

Composite biological material Download PDF

Info

Publication number
JP2011125653A
JP2011125653A JP2009299466A JP2009299466A JP2011125653A JP 2011125653 A JP2011125653 A JP 2011125653A JP 2009299466 A JP2009299466 A JP 2009299466A JP 2009299466 A JP2009299466 A JP 2009299466A JP 2011125653 A JP2011125653 A JP 2011125653A
Authority
JP
Japan
Prior art keywords
calcium phosphate
metal wire
porous body
composite biomaterial
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299466A
Other languages
Japanese (ja)
Inventor
Hideyuki Kawazu
秀行 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CATALYMEDIC Inc
Original Assignee
CATALYMEDIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CATALYMEDIC Inc filed Critical CATALYMEDIC Inc
Priority to JP2009299466A priority Critical patent/JP2011125653A/en
Publication of JP2011125653A publication Critical patent/JP2011125653A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in that a crystalline calcium phosphate fine powder is added with a deflocculant and a forming agent and mixed together, and the deflocculant and the forming agent are decomposed and disappear by heating with an electric furnace after drying the mixture to make a calcium phosphate porous body having fine pores, and the porous body made in this process has a brittle property as a ceramic weakness, and it causes breakage or fracture during or after compensating a product for a living body. <P>SOLUTION: The aim is that the weakness of ceramics is compensated and breakage and fracture of a product is reduced for providing the product, and the crystalline calcium phosphate fine powder is added with a deflocculant and a forming agent and mixed together to make a slurry, and it is poured in an outer frame mold designed previously and dried, then it is heated by using an electric furnace to form a calcium phosphate porous body having fine pores, and at this time, a metallic wire material made of pure titanium or titanium alloy is buried in the slurry of calcium phosphate and dried to be a formed body and sintered for providing a composite biological material reinforced with the metallic wire material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、生体に埋植して使用される人工骨や人工関節、人工歯根、歯科用埋植材に好適な複合生体材料およびその製造方法に関するものである。  The present invention relates to a composite biomaterial suitable for artificial bones, artificial joints, artificial tooth roots, and dental implants used by being implanted in a living body, and a method for producing the same.

人工骨として使用される生体用材料としてのリン酸カルシウム化合物にはハイドロキシアパタイトを成分とするものと、β−リン酸三カルシウムを成分とするものがあり、前者のハイドロキシアパタイトは生体に補填後に骨と癒合し初期強度はあるが非吸収性であるのに対して、後者のβ−リン酸三カルシウムを原料とする人工骨は吸収性があり生体に補填後に自家骨に置換されるという特性を有している。  Calcium phosphate compounds as biomaterials used as artificial bones include hydroxyapatite as a component and β-tricalcium phosphate as a component. The former hydroxyapatite coalesces with bone after supplementing the living body. However, while the initial strength is non-absorbable, the latter artificial bone made from β-tricalcium phosphate has the property of being resorbable and being replaced with autologous bone after being supplemented to the living body. ing.

リン酸カルシウム化合物の粉末を形状を有した躯体とするには2種類の製法があり、リン酸カルシウムの原料粉末を固めた後に電気炉等を用いて高温で焼成し焼結反応によりセラミックスに硬化する方法と、リン酸カルシウムの原料粉末に水等を添加して、セメントや石膏と同様に水和反応によって硬化させる方法がある。  There are two types of manufacturing methods for forming a calcium phosphate compound powder into a shaped body, and after solidifying the calcium phosphate raw material powder, it is fired at a high temperature using an electric furnace or the like and cured to a ceramic by a sintering reaction; There is a method in which water or the like is added to calcium phosphate raw material powder and cured by a hydration reaction like cement and gypsum.

焼結反応によってリン酸カルシウム化合物を成分とする人工骨の製法には、リン酸カルシウム微粉末に解膠剤(気泡安定剤)を水溶液にしたものを添加し混合し、この混合液に起泡剤(界面活性剤)を添加して微細な空孔を有するスラリ状の多孔性流動体を調整し、この多孔性流動体を乾燥処理することによりリン酸カルシウムの骨格を有するリン酸カルシウム多孔形成体を作成し、その後、このリン酸カルシウム多孔形成体を電気炉などを用いた焼成により前期解膠剤と起泡剤を分解消失させ、1000〜1300℃まで昇温させて焼結によりセラミックスとし、リン酸カルシウム化合物の内部に気孔を持ったリン酸カルシウム多孔体を製造する方法を挙げることができる。この場合、100〜400μmの気孔を持った多孔体を作製することが可能である。(特許文献1)  For the production of artificial bones containing calcium phosphate compound as a component by sintering reaction, calcium phosphate fine powder made of peptizer (bubble stabilizer) in aqueous solution is added and mixed, and this mixture is mixed with foaming agent (surfactant) Agent) to prepare a slurry-like porous fluid having fine pores, and drying the porous fluid to produce a calcium phosphate porous body having a calcium phosphate skeleton. The calcium phosphate porous body was decomposed and disappeared from the previous peptizer and the foaming agent by firing with an electric furnace or the like, heated to 1000 to 1300 ° C. to be sintered into ceramics, and pores were formed inside the calcium phosphate compound. The method of manufacturing a calcium phosphate porous body can be mentioned. In this case, a porous body having 100 to 400 μm pores can be produced. (Patent Document 1)

