JP2013180307A - Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe - Google Patents

Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe Download PDF

Info

Publication number
JP2013180307A
JP2013180307A JP2012044224A JP2012044224A JP2013180307A JP 2013180307 A JP2013180307 A JP 2013180307A JP 2012044224 A JP2012044224 A JP 2012044224A JP 2012044224 A JP2012044224 A JP 2012044224A JP 2013180307 A JP2013180307 A JP 2013180307A
Authority
JP
Japan
Prior art keywords
slab
round
reduction
steel pipe
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044224A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Ikeda
達彦 池田
Hiroshi Hayashi
浩史 林
Masahiro Yamazaki
正弘 山崎
Kazumune Shimoda
一宗 下田
Kenichi Saito
建一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012044224A priority Critical patent/JP2013180307A/en
Publication of JP2013180307A publication Critical patent/JP2013180307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously cast a round slab of high Cr steel having a Cr content of 2.0-18.0 mass% while preventing an inner face flaw in time of pipe production.SOLUTION: A method for producing continuous casting round slab uses a sectional circular mold 4 having a diameter on the inner face side ≤400 mm. A casting speed is 0.6-2.4 m/min. After a round slab 9 is perfectly coagulated at a surface temperature of 800-1,100°C, depression wherein a slab depression ratio RED is 10.0-30.0% is applied by one or more pinch rolls, and the round slab 9 is flattened such that the width dimension in the depression direction becomes smaller than the width dimension on a free face side in a direction orthogonal to the depression direction. The flattened slab is vertically depressed from the direction orthogonal to the vertically depressed direction by one or more shaping rolls to shape a section of the slab to a circular section having a prescribed dimension without flattening the slab.

Description

本発明は、2.0質量%以上、18.0質量%以下のCrを含有する高Cr鋼の横断面が円形の丸鋳片を用いてマンネスマン方式により継目無鋼管を製造する際に、鋼管の内表面に発生しやすい欠陥を低減することが可能な丸鋳片を連続鋳造で製造する方法、及びこの丸鋳片から継目無鋼管を製造する方法に関するものである。   The present invention provides a steel pipe when a seamless steel pipe is manufactured by the Mannesmann method using a round slab of a high Cr steel containing 2.0% by mass or more and 18.0% by mass or less of Cr. The present invention relates to a method for producing a round slab capable of reducing defects that are likely to occur on the inner surface of the steel by continuous casting, and a method for producing a seamless steel pipe from this round slab.

油井管やラインパイプ等の用途に用いられる継目無鋼管は、横断面が矩形の連続鋳造鋳片を分塊圧延した丸鋳片や、内面側の横断面が円形の鋳型を用いて連続鋳造したまま(以下、アズキャストという。)の丸鋳片を、マンネスマン製管やユジーン製管等の方法で中空の素管に加工し、抽伸、熱処理などの工程を経て製造されている。以下、内面側の横断面が円形の鋳型を円形断面鋳型という。   Seamless steel pipes used for applications such as oil well pipes and line pipes are continuously cast using a round slab obtained by rolling a continuous cast slab having a rectangular cross section or a mold having a circular cross section on the inner surface side. A round cast slab (hereinafter referred to as “as cast”) is processed into a hollow shell by a method such as Mannesmann tube or Eugene tube, and is manufactured through processes such as drawing and heat treatment. Hereinafter, a mold having a circular cross section on the inner surface side is referred to as a circular section mold.

この際、前記矩形の連続鋳造鋳片を分塊圧延して丸鋳片を製造すると、端面に圧延の非定常部が発生するため、クロップとして切断する必要があり、製造コスト悪化の一因となっている。このため、素材コストのより安価なアズキャストの丸鋳片を用いて、不良箇所の発生無く製管を行うことが求められている。   At this time, when the round continuous cast slab is produced by split-rolling the rectangular continuous cast slab, an unsteady part of rolling is generated on the end face, so it is necessary to cut it as a crop, which is a cause of deterioration in manufacturing cost. It has become. For this reason, it is required to make a pipe without occurrence of a defective portion by using an as-cast round slab having a lower material cost.

しかしながら、円形断面鋳型を用いて連続鋳造した鋳片は、最終凝固位置が中心に集中するため、矩形の連続鋳造鋳片と比較して最終凝固時の凝固収縮に伴って発生する軸芯割れやポロシティが悪化し、製管時に中心部の穿孔圧延を行う際の内面疵発生の原因となる。   However, the slab continuously cast using a circular cross-section mold concentrates in the center of the final solidification position. Porosity deteriorates and causes internal flaws when piercing and rolling the center part during pipe making.

特に、Cr含有率の高いステンレス鋼は、最終凝固付近の凝固シェルの脆弱なフェライト相の含有率が高く、Cr含有率の増加に伴い溶鋼粘度が増加するため、Crを含有しない普通鋼と比較して軸芯割れ、ポロシティが悪化する。また、凝固中のミクロ偏析により、P,S濃化やδフェライトの発生により熱間加工性も悪化するため、アズキャストの丸鋳片を製管に供することは困難であった。   In particular, stainless steel with a high Cr content has a high content of brittle ferrite phase in the solidified shell near the final solidification, and the viscosity of the molten steel increases as the Cr content increases. As a result, the shaft core cracks and the porosity deteriorates. In addition, due to microsegregation during solidification, hot workability deteriorates due to P, S enrichment and generation of δ ferrite, making it difficult to use as-cast round slabs for pipe making.

従って、Cr含有鋼の連続鋳造においては、鋳片内質改善を目的に、連続鋳造機内において、鋳片の圧下を行うなど、種々の製造方法が提案されてきた。   Therefore, in the continuous casting of Cr-containing steel, various manufacturing methods have been proposed such as reducing the slab in a continuous casting machine for the purpose of improving the quality of the slab.

