JP2013182313A - ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム - Google Patents

ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム Download PDF

Info

Publication number
JP2013182313A
JP2013182313A JP2012043961A JP2012043961A JP2013182313A JP 2013182313 A JP2013182313 A JP 2013182313A JP 2012043961 A JP2012043961 A JP 2012043961A JP 2012043961 A JP2012043961 A JP 2012043961A JP 2013182313 A JP2013182313 A JP 2013182313A
Authority
JP
Japan
Prior art keywords
state
suspend
power
job processing
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012043961A
Other languages
English (en)
Inventor
Yuichi Konosu
裕一 鴻巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012043961A priority Critical patent/JP2013182313A/ja
Priority to US13/779,555 priority patent/US9423857B2/en
Publication of JP2013182313A publication Critical patent/JP2013182313A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3284Power saving in printer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1032Reliability improvement, data loss prevention, degraded operation etc
    • G06F2212/1036Life time enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/22Employing cache memory using specific memory technology
    • G06F2212/222Non-volatile memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0625Power saving in storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0634Configuration or reconfiguration of storage systems by changing the state or mode of one or more devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Facsimiles In General (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

【課題】システムを復帰させるまでの時間を延長することなく、かつ、書き込み制限に到達するまでの時間が短くならない省電力制御を実現する。
【解決手段】ユーザから電源のオフ指示を受け付けた後、オン状態より省電力状態となるサスペンド状態中、オン状態に復帰するための情報を第1の記憶手段に書き込む。さらに、第2の記憶手段に対する書き込み回数と、第2の記憶手段に対する書き換え単位とから書き換え可能回数のしきい値を算出する。そして、算出した書き換え可能回数のしきい値と、当該書き込み回数とから決定される値に基づいて、サスペンド状態からオフ状態へ移行するまでのサスペンド時間を可変設定する。そして、電源がオン状態からオフ状態に遷移した後、電源がオフ状態からオン状態に復帰する際に参照すべき第1の記憶手段に記憶された情報を第2の記憶手段に書き込んだ後、設定されたサスペンド時間が経過した後、電源をオフ状態に移行させる。
【選択図】図8

Description

本発明は、ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラムに関するものである。
ジョブ処理装置に組み込まれるシステムを構成するソフトウェア規模の増大化に伴い、電源スイッチの操作からシステムの起動が完了するまでの時間(システム起動時間)は増大する傾向にある。
この傾向は、コピー等を行う複合機においても同様であり、コピー、プリント、ファクシミリ等、機能が追加され増加することで起動時間は増大する。起動時間が増大に対する解決策として、サスペンド技術とハイバネーション技術が活用されている。
ここで、サスペンド技術(以下、サスペンド)とは、任意の時点におけるシステムの揮発性記憶装置(メモリ)上の情報を揮発性記憶装置自体が保持しておき、次回システム起動の際に、メモリ上の情報を読み出し、システムの状態を「保持した時の状態」に復元する技術のことである。
一方、ハイバネーション技術(以下、ハイバネーション)とは、任意の時点におけるシステムの揮発性記憶装置(メモリ)上の情報をハイバネーションイメージとして不揮発性記憶装置に退避保存しておき、次回システム起動の際に、退避保存しておいたハイバネーションイメージを揮発性記憶装置に書き戻すことによって、システムの状態を「退避保存時の状態」に復元する技術のことである。
一般に、揮発性記憶装置は不揮発性記憶装置よりアクセス速度が速いため、また書き戻しの時間がないため、サスペンド技術の方がハイバネーション技術より次回システム起動時間を短縮できる。