或いは、焼結反応によるリン酸カルシウム多孔体の製造方法の別な例としては、ワックス系バインダーを含有しリン酸カルシウム系セラミックスの微粉末からなる顆粒予成体を所定直径の顆粒になるように粉砕して顆粒状成形体を得る工程と、リン酸カルシウム系セラミックスの微粉末からなる水性発泡スラリに前期顆粒状成形体が分散するように混合する工程と、前期顆粒状成形体を混合した前期水性発泡スラリを所望形状の型に流し込んだ後、乾燥させて焼成する工程を具備することを特徴とする生体材料の製造方法を挙げることができる。(特許文献2)  Alternatively, as another example of a method for producing a calcium phosphate porous body by a sintering reaction, a granule preform containing a wax binder and made of fine powder of calcium phosphate ceramic is pulverized into granules having a predetermined diameter. A step of obtaining a molded body, a step of mixing so that the granular molded body is dispersed in an aqueous foamed slurry made of fine powder of calcium phosphate ceramics, and an aqueous foam slurry having a desired shape mixed with the previous granular molded body Examples thereof include a method for producing a biomaterial characterized by comprising a step of pouring into a mold, drying and firing. (Patent Document 2)

水和反応によるリン酸カルシウム化合物の製法としては、第二リン酸カルシウムと、第四リン酸カルシウム及び/またはα−リン酸三カルシウムとの混合粉末に水を添加してスラリ状とし、その後水和反応により自己硬化をさせて水硬性のリン酸カルシウム化合物を得る方法がある。(例えばFC REPORT,vol.6(1988),p475〜480「バイオセラミックスとしての水硬性アパタイト」)  As a method for producing a calcium phosphate compound by a hydration reaction, water is added to a mixed powder of dicalcium phosphate and quaternary calcium phosphate and / or α-tricalcium phosphate to form a slurry, followed by self-curing by a hydration reaction. There is a method of obtaining a hydraulic calcium phosphate compound. (For example, FC REPORT, vol. 6 (1988), p475-480 “hydraulic apatite as bioceramics”)

これらの方法で作られたリン酸カルシウム化合物の硬化体は生体との親和性に優れることから、人工骨や人工歯根等の生体材料として既に実用化されている。  A cured product of a calcium phosphate compound produced by these methods is already in practical use as a biomaterial such as an artificial bone or an artificial tooth root because of its excellent affinity with a living body.

特開昭63−40782号 公報JP 63-40782 A 特開平5−237178号 公報JP-A-5-237178 特開平2−44054号 公報JP-A-2-44054 特開2001−309970 公報JP 2001-309970 A 特開2004−67547 公報JP 2004-67547 A 特開2006−150431 公報JP 2006-150431 A

発明が解決しようとする課題Problems to be solved by the invention

しかしながら従来のリン酸カルシウム化合物は、外力に対して十分な強度が得られず脆いとの欠点があり、その結果、外科手術の際の生体への埋植時に、あるいは生体に埋植された後に折損や破損が生じていた。  However, the conventional calcium phosphate compound has the disadvantage that sufficient strength against external force is not obtained and is brittle, and as a result, breakage or damage after being implanted in the living body during surgery or after being implanted in the living body. Damage has occurred.

また、多孔性流動体を所定の型に流し込み乾燥した後、電気炉等で1000〜1300℃の高温で焼成して、焼結によりセラミックスとする製造方法において、焼結前と焼結後では製品寸法に約10%程度の収縮が生じることから、形状寸法にひずみが生じ、流し込みに用いた型に対する転写性が悪くなり、焼結後の製品には仕上げ工程としての2次加工の必要があり、コストの上昇をまねいていた。  In addition, in a manufacturing method in which a porous fluid is poured into a predetermined mold and dried, and then fired at a high temperature of 1000 to 1300 ° C. in an electric furnace or the like to obtain ceramics by sintering. Since shrinkage of about 10% occurs in the dimensions, the shape dimensions are distorted, the transferability to the mold used for pouring deteriorates, and the sintered product requires secondary processing as a finishing process. , Mimicking the cost increase.