例えば特許文献1には、連続鋳造により製造したCr含有鋼の丸鋳片を凝固完了後に一定の間隔で切断した後、直径方向から圧下して扁平化した後に最大径の方向より圧下を加えて鋳型断面と比較して断面積を10〜40%程度減少させることで、内部欠陥に優れた丸鋳片とする方法が記載されている。   For example, in Patent Document 1, a round slab of Cr-containing steel produced by continuous casting is cut at regular intervals after solidification is completed, and then pressed down from the diameter direction and flattened, and then pressed down from the maximum diameter direction. A method is described in which a round slab excellent in internal defects is obtained by reducing the cross-sectional area by about 10 to 40% compared to the mold cross section.

しかしながら、前記切断後の鋳片は、連続鋳造機内と比較して表面温度が低く、熱間加工性も劣るため、少数の圧延機で内質改善に要求される圧下を行うには、個々の圧延機の圧下力、剛性を大きくする必要があり、設備費が増加する。   However, the slab after cutting has a surface temperature lower than that in a continuous casting machine and inferior in hot workability. It is necessary to increase the rolling force and rigidity of the rolling mill, which increases the equipment cost.

また、特許文献2には、特許文献1に記載の方法おいて、直径方向から圧下して鋳片を扁平化する工程と、扁平化した鋳片の最大径の方向より圧下を加える工程を、複数回繰り返す方法が記載されている。   Further, in Patent Document 2, in the method described in Patent Document 1, the step of flattening the slab by reducing from the diameter direction and the step of applying the reduction from the direction of the maximum diameter of the flattened slab, A method of repeating a plurality of times is described.

また、特許文献3には、0.5質量%以上のCrを含有するCr含有鋼の丸鋳片を連続鋳造により製造し、凝固完了後に直径方向から圧下して扁平化し、扁平化した鋳片の最大径の方向より圧下を加えるという工程を複数回繰り返して鋳型断面と比較して減面率で4〜25%減少させることで、内部欠陥に優れた丸鋳片を得る方法が記載されている。   In Patent Document 3, a round cast slab of Cr-containing steel containing 0.5% by mass or more of Cr is manufactured by continuous casting, and after solidification is completed, the slab is flattened by being squeezed from the diametrical direction. Describes a method of obtaining round cast slabs with excellent internal defects by repeating the process of rolling down from the direction of the maximum diameter multiple times and reducing the area reduction by 4 to 25% compared to the mold cross section. Yes.

しかしながら、特許文献2,3に記載されたような、扁平化工程を複数回行うと、鋼片内中心部の応力は圧縮応力と引張り応力が繰り返されることで中心部には大きなせん断応力が作用し(回転鍛造効果)、鋼片温度、Crの含有量によっては中心部の欠陥が改善される場合もあるが、逆に回転鍛造効果によって中心部の欠陥が悪化する危険性がある。   However, when the flattening process as described in Patent Documents 2 and 3 is performed a plurality of times, the stress in the center portion of the steel slab is subjected to a large shear stress in the center portion due to repeated compression stress and tensile stress. However, depending on the steel forging (rotational forging effect), steel slab temperature, and Cr content, the central defect may be improved, but conversely, the rotational forging effect may cause the central defect to deteriorate.

特許第3533831号公報Japanese Patent No. 3533831 特許第3533834号公報Japanese Patent No. 3533834 特許第3648825号公報Japanese Patent No. 3648825

本発明が解決しようとする問題点は、Cr含有率の高いステンレス鋼をアズキャストの丸鋳片とする従来方法は、個々の圧延機の圧下力、剛性を大きくする必要があり、設備費が増加したり、回転鍛造効果によって中心部の欠陥が悪化する危険性があるという点である。   The problem to be solved by the present invention is that the conventional method using as cast round slabs made of stainless steel with a high Cr content needs to increase the rolling force and rigidity of each rolling mill, and the equipment cost is high. It is a point that there is a risk that the defect in the center portion is increased due to an increase or a rotary forging effect.

本発明は、
Cr含有率が2.0質量%以上、18.0質量%以下の高Cr鋼の丸鋳片を連続鋳造する際に、製管時の内面疵を防止した継目無鋼管を製造可能とするために、
内面側の直径が400mm以下の円形断面鋳型を使用し、
鋳込み速度を0.6m/min以上、2.4m/min以下とし、
表面温度が800℃以上、1100℃以下の間で丸鋳片が完全に凝固した後に、鋳型の前記内面側の直径に対する鋳片外径の圧下比率(鋳片圧下比率RED)が10.0%以上、30.0%以下の圧下を、1基もしくは複数基からなるピンチロールで加え、圧下方向の幅寸法が圧下方向と直交する方向の自由面側の幅寸法より小さくなるように扁平化することを最も主要な特徴としている。
The present invention
To make it possible to produce seamless steel pipes that prevent internal flaws during pipe making when continuously casting round slabs of high Cr steel with a Cr content of 2.0 mass% or more and 18.0 mass% or less. In addition,
Use a circular cross-section mold with an inner diameter of 400 mm or less,
The casting speed is set to 0.6 m / min or more and 2.4 m / min or less,
After the round slab is completely solidified at a surface temperature between 800 ° C. and 1100 ° C., the reduction ratio of the outer diameter of the slab to the diameter of the inner surface of the mold (slab reduction ratio RED) is 10.0%. More than 30.0% reduction is applied with one or more pinch rolls and flattened so that the width dimension in the reduction direction is smaller than the width dimension on the free surface side in the direction perpendicular to the reduction direction. This is the main feature.

