JP2013175405A - Electrode plate and secondary battery using the same - Google Patents

Electrode plate and secondary battery using the same Download PDF

Info

Publication number
JP2013175405A
JP2013175405A JP2012040252A JP2012040252A JP2013175405A JP 2013175405 A JP2013175405 A JP 2013175405A JP 2012040252 A JP2012040252 A JP 2012040252A JP 2012040252 A JP2012040252 A JP 2012040252A JP 2013175405 A JP2013175405 A JP 2013175405A
Authority
JP
Japan
Prior art keywords
groove
sintered body
positive electrode
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012040252A
Other languages
Japanese (ja)
Other versions
JP5844659B2 (en
Inventor
Fumiaki Sago
文昭 佐郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012040252A priority Critical patent/JP5844659B2/en
Publication of JP2013175405A publication Critical patent/JP2013175405A/en
Application granted granted Critical
Publication of JP5844659B2 publication Critical patent/JP5844659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery, capable of suppressing crack progression and electrode breakage caused by charging and discharging even when a sintered body whose porosity is less than 15% as a positive electrode or a negative electrode is used, having large battery capacitance, excellent in cycle characteristics, and having high reliability.SOLUTION: An electrode plate 1, in which a groove 3 is provided on a principal plane of at least one of sintered bodies 2 whose porosity is less than 15%, is used, thus making it possible to suppress electrode breakage caused by progression of a crack generated from a periphery during charging and discharging and deterioration of capacitance after a cycle of charging and discharging.

Description

本発明は、電極板およびそれを用いた二次電池に関するものである。   The present invention relates to an electrode plate and a secondary battery using the same.

近年、二次電池は、携帯電話やノートPCだけでなく、電気自動車用バッテリーとしてもその用途を広げている。   In recent years, secondary batteries have been used not only for mobile phones and notebook PCs but also as batteries for electric vehicles.

二次電池は、一般に正極と負極と非水電解質から構成されており、正極活物質としては例えば遷移金属とLiの複合酸化物、負極活物質としては例えば黒鉛やハードカーボンなどの炭素系材料やLiTi12のような複合酸化物が用いられ、非水電解質としては例えば有機溶媒に電解質塩を溶解した有機電解液が用いられている。また、正極と負極の間にはセパレータと呼ばれるポリプロピレンやポリエチレンなどのポリオレフィンを主成分とした、厚さが20〜30μmの有機多孔質膜が用いられている。 The secondary battery is generally composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode active material is, for example, a composite oxide of transition metal and Li, and the negative electrode active material is, for example, a carbon-based material such as graphite or hard carbon. A composite oxide such as Li 4 Ti 5 O 12 is used, and as the non-aqueous electrolyte, for example, an organic electrolytic solution in which an electrolyte salt is dissolved in an organic solvent is used. Further, between the positive electrode and the negative electrode, an organic porous film having a thickness of 20 to 30 μm, which is mainly composed of polyolefin such as polypropylene or polyethylene, called a separator, is used.

正極活物質として用いられる遷移金属とLiの複合酸化物は、従来は遷移金属とLiの複合酸化物の粉末にカーボン系の導電材料およびバインダを混合して集電体へ塗布する塗布型電極として用いることが主流であったが、エネルギー密度を向上するために、焼結体電極として用いることが提案されている(たとえば、特許文献1を参照)。   The transition metal and Li composite oxide used as the positive electrode active material has been conventionally applied as a coated electrode in which a carbon-based conductive material and a binder are mixed with a powder of a transition metal and Li composite oxide and applied to a current collector. Although it has been mainly used, it has been proposed to use it as a sintered body electrode in order to improve the energy density (see, for example, Patent Document 1).

特許第3431081号公報Japanese Patent No. 3431081

しかしながら、特許文献1に記載の焼結体電極は、空孔率が15%以上であり、相対密度が低いために高いエネルギー密度は得られず、また強度が弱くなり実用上の取り扱いが難しいという問題があった。一方、焼結体電極の空孔率を15%より小さくすると、充放電時の体積変化によりクラックが発生し、さらにはクラックの進展により電極が破壊されて、サイクル特性が劣化したり電池容量が低下するという問題があった。   However, the sintered body electrode described in Patent Document 1 has a porosity of 15% or more, and since the relative density is low, a high energy density cannot be obtained, and the strength is weak and practical handling is difficult. There was a problem. On the other hand, if the porosity of the sintered body electrode is made smaller than 15%, cracks occur due to volume changes during charge and discharge, and further, the electrodes are destroyed due to the progress of cracks, resulting in deterioration of cycle characteristics and battery capacity. There was a problem of lowering.

本発明は上記の課題に鑑みなされたもので、正極もしくは負極として空孔率が15%未満の焼結体を用いても、充放電によるクラックの進展および電極破壊を抑制し、電池容量が大きく、サイクル特性に優れた信頼性の高い二次電池を提供することを目的とする。   The present invention has been made in view of the above problems. Even when a sintered body having a porosity of less than 15% is used as a positive electrode or a negative electrode, the progress of cracks due to charging / discharging and electrode destruction are suppressed, and the battery capacity is increased. An object of the present invention is to provide a highly reliable secondary battery having excellent cycle characteristics.

本発明の電極板は、15%未満の空孔率を有する活物質の焼結体からなり、該焼結体の
少なくとも一方の主面上に溝が設けられていることを特徴とする。
The electrode plate of the present invention is made of a sintered body of an active material having a porosity of less than 15%, and is characterized in that a groove is provided on at least one main surface of the sintered body.

本発明の二次電池は、正極と負極と非水電解質とを有する積層型の発電要素と、前記正極および前記負極にそれぞれ接する集電体と、を備え、前記正極および前記負極の少なくともいずれか一方として、上記の電極板を用いたことを特徴とする。   A secondary battery according to the present invention includes a laminated power generation element having a positive electrode, a negative electrode, and a nonaqueous electrolyte, and a current collector in contact with each of the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode On the other hand, the above electrode plate is used.