この欠点を解決する従来技術として、リン酸四カルシウムとα−リン酸三カルシウムとの混合粉末体を水和反応で硬化させるときに、該混合粉末に炭素繊維などの線材を混入して補強することを特徴とする水硬性の自己硬化型リン酸カルシウムを挙げることができる。(特許文献3)  As a conventional technique for solving this drawback, when a mixed powder of tetracalcium phosphate and α-tricalcium phosphate is cured by a hydration reaction, the mixed powder is reinforced by mixing a wire such as carbon fiber. Examples thereof include hydraulic self-curing calcium phosphate. (Patent Document 3)

別な、従来技術として、アパタイトを主体とする水硬性の自己硬化型のマトリクス中に不織布または織布状の無機質繊維を充填してなることを特徴とする生体材料を挙げることができる。(特許文献4)  Another prior art is a biomaterial characterized by filling a non-woven or woven inorganic fiber in a hydraulic self-curing matrix mainly composed of apatite. (Patent Document 4)

上記2方法で作成される水硬性のリン酸カルシウムは、水和反応によりハイドロキシアパタイトへ硬化し、非吸収性の生体材料となる。  The hydraulic calcium phosphate prepared by the above two methods is cured into hydroxyapatite by a hydration reaction, and becomes a non-absorbable biomaterial.

また人工骨は、周囲の組織との親和性を保つために、材料内部に細胞が侵入し易いように気孔を持った多孔体であることが推奨されているが、上記2方法に用いられた水硬性の自己硬化型で作られたリン酸カルシウムでは、硬化後に気孔を形成するのが困難であり、直径100〜400μmの気孔形状を持った多孔体とすることが出来なかったことが知られている。  The artificial bone is recommended to be a porous body having pores so that cells can easily enter the material in order to maintain affinity with surrounding tissues. It is known that calcium phosphate made of a hydraulic self-curing type is difficult to form pores after curing and cannot be made into a porous body having a pore shape with a diameter of 100 to 400 μm. .

これらのように水和反応による水硬性のリン酸カルシウムは、該材料内部に気孔を持たないため周囲組織との親和性が悪い材料となり、該材料内に炭素繊維や織布状の無機質繊維を混入あるいは充填して強度を高めても、人工骨としての有用性が低い生体材料となる。  As described above, hydraulic calcium phosphate by hydration reaction does not have pores inside the material, and thus has a poor affinity with surrounding tissues, and carbon fiber or woven inorganic fibers are mixed in the material. Even if the strength is increased by filling, the biomaterial is less useful as an artificial bone.

課題を解決するための手段Means for solving the problem

本発明は、リン酸カルシウム微粉末を焼結させてリン酸カルシウム多孔体を製造する際に、該リン酸カルシウム微粉末に液状の解膠剤(気泡安定剤)と起泡剤(界面活性剤)を混ぜて撹拌混合にて起泡して多孔性流動体を調整し、多孔性流動体を鋳込むため外枠型を用意し、ここで該外枠型はリン酸カルシウム多孔体が焼結後に所望の形を持った形状となるように計画された形を呈している、少なくとも2本以上の純チタン又はチタン合金製の金属線材を予め決められた形状に加工し、加工された該金属線材を外枠型に設置し、外枠型の内部に該多孔性流動体を該金属線材のほぼ全体が埋入するように流し込み、流し込まれた多孔性流動体を乾燥させリン酸カルシウムの躯体を有する乾燥体とし、外枠型から該乾燥体を取り出し、該乾燥体を電気炉などを用いて300℃/hr程度の昇温速度で焼成し、前期解膠剤と起泡剤を分解消失させ、1000〜1300℃程度まで昇温してセラミックスに焼結し、リン酸カルシウム多孔体内部に金属線材が埋入されて一体となった複合生体材料とする。  In the present invention, when a calcium phosphate fine powder is produced by sintering calcium phosphate fine powder, a liquid peptizer (bubble stabilizer) and a foaming agent (surfactant) are mixed and stirred in the calcium phosphate fine powder. Prepare an outer frame mold for foaming and adjusting the porous fluid, and casting the porous fluid, where the outer frame mold has a desired shape after the calcium phosphate porous body is sintered At least two or more pure titanium or titanium alloy metal wires having a shape planned to be processed into a predetermined shape, and the processed metal wires are installed in an outer frame mold. Then, the porous fluid is poured into the outer frame mold so that almost the whole of the metal wire is embedded, and the poured porous fluid is dried to obtain a dry body having a calcium phosphate casing, from the outer frame mold. Take out the dried body and remove the dried body. Baking at a heating rate of about 300 ° C./hr using an air furnace, etc., disintegrating and eliminating the deflocculant and foaming agent, raising the temperature to about 1000 to 1300 ° C. to sinter into ceramics, porous calcium phosphate A composite biomaterial in which a metal wire is embedded in the body is integrated.

前記において、純チタンまたはチタン合金製の金属線材の加工とは、金属線材の曲げ加工や金属線材同志の溶接、金属線材同志の結束を含むものである。  In the above, processing of a metal wire made of pure titanium or a titanium alloy includes bending of a metal wire, welding of metal wires, and binding of metal wires.