上記本発明では、Cr含有率が2.0質量%以上、18.0質量%以下の高Cr鋼の最終凝固時に発生する軸芯割れ、ポロシティ等の鋳片内質欠陥を、凝固後圧下により減少させることで、鋼管の内面疵の少ない継目無鋼管を製造することができる。   In the present invention, slab internal defects such as axial core cracks and porosity generated during the final solidification of high Cr steel having a Cr content of 2.0% by mass or more and 18.0% by mass or less are reduced by reduction after solidification. By reducing the number, it is possible to manufacture a seamless steel pipe with less inner surface defects of the steel pipe.

本発明によれば、Cr含有率が2.0質量%以上、18.0質量%以下の高Cr鋼を、連続鋳造鋳片の内面品質の改善と製管条件の適正化により、製管時の内面疵を防止できる継目無鋼管用丸鋳片の製造が可能となる。また、分塊圧延工程の省略による生産工期の短縮、およびエネルギー、作業費低減、歩留向上が可能となる。   According to the present invention, high Cr steel having a Cr content of 2.0% by mass or more and 18.0% by mass or less can be produced at the time of pipe making by improving the inner surface quality of the continuous cast slab and optimizing the pipe making conditions. This makes it possible to produce a round slab for seamless steel pipes that can prevent inner surface flaws. In addition, the production period can be shortened by omitting the block rolling process, and the energy and work costs can be reduced and the yield can be improved.

鋳片圧下比率と、鋳片内部欠陥の鋳型内面側の直径に対する比率(以下、鋳片内部欠陥比率という。)の関係を示した図である。It is the figure which showed the relationship between a slab reduction ratio and the ratio (henceforth a slab internal defect ratio) with respect to the diameter by the side of the casting_mold | template inner surface of a slab internal defect. 鋼管の内面欠陥に対するプラグ先端ドラフト率と鋳片内部欠陥比率の関係を示した図である。It is the figure which showed the relationship between the plug tip draft rate with respect to the internal surface defect of a steel pipe, and a slab internal defect ratio. 鋳片の表面温度と圧下比率の関係を示した図である。It is the figure which showed the relationship between the surface temperature of a slab, and a reduction ratio. 丸鋳片製造用の連続鋳造設備の構成例を示す側面方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the side surface which shows the structural example of the continuous casting equipment for round slab manufacture.

本発明は、Crを2.0質量%以上、18.0質量%以下含有する高Cr鋼の丸鋳片を連続鋳造する際に、製管時の内面疵を防止した継目無鋼管を製造可能とするという目的を、連続鋳造鋳片の内面品質の改善と製管条件の適正化により実現した。   The present invention can produce seamless steel pipes that prevent internal flaws during pipe making when continuously casting round slabs of high Cr steel containing 2.0 mass% or more and 18.0 mass% or less of Cr. This was achieved by improving the inner surface quality of the continuous cast slab and optimizing the pipe making conditions.

すなわち、本発明は、2.0質量%以上、18.0質量%以下のCrを含有する高Cr鋼を連続鋳造して、製管時の内面疵を防止できる加工性の良い鋳片を製造する方法であり、以下の条件で行うものである。   That is, the present invention continuously casts a high Cr steel containing 2.0% by mass or more and 18.0% by mass or less of Cr, and manufactures a slab having good workability capable of preventing internal flaws during pipe making. And is performed under the following conditions.

本発明において、2.0質量%以上、18.0質量%以下のCrを含有する高Cr鋼を対象とするのは、かかる高Cr鋼は、最終凝固付近の凝固シェルの脆弱なフェライト相の含有率が高く、Cr含有率の増加に伴い溶鋼粘度が増加して軸芯割れ、ポロシティが悪化するからである。また、凝固中のミクロ偏析により、P,S濃化やδフェライトの発生により熱間加工性も悪化するからである。   In the present invention, the high Cr steel containing 2.0 mass% or more and 18.0 mass% or less of Cr is the target of the high Cr steel having a brittle ferrite phase in the solidified shell near the final solidification. This is because the content is high and the viscosity of the molten steel increases as the Cr content increases, and the axial core crack and porosity deteriorate. Moreover, because of microsegregation during solidification, hot workability is also deteriorated due to P, S concentration and generation of δ ferrite.

・内面側の直径が400mm以下の円形断面鋳型を使用する。
鋳型の内面側の直径が400mmを超えると、製造した丸鋳片の圧下を行う際に、内質改善に必要とされる圧下量が増加し、必要とされる圧下ロールの圧下力、トルクが大きくなって、設備投資費が増加するためである。
・ Use a circular cross-section mold with an inner diameter of 400 mm or less.
When the diameter on the inner surface side of the mold exceeds 400 mm, when the produced round cast slab is reduced, the amount of reduction required for improving the quality is increased, and the required reduction force and torque of the reduction roll are increased. This is because the capital investment cost increases.

・鋳込み速度を0.6m/min以上、2.4m/min以下とする。
鋳込み速度が0.6m/min未満では、鋳型内の連続鋳造用パウダーの滓化不良による外表面の欠陥の発生、表面温度の低下による外径圧下量の低下が発生するからである。一方、2.4m/minを超えると、最終凝固位置の鋳造方向下流側への後退により中心部の未凝固厚が狭まり最終凝固時に溶鋼が閉じ込められるブリッジングによるザク、ポロシティ発生により鋳片内部品質が悪化するためである。
-The casting speed is 0.6 m / min or more and 2.4 m / min or less.
This is because if the casting speed is less than 0.6 m / min, defects on the outer surface due to poor hatching of the powder for continuous casting in the mold, and a reduction in the outer diameter reduction due to a decrease in the surface temperature occur. On the other hand, if it exceeds 2.4 m / min, the unsolidified thickness of the central part narrows due to the retreat of the final solidification position to the downstream side in the casting direction, and the internal quality of the slab due to the generation of porosity and porosity due to bridging that confine the molten steel during final solidification This is because it gets worse.

