JP2013163854A - Sintered member - Google Patents

Sintered member Download PDF

Info

Publication number
JP2013163854A
JP2013163854A JP2012028578A JP2012028578A JP2013163854A JP 2013163854 A JP2013163854 A JP 2013163854A JP 2012028578 A JP2012028578 A JP 2012028578A JP 2012028578 A JP2012028578 A JP 2012028578A JP 2013163854 A JP2013163854 A JP 2013163854A
Authority
JP
Japan
Prior art keywords
solid lubricant
alumina
dispersed
sintered member
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012028578A
Other languages
Japanese (ja)
Inventor
Kazuya Musha
和也 武者
Yoshinari Ishii
義成 石井
Masahisa Miyahara
正久 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2012028578A priority Critical patent/JP2013163854A/en
Priority to PCT/JP2013/053336 priority patent/WO2013122076A1/en
Publication of JP2013163854A publication Critical patent/JP2013163854A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Abstract

PROBLEM TO BE SOLVED: To provide a sintered member for sliding excellent in wear resistance and oxidation resistance in a high temperature environment.SOLUTION: At least one of a barium compound, a strontium compound, mica, an aluminum silicon composite oxide, and alumina is dispersed as a solid lubricant in an austenite, martensite, or ferrite stainless steel alloy containing 10 to 35 mass% of Cr. The content of the solid lubricant is 3 to 50 volume%. As the solid lubricant, BaSO4, BaO, BaSiO3, BaNiO3, SrSO4, Sr2CrO4, sericite, phlogopite, mullite, and alumina are suitably used.

Description

本発明は、ステンレス鋼粉末を用いて製造され、高温環境で使用され、耐摩耗性、耐酸化性、耐蝕性に優れた摺動用の焼結部材に関する。   The present invention relates to a sintered sintered member for sliding, which is manufactured using stainless steel powder, is used in a high temperature environment, and has excellent wear resistance, oxidation resistance and corrosion resistance.

内燃機関のターボチャージャーの排気制御弁の軸受のように、高温環境下で用いられる摺動用の部材には油を用いた潤滑ができない。このため、このような摺動用の部材には、高温環境下における耐摩耗性、耐酸化性、耐蝕性が求められる。そして、従来、このような摺動用の部材の材料として、ステンレス鋼が多く用いられてきた。   Like a bearing of an exhaust control valve of a turbocharger of an internal combustion engine, a sliding member used in a high temperature environment cannot be lubricated with oil. For this reason, such sliding members are required to have wear resistance, oxidation resistance, and corrosion resistance in a high temperature environment. Conventionally, stainless steel has been often used as a material for such sliding members.

近年、環境問題、省エネルギー問題等により、従来以上の内燃機関の高効率化が求められている。これに対応するため、内燃機関の超希薄燃焼化が進んでおり、それに伴って、排ガスがより高温になってきている。このため、ターボチャージャーの構成部品や内燃機関のバルブシートについても、より一層の高温環境下における耐摩耗性、耐酸化性、耐蝕性の向上が要求されている。   In recent years, due to environmental problems, energy saving problems, and the like, higher efficiency of internal combustion engines than ever is required. In order to cope with this, the ultra lean combustion of the internal combustion engine has been advanced, and accordingly, the exhaust gas has become higher temperature. For this reason, turbocharger components and internal combustion engine valve seats are also required to have improved wear resistance, oxidation resistance, and corrosion resistance in a higher temperature environment.

また、環境対策として自動車の搭載率が高くなっているEGRには、クールドEGRとホットEGRがあるが、ホットEGRに使用されるEGRバルブは高温の排ガスにさらされるため、高温環境下における耐摩耗性、耐酸化性、耐蝕性の向上が要求されている。   In addition, EGR, which has a high automobile mounting rate as an environmental measure, includes Cooled EGR and Hot EGR. EGR valves used in hot EGR are exposed to high-temperature exhaust gas, so they are resistant to wear in high-temperature environments. There is a demand for improvement in corrosion resistance, oxidation resistance, and corrosion resistance.