しかし、不揮発性記憶装置はシステムの電源を完全に落とすことができるが、揮発性記憶装置は情報保持のために、常時通電しておく必要があるので、ハイバネーションの方がサスペンド技術より省電力である。
そのため、両者の技術を併用することで次回システム起動時間の短縮と省電力を実現できる。
ここで、不揮発性記憶装置として、HDD(Hard Disk Drive)、フラッシュメモリベースの記憶媒体(SSD:Solid State Drive)、USB(Universal Serial Bus)メモリなど、以下総称してフラッシュメモリという)が考えられる。しかし、HDDはスピンアップに時間がかかるため、システム起動時間短縮の観点からは不利である。
また、システム起動に関する重要な情報を置くには、HDDは壊れやすく信頼性に劣るという課題がある。
一方、フラッシュメモリは初期化時間が短く壊れにくいという利点があるため、不揮発性記憶装置としては、フラッシュメモリが採用される傾向にある。
特開2010−218399号公報
しかしながら、不揮発性のメモリであるフラッシュメモリには、書き換え回数に上限が設定されている。
図10は、フラッシュメモリの1Block当たりの書き換え可能回数の特性図である。なお、本図において、縦軸は書き換え可能回数を示し、横軸はビット/ブロックを示す。
ここで、1Blockに記憶するビット数が、1ビットのものをSLC型(Single Level Cell)601という。また、2ビットのものをMLC型(Multiple Level Cell)602、3ビットのものをTLC型(Triple Level Cell)603という。
また、5xnm604、3xnm605、2xnm606は、半導体製造プロセスを表していて、数値が小さいほど高集積化、低電圧化が可能だが、高コスト、耐電圧が低下する。ここでは、市場の主流であるSLC型とMLC型について説明する。
図10より、SLC型は、MLC型に比べ、1Block当たりの書き換え可能回数が多い。しかし、MLC型の方が、SLC型に比べ、1Block当たりの記憶容量が多い。
そのため、MLC型の方が、同じBlock数(体積)ならば大容量化でき、同じ容量なら低価格化が可能となるため、将来的にはMLC型が主流となっていく。
このような特性を持つ不揮発性記憶装置としてMLC型のフラッシュメモリを、例えば画像形成装置等のジョブ処理装置に採用した場合、書き換え可能回数が却って画像形成装置の耐用年数を短くしてしまう可能性がある。
前述のような特徴を踏まえると、システムの起動時間を短縮するにあたり、採用すべき不揮発性のメモリの特性に合わせて省電力および装置耐用年数に与える影響に対して柔軟な起動制御が求められる。
本発明は、上記の課題を解決するためになされたもので、本発明の目的は、特性の異なる記憶手段を用いて省電力制御を行う場合でも、システムを復帰させるまでの時間を延長することなく、かつ、書き込み制限に到達するまでの時間が短くならない省電力制御を実現できる仕組みを提供することができる。
上記目的を達成する本発明のジョブ処理装置は以下に示す構成を備える。
電源をオフ状態へ移行させる指示を行う指示手段と、前記指示手段による指示を受け付けた後、前記電源がオン状態より省電力状態となるサスペンド状態中、オン状態に復帰するための情報を記憶する第1の記憶手段と、前記電源がオン状態からオフ状態に遷移した後、前記電源がオフ状態からオン状態に復帰する際に参照すべき前記第1の記憶手段に記憶された情報を記憶する第2の記憶手段と、前記第2の記憶手段に対する書き込み回数と、前記第2の記憶手段に対する書き換え単位とから書き換え可能回数のしきい値を算出する算出手段と、前記算出手段が算出した書き換え可能回数のしきい値と、当該書き込み回数とに基づいて、前記サスペンド状態からオフ状態へ移行するまでのサスペンド時間を可変設定する設定手段と、前記設定手段により設定されたサスペンド時間が経過した後、前記電源をオフ状態に移行させる制御手段と、を備えることを特徴とする。
本発明によれば、特性の異なる記憶手段を用いて省電力制御を行う場合でも、システムを復帰させるまでの時間を延長することなく、かつ、書き込み制限に到達するまでの時間が短くならない省電力制御を実現できる。
ジョブ処理システムの構成を説明するブロック図である。 図1に示したコントローラの構成を説明するブロック図である。 図1に示した画像形成装置の電源ユニットの構成を説明する図である。 図2に示したコントローラの構成を説明するブロック図である。 ジョブ処理装置の起動処理状態を説明するタイミングチャートである。 ジョブ処理装置の起動処理状態を説明するタイミングチャートである。 ジョブ処理装置の電源制御状態を説明する図である。 ジョブ処理装置の制御方法を説明するフローチャートである。 ジョブ処理装置におけるメモリの特性を示す図である フラッシュメモリの1Block当たりの書き換え可能回数の特性図である。
次に本発明を実施するための最良の形態について図面を参照して説明する。なお、以下の実施の形態は特許請求の範囲に係る本発明を限定するものでなく、また本実施の形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
<システム構成の説明>
〔第1実施形態〕
図1は、本実施形態を示すジョブ処理装置を適用するジョブ処理システムの構成を説明するブロック図である。本例は、コンピュータ9と画像形成装置1とがLAN8を介して通信するジョブ処理システムに対応する。また、本実施形態では、ジョブ処理装置の一例として、画像形成装置であるMFP(Multi Function Printer)の例を示すが、プリンタ装置、ファクシミリ装置、その他電子機器に適用することも可能である。
図1において、2はスキャナ装置で、原稿から光学的に画像を読み取りデジタル画像に変換する。4はプリンタ装置で、デジタル画像を紙デバイスに出力する。