・表面温度が800℃以上、1100℃以下の間で丸鋳片が完全に凝固した後に圧下を行う。
丸鋳片の外表面をロールなどで塑性加工する場合、外径圧下量が増加すると圧下面とその圧下面と直交する自由面側の外表面で割れ疵やしわ疵が多発するため、本発明では、鋳片の熱間加工性を考慮して外表面の温度を800℃以上とする。上限の温度は鋳片横断面内において完全に凝固が完了していることを示す指標として1100℃以下とする。
-The rolling is performed after the round slab is completely solidified at a surface temperature between 800 ° C and 1100 ° C.
When the outer surface of a round slab is plastically processed with a roll or the like, if the outer diameter reduction amount increases, cracks and wrinkles will frequently occur on the outer surface of the pressed surface and the free surface perpendicular to the pressed surface. Then, considering the hot workability of the slab, the temperature of the outer surface is set to 800 ° C. or higher. The upper limit temperature is set to 1100 ° C. or less as an index indicating that solidification is completely completed in the slab cross section.

・鋳片圧下比率REDが10.0%以上、30.0%以下の圧下を、1基もしくは複数基からなるピンチロールで加え、圧下方向の幅寸法が圧下方向と直交する方向の自由面側の幅寸法より小さくなるように扁平化する。
以下、この条件で圧下する理由を説明する。
-Add a reduction of slab reduction ratio RED of 10.0% or more and 30.0% or less with one or more pinch rolls, and the free dimension side where the width dimension in the reduction direction is perpendicular to the reduction direction It flattens so that it may become smaller than the width dimension.
Hereinafter, the reason for the reduction under this condition will be described.

図1に鋳片圧下比率と鋳片内部欠陥比率の関係を示す。鋳片圧下比率が20.0%以上の場合、鋳片の内部欠陥は消失するが、鋳片圧下比率が10.0%未満の場合は鋳片の内部欠陥比率が増加して5%を超えることもある。   FIG. 1 shows the relationship between the slab reduction ratio and the slab internal defect ratio. When the slab reduction ratio is 20.0% or more, the internal defects of the slab disappear, but when the slab reduction ratio is less than 10.0%, the internal defect ratio of the slab increases and exceeds 5%. Sometimes.

図2に製管時の鋼管の内面に発生した欠陥に対するプラグ先端ドラフト率と鋳片内部欠陥比率の関係について示す。製管時の鋼管の内面疵発生の有無をまとめた図2に示した結果より、鋳片内部欠陥比率が増大するほど製管時の鋼管の内面欠陥の発生率が増大する傾向にあることが分かる。   FIG. 2 shows the relationship between the plug tip draft ratio and the slab internal defect ratio with respect to defects generated on the inner surface of the steel pipe during pipe making. From the result shown in FIG. 2 that summarizes the presence or absence of the occurrence of internal flaws in the steel pipe during pipe making, the rate of occurrence of internal flaws in the steel pipe during pipe making tends to increase as the slab internal defect ratio increases. I understand.

鋼管の内面欠陥の原因となる中心ポロシティを起点としたき裂を進展させるマンネスマン破壊を低減するためには、図2より、マンネスマン製管において下記式により定義されているプラグ先端ドラフト率を6.0%以下にすることが望ましいことが分かる。
{(丸鋳片外径−プラグ接触時のピアサーロール間隔)/丸鋳片外径}×100%
In order to reduce Mannesmann fracture that causes cracks to propagate starting from the center porosity that causes internal defects in the steel pipe, the plug tip draft rate defined by the following formula in Mannesmann pipe is shown in FIG. It turns out that it is desirable to make it 0% or less.
{(Round slab outer diameter-Piercer roll interval at plug contact) / Round slab outer diameter} x 100%

しかしながら、プラグ先端ドラフト率の過度の低下は丸鋳片の噛み込み性を悪化させ、操業安定性を損なう結果となる。   However, an excessive reduction in the plug tip draft rate deteriorates the biting property of the round cast slab and results in a loss of operational stability.

そこで、発明者らは、プラグ先端ドラフト率の低下の選定には、鋳片圧下比率との関係を把握することが重要である点に着目し、上記2因子が鋳片内部欠陥比率に及ぼす影響を調査する試験を重ねた。   Therefore, the inventors focused on the fact that it is important to grasp the relationship with the slab reduction ratio in selecting the reduction of the plug tip draft ratio, and the influence of the above two factors on the slab internal defect ratio. The examination which investigated was repeated.

その結果、安定した噛み込みによる製管と品質の両立を目的に、鋳片圧下比率が10.0%以上、30.0%以下の圧下を加えることで、図2における鋳片内部欠陥比率が5.0%以下、すなわち、プラグ先端ドラフト率が6.0%以下の条件下で製管を行うことが最も望ましいことを知見した。   As a result, for the purpose of achieving both pipe making and quality by stable biting, the slab internal defect ratio in FIG. It has been found that it is most desirable to make the pipe under the condition of 5.0% or less, that is, the plug tip draft rate is 6.0% or less.

この際に、鋳片圧下比率の上限を30.0%とするのは、30.0%を超える鋳片圧下比率で扁平化させると、次の圧下パススケジュールにおいて、整形ロールで丸形状に成形する際、扁平化した材料が倒れ易くなり、整形ラインが停止するなどの問題が生じるためである。   At this time, the upper limit of the slab reduction ratio is set to 30.0%. When flattening at a slab reduction ratio exceeding 30.0%, in the next reduction pass schedule, it is formed into a round shape with a shaping roll. This is because the flattened material tends to fall down, causing problems such as stopping the shaping line.