本発明によれば、正極もしくは負極として空孔率が15%未満の焼結体を用いても、充放電によるクラックの進展および電極破壊を抑制し、電池容量が大きく、サイクル特性に優れた信頼性の高い二次電池を提供することができる。   According to the present invention, even if a sintered body having a porosity of less than 15% is used as a positive electrode or a negative electrode, the progress of cracks due to charge / discharge and electrode breakdown are suppressed, the battery capacity is large, and the reliability is excellent in cycle characteristics. A secondary battery with high performance can be provided.

本発明の第1の実施形態である電極板を模式的に示した斜視図である。It is the perspective view which showed typically the electrode plate which is the 1st Embodiment of this invention. 本発明の第2の実施形態である電極板を模式的に示した斜視図である。It is the perspective view which showed typically the electrode plate which is the 2nd Embodiment of this invention. 図1の(a)A−A’断面図、および(b)溝部分の拡大図である。2A is a cross-sectional view taken along line A-A ′, and FIG. 2B is an enlarged view of a groove portion. 本発明の第3の実施形態である電極板を模式的に示した(a)斜視図、および(b)溝部分を拡大した平面図である。It is the (a) perspective view which showed typically the electrode plate which is the 3rd Embodiment of this invention, and the top view to which the (b) groove part was expanded. 図4の(a)B−B’断面図、および(b)溝部分の拡大図である。FIG. 4A is a cross-sectional view along B-B ′, and FIG. 5B is an enlarged view of a groove portion. 本発明の一実施形態である二次電池を模式的に示した断面図である。It is sectional drawing which showed typically the secondary battery which is one Embodiment of this invention.

本発明の第1実施形態である電極板について、図1に基づき説明する。本実施形態の電極板1は、15%未満の空孔率を有する活物質の焼結体2からなり、焼結体2の主面には
溝3が設けられている。焼結体2が充放電時に体積変化した場合、特に焼結体2の主面の外周部にクラックが発生しやすく、そのクラックがさらに進展することで、電極板1としての電気的接続が損なわれて電池容量が低下したり、電極板1が破壊に至るが、焼結体2の主面に溝3を設けることにより、焼結体2の外周部にクラックが発生しても、溝3が存在することにより、溝3より内側にはクラックが進展せず、電池容量の低下を抑えることができ、電極板1の破壊を抑制することができる。
The electrode plate which is 1st Embodiment of this invention is demonstrated based on FIG. The electrode plate 1 of the present embodiment includes an active material sintered body 2 having a porosity of less than 15%, and a groove 3 is provided on the main surface of the sintered body 2. When the volume of the sintered body 2 changes during charging and discharging, cracks are likely to occur particularly in the outer peripheral portion of the main surface of the sintered body 2, and the electrical connection as the electrode plate 1 is impaired due to the further progress of the cracks. Although the battery capacity is reduced and the electrode plate 1 is broken, the groove 3 is provided on the main surface of the sintered body 2, so that even if cracks occur in the outer peripheral portion of the sintered body 2, the groove 3 As a result, cracks do not develop inside the grooves 3, a decrease in battery capacity can be suppressed, and destruction of the electrode plate 1 can be suppressed.

溝3は、焼結体2の主面の外周近傍に、外周に沿うように設けられていることが好ましい。なお、外周に沿うように設けられているとは、例えば焼結体2が多角形状の場合は、溝3が多角形状の各辺に沿って設けられ、焼結体2と相似の多角形を形成することを指すが、図2に示すように、溝3が各辺に沿うとともに、溝3が沿う辺に隣接する辺と交わるように設けられていてもよい(第2の実施形態)。このように、溝3を焼結体2の主面の外周近傍に設けることにより、クラックの進展と電池容量の低下を最小限に抑えることができる。また、溝3を外周に沿うように設けることにより、外周部に発生したクラックが、焼結体2の中心部への進展することを、より効果的に抑制することができる。なお、溝3は、図1に示すように、焼結体2の主面の中心から外周までの距離をLとした場合、中心からの距離がLの60%以上である領域に設けられていることが好ましい。溝3を、焼結体2の主面の中心からの距離がLの60%以上である領域に設けることにより、外周部に発生したクラックにより電極外周部が電気的に断線しても、電極の容量に対する影響を小さく抑えることができる。なお、溝3は、可能な限り焼結体2の主面の外周に近接した領域に設けることが望ましい。   The groove 3 is preferably provided in the vicinity of the outer periphery of the main surface of the sintered body 2 so as to follow the outer periphery. For example, when the sintered body 2 has a polygonal shape, the groove 3 is provided along each side of the polygonal shape, and a polygon similar to the sintered body 2 is formed. As shown in FIG. 2, the groove 3 may be provided along each side and intersect with a side adjacent to the side along which the groove 3 extends (second embodiment). Thus, by providing the groove 3 in the vicinity of the outer periphery of the main surface of the sintered body 2, it is possible to minimize the progress of cracks and the decrease in battery capacity. Further, by providing the groove 3 along the outer periphery, it is possible to more effectively suppress the crack generated in the outer peripheral portion from progressing to the central portion of the sintered body 2. In addition, as shown in FIG. 1, the groove | channel 3 is provided in the area | region whose distance from a center is 60% or more of L, when the distance from the center of the main surface of the sintered compact 2 to outer periphery is set to L. As shown in FIG. Preferably it is. By providing the groove 3 in a region where the distance from the center of the main surface of the sintered body 2 is 60% or more of L, even if the electrode outer peripheral portion is electrically disconnected due to a crack generated in the outer peripheral portion, the electrode The influence on the capacity can be reduced. The groove 3 is desirably provided in a region as close as possible to the outer periphery of the main surface of the sintered body 2.