これらの要求に応えるために、これまでステンレス鋼に潤滑剤としてh−BNを分散させたもの(特許文献1、2)、ステンレス鋼に潤滑剤としてCo硬質粒子を分散させたもの(特許文献3)、ステンレス鋼に潤滑剤としてCo硬質粒子と黒鉛を分散させたもの(特許文献4)などの技術が開示されている。しかし、h−BNは、比較的高温域まで安定な摩擦係数を与えるが、h−BNがやわらかい化合物であるゆえに、比摩耗量はかなり大きい。Co硬質粒子は、硬度と耐摩耗性が高いが、摩耗係数も高い。黒鉛は、優れた潤滑性を有するが、酸化劣化等の問題があり、大気中において500℃を超えると熱安定性が低下する。このほか、潤滑剤としてMoS2が知られているが、MoS2も黒鉛と同様の問題がある。したがって、いずれも、より高まりつつある耐摩耗性、耐酸化性、耐蝕性に対する要求を満足できるものではなかった。   In order to meet these demands, stainless steel dispersed with h-BN as a lubricant (Patent Documents 1 and 2), and stainless steel dispersed with Co hard particles as a lubricant (Patent Document 3) ), And a technique in which Co hard particles and graphite are dispersed as a lubricant in stainless steel (Patent Document 4). However, h-BN gives a stable friction coefficient up to a relatively high temperature range, but the specific wear amount is considerably large because h-BN is a soft compound. Co hard particles have high hardness and wear resistance, but also have a high wear coefficient. Graphite has excellent lubricity, but has problems such as oxidative degradation, and if it exceeds 500 ° C. in the air, the thermal stability is lowered. In addition, MoS2 is known as a lubricant, but MoS2 has the same problem as graphite. Therefore, none of them can satisfy the requirements for increasing wear resistance, oxidation resistance, and corrosion resistance.

特開平9−235646号公報JP-A-9-235646 特開平7−300656号公報Japanese Patent Laid-Open No. 7-300656 特開平4−28850号公報JP-A-4-28850 特開平2−270943号公報JP-A-2-270943

そこで、本発明は、高温環境下での耐摩耗性、耐酸化性に優れた摺動用の焼結部材を提供することを目的とする。   Then, an object of this invention is to provide the sintered member for sliding excellent in the abrasion resistance in a high temperature environment, and oxidation resistance.

本発明の焼結部材は、Crを10〜35質量%含有するオーステナイト系、マルテンサイト系及びフェライト系のうちのいずれかのステンレス合金中に、固体潤滑剤としてバリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上が分散し、固体潤滑剤の含有量が3〜50体積%である。   The sintered member of the present invention includes a barium compound, a strontium compound, mica, aluminum as a solid lubricant in a stainless steel alloy of any one of austenite, martensite, and ferrite containing Cr of 10 to 35% by mass. At least one of the silicon composite oxide and alumina is dispersed, and the content of the solid lubricant is 3 to 50% by volume.

本発明の焼結部材は、Crを10〜35質量%含有するオーステナイト系、マルテンサイト系及びフェライト系のうちのいずれかのステンレス合金中に、固体潤滑剤としてバリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上が分散し、固体潤滑剤の含有量が3〜50体積%であることで、高温環境下での耐摩耗性、耐酸化性、耐蝕性に優れたものとなる。   The sintered member of the present invention includes a barium compound, a strontium compound, mica, aluminum as a solid lubricant in a stainless steel alloy of any one of austenite, martensite, and ferrite containing Cr of 10 to 35% by mass. At least one of the silicon composite oxide and alumina is dispersed, and the solid lubricant content is 3 to 50% by volume, so that the wear resistance, oxidation resistance, and corrosion resistance in a high temperature environment are improved. It will be excellent.