また、発明者らは、鋳片圧下比率REDと鋳片表面温度TMPが、上述した圧下面と直交する鋳片自由面側の外表面での欠陥(割れ疵やしわ疵)の発生に影響することを見出し、鋳片表面温度TMPが800℃の場合、鋳片圧下比率REDは20%を上限とし、鋳片表面温度TMPが1100℃の場合、鋳片圧下比率REDは30%を上限とする下記式の範囲内で鋳片圧下比率REDを決定することが望ましいことを知見した(図3参照)。鋳片表面欠陥は手入れにより除去することが可能であるが、作業効率の向上の観点からも、下記式の範囲内で圧下を行うことが望ましい。
10%≦RED≦0.0333×TMP−6.63
Further, the inventors have found that the slab reduction ratio RED and the slab surface temperature TMP affect the occurrence of defects (cracks and wrinkles) on the outer surface of the slab free surface perpendicular to the above-described slab surface. When the slab surface temperature TMP is 800 ° C., the slab reduction ratio RED has an upper limit of 20%, and when the slab surface temperature TMP is 1100 ° C., the slab reduction ratio RED has an upper limit of 30%. It was found that it is desirable to determine the slab reduction ratio RED within the range of the following formula (see FIG. 3). Although the slab surface defect can be removed by care, it is desirable to perform the reduction within the range of the following formula from the viewpoint of improving the working efficiency.
10% ≦ RED ≦ 0.0333 × TMP-6.63

その結果、発明者らは、前述の特許文献3に記載された減面率と同等、或いはそれよりも大きな減面率相当の鋳片圧下比率による圧下を実現するとともに、圧下を加えるという工程を必ずしも複数回繰り返す必要性が無いことを見出した。   As a result, the inventors realized a step of reducing the slab reduction ratio equivalent to or smaller than the area reduction rate described in the above-mentioned Patent Document 3, and applying the reduction. It has been found that there is no need to repeat multiple times.

鋳片に発生する内部欠陥を抑制するには、10.0%以上、30.0%以下の鋳片圧下比率の圧下が必要であるが、圧延ローラまたはピンチロールの負荷能力に余裕があれば鋳片圧下比率は30.0%以下とすることが望ましい。   In order to suppress internal defects that occur in the slab, reduction of the slab reduction ratio of 10.0% or more and 30.0% or less is required, but if there is a margin in the load capacity of the rolling roller or pinch roll The slab reduction ratio is desirably 30.0% or less.

連続鋳造鋳片は表面温度の低下により熱間加工性が低下し、圧下に要する圧下力が増大するため、高温の連続鋳造機内の鋳片に対して圧下を行うことで、設備費用を抑制しつつ、鋳片欠陥の無い連続鋳造鋳片を製造する事が可能となる。この際、圧下に用いる圧延機として、鋳片の矯正、保持に用いられる、ピンチロールを適用しても良い。   Continuous cast slabs are reduced in hot workability due to a decrease in surface temperature, and the reduction force required for reduction increases, so the equipment costs are reduced by reducing the slabs in a high-temperature continuous casting machine. On the other hand, it is possible to produce a continuous cast slab free from slab defects. Under the present circumstances, you may apply the pinch roll used for correction | amendment and holding | maintenance of a slab as a rolling mill used for reduction.

すなわち、本発明は、発明者らの上記知見に基づいてなされたものであり、
2.0質量%以上、18.0質量%以下のCrを含有する高Cr鋼を連続鋳造して鋳片を製造する方法であって、
内面側の直径が400mm以下の円形断面鋳型を使用し、
鋳込み速度を0.6m/min以上、2.4m/min以下とし、
表面温度が800℃以上、1100℃以下の間で丸鋳片が完全に凝固した後に、鋳型の前記内面側の直径に対する鋳片外径の圧下比率(鋳片圧下比率RED)が10.0%以上、30.0%以下の圧下を、1基もしくは複数基からなるピンチロールで加え、圧下方向の幅寸法が圧下方向と直交する方向の自由面側の幅寸法より小さくなるように扁平化することを主要な特徴とするものである。
That is, the present invention has been made based on the above findings of the inventors,
A method for producing a slab by continuously casting a high Cr steel containing 2.0 mass% or more and 18.0 mass% or less of Cr,
Use a circular cross-section mold with an inner diameter of 400 mm or less,
The casting speed is set to 0.6 m / min or more and 2.4 m / min or less,
After the round slab is completely solidified at a surface temperature between 800 ° C. and 1100 ° C., the reduction ratio of the outer diameter of the slab to the diameter of the inner surface of the mold (slab reduction ratio RED) is 10.0%. More than 30.0% reduction is applied with one or more pinch rolls and flattened so that the width dimension in the reduction direction is smaller than the width dimension on the free surface side in the direction perpendicular to the reduction direction. Is the main feature.

その際、丸鋳片を扁平化するときの鋳片圧下比率RED(%)を、外径圧下直前の丸鋳片の鋳片表面温度TMP(℃)によって下記式を満足する条件下で行うことが望ましい。
10%≦RED≦0.0333×TMP−6.63
At that time, the slab reduction ratio RED (%) when flattening the round slab should be performed under the condition that satisfies the following formula according to the slab surface temperature TMP (° C) of the round slab immediately before the outer diameter reduction. Is desirable.
10% ≦ RED ≦ 0.0333 × TMP-6.63

そして、前記扁平化した鋳片を、1基もしくは複数基からなる整形ロールにより、鉛直に圧下された方向と直交する方向から圧下し、扁平化させることなく所定サイズの円形断面に整形する。   Then, the flattened slab is squeezed from a direction perpendicular to the direction squeezed vertically by one or a plurality of shaping rolls, and shaped into a circular section of a predetermined size without being flattened.

