JP2013165097A - Semiconductor cooling device - Google Patents

Semiconductor cooling device Download PDF

Info

Publication number
JP2013165097A
JP2013165097A JP2012026017A JP2012026017A JP2013165097A JP 2013165097 A JP2013165097 A JP 2013165097A JP 2012026017 A JP2012026017 A JP 2012026017A JP 2012026017 A JP2012026017 A JP 2012026017A JP 2013165097 A JP2013165097 A JP 2013165097A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant passage
fins
cooling device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012026017A
Other languages
Japanese (ja)
Inventor
Junichi Inoue
潤一 井上
Shuji Adachi
修二 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012026017A priority Critical patent/JP2013165097A/en
Priority to PCT/JP2013/053061 priority patent/WO2013118869A1/en
Publication of JP2013165097A publication Critical patent/JP2013165097A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To average the cooling states of multiple semiconductor elements with a simple structure.SOLUTION: A semiconductor cooling device 1 includes: a refrigerant passage 2 where a refrigerant flows; multiple semiconductor elements 5 disposed at the outer side of the refrigerant passage 2; multiple fins 6 protruding to the inner side of the refrigerant passage 2 so as to transmit heat of the multiple semiconductor elements 5 to the refrigerant; and means for circulating the refrigerant in the refrigerant passage 2. The multiple fins 6 are formed so that the arrangement density or a surface area of the multiple fins 6 increases from the upstream side of the refrigerant passage 2 toward the downstream side. This structure compensates the deterioration of a heat extraction amount of the fins 6, which is caused by temperature rise in the refrigerant, and enables the semiconductor elements 5 to be cooled under equal cooling conditions.

Description

この発明は、複数の半導体素子を冷却する半導体冷却装置に関する。   The present invention relates to a semiconductor cooling device for cooling a plurality of semiconductor elements.

複数の半導体素子を有する半導体機器においては、例えば稼働中の半導体素子が許容温度を超えないように、半導体素子に付設された冷却用フィンを、冷媒を用いた冷却装置で冷却している。冷却用フィンは冷媒の流れる冷媒通路に整列状態で突出する。半導体素子の発熱はフィンに伝達され、フィンと周囲を流れる冷媒との熱交換により、半導体素子の冷却が行なわれる。   In a semiconductor device having a plurality of semiconductor elements, for example, cooling fins attached to the semiconductor elements are cooled by a cooling device using a refrigerant so that the operating semiconductor elements do not exceed an allowable temperature. The cooling fin protrudes in alignment with the refrigerant passage through which the refrigerant flows. The heat generated by the semiconductor element is transmitted to the fin, and the semiconductor element is cooled by heat exchange between the fin and the refrigerant flowing around it.

冷媒通路を流れる冷媒の温度はフィンとの熱交換により上昇する。結果として個々のフィンからの抜熱量は、冷媒通路の下流に行くにつれて小さくなる。その結果、例えば、冷媒通路の上流部に位置する半導体素子は冷媒との熱交換により温度を20度低下させるのに対して、冷媒通路の下流部に位置する半導体素子は冷媒との熱交換により温度を10度しか低下させないという現象が現れる。言い換えれば、冷媒通路の下流部ほどフィンの冷却効率が低くなる。そのため、冷媒通路の下流にフィンが位置する半導体素子は冷却効率が悪くなる。   The temperature of the refrigerant flowing through the refrigerant passage rises due to heat exchange with the fins. As a result, the amount of heat removed from each fin becomes smaller as it goes downstream of the refrigerant passage. As a result, for example, the semiconductor element located in the upstream portion of the refrigerant passage reduces the temperature by 20 degrees by heat exchange with the refrigerant, whereas the semiconductor element located in the downstream portion of the refrigerant passage is caused by heat exchange with the refrigerant. The phenomenon of reducing the temperature only by 10 degrees appears. In other words, the cooling efficiency of the fins becomes lower in the downstream portion of the refrigerant passage. For this reason, the cooling efficiency of the semiconductor element in which the fin is located downstream of the refrigerant passage is deteriorated.