本発明の焼結部材は、Crを10〜35質量%含有するオーステナイト系、マルテンサイト系及びフェライト系のうちのいずれかのステンレス合金中に、固体潤滑剤としてバリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上が分散し、固体潤滑剤の含有量が3〜50体積%である。   The sintered member of the present invention includes a barium compound, a strontium compound, mica, aluminum as a solid lubricant in a stainless steel alloy of any one of austenite, martensite, and ferrite containing Cr of 10 to 35% by mass. At least one of the silicon composite oxide and alumina is dispersed, and the content of the solid lubricant is 3 to 50% by volume.

以下、本発明の焼結部材の組成等について、詳細に説明する。   Hereinafter, the composition of the sintered member of the present invention will be described in detail.

(1)固体潤滑剤の含有量:3〜50体積%
固体潤滑剤の含有量が3体積%未満であると、耐酸化性が高く強度が大きくなるという利点がある反面、摩擦係数が大きく摩耗量が大きくなるという欠点が目立つようになる。
(1) Content of solid lubricant: 3 to 50% by volume
When the content of the solid lubricant is less than 3% by volume, there is an advantage that the oxidation resistance is high and the strength is increased, but on the other hand, there is a disadvantage that the friction coefficient is large and the wear amount is increased.

一方、固体潤滑剤の含有量が50体積%を超えると、摩擦係数が小さく摩擦量が小さくなるという利点がある反面、耐酸化性が低く強度が小さくなるという欠点が目立つようになる。   On the other hand, when the content of the solid lubricant exceeds 50% by volume, there is an advantage that the friction coefficient is small and the friction amount is small, but the drawback is that the oxidation resistance is low and the strength is small.

したがって、固体潤滑剤の含有量は3〜50体積%とするのが好ましい。   Therefore, the solid lubricant content is preferably 3 to 50% by volume.

(2)固体潤滑剤:バリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上
バリウム化合物、ストロンチウム化合物、雲母は、高温域まで高い潤滑性があり摩擦係数の低下に寄与する。
(2) Solid lubricant: Barium compound, strontium compound, mica, aluminum silicon composite oxide, at least one of alumina, barium compound, strontium compound, mica has high lubricity up to high temperature range and lower friction coefficient Contribute to.

アルミニウムケイ素複合酸化物、アルミナは、熱安定性が高く、耐摩耗性に優れている。   Aluminum silicon composite oxide and alumina have high thermal stability and excellent wear resistance.

したがって、固体潤滑剤としてバリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上を用いるのが好ましい。   Therefore, it is preferable to use at least one of barium compound, strontium compound, mica, aluminum silicon composite oxide, and alumina as the solid lubricant.

なお、バリウム化合物としては、例えば、BaSO4、BaO、BaSiO3、BaNiO3、ストロンチウム化合物としては、例えば、SrSO4、Sr2CrO4、雲母としては、例えば、絹雲母、金雲母、アルミニウムケイ素複合酸化物としては、ムライトがそれぞれ好適に用いられる。   Examples of barium compounds include BaSO4, BaO, BaSiO3, BaNiO3, and strontium compounds such as SrSO4 and Sr2CrO4. Examples of mica include sericite, phlogopite, and aluminum silicon composite oxide. Each is preferably used.

本発明の焼結部材は、つぎのように製造される。   The sintered member of the present invention is manufactured as follows.

はじめに、原料粉末として、ステンレス合金粉末と、固体潤滑剤粉末を用意し、これらの原料粉末を混合した後、所定の圧力でプレス成形して圧粉体を作製する。なお、原料粉末の混合時に、FeP、FeBなどの液相形成材の粉末を追加してもよい。   First, as a raw material powder, a stainless alloy powder and a solid lubricant powder are prepared, and after mixing these raw material powders, a green compact is produced by press molding at a predetermined pressure. In addition, you may add the powder of liquid phase forming materials, such as FeP and FeB, at the time of mixing of raw material powder.