溝3の深さdは、図3に示すように焼結体2の厚さをtとした場合、tに対して10〜90%の深さであることが好ましい。溝3の深さdが浅い場合、外周部に発生したクラックが溝3を越えて進展する可能性がある。一方、溝3の深さdが必要以上に深い場合、ハンドリングの際に溝3を起点として焼結体が割れる可能性がある。溝3の深さdは、実用上、tに対して30〜70%とすることが好ましい。なお、溝3の長さ方向に垂直な断面において、溝3の底部は曲線状となっていることが好ましい。   The depth d of the groove 3 is preferably 10 to 90% of the depth t when the thickness of the sintered body 2 is t as shown in FIG. When the depth d of the groove 3 is shallow, cracks generated in the outer peripheral portion may propagate beyond the groove 3. On the other hand, when the depth d of the groove 3 is deeper than necessary, the sintered body may break from the groove 3 at the time of handling. The depth d of the groove 3 is practically preferably 30 to 70% with respect to t. In the cross section perpendicular to the length direction of the groove 3, the bottom of the groove 3 is preferably curved.

溝3の幅wは、例えば50〜1000μmとすればよい。溝3の幅wをこのような範囲とすることで、電極としての容量を損なうことなく、充分な強度を有する電極板とすることができる。   The width w of the groove 3 may be 50 to 1000 μm, for example. By setting the width w of the groove 3 in such a range, an electrode plate having sufficient strength can be obtained without impairing the capacity as an electrode.

なお、溝3は、連続した線状であってもよいし、断続的な破線状であってもよい。また、複数の溝3を互いに隣接するように設けてもよく、その場合、互いに隣接する溝3がそれぞれ異なる主面上に形成されていてもよい。破線状の溝3を設ける際は、図4に示す第3の実施形態のように、焼結体2の主面の外周近傍に少なくとも2本の溝3および溝3’
が、互いの不連続部が隣接しないように併設されていることが、クラックの進展を抑制する点から好ましく、さらには、溝3および溝3’の連続部の長さfは、不連続部の長さgよりも長いことが好ましい。このとき、隣り合う溝3と溝3’の距離、すなわち図5に示すように溝3と溝3’の隣接する端部の距離pは、焼結体2の主面の中心から外周までの距離Lの40%未満、さらには10%以下であることが好ましい。ただし、溝3と溝3’の距離pは溝3および3’の幅の2倍以上であることが、電極板1の強度の確保や、溝3および溝3’を形成する際の利便性という点から好ましい。また、破線状の溝3および溝3’は、焼結体2の一方の主面から他方の主面に貫通していてもよい。なお、溝3と溝3’の距離pの好ましい範囲については、溝3および溝3’が連続した線状である場合、またそれぞれ異なる主面に形成されている場合も同様である。
The groove 3 may be a continuous line or an intermittent broken line. Moreover, you may provide the some groove | channel 3 so that it may mutually adjoin, and in that case, the mutually adjacent groove | channel 3 may be formed on a respectively different main surface. When the broken-line groove 3 is provided, at least two grooves 3 and a groove 3 ′ are provided in the vicinity of the outer periphery of the main surface of the sintered body 2, as in the third embodiment shown in FIG.
However, it is preferable that the discontinuous portions are not adjacent to each other from the viewpoint of suppressing the progress of cracks, and further, the length f of the continuous portion of the groove 3 and the groove 3 ′ is the discontinuous portion. It is preferable that the length is longer than g. At this time, the distance between the adjacent grooves 3 and 3 ′, that is, the distance p between the adjacent ends of the grooves 3 and 3 ′ as shown in FIG. The distance L is preferably less than 40%, and more preferably 10% or less. However, the distance p between the groove 3 and the groove 3 ′ is at least twice the width of the grooves 3 and 3 ′, so that the strength of the electrode plate 1 can be ensured and the convenience in forming the groove 3 and the groove 3 ′. This is preferable. The broken-line grooves 3 and grooves 3 ′ may penetrate from one main surface of the sintered body 2 to the other main surface. Note that the preferable range of the distance p between the groove 3 and the groove 3 ′ is the same when the groove 3 and the groove 3 ′ are continuous linear or when they are formed on different main surfaces.

なお、溝3の位置や幅は、焼結体2の溝3が設けられた主面を光学顕微鏡や、走査型電子顕微鏡(SEM)を用いて観察し、直接、あるいは撮影した写真から測定すればよい。また、焼結体2の厚さや、溝3の深さは、たとえば段差計や粗さ計、レーザー顕微鏡などを用いて、あるいは焼結体2の断面を、光学顕微鏡や走査型電子顕微鏡で観察するなどして、測定すればよい。   The position and width of the groove 3 are measured directly or from a photograph taken by observing the main surface of the sintered body 2 provided with the groove 3 using an optical microscope or a scanning electron microscope (SEM). That's fine. In addition, the thickness of the sintered body 2 and the depth of the groove 3 can be measured using, for example, a step meter, a roughness meter, a laser microscope, or the cross section of the sintered body 2 with an optical microscope or a scanning electron microscope. And so on.

焼結体2を構成する活物質としては、相対密度85%以上に焼結することが可能であれば特に限定されるものではないが、例えば正極活物質であれば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどが活物質として挙げられる。特に、Li元素と、少なくとも1種の遷移金属とを含む酸化物、たとえば、遷移金属としてCo、Ni、Mn、Feなどを含むLiCoO、LiNiO、LiM1CoM2(M1,M2=Ni,Mn,Al,Fe;x+y+z≒1)、LiNiMn(x=0.1〜0.5、y=1.5〜1.9)、LiFeMnPO(x=0〜1,y=1〜0)などは、二次電池の高容量化、高エネルギ
ー密度化や急速充放電を要求される用途に好適であり好ましい。また、負極活物質であれば、LiTi12やVなどの酸化物を用いればよい。
The active material constituting the sintered body 2 is not particularly limited as long as it can be sintered to a relative density of 85% or more. For example, in the case of a positive electrode active material, a lithium cobalt composite oxide, Active materials include lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium nickel manganese composite oxide, lithium nickel cobalt manganese composite oxide, lithium vanadium composite oxide, vanadium oxide Can be mentioned. In particular, an oxide containing Li element and at least one transition metal, for example, LiCoO 2 , LiNiO 2 , LiM1 x Co y M2 z O 2 (M1, containing Co, Ni, Mn, Fe, etc. as transition metals) M2 = Ni, Mn, Al, Fe; x + y + z≈1), LiNi x Mn y O 4 (x = 0.1 to 0.5, y = 1.5 to 1.9), LiFe x Mn y PO 4 ( x = 0 to 1, y = 1 to 0) and the like are suitable and preferable for applications requiring high capacity, high energy density and rapid charge / discharge of the secondary battery. In the case of a negative electrode active material, an oxide such as Li 4 Ti 5 O 12 or V 2 O 5 may be used.