冷媒通路内のフィンの位置に起因する半導体素子の冷却のこのようなばらつきを解消すべく、特許文献1の従来技術は、すべての半導体素子が同一温度の冷媒と熱交換できるように、冷媒通路をマニホールド状に形成することを提案している。   In order to eliminate such variations in the cooling of the semiconductor elements due to the position of the fins in the refrigerant path, the prior art of Patent Document 1 discloses that the refrigerant path is such that all the semiconductor elements can exchange heat with the refrigerant of the same temperature. Has been proposed to form a manifold.

特許第4600052号公報Japanese Patent No. 4600052

特許文献1の従来技術によれば、すべての半導体素子の冷却を同一温度の冷媒で行なうことが可能となり、半導体素子の冷却のばらつき解消に好ましい効果が得られる。   According to the prior art of Patent Document 1, it is possible to cool all the semiconductor elements with a refrigerant having the same temperature, and a favorable effect can be obtained in eliminating variations in cooling of the semiconductor elements.

しかしながら、すべての半導体に個別に冷媒を供給するために、半導体素子と同数の冷媒通路が必要となる。そのため、冷却装置の通路構成が複雑化し、冷媒通路の総延長が長くなることは避けられない。   However, in order to supply the coolant individually to all the semiconductors, the same number of coolant passages as the semiconductor elements are required. Therefore, the passage configuration of the cooling device is complicated, and the total extension of the refrigerant passage is unavoidable.

この発明の目的は、より簡易な構成のもとで複数の半導体素子を一様に冷却することである。   An object of the present invention is to uniformly cool a plurality of semiconductor elements under a simpler configuration.

以上の目的を達成するために、この発明による半導体冷却装置は冷媒の流れる冷媒通路と、冷媒通路の外側に配置された複数の半導体素子と、半導体素子の熱を冷媒に伝達すべく冷媒通路の内側に突出する複数のフィンと、冷媒通路に冷媒を循環させる手段と、を備えている。さらに、複数のフィンの配置密度または表面積を、冷媒通路の上流から下流に向けて増大させている。   In order to achieve the above object, a semiconductor cooling device according to the present invention includes a refrigerant passage through which a refrigerant flows, a plurality of semiconductor elements arranged outside the refrigerant passage, and a refrigerant passage for transferring heat of the semiconductor elements to the refrigerant. A plurality of fins projecting inward and means for circulating the refrigerant in the refrigerant passage are provided. Furthermore, the arrangement density or surface area of the plurality of fins is increased from the upstream side to the downstream side of the refrigerant passage.

冷媒通路内を流れる冷媒は冷却通路に突出するフィンを介して半導体素子の熱交換を行なう。熱交換の結果、冷却通路の下流の冷媒の温度が上昇する。冷媒温度の上昇はフィンと冷媒との温度差を縮小させ、フィンからの抜熱量を低下させる。一方、複数のフィンの配置密度または表面積を、冷媒通路の上流から下流に向けて増大させると、冷媒通路の単位面積当たりのフィンからの抜熱量は増大する。個々のフィンからの抜熱量の減少と、フィンの配置密度または表面積の増加がもたらす抜熱量の増加とが打ち消し合うことで、冷媒通路内の位置に依存した冷却能力のばらつきが解消され、全ての半導体素子を等しい冷却条件で冷却できる。   The refrigerant flowing in the refrigerant passage exchanges heat between the semiconductor elements through fins protruding into the cooling passage. As a result of the heat exchange, the temperature of the refrigerant downstream of the cooling passage increases. The rise in the refrigerant temperature reduces the temperature difference between the fin and the refrigerant, and reduces the amount of heat removed from the fin. On the other hand, when the arrangement density or surface area of the plurality of fins is increased from the upstream side to the downstream side of the refrigerant passage, the amount of heat removed from the fins per unit area of the refrigerant passage increases. By counteracting the decrease in heat removal from individual fins and the increase in heat removal caused by the increase in fin arrangement density or surface area, variations in cooling capacity depending on the position in the refrigerant passage are eliminated, and all The semiconductor element can be cooled under equal cooling conditions.