前記の多孔性流動体の内部に純チタン又はチタン合金製の金属線材が埋入された状態において、該金属線材の溶接部や結束分を除いて、該金属線材同志の隙間が1.2mm以上となるような位置関係で金属線材を配置する。  In the state where the metal wire made of pure titanium or titanium alloy is embedded in the porous fluid, the gap between the metal wires is 1.2 mm or more except for the welded portion and the bundle of the metal wire. The metal wires are arranged in such a positional relationship as follows.

前記の純チタン又はチタン合金製の金属線材の表面に、あらかじめハイドロキシアパタイトの薄膜コーティングを行ったものでもよく、これによってリン酸カルシウムと金属線材との密着強度を増すことができ、剥離防止ができる。  The surface of the metal wire made of pure titanium or titanium alloy may be preliminarily coated with a thin film of hydroxyapatite, whereby the adhesion strength between calcium phosphate and the metal wire can be increased, and peeling can be prevented.

前記において、金属線材の埋入する方法として、多孔性流動体を外枠型に流し込み、多孔性流動体が乾燥硬化する前に、多孔性流動体の内部に金属線材を浸漬させる方法でも良い。  In the above, the method of embedding the metal wire may be a method of pouring the porous fluid into the outer frame mold and immersing the metal wire in the porous fluid before the porous fluid is dried and cured.

前期において、外枠型を加熱により分解あるいは消失される素材で作成した場合は、外枠型ごと、電気炉等で加熱することができる。  In the previous period, when the outer frame mold is made of a material that decomposes or disappears by heating, the outer frame mold can be heated in an electric furnace or the like.

ここで用いる純チタンあるいはチタン合金製の金属線材の直径が0.21mmよりも細いと該多孔性流動体に埋入するときに変形してしまい、金属線材を予め決められた形状に保った状態で埋入するのが困難であり、また直径が2.6mmより太い場合は該金属線材を曲げる必要が出た時に曲げ加工が困難である。従って、金属線材の太さは0.21mm以上で2.6mm以下がよい。  When the diameter of the metal wire made of pure titanium or titanium alloy used here is thinner than 0.21 mm, the metal wire is deformed when embedded in the porous fluid, and the metal wire is kept in a predetermined shape. In the case where the diameter is larger than 2.6 mm, it is difficult to bend when the metal wire needs to be bent. Therefore, the thickness of the metal wire is preferably 0.21 mm or more and 2.6 mm or less.

リン酸カルシウム微粉末の質量をWp、該金属線材の質量をWtとした場合の質量比をWt/Wpとした場合、Wt/Wpが3%より低いと、金属線材を埋入した十分な効果が得られず、Wt/Wpが50%より高いと気孔の分布が均一とならず、製造することが困難である。従って、質量比Wt/Wpは3%以上で50%以下とするのが良い。  When the mass ratio of the calcium phosphate fine powder is Wp and the mass ratio of the metal wire is Wt, and the weight ratio is Wt / Wp, if Wt / Wp is lower than 3%, a sufficient effect of embedding the metal wire is obtained. If Wt / Wp is higher than 50%, the distribution of pores is not uniform and it is difficult to manufacture. Therefore, the mass ratio Wt / Wp is preferably 3% or more and 50% or less.

ここで用いる純チタンあるいはチタン合金製の金属線材の断面形状は円形に限定されず、異形断面を持った金属線材でもよい。  The cross-sectional shape of the metal wire made of pure titanium or titanium alloy used here is not limited to a circle, and may be a metal wire having an irregular cross section.

リン酸カルシウムと、純チタンあるいはチタン合金製の金属線材の高温領域での熱膨張係数はほぼ近似の値であるため、さらに高温領域では該金属線材の縦弾性係数(ヤング率)が低下するため、電気炉等による常温から1000〜1300℃までの温度変化において熱膨張率の違いによるクラックや異種材料間の剥離等の問題発生も起きにくい。  Since the thermal expansion coefficient at high temperatures of calcium phosphate and pure titanium or titanium alloy metal wires is almost an approximate value, the longitudinal elastic modulus (Young's modulus) of the metal wires decreases at higher temperatures. Occurrence of problems such as cracks due to the difference in thermal expansion coefficient and separation between different materials in a temperature change from room temperature to 1000 to 1300 ° C. by a furnace or the like hardly occurs.

発明の効果The invention's effect

リン酸カルシウム微粉末に液状の解膠剤(気泡安定剤)と起泡剤(界面活性剤)を混ぜてスラリ状の多孔性流動体を調整し、該多孔性流動体に純チタンあるいはチタン合金製の金属線材を埋入し、その後、この多孔性流動体を乾燥処理することにより乾燥体を作製し、この乾燥体を電気炉など焼成してセラミックスとすることで、気孔径100〜400μmの気孔を有しながら、金属線材と一体となったリン酸カルシウム多孔体の複合生体材料ができた。  A liquid peptizer (bubble stabilizer) and a foaming agent (surfactant) are mixed with calcium phosphate fine powder to prepare a slurry-like porous fluid, and the porous fluid is made of pure titanium or a titanium alloy. A metal wire is embedded, and then the porous fluid is dried to produce a dried body. The dried body is fired into an electric furnace or the like to form a ceramic, thereby forming pores having a pore diameter of 100 to 400 μm. A composite biomaterial of a calcium phosphate porous body integrated with a metal wire was obtained.