このような活物質の粉末を、例えば分散剤、バインダ、可塑剤、溶媒などと混合してスラリーを調合し、周知のテープ成形等の方法で成形した後、活物質粉末の種類や性状に応じた条件で焼成することで焼結体2が得られる。このとき、成形体に、焼成後に溝3となる加工を施しておくことが好ましい。成形体の加工は、レーザーによる加工や、ブレードによる押圧などが適用できる。   Such an active material powder is mixed with, for example, a dispersant, a binder, a plasticizer, a solvent, etc., and a slurry is prepared. After molding by a known tape molding method, etc., depending on the type and properties of the active material powder The sintered body 2 is obtained by firing under the above conditions. At this time, it is preferable that the molded body is processed to become the groove 3 after firing. For processing the molded body, laser processing, pressing with a blade, or the like can be applied.

本発明の一実施形態である二次電池について、図6を用いて説明する。本実施形態の二次電池は、正極11と負極13の間に電解質を含むセパレータ12を有する発電要素14を、正極側電池ケース16と負極側電池ケース18とによって形成された電池ケース内の空間に収納し、有機電解液(図示せず)を充填することで形成されている。正極側電池ケース16と負極側電池ケース18とはガスケット17を介してかしめられており、電池ケース内の空間が気密に保たれている。   A secondary battery which is an embodiment of the present invention will be described with reference to FIG. In the secondary battery of the present embodiment, a power generation element 14 having a separator 12 containing an electrolyte between a positive electrode 11 and a negative electrode 13 is formed by a space in a battery case formed by a positive battery case 16 and a negative battery case 18. And filled with an organic electrolyte (not shown). The positive electrode side battery case 16 and the negative electrode side battery case 18 are caulked through a gasket 17 so that the space in the battery case is kept airtight.

また、正極側電池ケース16と負極側電池ケース18との接触を良好に行うために、正極11の正極側電池ケース16と対峙する面には正極側集電層15Pが、負極13の負極側電池ケース18と対峙する面には負極側集電層15Nがそれぞれ形成されており、電池ケースと発電要素14との接触抵抗の低減を図っている。   Further, in order to satisfactorily contact the positive electrode side battery case 16 and the negative electrode side battery case 18, the positive electrode side current collecting layer 15 </ b> P is provided on the surface of the positive electrode 11 facing the positive electrode side battery case 16 and the negative electrode side of the negative electrode 13. A negative current collecting layer 15N is formed on the surface facing the battery case 18 to reduce the contact resistance between the battery case and the power generation element 14.

正極11および負極13は、少なくともいずれか一方が15%未満の空孔率を有し、少なくとも一方の主面上に溝3が設けられた活物質の焼結体2からなっている。なお、溝3
の段差部分に電流が集中することを抑制し、樹枝(デンドライト)状のLiの析出を抑制するという点から、溝3が設けられた側の主面が、正極側集電層15Pおよび負極側集電層15Nのうち対応する集電層に接するように配置することが好ましい。
At least one of the positive electrode 11 and the negative electrode 13 is composed of an active material sintered body 2 having a porosity of less than 15% and having a groove 3 provided on at least one main surface. Groove 3
The main surface on the side where the groove 3 is provided is made of the positive electrode side current collecting layer 15P and the negative electrode side from the viewpoint of suppressing current concentration on the step portion of the electrode and suppressing precipitation of dendritic Li. It is preferable to arrange so as to be in contact with the corresponding current collecting layer in the current collecting layer 15N.

負極13の活物質としては、上述したようなLiTi12やVなどの酸化物を焼結体2として用いてもよいが、正極11として焼結体2を用いる場合には、負極活物質として黒鉛やハードカーボンなどの炭素系材料、SiなどのLiと合金を形成可能な金属、金属Liなどを用いることも本発明の範囲内である。負極13の活物質として黒鉛やハードカーボンなどの炭素系材料を用いる場合は、高分子粘着材とアセチレンブラックなどの導電材と少量のアルコールを混合してスラリーを作製して、Cu箔や、CuまたはNiメッシュ上に塗布した後、乾燥・固化することにより負極13を形成できる。高分子粘着剤としては、アクリル系樹脂、エポキシ樹脂、シリコン系樹脂、ポリアミド系樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド系樹脂などが挙げられる。 As the active material of the negative electrode 13, an oxide such as Li 4 Ti 5 O 12 or V 2 O 5 as described above may be used as the sintered body 2, but when the sintered body 2 is used as the positive electrode 11. It is also within the scope of the present invention to use a carbon-based material such as graphite or hard carbon, a metal capable of forming an alloy with Li such as Si, or metal Li as the negative electrode active material. When a carbon-based material such as graphite or hard carbon is used as the active material for the negative electrode 13, a slurry is prepared by mixing a polymer adhesive material, a conductive material such as acetylene black, and a small amount of alcohol to form a Cu foil, Cu Or after apply | coating on Ni mesh, the negative electrode 13 can be formed by drying and solidifying. Examples of the polymer pressure-sensitive adhesive include acrylic resin, epoxy resin, silicon resin, polyamide resin, phenol resin, polyester resin, and polyimide resin.