5はタッチパネル方式の操作部で、ユーザからの指示を受け付けるとともに、システムの設定状態をUI画面を用いて表示する。6は不揮発性メモリを構成するハードディスク装置(HDD)で、画像形成装置1を起動させるプログラムや、設定ファイル、UI画面データ等の各種のシステム情報を記憶する。
7はFAX装置で、電話回線等にデジタル画像データを送受信する。3はコントローラで、スキャナユニット22を制御して原稿読取を制御する。また、コントローラ3は、マーキングユニット41を用いて読み取った画像データやコンピュータ9から受信するページ記述言語に基づく印刷データ(PDLデータ)をレンダリングしたイメージデータを記録紙に印刷する。
画像形成装置1はLAN8経由でコンピュータ9からデジタル画像の入出力、ジョブの発行や機器の指示等も行なうことが可能である。
スキャナ装置2は、原稿束を自動的に逐次入れ替えることが可能な原稿給紙ユニット21、原稿を光学スキャンしデジタル画像に変換する事が可能なスキャナユニット22から成り、変換された画像データはコントローラ3に送信される。
プリンタ装置4は、紙束から一枚ずつ逐次給紙可能な給紙ユニット42、給紙した紙に画像データを印刷するためのマーキングユニット41、印刷後の紙を排紙するための排紙ユニット43から成る。
画像形成装置1は、多彩なジョブを実行可能であり、以下複合機能処理に基づく各機能処理の一例を説明する。
〔複写機能〕
スキャナ装置2から読み込んだ画像をHDD6に記録し、同時にプリンタ装置4を使用して印刷を行なう。
〔画像送信機能〕
スキャナ装置2から読み込んだ画像はLAN8を介してコンピュータ9に送信する。
〔画像保存機能〕
スキャナ装置2から読み込んだ画像をHDD6に記録し、必要に応じて画像送信や画像印刷を行なう
〔画像印刷機能〕
コンピュータ9から送信された例えばページ記述言語を解析し、プリンタ装置4で印刷する。
図2は、図1に示したコントローラ3の構成を説明するブロック図である。本例に示すコントローラ3は、メインボード200と、サブボード220から構成される。なお、本実施形態では、メモリ203が省電力モード移行中に、システムを復帰させる情報を記憶する第1の記憶手段として用い、フラッシュディスク207を第2の記憶手段として用いる例を示す。
図2において、200はメインボードで、いわゆる汎用的なCPUシステムで構成される。メインボード200は、ボード全体を制御するCPU201、ブートプログラムが含まれるブートロム202、CPUがワークメモリとして使用する揮発性のメモリ203を備える。さらに、メインボード200は、外部バスとのブリッジ機能を持つバスコントローラ204、電源断された場合でも消えない不揮発性メモリ205を備える。なお、メモリ203は電源がオン状態からサスペンド状態に遷移した後、オン状態に復帰するための情報を記憶する記憶手段として用いられる。また、復帰するための情報はCPU201による書き込み処理(第1の書き込み処理)で書き込まれる。また、後述するように、CPU201がメモリ203に書き込まれた復帰するための情報をフラッシュディスク207に書き込む処理を第2の書き込み処理と呼ぶ。211はネットワークインタフェースである。
さらに、メインボード200は、ストレージ装置を制御するディスクコントローラ206と、半導体デバイスで構成された比較的小容量な不揮発性記憶装置であるフラッシュディスク(SSD等)207を備える。さらに、メインボード200は、内蔵電池から電源供給を受け動作するタイマ208、USBを制御することが可能なUSBコントローラ209等を備える。ここで、SSDは、半導体ディスクメモリの一例である。
メインボード200には外部に、USBメモリ210、及び図1に示した操作部5、HDD装置6等が接続される。
サブボード220は、比較的小さな汎用CPUシステムと、画像処理ハードウェアから構成される。ボード全体を制御するCPU221、CPU221がワークメモリとして使用するメモリ223を備える。さらに、サブボード220は、外部バスとのブリッジ機能を持つバスコントローラ224、電源断された場合でも消えない不揮発性メモリ225を備える。
さらに、サブボード220は、リアルタイムデジタル画像処理を行なう画像処理プロセッサ227とデバイスコントローラ226を備える。なお、外部のスキャナ装置2と外部プリンタ装置はデバイスコントローラ226を介してデジタル画像データの受け渡しを行なう。FAX装置7はCPU221が直接制御を行なう。
なお、本図はブロック図であり簡略化している。例えばCPU201、CPU221等にはチップセット、バスブリッジ、クロックジェネレータ等のCPU周辺ハードウェアが多数含まれているが、説明の粒度的に不必要であるため簡略化記載しており、このブロック構成が本発明を制限するものではない。
以下、コントローラ3の動作について、原稿画像を読み取って印刷する画像複写処理を例に説明する。
利用者が操作部5から画像複写を指示すると、CPU201がサブボード220のCPU221を介してスキャナ装置2に画像読み取り命令を送る。
スキャナ装置2は、紙原稿を光学スキャンしデジタル画像データに変換してデバイスコントローラ226を介して画像処理プロセッサ227に入力する。
画像処理プロセッサ227は、サブボード220のCPU221を介してメモリ223にDMA転送を行いデジタル画像データの一時保存を行なう。
CPU201はデジタル画像データがメモリ223に一定量もしくは全て入ったことが確認できると、CPU221を介してプリンタ装置4に画像出力指示を出す。
サブボード220のCPU221は、画像処理プロセッサ227にメモリ223の画像データの位置を教える。そして、CPU221は、プリンタ装置4からの同期信号に従ってメモリ223上の画像データを画像処理プロセッサ227とデバイスコントローラ226を介してプリンタ装置4に送信して、プリンタ装置4にて紙デバイスにデジタル画像データが印刷される。
複数部印刷を行なう場合、CPU201がメモリ223の画像データをHDD6に対して保存を行い、2部目以降はスキャナ装置2から画像をもらわずともプリンタ装置4に画像を送ることが可能である