リン酸カルシウム多孔体に純チタンあるいはチタン合金製の金属線材を埋入させることで、焼結後のセラミックスの躯体の強度が向上し、その結果、生体への埋植時に、あるいは生体に埋植した後に生じる折損や破損を減らせる、従来品よりも強度のあるリン酸カルシウム多孔体の複合生体材料ができた。  By embedding a pure titanium or titanium alloy metal wire in the calcium phosphate porous body, the strength of the ceramic body after sintering is improved, and as a result, after being implanted in a living body or after being implanted in a living body. A composite biomaterial with a calcium phosphate porous body that is stronger than conventional products and that can reduce the breakage and breakage that has occurred has been made.

リン酸カルシウム粉末に解膠剤や起泡剤を添加し混合撹拌して得られた多孔性流動体を、純チタンあるいはチタン合金製の金属線材を予め決められた形状に加工し、該金属線材を予め用意した外枠型に設置し、ここで該外枠型はリン酸カルシウム多孔体が焼結後に所望の形を持った形状となるように計画された形を呈している、該外枠型の内部に該多孔性流動体を流し込み、流し込まれた多孔性流動体を乾燥させて乾燥体とし、該乾燥体を電気炉で焼成してセラミックスに焼結したリン酸カルシウム多孔体を、焼成前と焼成後の形状を測定した結果、収縮率が小さく、流し込みに使用した外枠型に対する転写性が良く、焼結後の2次加工を減らせることを特徴とする金属線材が埋入されたリン酸カルシウム多孔体の複合生体材料ができた。  A porous fluid obtained by adding a peptizer and a foaming agent to calcium phosphate powder and mixing and stirring is processed into a predetermined shape with a metal wire made of pure titanium or titanium alloy, and the metal wire is preliminarily processed. Installed in the prepared outer frame mold, wherein the outer frame mold has a shape planned so that the calcium phosphate porous body has a desired shape after sintering, inside the outer frame mold The porous fluid is poured, the poured porous fluid is dried to obtain a dried body, and the calcium phosphate porous body sintered in ceramics by firing the dried body in an electric furnace is shaped before firing and after firing. As a result of measurement, a composite of a calcium phosphate porous body embedded with a metal wire characterized by a small shrinkage ratio, good transferability to the outer frame mold used for pouring, and reduced secondary processing after sintering A biomaterial was made.

多孔性流動体の内部に純チタン又はチタン合金製の金属線材が埋入された状態において、金属線材同志の隙間が1.2mm以上となるような位置関係で金属線材が配置されているため、金属線材によってリン酸カルシウム多孔体が分断されて亀裂が入ることを防ぐことができた。  In a state where a metal wire made of pure titanium or titanium alloy is embedded inside the porous fluid, the metal wire is arranged in such a positional relationship that the gap between the metal wires is 1.2 mm or more. It was possible to prevent the calcium phosphate porous body from being divided and cracked by the metal wire.

リン酸カルシウム多孔体がβ−リン酸三カルシウムの多孔体の場合、該複合生体材料で作られた人工骨は生体に補填後に吸収されて自家骨に置換されるが、その過程で新生骨の血管あるいは毛細血管が発現し人工骨内部まで進展されるが、該人工骨の内部に埋入された金属線材同志の隙間が1.2mm以上あるため、進展が容易で新生骨再生の支障とならない。これによって新たに生体内に作られた新生骨の内部に該金属線材が埋入された状態となり、新生骨を補強することが期待できる。  When the calcium phosphate porous body is a porous body of β-tricalcium phosphate, the artificial bone made of the composite biomaterial is absorbed into the living body and then replaced with autologous bone. Capillaries develop and progress to the inside of the artificial bone, but since the gap between the metal wires embedded in the artificial bone is 1.2 mm or more, the progress is easy and does not hinder the regeneration of new bone. As a result, the metal wire is embedded in the newly formed bone newly formed in the living body, and it can be expected to reinforce the newly formed bone.