電解質には非水系電解質を用いればよい。非水系電解質とは、有機溶媒に電解質塩を溶解した有機電解液や、高分子固体電解質、無機固体電解質、イオン液体等をさす。有機電解液に用いる有機溶媒には、例えばエチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチル、メチルエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO、LiN(CFSO)、LiN(CSO)などのリチウム塩が挙げられる。 A non-aqueous electrolyte may be used as the electrolyte. The non-aqueous electrolyte refers to an organic electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, a polymer solid electrolyte, an inorganic solid electrolyte, an ionic liquid, or the like. Examples of the organic solvent used in the organic electrolyte include ethylene carbonate (EC), propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, and 2-methyl. The solvent which mixed 1 type, or 2 or more types chosen from tetrahydrofuran, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate is mentioned. Examples of the electrolyte salt include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 .

セパレータ12は有機樹脂繊維の不織布や、無機繊維の不織布、セラミックの多孔質材料などを用いることができるが、ポリプロピレンやポリエチレンなどのポリオレフィンを主成分とした有機多孔質膜にセラミック粒子を混合したものや、セラミックフィラーを含む多孔質膜を接着したもの、無機繊維の不織布、有機材料と無機材料の複合多孔質膜、セラミックの多孔質材料を用いることが好ましい。これらは耐熱性が高く、二次電池の熱暴走に対する安全性を高めることができる。また、電解質として正極と負極との間に固体電解質を配置する場合は、セパレータを用いる必要はない。   The separator 12 can be made of organic resin fiber non-woven fabric, inorganic fiber non-woven fabric, ceramic porous material, etc., which is a mixture of ceramic particles in an organic porous membrane mainly composed of polyolefin such as polypropylene or polyethylene. In addition, it is preferable to use a bonded porous membrane containing a ceramic filler, a nonwoven fabric of inorganic fibers, a composite porous membrane of an organic material and an inorganic material, or a porous ceramic material. These have high heat resistance and can improve the safety against thermal runaway of the secondary battery. Moreover, when arrange | positioning a solid electrolyte between a positive electrode and a negative electrode as electrolyte, it is not necessary to use a separator.

正極側集電層15P、負極側集電層15Nには、たとえば、カーボンブラック、グラファイト、金、銀、ニッケル、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン、アルミニウム、白金、銅などを用いることができる。ただし、負極側集電層15Nについては、Liと合金化し難い、ニッケルや銅を用いることが好ましい。   For the positive electrode side current collecting layer 15P and the negative electrode side current collecting layer 15N, for example, carbon black, graphite, gold, silver, nickel, zinc oxide, tin oxide, indium oxide, titanium oxide, aluminum, platinum, copper, or the like is used. Can do. However, for the negative electrode side current collecting layer 15N, it is preferable to use nickel or copper which is difficult to alloy with Li.

本実施形態の二次電池の製造方法の一例について説明する。まず、焼結体2を作製するための原料粉末として、回折散乱法による粒度分布測定におけるD50が1.0μm以下のLiNiCoMn(x=0.1〜0.8、y=0.1〜0.5.z=0.1〜
0.5)粉末を準備する。回折散乱法による粒度分布測定におけるD50が1.0μm以下の原料粉末を用いることにより、焼結体の嵩密度を高めてエネルギー密度を向上させることができる。
An example of the manufacturing method of the secondary battery of this embodiment will be described. First, as a raw material powder for producing the sintered body 2, LiNi x Co y Mn z O 2 (x = 0.1 to 0.8, D 50 in a particle size distribution measurement by a diffraction scattering method is 1.0 μm or less. y = 0.1 to 0.5.z = 0.1
0.5) Prepare powder. By D 50 in the particle size distribution measurement by diffraction scattering method using the following raw material powder 1.0 .mu.m, it is possible to improve the energy density by increasing the bulk density of the sintered body.

準備した原料粉末に対して、バインダと分散剤を溶媒とともに添加、混合してスラリーを作製する。なお、スラリーにはさらに焼結助剤として、例えばBやLi、Siの酸化物などを5質量%以下の範囲で添加してもよい。   A slurry is prepared by adding and mixing a binder and a dispersant together with a solvent to the prepared raw material powder. In addition, you may add B, Li, the oxide of Si, etc. to the slurry in the range of 5 mass% or less as a sintering auxiliary agent.

作製したスラリーを、ドクターブレード法などの周知のシート成形法により所定形状に成形してグリーンシートを作製し、必要に応じて所望の形状に切り出す。次に得られたグ
リーンシートの一方の表面上の所定の位置にブレードを押圧することにより、焼成後に溝3となる切れ込みを形成したテープ成形体が得られる。切れ込みの幅や深さは、用いるブレードの種類や幅、押圧時の負荷等により適宜調整すればよい。次に、得られたテープ成形体を900℃以上、さらには1000℃以上の最高温度で焼成することで焼結体2が得られる。
The produced slurry is formed into a predetermined shape by a well-known sheet forming method such as a doctor blade method to produce a green sheet, and cut into a desired shape as necessary. Next, by pressing a blade to a predetermined position on one surface of the obtained green sheet, a tape molded body in which a cut which becomes the groove 3 after firing is formed is obtained. The width and depth of the cut may be appropriately adjusted depending on the type and width of the blade used, the load during pressing, and the like. Next, the sintered compact 2 is obtained by baking the obtained tape molded object at the highest temperature of 900 degreeC or more, further 1000 degreeC or more.

得られた焼結体2を正極11とし、溝3を形成した面に正極側集電体層15PとしてAl金属層をスパッタにより形成する。   The obtained sintered body 2 is used as the positive electrode 11, and an Al metal layer is formed as a positive electrode side current collector layer 15P on the surface on which the groove 3 is formed by sputtering.