図3は、図1に示した画像形成装置1の電源ユニットの構成を説明する図である。なお、図1、図2と同一のものには同一の符号を付している。
図3において、801はトグル型スイッチである。802は電源ユニットである。803はAC−DCコンバータである。804はAC電源入力部である。805はスイッチ入力ラインで、ユーザによるトグル型スイッチ801の操作状態をコントローラ3に通知する。806は電源リモート信号で、AC−DCコンバータ803の出力を制御する信号としてコントローラ3からAC−DCコンバータ803に出力される。なお、AC−DCコンバータ803は、複数のFET812〜816を備える。
807はプリンタ装置4およびスキャナ装置2に対してDC電源を供給する電源ケーブルである。808は電源ケーブルで、FAX装置7およびコントローラ3のネットワークインターフェース210に対して電源を供給する。809は電源ケーブルで、コントローラ3のメモリ203に対して電源を供給する。
810は電源ケーブルで、コントローラ3のフラッシュディスク207に対して電源を供給する。811は電源ケーブルで、コントローラ3のその他の構成要素に対して電源を供給する。
AC−DCコンバータ803に備えられたFET812〜816は、それぞれの電源供給ライン807〜811をON/OFFできるスイッチであり、先述の電源リモート信号806により個別に制御される。ユーザはトグル型スイッチ801を操作することで装置の電源をON/OFFすることが可能である。
このトグル型スイッチ801は、ON時にAC−DCコンバータ803に接続されており電源の通電状態を制御することができる。
一方で、OFF時はコントローラ3がシステムのシャットダウンが完了するまで電源供給を停止してはならない。つまり、ライン805を介して電源スイッチ801の状態を通知し、シャットダウンが完了後に電源リモート信号806を用いて全てのDC電源供給をOFFにするようになっている。これらの説明はシャットダウンが必要な一般的な機器が持っている電源構成となる。
なお、トグル型スイッチ801は、ON/OFFの状態のどちらか一方の状態をメカ的に保持し続けるスイッチである。ユーザはトグル型スイッチ801をON/OFFのいずれか側に倒す操作を行う事で状態を入力する。
本実施形態では、ON/OFFが明示的なトグル型スイッチを用いているが、パーソナルコンピュータ(PC)等では状態を持たない電源スイッチ(電源スイッチ自体が省電力移行スイッチとして機能するもの等も含む)を採用しているものが多数ある。これらの状態を持たないスイッチは、1.装置電源が入っている状態では「OFF」として機能し、2.装置電源が入っていない状態においては「ON」と機能する。また、3.一定時間以上スイッチを押下し続けることで「強制OFF」を入力する、等の制御パターンがある。なお、本実施形態ではトグル型スイッチに限定するものではなく、状態を持たないスイッチに適用する場合、前記した1、2のON/OFFのパターンにトグルスイッチのON/OFFを当てはめれば良い。
図4は、図2に示したコントローラ3の構成を説明するブロック図である。本例は、コントローラ3における電源制御・リセット回路周りに注目した構成例である。
図4において、901はメインボード200上のリセット回路である。902は不揮発レジスタで、H/W(ハードウェア)リセット等によって状態のリセットされることはない。903は専用の電源監視H/Wロジックで、本システムの電源制御を監視する。なお、電源監視H/WロジックがASIC等の場合、小さなCPUシステム等でも良い。
904は、サブボード220上のリセット回路である。905はH/W群で、各ボード上に設けられている。
同期型のH/Wは、リセットにより内部状態をリセットするため、同期型で組まれたH/W回路は電源ON後電力が各チップに供給された後にリセット回路901、904が各H/W群905をリセットする必要がある。複数のH/Wチップは主従関係を持つため、リセットシーケンスを設計し、順次リセットを掛けていく事になる。
そのため一般的には本実施形態のように一つのボードに一つのリセット回路を持ち、各々のボード内のリセット動作を各リセット回路が行うことになる。メインボード200のシステムは特に本装置で主となるボードであり、電源監視H/W903を有する。
これはトグル型スイッチ801からのスイッチの状態がスイッチ入力ライン805に接続される。また、電源リモート信号806を用いて画像形成装置各部への電源供給を制御することが出来る等の機能を有する。
CPU201が正常に動作出来る場合、CPU201の指示に従いシステムにリセットを掛けることが可能である。また、CPU201に電源が供給されていない状態ではトグル型スイッチ801に接続されるスイッチ入力ライン805の入力から電源リモート信号806を制御してコントローラ3の電源を投入したりすることが出来る。不揮発レジスタ902はCPU201から読み書きすることが可能である。
以上のH/W構成をもつ画像形成装置において、例えばユーザがトグル型スイッチ801をOFFにする操作を行うと、CPU201はライン805の経路と電源監視H/W903を介してトグル型スイッチ801の状態を受け取ることが可能である。通常CPU201は、電源OFFを検知してシャットダウンシーケンスを動作させ、電源監視H/W手段903にシャットダウン指示を行う。
その結果、電源リモート信号806を介してAC−DCコンバータ803に電源OFFが通知され、DC電源を供給する電源供給ライン807〜811をOFFにすることで本システムは完全にシャットダウンされる。
この動作は画像形成装置における一般的なものであり、本実施形態の画像形成装置においては前述の起動時間短縮機能を有効にしていない場合の動作に相当する。このシャットダウンではCPU201上のプログラムも完全に終了するため、次回トグル型スイッチ801をONにした際、CPU201のプログラムは通常通り起動することになる。
図5、図6は、本実施形態を示すジョブ処理装置の起動処理状態を説明するタイミングチャートである。本例は、次回電源投入時にシステム起動時間を短縮するための装置電源OFF操作後処理の電力遷移を示す。