この発明の第1の実施形態による半導体冷却装置の概略分解斜視図である。1 is a schematic exploded perspective view of a semiconductor cooling device according to a first embodiment of the present invention. この発明の第1の実施形態による半導体冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor cooling device by 1st Embodiment of this invention. この発明の第2の実施形態による半導体冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor cooling device by 2nd Embodiment of this invention. この発明の第3の実施形態による半導体冷却装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor cooling device by 3rd Embodiment of this invention.

図1を参照すると、この発明の第1の実施形態による半導体冷却装置1は、内部に冷媒通路2を形成したウォータジャケット3を備える。   Referring to FIG. 1, a semiconductor cooling device 1 according to a first embodiment of the present invention includes a water jacket 3 in which a refrigerant passage 2 is formed.

ウォータジャケット3の外側には複数の半導体素子5が配置される。各半導体素子5には基板4を介して数多くのフィン6が結合する。基板4はウォータジャケット3の壁面の一部を構成する。   A plurality of semiconductor elements 5 are arranged outside the water jacket 3. A large number of fins 6 are coupled to each semiconductor element 5 via the substrate 4. The substrate 4 constitutes a part of the wall surface of the water jacket 3.

ウォータジャケット3には冷媒通路2の入口2Aと出口2Bが形成される。入口2Aと出口2Bには冷媒としての冷却水を循環させるために、冷却水ポンプや冷却水を一時的に貯留する冷却水タンクを含む冷却水循環装置が接続される。   An inlet 2A and an outlet 2B of the refrigerant passage 2 are formed in the water jacket 3. A cooling water circulation device including a cooling water pump and a cooling water tank for temporarily storing cooling water is connected to the inlet 2A and the outlet 2B in order to circulate cooling water as a refrigerant.

図2を参照すると、冷媒通路2内に突出するフィン6は一定の径の円柱状に形成され、図の(a)に示すように、冷媒通路2内に一定の密度で配置される。一方、フィン6の冷媒通路2への突出長さは、図の(b)に示すように、冷媒通路2の上流ほど短く、冷媒通路2の下流に行くにつれて長くなるように設定される。なお、フィン6が突出する領域において、冷媒通路2は一様な横断面、言い換えれば一定の幅と深さ、を保つように形成される。   Referring to FIG. 2, the fins 6 that protrude into the refrigerant passage 2 are formed in a columnar shape having a constant diameter, and are arranged at a constant density in the refrigerant passage 2 as shown in FIG. On the other hand, the protrusion length of the fin 6 to the refrigerant passage 2 is set so as to be shorter toward the upstream of the refrigerant passage 2 and become longer toward the downstream of the refrigerant passage 2 as shown in FIG. In the region where the fins 6 protrude, the refrigerant passage 2 is formed so as to maintain a uniform cross section, in other words, a constant width and depth.

フィン6の冷媒通路2への突出長さを、冷媒通路2の上流から下流に向けて徐々に長くすることのは次の意味をもつ。   Increasing the projecting length of the fins 6 to the refrigerant passage 2 gradually from the upstream to the downstream of the refrigerant passage 2 has the following meaning.

冷媒通路2を流れる冷媒はフィン6との熱交換を行ないつつ流下する。冷媒の温度はフィン6との熱交換により上昇する。したがって、下流に行くほど冷媒の温度は高くなる。冷媒温度が高くなるにつれて、冷媒とフィン6との熱交換が起こりにくくなる。   The refrigerant flowing through the refrigerant passage 2 flows down while exchanging heat with the fins 6. The temperature of the refrigerant rises due to heat exchange with the fins 6. Therefore, the temperature of the refrigerant increases as going downstream. As the refrigerant temperature increases, heat exchange between the refrigerant and the fins 6 is less likely to occur.

一方、抜熱量はフィン6の表面積に依存する。フィン6の表面積が大きいほど、抜熱量は大きくなり、冷媒とフィン6との熱交換が促進される。   On the other hand, the amount of heat removal depends on the surface area of the fins 6. The larger the surface area of the fin 6, the larger the amount of heat removal, and the heat exchange between the refrigerant and the fin 6 is promoted.