また、負極活物質である黒鉛を、アセチレンブラック、PTFE(ポリテトラフルオロエチレン)およびエタノールと混合したスラリーを、負極側集電層15NとなるCu箔上に塗布し、乾燥・固化したのち、所望の形状にカットすることにより負極13を形成する。   In addition, a slurry obtained by mixing graphite, which is a negative electrode active material, with acetylene black, PTFE (polytetrafluoroethylene), and ethanol is applied onto a Cu foil to be the negative electrode-side current collecting layer 15N, dried and solidified, and then desired. The negative electrode 13 is formed by cutting into the shape of.

正極11および負極13を、正極側集電層15Pおよび負極側集電層15Nがそれぞれ正極側電池ケース16および負極側電池ケース18と対峙するように各電池ケース内に設置し、多孔質膜12に有機電解液を含浸させた後、正極側電池ケース16と負極側電池ケース18とを、正極11と負極13とが有機電解液を含んだ多孔質膜12を介して対向するように配置して、ガスケット17を介してかしめ合わせて封口することで、二次電池を得ることができる。   The positive electrode 11 and the negative electrode 13 are installed in each battery case so that the positive electrode side current collecting layer 15P and the negative electrode side current collecting layer 15N face the positive electrode side battery case 16 and the negative electrode side battery case 18, respectively. Then, the positive electrode side battery case 16 and the negative electrode side battery case 18 are arranged so that the positive electrode 11 and the negative electrode 13 face each other with the porous membrane 12 containing the organic electrolyte solution therebetween. The secondary battery can be obtained by caulking and sealing through the gasket 17.

なお、本発明の二次電池の形状は角型、円筒型、ボタン型、コイン型、扁平型などに限定されるものではなく、また、正極側電池ケース16及び負極側電池ケース18に換えて、正極端子および負極端子を備える絶縁性の容器を用いてもよい。   Note that the shape of the secondary battery of the present invention is not limited to a square shape, a cylindrical shape, a button shape, a coin shape, a flat shape, and the like, and instead of the positive battery case 16 and the negative battery case 18. An insulating container including a positive electrode terminal and a negative electrode terminal may be used.

まず、正極として用いるリチウムニッケルコバルトマンガン複合酸化物の焼結体を作製した。原料粉末として、LiNi0.33Co0.33Mn0.33粉末を周知の手段により平均粒径1μm以下に粉砕したものを用いた。原料粉末100質量%に対して5質量%のブチラール系バインダおよび4質量%の分散剤を添加し、トルエンを溶媒として作製したスラリーを用いて、ドクターブレード法によって厚さが85μmの正極用グリーンシートを作製した。 First, a sintered body of lithium nickel cobalt manganese composite oxide used as a positive electrode was produced. As the raw material powder, LiNi 0.33 Co 0.33 Mn 0.33 O 2 powder pulverized to a mean particle size of 1 μm or less by a known means was used. A green sheet for a positive electrode having a thickness of 85 μm by a doctor blade method using a slurry prepared by adding 5% by mass of a butyral binder and 4% by mass of a dispersant to 100% by mass of the raw material powder and using toluene as a solvent. Was made.

得られた正極用グリーンシートを長方形にカットし、更にグリーンシートの一方の主面に、厚さ100μmのSUS製片刃タイプのブレードを用いて焼成後に所定の溝となるように切れ込みを形成した。その後1050℃で5時間焼成することにより、一方の主面に溝が形成された、縦50mm、横40mm、厚さ70μm、相対密度85%の板状の正極用焼結体を得た。溝の位置および深さを表1に示す。ここで、溝の位置としては、図2(b)に示すように、焼結体の一方の主面に形成された主面の各辺から、溝の焼結体中心側に位置する端部までの距離eを、光学顕微鏡を用いて10ヶ所測定し、その平均値を記載するとともに、焼結体の溝が形成された主面の中心から外周までの距離に対する、中心から溝までの距離の比率の最小値を記載した。溝の深さは、走査型電子顕微鏡(SEM)を用いて評価後の電極断面を10ヶ所測定し、その平均値を記載した。また、溝の幅は同様に走査型電子顕微鏡(SEM)を用いて測定し、いずれの試料も100〜150μmの範囲にあることを確認した。   The obtained positive electrode green sheet was cut into a rectangle, and further, a notch was formed on one main surface of the green sheet so as to form a predetermined groove after firing using a SUS single blade type blade having a thickness of 100 μm. . Thereafter, firing was performed at 1050 ° C. for 5 hours to obtain a plate-like positive electrode sintered body having a length of 50 mm, a width of 40 mm, a thickness of 70 μm, and a relative density of 85%. The position and depth of the groove are shown in Table 1. Here, as the position of the groove, as shown in FIG. 2 (b), from each side of the main surface formed on one main surface of the sintered body, the end portion located on the sintered body center side of the groove The distance e from the center to the groove is measured with respect to the distance from the center to the outer periphery of the main surface on which the groove of the sintered body is formed. The minimum value of the ratio was described. As for the depth of the groove, 10 electrode cross sections after evaluation were measured using a scanning electron microscope (SEM), and the average value was described. Moreover, the width | variety of the groove | channel was similarly measured using the scanning electron microscope (SEM), and it confirmed that all the samples existed in the range of 100-150 micrometers.

次に、正極用焼結体の溝を設けた面に、正極側集電層としてスパッタによりAl金属層を形成した。また、負極には黒鉛板を用い、その一方の表面に、負極側集電層としてスパッタによりCu金属層を形成した。   Next, an Al metal layer was formed by sputtering as a positive electrode side current collecting layer on the surface of the positive electrode sintered body provided with the grooves. In addition, a graphite plate was used for the negative electrode, and a Cu metal layer was formed on one surface of the negative electrode side current collecting layer by sputtering.