そして、この圧粉体を、水素窒素混合雰囲気で、1000〜1300℃範囲内の所定の温度で焼結し、続いてサイジングを行うことで、焼結部材が得られる。なお、焼成雰囲気はこのほかに、水素ガス等の還元雰囲気、窒素ガス雰囲気、アルゴンガス等の不活性雰囲気、真空雰囲気でもよい。   Then, the green compact is sintered at a predetermined temperature within a range of 1000 to 1300 ° C. in a hydrogen / nitrogen mixed atmosphere, followed by sizing, whereby a sintered member is obtained. In addition, the firing atmosphere may be a reducing atmosphere such as hydrogen gas, a nitrogen gas atmosphere, an inert atmosphere such as argon gas, or a vacuum atmosphere.

以下、本発明の焼結部材の具体的な実施例について説明する。なお、本発明は、以下の実施例に限定されるものではなく、種々の変形実施が可能である。   Hereinafter, specific examples of the sintered member of the present invention will be described. In addition, this invention is not limited to a following example, A various deformation | transformation implementation is possible.

(1)焼結部材の作製
原料粉末として、粒度が100メッシュ以下のステンレス合金粉末、75メッシュ以下の固体潤滑剤を用意した。これらの原料粉末を配合し、V型混合機にて30分間混合した後、所定の圧力でプレス成形して圧粉体を作製した。この圧粉体を、水素窒素混合雰囲気で、1000〜1300℃範囲内の所定の温度で焼結し、続いてサイジングを行った。
(1) Production of sintered member As raw material powder, a stainless alloy powder having a particle size of 100 mesh or less and a solid lubricant having a mesh size of 75 mesh or less were prepared. These raw material powders were blended, mixed for 30 minutes in a V-type mixer, and then press molded at a predetermined pressure to produce a green compact. The green compact was sintered at a predetermined temperature within a range of 1000 to 1300 ° C. in a hydrogen / nitrogen mixed atmosphere, followed by sizing.

以上の工程により、外径:18mm×内径:8mm×高さ:8mmの寸法を有する種々の組成の軸受の試料を作製した。   Through the above steps, bearing samples with various compositions having dimensions of outer diameter: 18 mm × inner diameter: 8 mm × height: 8 mm were prepared.

(2)固体潤滑剤の種類と含有量の検討
上記(1)の方法により、オーステナイト系ステンレス合金(Cr:25%、Ni:20%、Co:2%、Fe:残部)中に、種々の固体潤滑剤が種々の含有量において分散した軸受の試料を作製した。
(2) Examination of type and content of solid lubricant By the method of (1) above, various kinds of austenitic stainless alloys (Cr: 25%, Ni: 20%, Co: 2%, Fe: balance) Bearing samples with solid lubricant dispersed in various contents were prepared.

そして、ロータリアクチュエータ(SMC製CDRB2BW40−90DT79L)を用いて往復摺動試験を行い、摩耗深さと摩擦力を評価した。往復摺動試験は、SUS316製の軸を用いて、クリアランスを約0.1mmとし、軸に5MPaを負荷し、軸受と軸を700℃に加熱しながら、軸を毎分75往復の速度でラジアル方向に50000往復させることにより行った。摩耗深さは、試験終了後の軸受の最大摩耗深さを測定して評価した。なお、高摩擦力による過負荷で試験停止した試料、酸化重量が400g/m2を超えた試料については、摩耗深さ、摩擦力の測定を行なわなかった。摩擦力は、高摩擦力による過負荷で停止することなく試験継続が可能かどうかにより評価した。   Then, a reciprocating sliding test was performed using a rotary actuator (CDRB2BW40-90DT79L manufactured by SMC) to evaluate the wear depth and the frictional force. The reciprocating sliding test uses a shaft made of SUS316, the clearance is about 0.1 mm, the shaft is loaded with 5 MPa, the bearing and the shaft are heated to 700 ° C., and the shaft is radially reciprocated at a speed of 75 reciprocations per minute. This was done by reciprocating 50000 in the direction. The wear depth was evaluated by measuring the maximum wear depth of the bearing after completion of the test. In addition, the wear depth and the frictional force were not measured for the sample that was stopped due to the overload due to the high frictional force and the sample whose oxidation weight exceeded 400 g / m2. The frictional force was evaluated based on whether or not the test could be continued without stopping due to an overload caused by a high frictional force.