なお、図5は、不揮発性記憶装置であるフラッシュディスク207の寿命が画像形成装置の耐用年数に与える影響が小さい状態における装置電源OFF操作後の処理例に対応する。
図5のタイムチャートでは、画像形成装置の電源をOFFする操作がなされてからサスペンド状態303の低消費電力状態に移行し、所定のサスペンド時間(ta)301経過後にハイバネーション状態304に移行する。また、ハイバネーションイメージサイズにより、1日にハイバネーションに移行できる回数が決まってくる。例えば、図10にあるMLC型で4GB(ギガバイト)のフラッシュディスク207およびが2GBのメモリ203が搭載されているとする。なお、サスペンド状態303は電源がオン状態(通常起動状態302)より省電力状態となる状態をいう。また、サスペンド時間(ta)301はサスペンド状態中の期間を示す。
ここで、ハイバネーションイメージの容量を抑えるため、メモリ203上のシステム情報において起動に必要な情報のみをハイバネーションイメージ化するとし、ハイバネーションイメージサイズは300MB(メガバイト)とする。
また、フラッシュディスク207には、システムを起動するためのプログラム領域が300MB存在し、HDD6は画像データを保存するために使用される。このため、ハイバネーションイメージに書き換えられる領域は、フラッシュディスクの207の空き領域である3.7GBとする。
ここで、使用する容量4GBのフラッシュディスク207は、1GB当たりの総ブロック数が7860Block、1Block当たりの容量128KB、1Block当たりの書き換え可能回数が1000回、書き換え単位が4KBであるとする。また、画像形成装置の耐用年数を5年、画像形成装置の使用日数を30日、現書き換え回数を2000万回とする。このとき、フラッシュディスク207の総書き換え可能容量は、以下の第(1)式で表わされる。
総書き換え可能容量=フラッシュディスクの容量×総ブロック数×1Block当たりの容量×1Block当たりの書き換え可能回数・・・・・(1)
前述より、フラッシュディスクでハイバネーションイメージに書き換えられる領域3.7GB、総ブロック数7860Block、1Block当たりの容量128KB、1Block当たりの書き換え可能回数1000回を第(1)式に代入する。すると、フラッシュディスク207の総書き換え可能容量は約3722GBとなる。
次に、第(2)式のように、1日のハイバネーションに移行できる回数は、フラッシュディスクの総書き換え可能容量をハイバネーションイメージサイズの300MBおよび装置耐用日数で割ると、算出できる。
1日のハイバネーション移行可能回数=総書き換え可能容量/(ハイバネーションイメージサイズ×装置耐用日数)・・・・・(2)
ここで、装置耐用日数は、前述の装置耐用年数5年に365日をかけると算出される。これより、装置耐用日数1825日(=5年×365日)と、第1(1)式の総書き換え可能容量約3722GB、前述のハイバネーションイメージサイズ300MBを第(2)式に代入すると、1日のハイバネーション移行可能回数は約7回となる。
次に、第(3)式のように、1日24時間を前述の1日のハイバネーション移行可能回数で割れば、1日のハイバネーション移行時間間隔が算出できる。
1日のハイバネーション移行時間間隔=24時間/1日のハイバネーション移行可能回数・・・・・(3)
前述より、1日のハイバネーション移行可能回数7回を第(3)式に代入すると、1日のハイバネーション移行間隔は約3時間30分となる。ここで、不揮発性記憶装置は、電源ON時やOFF時において、大きな温度変化が生じる。
大きな温度変化により、不揮発性記憶装置の筺体膨張や内部劣化を引き起こす可能性があるため、頻繁な電源ON/OFFを行うと、不揮発性記憶装置の故障の原因となる。
そのため、不揮発性記憶装置の保護の観点から、第(3)式より算出した3時間よりマージンを取り、サスペンド時間(ta)を4時間とする。なお、サスペンド時間(ta)は、操作部5でユーザが設定時間を変更可能に構成してもよい。また、ハイバネーション状態に移行する際、ハイバネーションイメージを作成・退避する必要がある。そのため、コントローラ3やフラッシュディスクに207に通電する必要があるため、一度電力が上昇する(305)。
なお、コントローラ3に内蔵バッテリーを搭載して、ハイバネーションイメージ作成・退避時の電力を内蔵バッテリーで行い、電力上昇を抑制してもよい。
図6は、不揮発性記憶装置であるフラッシュディスク207の寿命が画像形成装置の耐用年数に与える影響が大きいときの装置電源OFF操作後の処理例である。
図6に示すタイムチャートでは、画像形成装置が電源OFF操作されてからサスペンド状態403に移行し、サスペンド時間(tb)401経過後にハイバネーション状態404に移行する。なお、サスペンド状態403は電源がオン状態(通常起動状態302)より省電力状態となる状態をいう。402は通常起動状態を示す。
前述同様、ハイバネーション状態に移行する際、移行時間405中にハイバネーションイメージを作成・退避する必要がある。そのため、コントローラ3やフラッシュディスクに207に通電する必要があるため、一度電力が上昇する。
サスペンド時間(tb)401は、前述のサスペンド時間(ta)301より長く、不揮発性記憶装置(フラッシュディスク207)の残り寿命によって決定される。
次に、以下第(4)式より、前述の総書き換え容量を、画像形成装置の耐用日数1825日で割ると、1日当たりの書き換え可能容量の閾値が算出できる。
1日当たりの書き換え可能容量の閾値=総書き換え可能容量/装置耐用日数・・・・・(4−1)
前述より、総書き換え可能容量3722GB、画像形成装置の耐用日数1825日を第(4−1)式に代入すると、1日当たりの書き換え可能容量の閾値は約2040MBとなる。
次に、以下の第(4−2)式より、1日当たりの書き換え可能容量の閾値を、フラッシュディスク207への書き換え単位で割ると、1日当たりのフラッシュディスク207の書き換え可能回数の閾値が算出できる。
1日当たりの書き換え可能回数の閾値=1日当たりの書き換え可能容量の閾値/書き換え単位・・・・・(4−2)