つまり、この半導体冷却装置1においては、冷媒の温度上昇によるフィン6からの抜熱量の低下が、フィン6の長さの増加により補償される。結果として、各フィン6からの抜熱量が平均化される。したがって、冷媒通路2の上流と下流とで半導体素子5の冷却を同条件で行なうことができ、すべての半導体素子5を均一に冷却することができる。   In other words, in this semiconductor cooling device 1, a decrease in the amount of heat removed from the fins 6 due to an increase in the refrigerant temperature is compensated by an increase in the length of the fins 6. As a result, the amount of heat removed from each fin 6 is averaged. Therefore, the semiconductor element 5 can be cooled under the same conditions upstream and downstream of the refrigerant passage 2, and all the semiconductor elements 5 can be uniformly cooled.

また、この半導体冷却装置1によれば、フィン6の長さを変えるのみで、容易にこの発明を実施できる。さらに、冷媒通路2自体は一様な横断面に形成され、格別のアレンジを必要としないので、従来の半導体冷却装置と同様のウォータジャケット3にもこの発明を適用可能である。   Moreover, according to this semiconductor cooling device 1, this invention can be easily implemented only by changing the length of the fin 6. Furthermore, since the refrigerant passage 2 itself is formed in a uniform cross section and does not require any special arrangement, the present invention can be applied to a water jacket 3 similar to a conventional semiconductor cooling device.

図3を参照して、この発明の第2の実施形態を説明する。   A second embodiment of the present invention will be described with reference to FIG.

この実施形態においても、ウォータジャケット3の構成は第1の実施形態と同一である。フィン6の配置密度は、第1の実施形態と同様に一定である。第1の実施形態と異なるのは、フィン6を均一の長さとする一方、その断面積を冷媒通路2内の位置に応じて変化させる点である。具体的には、フィン6を円柱状に形成し、冷媒通路2の上流ではフィン6の径が細く、冷媒通路2の下流に行くにつれてフィン6の径が太くなるように、フィン6の径を設定する。   Also in this embodiment, the configuration of the water jacket 3 is the same as that of the first embodiment. The arrangement density of the fins 6 is constant as in the first embodiment. The difference from the first embodiment is that the fins 6 have a uniform length, while their cross-sectional area is changed according to the position in the refrigerant passage 2. Specifically, the fins 6 are formed in a cylindrical shape, and the diameter of the fins 6 is set so that the diameter of the fins 6 is small upstream of the refrigerant passage 2 and the diameter of the fins 6 increases toward the downstream of the refrigerant passage 2. Set.

この実施形態によっても、冷媒通路2の下流に行くほど、フィン6の表面積が増大し、冷媒のフィン6からの抜熱量も増大する。冷媒通路2の下流に行くにつれて、冷媒温度が上昇し、抜熱量が低下する現象をこれにより補償し、各フィン6からの抜熱量を平均化することができる。したがって、この実施形態によっても、冷媒通路2の上流と下流とで半導体素子5の冷却を同条件で行なうことができ、すべての半導体素子5を均一に冷却することができる。   Also in this embodiment, the surface area of the fins 6 increases as it goes downstream of the refrigerant passage 2, and the amount of heat removed from the fins 6 of the refrigerant also increases. It is possible to compensate for the phenomenon that the refrigerant temperature rises and the heat removal amount decreases as it goes downstream of the refrigerant passage 2, and the heat removal amount from each fin 6 can be averaged. Therefore, also in this embodiment, the semiconductor element 5 can be cooled under the same conditions upstream and downstream of the refrigerant passage 2, and all the semiconductor elements 5 can be uniformly cooled.

この実施形態によれば、フィン6の径を変えるのみで、容易にこの発明を実施できる。また、第1の実施形態と同様に、冷媒通路2自体は格別のアレンジを必要としない。さらに、従来の半導体冷却装置と同様のウォータジャケット3にもこの発明を適用可能である。   According to this embodiment, the present invention can be easily implemented only by changing the diameter of the fin 6. Further, like the first embodiment, the refrigerant passage 2 itself does not require any special arrangement. Furthermore, the present invention can also be applied to a water jacket 3 similar to a conventional semiconductor cooling device.