粒径が0.3μm以下のβ−リン酸三カルシウム微粉末10gに解膠剤として10%ポリアクリル酸アンモニウム塩を10cc加えて混合した。つづいて、起泡剤としてポリオキシエチレンノニルファニルエーテルを1.8g添加した後、攪拌機を用いて均一に起泡するように混合攪拌し多孔性流動体とした。直径0.6mmの純チタンの金属線材を4本用意し、図2の形状を持った厚紙製の外枠型の内部に設置した。この外枠に多孔性流動体を流し込み、ひきつづき恒温恒湿槽に入れ、40℃の雰囲気中で20時間乾燥した。乾燥後、外枠型から乾燥体を取り外し、該乾燥体をアルミナ製容器に移し、300℃/毎時の昇温速度で300℃まで昇温し、300℃で2時間の滞留を行い、その後300℃/毎時の昇温速度で1000℃まで昇温し、1000℃で40分間保持し焼結を行なった。  10 cc of 10% ammonium polyacrylate as a peptizer was added to and mixed with 10 g of fine β-tricalcium phosphate powder having a particle size of 0.3 μm or less. Subsequently, 1.8 g of polyoxyethylene nonylphanyl ether was added as a foaming agent, and then mixed and stirred using a stirrer so as to foam uniformly to obtain a porous fluid. Four pure titanium metal wires having a diameter of 0.6 mm were prepared and installed inside a cardboard outer frame mold having the shape of FIG. A porous fluid was poured into the outer frame, followed by placing in a constant temperature and humidity chamber and drying in an atmosphere at 40 ° C. for 20 hours. After drying, the dried body is removed from the outer frame mold, and the dried body is transferred to an alumina container. The temperature was raised to 1000 ° C. at a rate of temperature rise / ° C./hour and held at 1000 ° C. for 40 minutes for sintering.

焼結後のβ−リン酸三カルシウムのセラミックスは気孔径が100〜400μmで気孔率が75%の多孔体で、内部に純チタンの金属線が埋入されていた。また、X線回折の結果、かかる多孔体は出発原料と同じβ−リン酸三カルシウムの結晶構造を有していた。  The sintered β-tricalcium phosphate ceramic was a porous body having a pore diameter of 100 to 400 μm and a porosity of 75%, and a metal wire of pure titanium was embedded therein. As a result of X-ray diffraction, the porous body had the same β-tricalcium phosphate crystal structure as the starting material.

該多孔体の両端を保持して、真中に負荷をかけて曲げ試験を行ったところ、金属線材を埋入しない物と比較して、強度が高まった。また、焼結後の形状寸法が安定し2次加工を必要としなかった。  When both ends of the porous body were held and a bending test was performed by applying a load in the middle, the strength was increased compared to a material in which the metal wire was not embedded. Moreover, the shape dimension after sintering was stable and secondary processing was not required.

全体の製造工程は実施例1と同じで、外枠型は焼結後の躯体形状が図3の形状になるように計画された形で作られ、その内部に曲げ加工を加えた直径0.8mmのチタン合金製の金属線材4本を、多孔性流動体に埋入させた後、乾燥後に焼成して、リン酸三カルシウム多孔体とチタン金属線材が一体化した複合生体材料とした。  The entire manufacturing process is the same as in Example 1, and the outer frame mold is made in a shape planned so that the shape of the casing after sintering becomes the shape shown in FIG. Four metal wires made of a titanium alloy of 8 mm were embedded in a porous fluid and then fired after drying to obtain a composite biomaterial in which the tricalcium phosphate porous material and the titanium metal wire were integrated.

全体の製造工程は実施例1と同じで、直径1.2mmの純チタン製の金属線材に曲げ加工を加え、それを30°間隔で12本を円筒状に配置し、上下に輪状の金属線材を溶接することにより、全体が1個の円筒形状をなすケージ状(カゴ状)に加工した線材を用い、多孔性流動体に埋入させた後、乾燥後に焼成することにより、リン酸三カルシウム多孔体とチタン金属線材製ケージが一体化した複合生体材料とした。図4に形状を示す。  The entire manufacturing process is the same as that of Example 1, bending is performed on a metal wire made of pure titanium having a diameter of 1.2 mm, 12 pieces are arranged in a cylindrical shape at intervals of 30 °, and a ring-shaped metal wire is formed vertically. By using a wire processed into a cage shape (cage shape) that forms a single cylindrical shape by welding, a tricalcium phosphate is prepared by embedding it in a porous fluid and then firing it after drying. A composite biomaterial in which a porous body and a cage made of a titanium metal wire were integrated. The shape is shown in FIG.

実施例1の製造工程例  Example of manufacturing process of Example 1 実施例1のPLFスティックの外枠型と製品  Outer frame mold and product of the PLF stick of Example 1 実施例2の棘突起スペーサと金属線材図  Example 2 Spinous process spacer and metal wire diagram 実施例3の2椎間スペーサと金属線材図  2 intervertebral spacer and metal wire diagram of Example 3

Claims (12)