作製した正極の正極側集電層に、Alからなるタブリードを取り付け、負極の負極側集電層にはNiからなるタブリードを取り付けて、正極と負極とをそれぞれ集電層が形成されていない面が対向するようにポリエチレン製のセパレータを介して重ね合わせ、正極側タブリードおよび負極側タブリードが外部に引き出されるようにラミネート袋に収納した。ラミネート袋は、樹脂フィルム−Al金属箔−樹脂フィルムの三層構造からなるものを用いた。さらに、電解液として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比3:7の比率で混合した有機溶媒に、ヘキサフルオロリン酸リチウム
LiPFを1モル/Lで溶解したものを、ラミネート袋に注入し、ラミネート袋の端部を融着して密閉し、二次電池を作製した。
The tab lead made of Al is attached to the positive electrode side current collecting layer of the produced positive electrode, the tab lead made of Ni is attached to the negative electrode side current collecting layer of the negative electrode, and the surface where the current collecting layer is not formed on each of the positive electrode and the negative electrode Are stacked via a polyethylene separator so as to face each other, and are accommodated in a laminate bag so that the positive electrode side tab lead and the negative electrode side tab lead are drawn out to the outside. A laminate bag having a three-layer structure of resin film-Al metal foil-resin film was used. Further, as an electrolytic solution, lithium hexafluorophosphate LiPF 6 dissolved at 1 mol / L in an organic solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 7, The battery was poured into a laminate bag, and the end of the laminate bag was fused and sealed to produce a secondary battery.

作製した二次電池について、以下のような条件で充放電試験を行い、電池特性を確認した。
充放電電圧範囲:上限4.3V、下限3.0V
充放電電流値 :1mA/cm(定電流充放電)
測定温度 :25℃
サイクル :放電−充電1回を1サイクルとし、20サイクル
サイクル試験後の容量劣化率を、以下のようにして算出し、表1に記載した。
容量劣化率(%)=(20サイクル後の容量−初期容量)/初期容量
About the produced secondary battery, the charging / discharging test was done on the following conditions, and the battery characteristic was confirmed.
Charge / discharge voltage range: upper limit 4.3V, lower limit 3.0V
Charging / discharging current value: 1 mA / cm 2 (constant current charging / discharging)
Measurement temperature: 25 ° C
Cycle: One cycle of discharge-charge was defined as one cycle, and the capacity deterioration rate after the 20 cycle test was calculated as described below and listed in Table 1.
Capacity degradation rate (%) = (capacity after 20 cycles−initial capacity) / initial capacity

Figure 2013175405
Figure 2013175405

正極に溝を形成した試料No.1〜6はいずれも容量劣化率が小さく、試験後においても正極の外周部に生じたクラックが溝よりも内側に進展しているものは確認できなかった。特に、溝をより正極の外周近傍に設けた試料No.2では、容量劣化率が3%と非常に優れたサイクル特性を示した。   Sample No. with a groove formed in the positive electrode In all of Nos. 1 to 6, the capacity deterioration rate was small, and even after the test, it was not possible to confirm that cracks generated in the outer peripheral portion of the positive electrode had progressed inward from the groove. In particular, the sample No. 1 in which the groove was further provided near the outer periphery of the positive electrode. In No. 2, the capacity deterioration rate was 3%, which showed very excellent cycle characteristics.

一方、正極に溝を設けなかった試料No.7では、容量劣化率が83%と大きく、試験後に正極を確認したところ、正極の外周部に生じたクラックが正極の中央付近まで進展し、一部剥離している部分も確認された。   On the other hand, Sample No. in which no groove was provided on the positive electrode. In No. 7, the capacity deterioration rate was as large as 83%, and when the positive electrode was confirmed after the test, the crack generated in the outer peripheral portion of the positive electrode progressed to the vicinity of the center of the positive electrode, and a part where it was partially peeled was also confirmed.

1 :電極板
2 :焼結体
3、3’ :溝
11 :正極
12 :セパレータ
13 :負極
14 :発電要素
15P :正極側集電層
15N :負極側集電層
16 :正極側電池ケース
17 :ガスケット
18 :負極側電池ケース
1: Electrode plate 2: Sintered body 3, 3 ′: Groove 11: Positive electrode 12: Separator 13: Negative electrode 14: Power generation element 15P: Positive electrode side current collecting layer 15N: Negative electrode side current collecting layer 16: Positive electrode side battery case 17: Gasket 18: Battery case on the negative electrode side

Claims (7)

15%未満の空孔率を有する活物質の焼結体からなり、該焼結体の少なくとも一方の主
面上に溝が設けられていることを特徴とする電極板。
An electrode plate comprising an active material sintered body having a porosity of less than 15%, wherein a groove is provided on at least one main surface of the sintered body.
前記溝が、前記焼結体の前記主面における外周近傍に設けられていることを特徴とする請求項1に記載の電極板。   The electrode plate according to claim 1, wherein the groove is provided in the vicinity of the outer periphery of the main surface of the sintered body. 前記溝が、前記焼結体の前記外周に沿うように設けられていることを特徴とする請求項1または2に記載の電極板。   The electrode plate according to claim 1, wherein the groove is provided along the outer periphery of the sintered body. 前記溝が、前記中心からの距離が、前記主面の中心と前記外周との距離に対して60%以上である領域に設けられていることを特徴とする請求項1乃至3のいずれかに記載の電極板。   4. The groove according to claim 1, wherein the groove is provided in a region having a distance from the center of 60% or more with respect to a distance between the center of the main surface and the outer periphery. The electrode plate as described. 前記溝の深さが、前記焼結体の厚さに対して10〜90%の範囲であることを特徴とする請求項1乃至4のいずれかに記載の電極板。   5. The electrode plate according to claim 1, wherein a depth of the groove is in a range of 10 to 90% with respect to a thickness of the sintered body. 正極と負極と非水電解質とを有する積層型の発電要素と、
前記正極および前記負極にそれぞれ接する集電体と、を備え、
前記正極および前記負極の少なくともいずれか一方として、請求項1乃至5のいずれかに記載の電極板を用いたことを特徴とする二次電池。
A laminated power generation element having a positive electrode, a negative electrode, and a non-aqueous electrolyte;
A current collector in contact with each of the positive electrode and the negative electrode,
A secondary battery using the electrode plate according to claim 1 as at least one of the positive electrode and the negative electrode.
前記電極板は、前記溝を設けた側の前記主面が、前記集電体に接するように配置されていることを特徴とする請求項6に記載の二次電池。   The secondary battery according to claim 6, wherein the electrode plate is disposed such that the main surface on the side where the groove is provided is in contact with the current collector.
JP2012040252A 2012-02-27 2012-02-27 Electrode plate and secondary battery using the same Active JP5844659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040252A JP5844659B2 (en) 2012-02-27 2012-02-27 Electrode plate and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040252A JP5844659B2 (en) 2012-02-27 2012-02-27 Electrode plate and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2013175405A true JP2013175405A (en) 2013-09-05
JP5844659B2 JP5844659B2 (en) 2016-01-20