このような本発明方法で製造した丸鋳片は、扁平化した鋳片を丸形状に整形する際に、複数回の直交する方向から扁平化を行うことがないので回転鍛造効果を抑制できる。従って、真円度に優れ、鋳片の外面品質と内部品質が良好となる。   Since the round slab manufactured by such a method of the present invention does not flatten from a plurality of orthogonal directions when the flattened slab is shaped into a round shape, the rotary forging effect can be suppressed. Accordingly, the roundness is excellent, and the outer surface quality and the internal quality of the slab are improved.

なお、整形ロールとは、鉛直に圧下された方向と直交する方向から圧下し、扁平化させることなく所定のサイズの丸断面に整形する圧下ロールである。この際、扁平化した鋳片を整形するのは、連続鋳造機内、鋳片切断後の分塊圧延のいずれでも良い。   The shaping roll is a rolling roll that is rolled from a direction perpendicular to the direction of the vertical rolling and is shaped into a round cross section of a predetermined size without being flattened. At this time, the flattened slab may be shaped either in a continuous casting machine or in a piecewise rolling after cutting the slab.

所定サイズの円形断面に整形した後は、その丸鋳片をプラグ先端ドラフト率が6.0%以下の条件でマンネスマン製管する。このように、内部欠陥を抑制した丸鋳片をプラグ先端ドラフト率が6.0%以下の条件にて製管を行うことで、製管時の鋼管の内面に発生する欠陥の防止が可能となる。   After shaping into a circular cross section of a predetermined size, the round cast piece is manufactured as Mannesmann under the condition that the plug tip draft rate is 6.0% or less. In this way, it is possible to prevent defects occurring on the inner surface of the steel pipe during pipe making by making a round slab with suppressed internal defects under the condition that the plug tip draft rate is 6.0% or less. Become.

図4は丸ビレット鋳片の連続鋳造設備の構成例を示す側面方向から見た縦断面図であり、図4中の1はタンディッシュ、3は浸漬ノズル、4は鋳型、5は鋳型直下の鋳造用ロール、6は同じく二次冷却スプレー帯、8はピンチロールである。   FIG. 4 is a longitudinal sectional view seen from the side direction showing a configuration example of a continuous casting facility for round billet cast pieces. In FIG. 4, 1 is a tundish, 3 is an immersion nozzle, 4 is a mold, 5 is directly under the mold. A casting roll, 6 is a secondary cooling spray band, and 8 is a pinch roll.

通常の連続鋳造では、取鍋からタンディッシュ1に注がれた溶鋼2が浸漬ノズル3を介して鋳型4に注湯される。鋳型4に注湯された溶鋼2は、ピンチロール8の回転駆動により鋳造用ロール5群に沿って引き抜かれながら、二次冷却スプレー帯6によって凝固シェル7の表面が冷却され、凝固が進行して丸鋳片9が製造される。   In normal continuous casting, molten steel 2 poured into a tundish 1 from a ladle is poured into a mold 4 through an immersion nozzle 3. As the molten steel 2 poured into the mold 4 is drawn along the casting roll 5 group by the rotational drive of the pinch roll 8, the surface of the solidified shell 7 is cooled by the secondary cooling spray band 6 and solidification proceeds. Thus, the round slab 9 is manufactured.

この時のピンチロール8の丸鋳片9に対する圧下力(または保持力)は、鋳片自体の自重及び湾曲状で引き抜かれてきた丸鋳片9を真っ直ぐに矯正する際に、必要最小限の圧下量にて丸鋳片9を保持しながら設定された引抜速度にて回転駆動される。   The pressing force (or holding force) of the pinch roll 8 on the round slab 9 at this time is the minimum necessary for straightening the round slab 9 that has been pulled out by its own weight and curved shape. It is rotationally driven at a set drawing speed while holding the round slab 9 by the amount of reduction.

本発明は、連続鋳造機内に設置したピンチロール8aによって圧下を行い、その際、丸鋳片9に対する圧下量を鋳型4の内面側の直径に対して、10.0〜30.0%の圧下を与えながら丸鋳片9の引抜を行うことにより、丸鋳片9の内質を改善することにある。   In the present invention, the reduction is performed by the pinch roll 8a installed in the continuous casting machine. At that time, the reduction amount of the round cast piece 9 is reduced by 10.0 to 30.0% with respect to the diameter of the inner surface side of the mold 4. It is to improve the quality of the round slab 9 by pulling out the round slab 9 while applying the above.

この際、圧下に用いるピンチロール8aは、複数のピンチロール8を適用しても構わない。圧下された丸鋳片9は、連続鋳造機内、若しくは鋳片切断後の分塊圧延で設置した整形ロール10において、楕円状に変形した丸鋳片を所定のサイズの丸鋳片に圧延成形後、継目無鋼管用の素材とする。   At this time, a plurality of pinch rolls 8 may be applied as the pinch roll 8a used for the reduction. The rolled round slab 9 is rolled into a round slab of a predetermined size from a round slab deformed into an oval shape in a shaping roll 10 installed in a continuous casting machine or by partial rolling after slab cutting. The material for seamless steel pipes.

下記表1は、図4の連続鋳造機を使用して、13質量%のCrを含有する高Cr鋼を、内面側の直径が225mm〜400mmの鋳型で、0.5〜2.0m/minの鋳造速度で連続鋳造した際の鋳片圧下条件及び製管条件を示したものである。   Table 1 below shows a high Cr steel containing 13% by mass of Cr using a continuous casting machine shown in FIG. 4 in a mold having an inner diameter of 225 mm to 400 mm and 0.5 to 2.0 m / min. It shows the slab reduction condition and the pipe making condition when continuously cast at a casting speed of.