また、試料を800℃に加熱して大気中で100時間保持した後に冷却し、加熱前後における重量の増加により耐酸化性を評価した。   In addition, the sample was heated to 800 ° C. and held in the atmosphere for 100 hours and then cooled, and oxidation resistance was evaluated by an increase in weight before and after heating.

その結果を下表に示す。なお、表中、耐酸化性は、加熱前後における重量の増加が50g/m2以下のとき◎、50g/m2を超え200g/m2以下のとき○、200g/m2を超え400g/m2以下のとき△、400g/m2を超えたとき×として示した。固体潤滑剤としてBaSO4、BaO、BaSiO3、BaNiO3、SrSO4、Sr2CrO4、絹雲母、金雲母、ムライト、アルミナのいずれかが分散し、固体潤滑剤の含有量が3〜50体積%である場合に、摩耗深さ、摩擦力が小さく、耐酸化性が高くなり、良好な結果となった。   The results are shown in the table below. In the table, the oxidation resistance is ◎ when the weight increase before and after heating is 50 g / m 2 or less, ○ when it exceeds 50 g / m 2 and 200 g / m 2 or less, and when it exceeds 200 g / m 2 and 400 g / m 2 or less Δ , When exceeding 400 g / m 2, it was indicated as x. Wear when the solid lubricant is dispersed in any of BaSO4, BaO, BaSiO3, BaNiO3, SrSO4, Sr2CrO4, sericite, phlogopite, mullite, alumina, and the solid lubricant content is 3 to 50% by volume. The depth and frictional force were small, and the oxidation resistance was high.

Figure 2013163854
Figure 2013163854

(3)ステンレス合金の組成の検討
上記(1)の方法により、固体潤滑剤としてムライトを用いて、種々の組成のステンレス合金中に、固体潤滑剤が15体積%の含有量で分散した軸受の試料を作製した。焼結後の密度は、6.5〜7.0の範囲となるようにした。
(3) Examination of composition of stainless alloy By using the method of (1) above, a bearing in which solid lubricant is dispersed at a content of 15% by volume in stainless alloys of various compositions using mullite as a solid lubricant. A sample was prepared. The density after sintering was set to be in the range of 6.5 to 7.0.

このように作製した軸受の試料について、上記(2)と同様の方法により、摩耗深さ、摩擦力、耐酸化性を評価した。   The bearing samples thus prepared were evaluated for wear depth, frictional force, and oxidation resistance by the same method as in (2) above.

その結果を下表に示す。ステンレス合金として、Crを10〜35質量%含有するオーステナイト系、マルテンサイト系及びフェライト系のうちのいずれかを用いた場合に、耐酸化性が高くなった。また、Crの含有量が増加するほど耐酸化性が高くなる傾向が見られた。   The results are shown in the table below. When any one of austenite, martensite and ferrite containing 10 to 35 mass% of Cr was used as the stainless steel alloy, the oxidation resistance was increased. Moreover, the tendency for oxidation resistance to become high was seen, so that content of Cr increased.

また、表2のA〜Hについて、摩耗深さ、摩擦力を評価したが、摩耗深さ、摩擦力については、A〜Hの間に顕著な差異は見られなかった。   Moreover, although the abrasion depth and the frictional force were evaluated about AH of Table 2, the remarkable difference was not seen between AH about the abrasion depth and the frictional force.

Figure 2013163854
Figure 2013163854

Claims (2)