リン酸カルシウム多孔体の内部に、少なくとも2本以上の純チタン又はチタン合金製の金属線材がほぼ全体が埋め込まれ、その状態で焼結してセラミックスとした、リン酸カルシウム多孔体と金属線材が一体構造に形成された複合生体材料。  At least two or more pure titanium or titanium alloy metal wires are embedded in the inside of the calcium phosphate porous body, and sintered in this state to form ceramics, the calcium phosphate porous body and the metal wire are formed in an integrated structure Composite biomaterial. 請求項1のリン酸カルシウム多孔体がハイドロキシアパタイトおよびβ−トリカルシウムフォスフェート(β−リン酸三カルシウム)から選ばれる少なくとも1種であることを特徴とする複合生体材料。  A composite biomaterial, wherein the calcium phosphate porous material according to claim 1 is at least one selected from hydroxyapatite and β-tricalcium phosphate (β-tricalcium phosphate). 請求項2のリン酸カルシウム多孔体が、気孔径のサイズが100〜400μの気孔があり、気孔率が40〜80%であることを特徴とする複合生体材料。  A composite biomaterial characterized in that the calcium phosphate porous body according to claim 2 has pores having a pore size of 100 to 400 µm and a porosity of 40 to 80%. 請求項1、請求項2、請求項3のリン酸カルシウム多孔体に純チタン又はチタン合金製の金属線材を埋入した複合生体材料において、該金属線材の直径が0.21mm以上で2.6mm以下の太さの金属線材であることを特徴とする複合生体材料。  A composite biomaterial in which a pure titanium or titanium alloy metal wire is embedded in the calcium phosphate porous body according to claim 1, claim 2, or claim 3, wherein the metal wire has a diameter of 0.21 mm to 2.6 mm. A composite biomaterial characterized by being a metal wire having a thickness. 請求項4のリン酸カルシウム多孔体に純チタン又はチタン合金製の金属線材を埋入した複合生体材料において、該金属線材をリン酸カルシウムに埋入する前に該金属線材の表面にハイドロキシアパタイトの薄膜がコーティングされていることを特長とする複合生体材料。  5. The composite biomaterial in which pure titanium or a titanium alloy metal wire is embedded in the calcium phosphate porous body according to claim 4, wherein a surface of the metal wire is coated with a hydroxyapatite thin film before the metal wire is embedded in calcium phosphate. A composite biomaterial characterized by 請求項4のリン酸カルシウム多孔体に純チタン又はチタン合金製の金属線材を埋入した複合生体材料において、該リン酸カルシウム多孔体が純チタン又はチタン合金製の金属繊維が混入された複合材料であることを特徴とする複合生体材料。  The composite biomaterial in which pure calcium or titanium alloy metal wire is embedded in the calcium phosphate porous body according to claim 4, wherein the calcium phosphate porous body is a composite material in which pure titanium or titanium alloy metal fibers are mixed. Characteristic composite biomaterial. 請求項4のリン酸カルシウム多孔体に純チタン又はチタン合金製の金属線材を埋入した複合生体材料において、リン酸カルシウムの質量をWpとし金属線材の質量をWtとした場合に質量比Wt/Wpが、3%以上で50%以下であることを特徴とした複合生体材料。  In the composite biomaterial in which pure titanium or a titanium alloy metal wire is embedded in the calcium phosphate porous body according to claim 4, when the mass of calcium phosphate is Wp and the mass of the metal wire is Wt, the mass ratio Wt / Wp is 3 A composite biomaterial characterized by being no less than 50% and no more than 50%. 請求項4のリン酸カルシウム多孔体に埋入された純チタン又はチタン合金の金属線材が、金属線材の溶接部や結束部を除き、金属線材同志の隙間が1.2mm以上となるような位置関係で金属線材が配置されていることを特徴とする複合生体材料。  The metal wire of pure titanium or titanium alloy embedded in the calcium phosphate porous body according to claim 4 is in a positional relationship such that the gap between the metal wires is 1.2 mm or more except for the welded portion and the bundled portion of the metal wire. A composite biomaterial in which a metal wire is disposed. 請求項8のリン酸カルシウム多孔体内部に埋入された純チタン又はチタン合金製の金属線材が、リン酸カルシウム多孔体の躯体の周辺部分には密に分布され、中心部分には疎に分布されて配置されたことを特徴とする複合生体材料。  The metal wire made of pure titanium or titanium alloy embedded in the calcium phosphate porous body according to claim 8 is densely distributed in the peripheral portion of the calcium phosphate porous body and sparsely distributed in the central portion. A composite biomaterial characterized by the above. 請求項4において純チタン又はチタン合金製の金属線材が一部分あるいは全体において、線材同志が交差して網目状に配置されていることを特徴とする複合生体材料。  5. The composite biomaterial according to claim 4, wherein the metal wire made of pure titanium or titanium alloy is partially or entirely disposed so as to intersect with each other in a mesh shape. リン酸カルシウムの微粉末に解膠剤(気泡安定剤)及び起泡剤(界面活性剤)を適量添加し撹拌機で撹拌混合により起泡してスラリ状の多孔性流動体とする工程;
純チタン又はチタン合金製の金属線材を予め決められた形状に構築する工程;
予め計画された形状に作られた鋳造用の外枠型を用意する工程;
構築された該金属線材を予め用意した該外枠型に設置する工程;
該金属線材が設置された該外枠型の内部に隙間なく該多孔性流動体を流し込むと同時に、金属線材を埋入する工程;
該多孔性流動体を乾燥させ乾燥体とする工程;
および該乾燥体を電気炉等で焼成し、解膠剤と起泡剤を分解消失させ、1000〜1300℃まで昇温させてセラミックスとして焼結を行う複合生体材料の製造方法。
A step of adding appropriate amounts of a peptizer (bubble stabilizer) and a foaming agent (surfactant) to a fine powder of calcium phosphate, and foaming by stirring and mixing with a stirrer to form a slurry-like porous fluid;
Constructing a metal wire made of pure titanium or titanium alloy into a predetermined shape;
Preparing an outer frame mold for casting made in a pre-planned shape;
Installing the constructed metal wire in the outer frame mold prepared in advance;
A step of pouring the porous fluid into the outer frame mold in which the metal wire is installed without gaps and simultaneously embedding the metal wire;
Drying the porous fluid to form a dry body;
And a method for producing a composite biomaterial in which the dried body is fired in an electric furnace or the like, the peptizer and the foaming agent are decomposed and disappeared, and the temperature is raised to 1000 to 1300 ° C. to sinter as ceramics.
請求項11において、リン酸カルシウムの微粉末がβ−リン酸三カルシウムの微粉末で、焼成温度の上限値を1000〜1150℃としたことを特徴とする複合生体材料の製造方法。  The method for producing a composite biomaterial according to claim 11, wherein the fine powder of calcium phosphate is a fine powder of β-tricalcium phosphate, and the upper limit of the firing temperature is 1000 to 1150 ° C.
JP2009299466A 2009-12-21 2009-12-21 Composite biological material Pending JP2011125653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299466A JP2011125653A (en) 2009-12-21 2009-12-21 Composite biological material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299466A JP2011125653A (en) 2009-12-21 2009-12-21 Composite biological material