下記表1には、本発明で規定する鋳片圧下条件及び製管条件を満足する発明例1〜7と、本発明で規定する条件を満足しない比較例8〜12についての各条件と表面疵発生有無、製品本数に対する内部欠陥が発生した本数により整理される内部欠陥発生率を示す。表1における総合評価は、表面疵の発生が無く(表1の表面疵欄の評価が◎印)、内部欠陥発生率が1.0%以下のものを◎、表面疵は手入れにより除去可能であるレベル(表1の表面疵欄の評価が○印)で、内部欠陥発生率が2.0%以下のものを○、表面疵の発生の有無にかかわらず、内部欠陥発生率が2.0%より大きい場合を×とした。   Table 1 below shows conditions and surface flaws for Invention Examples 1 to 7 that satisfy the slab reduction conditions and pipe making conditions defined in the present invention, and Comparative Examples 8 to 12 that do not satisfy the conditions defined by the present invention. Indicates the occurrence rate of internal defects organized by the number of occurrence of internal defects relative to the number of occurrences and the number of products. Comprehensive evaluation in Table 1 shows that there is no surface flaws (the evaluation in the surface flaw column in Table 1 is marked with ◎), the internal defect occurrence rate is 1.0% or less ◎, and surface flaws can be removed by maintenance. At a certain level (the evaluation in the surface flaw column of Table 1 is ○), the internal defect occurrence rate is 2.0% or less ○, regardless of the presence or absence of surface flaws, the internal defect occurrence rate is 2.0 The case where it was larger than% was taken as x.

Figure 2013180307
Figure 2013180307

表2に示すように、発明例1〜3のように請求項1のみの実施により丸鋳片の内部欠陥率を5.0%以下とした後、整形ロールにより所定サイズの円形断面に整形し、かつプラグ先端ドラフト率を6.0%以下に制御してマンネスマン製管することで、製品の内部欠陥発生率が、操業に支障なく手入れ可能なレベルである2.0%以下となった。   As shown in Table 2, after carrying out only Claim 1 as in Invention Examples 1 to 3, the internal defect rate of the round slab is reduced to 5.0% or less, and then shaped into a circular section of a predetermined size by a shaping roll. In addition, by controlling the draft of the plug tip to 6.0% or less and manufacturing Mannesmann, the internal defect occurrence rate of the product became 2.0% or less, which is a level that can be maintained without hindering operation.

また、最も望ましい条件として、発明例4〜7のように請求項1,2の併用により、鋳片内部欠陥比率を5.0%以下とした後、整形ロールにより所定サイズの円形断面に整形し、かつプラグ先端ドラフト率を6.0%以下に制御してマンネスマン製管することで、製品の内部欠陥発生を防止する事が可能となった。   Moreover, as the most desirable condition, after using the combined use of claims 1 and 2 as in Invention Examples 4 to 7, the slab internal defect ratio is set to 5.0% or less, and then shaped into a circular section of a predetermined size by a shaping roll. In addition, it was possible to prevent the occurrence of internal defects in the product by manufacturing Mannesmann pipe with the plug tip draft rate controlled to 6.0% or less.

一方、合計鋳片圧下率が10.0%以下の比較例8〜10の場合、プラグ先端ドラフト率が6.0%以下に制御してマンネスマン製管しても、操業内での手入れ対応が不可能なレベルの製品の内部欠陥が発生した。   On the other hand, in the case of Comparative Examples 8 to 10 where the total slab reduction ratio is 10.0% or less, even if Mannesmann pipes are manufactured by controlling the plug tip draft rate to 6.0% or less, it is possible to take care within the operation. An impossible level of product internal defects has occurred.

また、比較例11,12の場合、合計鋳片圧下率を10.0%以上確保しているが、プラグ先端ドラフト率が6.0%を超えているため、製管時に内部欠陥が発生した。   Further, in the case of Comparative Examples 11 and 12, the total slab reduction ratio was secured at 10.0% or more, but because the plug tip draft ratio exceeded 6.0%, internal defects occurred during pipe making. .

1 タンディッシュ
2 溶鋼
3 浸漬ノズル
4 鋳型
5 鋳造用ロール
6 二次冷却スプレー帯
7 凝固シェル
8 ピンチロール
8a ピンチロール
9 丸鋳片
10 整形ロール
DESCRIPTION OF SYMBOLS 1 Tundish 2 Molten steel 3 Immersion nozzle 4 Mold 5 Casting roll 6 Secondary cooling spray zone 7 Solidified shell 8 Pinch roll 8a Pinch roll 9 Round slab 10 Shaping roll

Claims (3)