なお、この実施形態では、フィン6を円柱状としているが、フィン6の断面形状はいかなる形でも良い。要は、フィン6の断面積が冷媒通路2の下流に行くにつれて増大するようにフィン6の横断面の寸法を変化させれば良い。   In this embodiment, the fins 6 are cylindrical, but the cross-sectional shape of the fins 6 may be any shape. In short, the cross sectional dimension of the fin 6 may be changed so that the cross sectional area of the fin 6 increases as it goes downstream of the refrigerant passage 2.

図4を参照して、この発明の第3の実施形態を説明する。   A third embodiment of the present invention will be described with reference to FIG.

この実施形態においても、ウォータジャケット3の構成は第1の実施形態と同一である。フィン6の太さは第1の実施形態と同様に均一である。第1の実施形態と異なるのは、フィン6を均一の長さとすする一方、その配置密度を冷媒通路2内の位置に応じて変化させる点である。すなわち、冷媒通路2の上流では、フィン6の配置密度は疎であり、冷媒通路2の下流に行くにつれてフィン6の配置が密にする。   Also in this embodiment, the configuration of the water jacket 3 is the same as that of the first embodiment. The thickness of the fin 6 is uniform as in the first embodiment. The difference from the first embodiment is that the fins 6 have a uniform length, while the arrangement density is changed according to the position in the refrigerant passage 2. That is, the arrangement density of the fins 6 is sparse upstream of the refrigerant passage 2, and the arrangement of the fins 6 becomes denser as it goes downstream of the refrigerant passage 2.

この実施形態によれば、冷媒通路2の下流に行くほど、フィン6の数が増加し、単位面積当たりの抜熱量が増大する。冷媒温度が上昇し、冷媒通路2の下流に行くほどフィン6からの抜熱量が低下する現象を、これにより補償して各半導体素子5からの抜熱量を平均化することができる。したがって、この実施形態においても、半導体素子5の冷却を、位置によるばらつきを生じることなく、効率的に行なうことができる。   According to this embodiment, the number of fins 6 increases and the amount of heat removal per unit area increases as it goes downstream of the refrigerant passage 2. The phenomenon in which the amount of heat removed from the fins 6 decreases as the refrigerant temperature rises and goes downstream of the refrigerant passage 2 can be compensated thereby, and the amount of heat removed from each semiconductor element 5 can be averaged. Therefore, also in this embodiment, the semiconductor element 5 can be efficiently cooled without causing variations in position.

この実施形態も第1の実施形態と同様に、冷媒通路2自体は格別のアレンジを必要としない。フィン6の配置密度を変えるのみで、容易にこの発明を実施できる。また、従来の半導体冷却装置と同様のウォータジャケット3にもこの発明を適用可能である。   In this embodiment, like the first embodiment, the refrigerant passage 2 itself does not require any special arrangement. The present invention can be easily implemented only by changing the arrangement density of the fins 6. The present invention can also be applied to a water jacket 3 similar to a conventional semiconductor cooling device.

以上のように、この発明は、冷媒通路2内に突出する複数のフィン6の配置密度または表面積を冷媒通路2の上流から下流に向けて増大させている。そのため、冷媒通路2の下流ほど、冷媒通路2の単位面積当たりの抜熱量が増大する。その結果、冷媒通路2の下流に行くにつれて、冷媒温度が上昇し、フィン6からの抜熱量が低下する現象を補償して、すべての半導体素子5を等しい冷却条件のもとで均一に冷却することができる。   As described above, the present invention increases the arrangement density or surface area of the plurality of fins 6 protruding into the refrigerant passage 2 from the upstream side to the downstream side of the refrigerant passage 2. Therefore, the heat removal amount per unit area of the refrigerant passage 2 increases toward the downstream side of the refrigerant passage 2. As a result, the temperature of the refrigerant rises as it goes downstream of the refrigerant passage 2 to compensate for the phenomenon that the amount of heat removed from the fins 6 decreases, and all the semiconductor elements 5 are uniformly cooled under equal cooling conditions. be able to.