Publications (1)

Publication Number Publication Date
JP2011125653A true JP2011125653A (en) 2011-06-30

Family

ID=44288899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299466A Pending JP2011125653A (en) 2009-12-21 2009-12-21 Composite biological material

Country Status (1)

Country Link
JP (1) JP2011125653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173788A (en) * 2014-03-14 2015-10-05 学校法人千葉工業大学 Sintered ceramic biomaterial and manufacturing method thereof
CN113336522A (en) * 2021-06-10 2021-09-03 昆明理工大学 Blast furnace titanium slag-based porous phosphate material and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173788A (en) * 2014-03-14 2015-10-05 学校法人千葉工業大学 Sintered ceramic biomaterial and manufacturing method thereof
CN113336522A (en) * 2021-06-10 2021-09-03 昆明理工大学 Blast furnace titanium slag-based porous phosphate material and application thereof
CN113336522B (en) * 2021-06-10 2022-09-06 昆明理工大学 Blast furnace titanium slag-based porous phosphate material and application thereof

Similar Documents

Publication Publication Date Title
Descamps et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural
CA2359488C (en) Inorganic shaped bodies and methods for their production and use
Suwanprateeb et al. Influence of printing parameters on the transformation efficiency of 3D‐printed plaster of paris to hydroxyapatite and its properties
JP2003506193A (en) Composite molded body and method for producing and using the same
KR101357673B1 (en) The scaffold composition for regeneration of hard tissue having magnesium phosphate, scaffold for regeneration of hard tissue comprising the same and preparation methods thereof
CN111465419B (en) Bone substitute material
JP2021118906A (en) Bone substitute material
Wong et al. Functionally graded tricalcium phosphate/fluoroapatite composites
Karashima et al. Fabrication of low‐crystallinity hydroxyapatite foam based on the setting reaction of α‐tricalcium phosphate foam
García-Páez et al. Processing and in vitro bioactivity of a β-Ca3 (PO4) 2–CaMg (SiO3) 2 ceramic with the eutectic composition
CN102633497B (en) The biphase ceramics of dicalcium phosphate pottery, dicalcium phosphate and oxyhydrogen-base apatite and manufacture method thereof
JP4699902B2 (en) Calcium phosphate ceramic porous body and method for producing the same
JP2011125653A (en) Composite biological material
EP3946488B1 (en) Collagen matrix or granulate blend of bone substitute material
JP2000169251A (en) Production of ceramic complex and ceramic complex
Swain Processing of porous hydroxyapatite scaffold
JP2001314497A (en) Composition of matter for biomaterial and hardened body thereof
JP5783864B2 (en) Bioabsorbable implant and method for producing the same
JP2011110388A (en) Composite biological material
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material
RU2700770C2 (en) Method for making matrices based on low-temperature modifications of calcium phosphates for bone engineering
JP5846972B2 (en) Bioabsorbable implant and method for producing the same
JP2898331B2 (en) Bioactive implant material
CN103641466B (en) Stephanoporate calcium polyphosphate biomaterial preparation method
WO1993013030A1 (en) Fiber-reinforced calcium phosphate compound ceramics and process for their production