2.0質量%以上、18.0質量%以下のCrを含有する高Cr鋼を連続鋳造して鋳片を製造する方法であって、
内面側の直径が400mm以下の円形断面鋳型を使用し、
鋳込み速度を0.6m/min以上、2.4m/min以下とし、
表面温度が800℃以上、1100℃以下の間で丸鋳片が完全に凝固した後に、鋳型の前記内面側の直径に対する鋳片外径の圧下比率(鋳片圧下比率RED)が10.0%以上、30.0%以下の圧下を、1基もしくは複数基からなるピンチロールで加え、圧下方向の幅寸法が圧下方向と直交する方向の自由面側の幅寸法より小さくなるように扁平化し、扁平化した鋳片を、1基もしくは複数基からなる整形ロールにより、鉛直に圧下された方向と直交する方向から圧下し、扁平化させることなく所定サイズの円形断面に整形することを特徴とする継目無鋼管製造用連続鋳造鋳片の製造方法。
A method for producing a slab by continuously casting a high Cr steel containing 2.0 mass% or more and 18.0 mass% or less of Cr,
Use a circular cross-section mold with an inner diameter of 400 mm or less,
The casting speed is set to 0.6 m / min or more and 2.4 m / min or less,
After the round slab is completely solidified at a surface temperature between 800 ° C. and 1100 ° C., the reduction ratio of the outer diameter of the slab to the diameter of the inner surface of the mold (slab reduction ratio RED) is 10.0%. More than 30.0% reduction is applied with one or more pinch rolls and flattened so that the width dimension in the reduction direction is smaller than the width dimension on the free surface in the direction orthogonal to the reduction direction, The flattened slab is squeezed from a direction perpendicular to the vertically squeezed direction by one or a plurality of shaping rolls and shaped into a circular section of a predetermined size without being flattened. A method for producing continuous cast slabs for seamless steel pipe production.
丸鋳片を扁平化する際の前記鋳片圧下比率RED(%)を、外径圧下直前の丸鋳片の鋳片表面温度TMP(℃)によって下記式を満足する条件下で行うことを特徴とする請求項1に記載の継目無鋼管製造用連続鋳造鋳片の製造方法。
10%≦RED≦0.0333×TMP−6.63
The slab reduction ratio RED (%) when flattening the round slab is performed under the condition that satisfies the following formula according to the slab surface temperature TMP (° C) of the round slab immediately before the outer diameter reduction. The manufacturing method of the continuous cast slab for seamless steel pipe manufacture of Claim 1.
10% ≦ RED ≦ 0.0333 × TMP-6.63
請求項1又は2に記載の円形断面に整形した丸鋳片を、プラグ先端ドラフト率が6.0%以下の条件でマンネスマン製管することを特徴とする継目無鋼管の製造方法。   A method for producing a seamless steel pipe, characterized in that the round slab shaped into a circular cross-section according to claim 1 or 2 is Mannesmann-made under the condition that the plug tip draft rate is 6.0% or less.
JP2012044224A 2012-02-29 2012-02-29 Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe Pending JP2013180307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044224A JP2013180307A (en) 2012-02-29 2012-02-29 Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044224A JP2013180307A (en) 2012-02-29 2012-02-29 Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe

Publications (1)

Publication Number Publication Date
JP2013180307A true JP2013180307A (en) 2013-09-12

Family

ID=49271349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044224A Pending JP2013180307A (en) 2012-02-29 2012-02-29 Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe

Country Status (1)

Country Link
JP (1) JP2013180307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034197A4 (en) * 2013-11-29 2016-10-19 Jfe Steel Corp Method for manufacturing round billet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201602A (en) * 1996-01-25 1997-08-05 Nkk Corp Production of continuously cast round billet for producing seamless steel pipe having good workability
JPH09201601A (en) * 1996-01-24 1997-08-05 Nkk Corp Production of continuously cast round billet for producing seamless steel pipe having good workability
JP2002361304A (en) * 2001-06-11 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube using round billet
WO2005115650A1 (en) * 2004-05-28 2005-12-08 Sumitomo Metal Industries, Ltd. Process for producing seamless steel pipe
WO2007100042A1 (en) * 2006-03-01 2007-09-07 Sumitomo Metal Industries, Ltd. PROCESS FOR PRODUCING HIGH-Cr SEAMLESS PIPE
JP2011088184A (en) * 2009-10-22 2011-05-06 Sumitomo Metal Ind Ltd Continuous casting method for alloy steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201601A (en) * 1996-01-24 1997-08-05 Nkk Corp Production of continuously cast round billet for producing seamless steel pipe having good workability
JPH09201602A (en) * 1996-01-25 1997-08-05 Nkk Corp Production of continuously cast round billet for producing seamless steel pipe having good workability
JP2002361304A (en) * 2001-06-11 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube using round billet
WO2005115650A1 (en) * 2004-05-28 2005-12-08 Sumitomo Metal Industries, Ltd. Process for producing seamless steel pipe
WO2007100042A1 (en) * 2006-03-01 2007-09-07 Sumitomo Metal Industries, Ltd. PROCESS FOR PRODUCING HIGH-Cr SEAMLESS PIPE
JP2011088184A (en) * 2009-10-22 2011-05-06 Sumitomo Metal Ind Ltd Continuous casting method for alloy steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034197A4 (en) * 2013-11-29 2016-10-19 Jfe Steel Corp Method for manufacturing round billet
US10092949B2 (en) 2013-11-29 2018-10-09 Jfe Steel Corporation Method of manufacturing round steel billet

Similar Documents

Publication Publication Date Title
JP5545419B1 (en) Method for continuous casting of steel and method for manufacturing strip steel
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
JP5085451B2 (en) Billet continuous casting method
JP4899629B2 (en) Billet continuous casting method
JP2009000705A (en) Method for continuously casting cast slab
JP5962206B2 (en) Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP7147477B2 (en) Continuous casting method for billet slab
JP2013180307A (en) Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5458654B2 (en) Work roll for hot rolling mill and its manufacturing method
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5594164B2 (en) Manufacturing method of seamless steel pipe in high alloy or stainless steel
JP6036125B2 (en) Steel continuous casting method
JP6439663B2 (en) Steel continuous casting method
WO2015079639A1 (en) Method for manufacturing round billet
JP5790385B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe
JP5973703B2 (en) Seamless pipe manufacturing method
JP3958787B1 (en) Continuous casting method
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP3671868B2 (en) Method for casting high Cr steel
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP2019107695A (en) Manufacturing method for seamless steel pipe
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JP5949629B2 (en) Manufacturing method of extra-thick austenitic stainless steel plate with excellent internal properties and extra-thick austenitic stainless steel plate with excellent internal properties
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407