以上のように、この発明をいくつかの特定の実施例を通じて説明して来たが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。   As described above, the present invention has been described through some specific embodiments. However, the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.

1 半導体冷却装置
2 冷媒通路
2A 入口
2B 出口
3 ウォータジャケット
4 基板
5 半導体素子
6 フィン
DESCRIPTION OF SYMBOLS 1 Semiconductor cooling device 2 Refrigerant passage 2A Inlet 2B Outlet 3 Water jacket 4 Substrate 5 Semiconductor element 6 Fin

Claims (6)

冷媒の流れる冷媒通路と、
前記冷媒通路の外側に配置された複数の半導体素子と、
半導体素子の熱を冷媒に伝達すべく前記冷媒通路の内側に突出する複数のフィンと、
冷媒通路に冷媒を循環させる手段と、
を備える半導体冷却装置において、
前記複数のフィンの配置密度または表面積が、前記冷媒通路の上流から下流に向けて増大することを特徴とする、半導体冷却装置。
A refrigerant passage through which the refrigerant flows;
A plurality of semiconductor elements disposed outside the refrigerant passage;
A plurality of fins projecting inside the refrigerant passage to transmit heat of the semiconductor element to the refrigerant;
Means for circulating the refrigerant in the refrigerant passage;
In a semiconductor cooling device comprising:
The semiconductor cooling device, wherein the arrangement density or surface area of the plurality of fins increases from upstream to downstream of the refrigerant passage.
前記冷媒通路はその位置によらず一様な断面を有する、請求項1に記載の半導体冷却装置。   The semiconductor cooling device according to claim 1, wherein the refrigerant passage has a uniform cross section regardless of its position. 前記複数のフィンの長さが、前記冷媒通路の上流から下流に向けて増大する、請求項1または2に記載の半導体冷却装置。   The semiconductor cooling device according to claim 1 or 2, wherein the length of the plurality of fins increases from upstream to downstream of the refrigerant passage. 前記複数のフィンの断面積が、前記冷媒通路の上流から下流に向けて増大する、請求項1または2に記載の半導体冷却装置。   The semiconductor cooling device according to claim 1, wherein a cross-sectional area of the plurality of fins increases from upstream to downstream of the refrigerant passage. 前記複数のフィンは円柱状に形成されるとともに、前記複数のフィンの径が前記冷媒通路の上流から下流に向けて増大する、請求項4に記載の半導体冷却装置。   The semiconductor cooling device according to claim 4, wherein the plurality of fins are formed in a cylindrical shape, and the diameter of the plurality of fins increases from the upstream side to the downstream side of the refrigerant passage. 前記複数のフィンの配置密度が前記冷媒通路の上流から下流に向けて増大する、請求項1または2に記載の半導体冷却装置。   The semiconductor cooling device according to claim 1 or 2, wherein an arrangement density of the plurality of fins increases from upstream to downstream of the refrigerant passage.
JP2012026017A 2012-02-09 2012-02-09 Semiconductor cooling device Pending JP2013165097A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012026017A JP2013165097A (en) 2012-02-09 2012-02-09 Semiconductor cooling device
PCT/JP2013/053061 WO2013118869A1 (en) 2012-02-09 2013-02-08 Semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026017A JP2013165097A (en) 2012-02-09 2012-02-09 Semiconductor cooling device

Publications (1)

Publication Number Publication Date
JP2013165097A true JP2013165097A (en) 2013-08-22

Family

ID=48947624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026017A Pending JP2013165097A (en) 2012-02-09 2012-02-09 Semiconductor cooling device

Country Status (2)