前述より、1日当たりの書き換え可能容量の閾値約2040MB、書き換え単位4KBを第(4−2)式に代入すると、1日当たりの書き換え可能回数の閾値は約50万回となる。
ここで、1日当たりの書き換え可能回数の閾値を装置使用日数分積算すれば、装置使用日数時点の書き換え可能回数の閾値を算出できる。
以上より、サスペンド時間taとサスペンド時間tb、現書き換え回数と装置使用日数時点の書き換え可能回数の閾値の比をとった以下の第(4−3)式より、サスペンド時間tbを算出できる。
サスペンド時間tb=(サスペンド時間ta×現書き換え回数)/(1日当たりの書き換え可能回数の閾値×装置使用日数)・・・・・(4−3)
前述より、時間(ta)4時間、フラッシュディスクへの現書き換え回数が2000万回、1日当たりの書き換え可能回数の閾値50万回、装置使用日数30日を第(4−3)式に代入すると、サスペンド時間(tb)は約5時間と算出できる。なお、サスペンド時間tbは固定値となるサスペンド時間taをもとに算出したが、算出したサスペンド時間tbをもとにして次回サスペンド時間を算出・設定してもよい。
図7は、本実施形態を示すジョブ処理装置の電源制御状態を説明する図である。本例は、画像形成装置における次回電源ON時にシステム起動時間を短縮するための処理例である。なお、図7の(a)は電源ON状態を示す。
例えば、PC9ではユーザがスリープ(サスペンド状態)に入るまでの時間(不記載)とHDD6の電源を切る(ハイバネーション状態)までの時間を設定する。
図7の(b)に示すサスペンド状態に入ってから所定時間経過1102後、メモリ上のシステム情報からハイバネーションイメージを作成する。
ハイバネーションイメージをHDDやフラッシュメモリ等の不揮発性記憶装置に退避後、図7の(c)に示すハイバネーション移行状態へ遷移し、図7の(d)に示すハイバネーション状態へ遷移して、不揮発性記憶装置の電源を切る。
図8は、本実施形態を示すジョブ処理装置の制御方法を説明するフローチャートである。本例は、画像形成装置の電源OFF操作後のシステム処理例である。なお、各ステップは、CPU201がメモリ203にロードする制御プログラムを実行することで実現される。以下、フラッシュディスク207に対する書き込み回数と、フラッシュディスク207に対する書き換え単位とから書き換え可能回数のしきい値を算出する。そして、算出した書き換え可能回数のしきい値と、当該書き込み回数とに基づいて、CPU201がサスペンド状態からオフ状態へ移行するまでのサスペンド時間を可変設定する例を説明する。さらに、CPU201が設定された異なるサスペンド時間が経過した後、電源をオフ状態に移行させる制御について説明する。
まず、開始時は、図7の(a)のように装置の電源がON状態であり、装置に搭載されている全デバイスが通電状態にある。装置電源をOFFする操作が行われた後(S501)、CPU201は、フラッシュディスク207の現書き換え回数を取得する(S502)。
ここで、現在の書き換え回数は、フラッシュディスク207に搭載されている自己診断機能情報より現在の書き換え回数パラメータより取得するものとする。ここで、自己診断機能とはSMART(Self−Monitoring, Analysis and Reporting Technology)をいう。
他手法として、フラッシュディスク207への書き換え回数を監視する、または記憶するデバイスを他に設ける(例えば、HDD6等)。そして、装置電源OFF操作後(S501)に、CPU201がHDD6に記憶されているフラッシュディスク207の書き換え回数を取得してもよい。本実施形態では、比較的処理に時間を要さないSMART情報の現書き換え回数パラメータを取得することを採用する。
次に、CPU201は、SMART情報で取得したフラッシュディスク207の現在の書き換え回数と、前述の第(4−2)式の結果と装置使用日数分積算値である装置使用日数時点の書き換え可能回数の差分を算出し、例えば、変数Jへ代入する(S503)。
次に、S504で、CPU201は、変数Jの正負判定を行う。ここで、変数Jが正、すなわち取得したフラッシュディスク207の現書き換え回数が、使用日数時点での書き換え回数の閾値を超えていないとCPU201が判断した場合は、S505へ進む。そsてい、サスペンド時間としてタイマ208に「ta」を設定し(S505)、サスペンド状態へ移行する(S506)。
一方、変数Jが負、すなわち取得したフラッシュディスクの現書換え回数が、使用日数時点での書換え回数の閾値を超えているとCPU201が判断した場合は、上記第(4−3)式よりサスペンド時間としてタイマ208に「tb」を設定する(S508)。そして、図7の(b)のサスペンド状態へ移行する(S509)。
このようにしてサスペンド状態に移行すると、図7の(b)のようにAC−DCコンバータ803およびメモリ203とFAX装置7が通電状態になる。前述の通り、図7の(b)の状態で待機することで、メモリ203上のシステム情報をメモリ203自体が保持する。
次に、タイマ208は、設定されたサスペンド時間ta経過後(S507)またはサスペンド時間tb経過後(S510)、電源リモート信号806を介して、AC−DCコンバータにコントローラ3に通電するよう制御する。
コントローラ3が、図7の(c)のようにハイバネーション移行状態になったとき、CPU201はメモリ203上に保持されているシステム情報より、ハイバネーションイメージを作成する(S511)。ハイバネーションイメージが作成されたら、ハイバネーションイメージをフラッシュディスク207へ退避し(S512)、ハイバネーション状態へと移行して(S513)、本処理を終了する。
なお、ハイバネーション状態に移行すると、図10(d)のように、装置に搭載されている全デバイスが非通電状態、すなわち電力量が「0」Wの状態なる。
本実施形態では、算出した書き込み回数が当該書き込み回数から決定されるしきい値以下の場合としきい値以上の場合に比べて、サスペンド状態からオフ状態へ移行するまでのサスペンド時間を短く設定する(図5、図6参照)。