Family

ID=49268135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040252A Active JP5844659B2 (en) 2012-02-27 2012-02-27 Electrode plate and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5844659B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110684A1 (en) * 2015-12-22 2017-06-29 日本電気株式会社 Secondary cell and method for manufacturing same
WO2018155155A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
WO2018155156A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
WO2018155154A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129223A (en) * 1995-10-30 1997-05-16 Shin Kobe Electric Mach Co Ltd Electrode for winding type battery
EP0967672A1 (en) * 1997-04-23 1999-12-29 Japan Storage Battery Co., Ltd. Electrode and battery
US20030054248A1 (en) * 2000-04-26 2003-03-20 Takao Noda Cathode electroactive material, production method therefor and secondary cell
JP2004207253A (en) * 1997-04-23 2004-07-22 Japan Storage Battery Co Ltd Non-aqueous electrolyte rechargeable battery
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2006080265A1 (en) * 2005-01-26 2006-08-03 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
US20120009470A1 (en) * 2010-06-23 2012-01-12 Panasonic Corporation Lithium secondary battery and cathode of the lithium secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129223A (en) * 1995-10-30 1997-05-16 Shin Kobe Electric Mach Co Ltd Electrode for winding type battery
EP0967672A1 (en) * 1997-04-23 1999-12-29 Japan Storage Battery Co., Ltd. Electrode and battery
JP2004207253A (en) * 1997-04-23 2004-07-22 Japan Storage Battery Co Ltd Non-aqueous electrolyte rechargeable battery
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
US20030054248A1 (en) * 2000-04-26 2003-03-20 Takao Noda Cathode electroactive material, production method therefor and secondary cell
US20080020271A1 (en) * 2004-10-21 2008-01-24 Toshitada Sato Negative Electrode for Non-Aqueous Electrolyte Secondary Battery and Method for Producing the Same
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
JP2006120445A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Anode for nonaqueous electrolyte secondary battery and its manufacturing method
WO2006080265A1 (en) * 2005-01-26 2006-08-03 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
US20090017380A1 (en) * 2005-01-26 2009-01-15 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
JP3985849B2 (en) * 2005-01-26 2007-10-03 松下電器産業株式会社 Negative electrode for lithium secondary battery, lithium secondary battery using the same, and manufacturing method thereof
US20120009470A1 (en) * 2010-06-23 2012-01-12 Panasonic Corporation Lithium secondary battery and cathode of the lithium secondary battery
JP2012009193A (en) * 2010-06-23 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery and lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110684A1 (en) * 2015-12-22 2017-06-29 日本電気株式会社 Secondary cell and method for manufacturing same
JPWO2017110684A1 (en) * 2015-12-22 2018-10-18 日本電気株式会社 Secondary battery and manufacturing method thereof
US10680271B2 (en) 2015-12-22 2020-06-09 Nec Corporation Secondary cell and method for manufacturing same
WO2018155155A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
WO2018155156A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
WO2018155154A1 (en) * 2017-02-21 2018-08-30 日本碍子株式会社 Lithium complex oxide sintered body plate
JPWO2018155156A1 (en) * 2017-02-21 2019-12-12 日本碍子株式会社 Lithium composite oxide sintered plate
JPWO2018155154A1 (en) * 2017-02-21 2019-12-12 日本碍子株式会社 Lithium composite oxide sintered plate
US11189831B2 (en) 2017-02-21 2021-11-30 Ngk Insulators, Ltd. Lithium complex oxide sintered body plate
US11329270B2 (en) 2017-02-21 2022-05-10 Ngk Insulators, Ltd. Lithium complex oxide sintered body plate

Also Published As

Publication number Publication date
JP5844659B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
CN110400922B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
JP5865672B2 (en) Secondary battery
CN112292773A (en) Nonaqueous electrolyte secondary battery
JP6945169B2 (en) Rechargeable battery
JP5311283B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6121697B2 (en) Non-aqueous electrolyte battery
CN112292772A (en) Nonaqueous electrolyte secondary battery
JP5844659B2 (en) Electrode plate and secondary battery using the same
CN114762167A (en) Non-aqueous electrolyte secondary battery
JP2015060719A (en) Nonaqueous electrolyte battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
CN110800137B (en) Positive electrode for secondary battery and secondary battery
JP2020024779A (en) Electrode for secondary battery, secondary battery, and manufacturing method thereof
US11374225B2 (en) Electrode plate, energy storage device, and method for manufacturing electrode plate
JP2012199097A (en) Sintered type positive electrode and battery equipped with the sintered type positive electrode
JP5812884B2 (en) Secondary battery
JP2020123538A (en) All-solid-state battery
JP2011228188A (en) Separator for electrochemical element, electrochemical element, and method of manufacturing the same
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
CN113097447A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery
JP2015076315A (en) Method of manufacturing solid state battery
JP6846570B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5844659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150