Country Link
JP (1) JP2013165097A (en)
WO (1) WO2013118869A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039202A (en) * 2014-08-06 2016-03-22 スズキ株式会社 Inverter device
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
JP2017108078A (en) * 2015-12-11 2017-06-15 富士電機株式会社 Cooler and power semiconductor module
JPWO2018168088A1 (en) * 2017-03-16 2019-03-22 三菱電機株式会社 Cooling system
WO2023224203A1 (en) * 2022-05-19 2023-11-23 동양피스톤 주식회사 Power module cooling device
EP4312262A1 (en) * 2022-07-29 2024-01-31 Amulaire Thermal Technology, Inc. Vehicle water-cooling heat sink plate having fin sets with different surface areas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454367B1 (en) * 2016-12-20 2021-08-25 Fuji Electric Co., Ltd. Semiconductor module
EP3735117A1 (en) * 2019-05-03 2020-11-04 Siemens Aktiengesellschaft Cooling of heat sources arranged in series in a coolant flow
DE112021003176A5 (en) * 2020-06-08 2023-03-23 Magna powertrain gmbh & co kg Electrical power module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765397A (en) * 1986-11-28 1988-08-23 International Business Machines Corp. Immersion cooled circuit module with improved fins
JP2003324173A (en) * 2002-05-02 2003-11-14 Nissan Motor Co Ltd Cooling device for semiconductor element
JP5381561B2 (en) * 2008-11-28 2014-01-08 富士電機株式会社 Semiconductor cooling device
JP2012069892A (en) * 2010-09-27 2012-04-05 Denso Corp Semiconductor cooler

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039202A (en) * 2014-08-06 2016-03-22 スズキ株式会社 Inverter device
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
JPWO2016194158A1 (en) * 2015-06-03 2017-12-14 三菱電機株式会社 Liquid-cooled cooler and method of manufacturing radiating fin in liquid-cooled cooler
CN107615479A (en) * 2015-06-03 2018-01-19 三菱电机株式会社 The manufacture method of the cold cooler of liquid and the radiating fin in the cold cooler of liquid
CN107615479B (en) * 2015-06-03 2020-08-11 三菱电机株式会社 Method for manufacturing radiating fin in liquid cooling cooler
US11003227B2 (en) 2015-06-03 2021-05-11 Mitsubishi Electric Corporation Liquid-type cooling apparatus and manufacturing method for heat radiation fin in liquid-type cooling apparatus
JP2017108078A (en) * 2015-12-11 2017-06-15 富士電機株式会社 Cooler and power semiconductor module
JPWO2018168088A1 (en) * 2017-03-16 2019-03-22 三菱電機株式会社 Cooling system
WO2023224203A1 (en) * 2022-05-19 2023-11-23 동양피스톤 주식회사 Power module cooling device
EP4312262A1 (en) * 2022-07-29 2024-01-31 Amulaire Thermal Technology, Inc. Vehicle water-cooling heat sink plate having fin sets with different surface areas

Also Published As

Publication number Publication date
WO2013118869A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP2013165097A (en) Semiconductor cooling device
WO2013118809A1 (en) Semiconductor cooling device
JP4675283B2 (en) Heat sink and cooler
CN103871984B (en) Cooling apparatus
US9693487B2 (en) Heat management and removal assemblies for semiconductor devices
SE532837C2 (en) Heat exchanger, such as a charge air cooler
CN101859738B (en) Large-area liquid-cooled heat dissipation device
CN110226365B (en) Heat radiator
JP2011134979A (en) Liquid cooling type heat sink
EP3484254A1 (en) Laminated heat sink core
US10892208B2 (en) Heat dissipation apparatus and method for power semiconductor devices
JP2015153799A (en) Liquid-cooled cooler
JP5145981B2 (en) Parts cooling structure
JP4041131B2 (en) Semiconductor module cooling system
KR101163995B1 (en) Oilcooler
JP5800429B2 (en) Radiators in liquid cooling systems for electronic equipment
KR102094776B1 (en) Heat radiating plate for oil immersed transformer
KR102381728B1 (en) A heat radiating plate
JP2019054103A (en) Liquid-cooled type cooling device
JP2014036193A (en) Cooling plate and cooling device
TWI648941B (en) Water cooling radiator
JP2019079836A (en) Liquid-cooled cooler
JP4410065B2 (en) Cold plate for heat dissipation of electronic parts
EP4318575A1 (en) Cooling component
JP2014150020A (en) Cooling device