図9は、本実施形態を示すジョブ処理装置におけるメモリの特性を示す図である。本例は、使用日数に対する書き換え回数とサスペンド時間の設定時間との関係を示した例である。
図9において、書き換え可能回数の閾値703は、第(4−2)式より算出した1日当たりの書き換え可能回数の閾値を基にした各使用日数時の書き換え可能回数の閾値である。フラッシュディスク207のSMART情報より取得した現書き換え回数704が、書き換え可能回数の閾値703を超えた場合、サスペンド時間を「tb」にする処理が行われる。なお、702はサスペンド時間tb領域を示し、701はサスペンド時間ta領域を示す。
フラッシュディスクのSMART情報より取得した現書き換え回数704が、書き換え可能回数の閾値703を超えない場合、サスペンド時間は「ta」に設定される。
なお、図9に示したような書き換え回数によってサスペンド時間を変更・設定する処理は、時間単位や日単位、月単位や年単位でもよい。
また、サスペンド時間をtbに処理する回数が多い場合や、サスペンド時間をtbに処理をしても装置耐用年数の前に、フラッシュメモリの総書き換え可能回数に達しそうな場合は、操作部5等を介してユーザや管理者にフラッシュメモリ交換を通知してもよい。
本実施形態によれば、特性の異なる記憶手段を用いて省電力制御を行う場合でも、システムを復帰させるまでの時間を延長することなく、かつ、書き込み制限に到達するまでの時間が短くならない省電力制御を実現できる。
本発明の各工程は、ネットワーク又は各種記憶媒体を介して取得したソフトウエア(プログラム)をパソコン(コンピュータ)等の処理装置(CPU、プロセッサ)にて実行することでも実現できる。
本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づき種々の変形(各実施形態の有機的な組合せを含む)が可能であり、それらを本発明の範囲から除外するものではない。
201 CPU
203 メモリ
207 フラッシュディスク

Claims (8)

  1. 電源をオフ状態へ移行させる指示を行う指示手段と、
    前記指示手段による指示を受け付けた後、前記電源がオン状態より省電力状態となるサスペンド状態中、オン状態に復帰するための情報を記憶する第1の記憶手段と、
    前記電源がオン状態からオフ状態に遷移した後、前記電源がオフ状態からオン状態に復帰する際に参照すべき前記第1の記憶手段に記憶された情報を記憶する第2の記憶手段と、
    前記第2の記憶手段に対する書き込み回数と、前記第2の記憶手段に対する書き換え単位とから書き換え可能回数のしきい値を算出する算出手段と、
    前記算出手段が算出した書き換え可能回数のしきい値と、当該書き込み回数とに基づいて、前記サスペンド状態からオフ状態へ移行するまでのサスペンド時間を可変設定する設定手段と、
    前記設定手段により設定されたサスペンド時間が経過した後、前記電源をオフ状態に移行させる制御手段と、
    を備えることを特徴とするジョブ処理装置。
  2. 前記設定手段は、前記算出手段が算出した書き込み回数が当該書き込み回数から決定されるしきい値以下の場合、前記算出手段が算出した書き込み回数が当該書き込み回数から決定されるしきい値以上の場合に比べて、前記サスペンド状態からオフ状態へ移行するまでのサスペンド時間を短く設定することを特徴とする請求項1記載のジョブ処理装置。
  3. 前記算出手段は、1日当たりの書き換え可能回数のしきい値を装置使用日数分積算して装置使用日数時点の書き換え可能回数のしきい値を算出することを特徴とする請求項1記載のジョブ処理装置。
  4. 前記第1の記憶手段は、揮発性メモリであることを特徴とする請求項1記載のジョブ処理装置。
  5. 前記第2の記憶手段は、不揮発性メモリであることを特徴とする請求項1記載のジョブ処理装置。
  6. 前記不揮発性メモリは、半導体ディスクメモリであることを特徴とする請求項5記載のジョブ処理装置。
  7. 電源をオフ状態へ移行させる指示を行う指示工程と、
    前記指示工程による指示を受け付けた後、前記電源がオン状態より省電力状態となるサスペンド状態中、オン状態に復帰するための情報を第1の記憶手段に書き込む第1の書き込み工程と、
    前記電源がオン状態からオフ状態に遷移した後、前記電源がオフ状態からオン状態に復帰する際に参照すべき前記第1の記憶手段に記憶された情報を第2の記憶手段に書き込む第2の書き込み工程と、
    前記第2の記憶手段に対する書き込み回数と、前記第2の記憶手段に対する書き換え単位とから書き換え可能回数のしきい値を算出する算出工程と、
    前記算出工程が算出した書き換え可能回数のしきい値と、当該書き込み回数とに基づいて、前記サスペンド状態からオフ状態へ移行するまでのサスペンド時間を可変設定する設定工程と、
    前記設定工程により設定されたサスペンド時間が経過した後、前記電源をオフ状態に移行させる制御工程と、
    を備えることを特徴とするジョブ処理装置の電源制御方法。
  8. 請求項7記載のジョブ処理装置の電源制御方法をコンピュータに実行させることを特徴とするプログラム。
JP2012043961A 2012-02-29 2012-02-29 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム Pending JP2013182313A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012043961A JP2013182313A (ja) 2012-02-29 2012-02-29 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム
US13/779,555 US9423857B2 (en) 2012-02-29 2013-02-27 Apparatus and method for extending life of a storage unit by delaying transitioning to a hibernation state for a predetermined time calculated based on a number of writing times of the storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043961A JP2013182313A (ja) 2012-02-29 2012-02-29 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2013182313A true JP2013182313A (ja) 2013-09-12

Family

ID=49004619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043961A Pending JP2013182313A (ja) 2012-02-29 2012-02-29 ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム

Country Status (2)

Country Link
US (1) US9423857B2 (ja)
JP (1) JP2013182313A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171448B2 (ja) * 2007-07-31 2013-03-27 キヤノン株式会社 画像形成装置及びその制御方法
JP5825290B2 (ja) * 2013-04-08 2015-12-02 コニカミノルタ株式会社 画像形成装置
JP6164938B2 (ja) * 2013-05-28 2017-07-19 キヤノン株式会社 画像形成装置及びその制御方法、並びにプログラム
US10175995B1 (en) * 2016-03-25 2019-01-08 Amazon Technologies, Inc. Device hibernation control
US10268486B1 (en) 2016-03-25 2019-04-23 Amazon Technologies, Inc. Expedited resume process from hibernation
KR20210110071A (ko) 2020-02-28 2021-09-07 삼성전자주식회사 스토리지 장치 및 상기 스토리지 장치의 동작 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343647B2 (ja) 2009-03-18 2013-11-13 株式会社リコー 情報処理装置、画像形成装置、データ復帰方法、プログラム、記憶媒体
JP5397609B2 (ja) * 2009-09-01 2014-01-22 日本電気株式会社 ディスクアレイ装置
JP5091940B2 (ja) * 2009-12-28 2012-12-05 京セラドキュメントソリューションズ株式会社 画像形成装置および不揮発性メモリ書き込み方法
JP2011203916A (ja) * 2010-03-25 2011-10-13 Toshiba Corp メモリコントローラ、および半導体記憶装置

Also Published As

Publication number Publication date
US20130227325A1 (en) 2013-08-29
US9423857B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP2015064860A (ja) 画像形成装置およびその制御方法、並びにプログラム
JP5460167B2 (ja) 情報処理装置、情報処理装置の制御方法及び制御プログラム
JP2013182313A (ja) ジョブ処理装置、ジョブ処理装置の制御方法、及びプログラム
CN103917924B (zh) 图像形成装置及其控制方法
JP6008545B2 (ja) 画像形成装置、画像形成装置の制御方法、及びプログラム
JP6979804B2 (ja) 情報処理装置とその制御方法、及びプログラム
US9563444B2 (en) Image forming apparatus having hibernation function according to device connection states, control method therefor, and storage medium
CN103516940A (zh) 信息处理装置及其控制方法
JP2012155533A (ja) 情報処理装置、その制御方法、および制御プログラム
JP2011095916A (ja) 電子機器
JP2013215976A5 (ja)
JP2013092940A (ja) 電子機器及びその電力制御方法
KR101596095B1 (ko) 인쇄 장치 및 기록 매체
JP6703790B2 (ja) 情報処理装置及びその制御方法、並びにプログラム
JP2018116575A (ja) 情報処理装置及びその制御方法、並びにプログラム
JP6768425B2 (ja) 情報処理装置及びその制御方法、並びにプログラム
JP2013041458A (ja) データ処理装置及びその制御方法
JP6004923B2 (ja) 情報処理装置及びその制御方法とプログラム
JP5852431B2 (ja) 画像処理装置、その制御方法、及びプログラム
JP5959841B2 (ja) 画像処理装置及びその制御方法、並びにプログラム
JP2015123650A (ja) 画像形成装置、画像形成装置の制御方法、及びプログラム
JP6532240B2 (ja) 情報処理装置およびその制御方法
JP2018063499A (ja) 情報処理装置及びその制御方法、並びにプログラム
JP5800861B2 (ja) 情報処理装置、情報処理装置の制御方法及び制御プログラム
JP7387281B2 (ja) 電子機器、および、電子機器の制御方法