Crを10〜35質量%含有するオーステナイト系、マルテンサイト系及びフェライト系のうちのいずれかのステンレス合金中に、固体潤滑剤としてバリウム化合物、ストロンチウム化合物、雲母、アルミニウムケイ素複合酸化物、アルミナのうちの少なくとも1つ以上が分散し、固体潤滑剤の含有量が3〜50体積%であることを特徴とする焼結部材。 In any one of austenitic, martensitic and ferritic stainless alloys containing 10 to 35% by mass of Cr, a solid lubricant of barium compound, strontium compound, mica, aluminum silicon composite oxide, alumina At least one of the above is dispersed, and the content of the solid lubricant is 3 to 50% by volume. 固体潤滑剤としてBaSO4、BaO、BaSiO3、BaNiO3、SrSO4、Sr2CrO4、絹雲母、金雲母、ムライト、アルミナのうちの少なくとも1つ以上が分散したことを特徴とする請求項1記載の焼結部材。 The sintered member according to claim 1, wherein at least one of BaSO4, BaO, BaSiO3, BaNiO3, SrSO4, Sr2CrO4, sericite, phlogopite, mullite, and alumina is dispersed as a solid lubricant.
JP2012028578A 2012-02-13 2012-02-13 Sintered member Pending JP2013163854A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012028578A JP2013163854A (en) 2012-02-13 2012-02-13 Sintered member
PCT/JP2013/053336 WO2013122076A1 (en) 2012-02-13 2013-02-13 Sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028578A JP2013163854A (en) 2012-02-13 2012-02-13 Sintered member

Publications (1)

Publication Number Publication Date
JP2013163854A true JP2013163854A (en) 2013-08-22

Family

ID=48984186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028578A Pending JP2013163854A (en) 2012-02-13 2012-02-13 Sintered member

Country Status (2)

Country Link
JP (1) JP2013163854A (en)
WO (1) WO2013122076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198628A1 (en) 2017-04-27 2018-11-01 株式会社ダイヤメット Heat-resistant sintered material having excellent high-temperature wear resistance and salt damage resistance and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149350A (en) * 1986-12-10 1988-06-22 Kinzoku Giken Kk Manufacture of wear-resistant free-cutting stainless steel
JPH04254556A (en) * 1991-02-06 1992-09-09 Komatsu Ltd Self-lubricated sliding material and oilless bearing formed by using this material
JPH0673391A (en) * 1992-06-24 1994-03-15 Nok Corp Sintered sliding member
JPH08134480A (en) * 1994-11-09 1996-05-28 Fuji Dies Kk Production of solid lubricant particle
JP2006242224A (en) * 2005-03-01 2006-09-14 Ntn Tokushu Gokin Kk Sintered metal bearing
JP2007107034A (en) * 2005-10-12 2007-04-26 Hitachi Powdered Metals Co Ltd Method for producing abrasion-resistant sintered member
JP2011058542A (en) * 2009-09-08 2011-03-24 Ntn Corp Sintered metallic bearing and fluid dynamic pressure bearing device equipped with the bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130401A (en) * 1980-03-18 1981-10-13 Toshiba Corp Production of iron-base sintered parts
JP3482162B2 (en) * 1999-08-31 2003-12-22 イーグル工業株式会社 Sintered alloys and bearing materials
JP4714922B2 (en) * 2005-03-25 2011-07-06 独立行政法人産業技術総合研究所 Self-lubricating composite material and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149350A (en) * 1986-12-10 1988-06-22 Kinzoku Giken Kk Manufacture of wear-resistant free-cutting stainless steel
JPH04254556A (en) * 1991-02-06 1992-09-09 Komatsu Ltd Self-lubricated sliding material and oilless bearing formed by using this material
JPH0673391A (en) * 1992-06-24 1994-03-15 Nok Corp Sintered sliding member
JPH08134480A (en) * 1994-11-09 1996-05-28 Fuji Dies Kk Production of solid lubricant particle
JP2006242224A (en) * 2005-03-01 2006-09-14 Ntn Tokushu Gokin Kk Sintered metal bearing
JP2007107034A (en) * 2005-10-12 2007-04-26 Hitachi Powdered Metals Co Ltd Method for producing abrasion-resistant sintered member
JP2011058542A (en) * 2009-09-08 2011-03-24 Ntn Corp Sintered metallic bearing and fluid dynamic pressure bearing device equipped with the bearing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013016446; 村上敬: 'Barite型結晶構造をもつ硫酸塩の高温トライボロジ-特性' トライボロジスト Vol.54 No.10, 20091015, Page.671-676 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198628A1 (en) 2017-04-27 2018-11-01 株式会社ダイヤメット Heat-resistant sintered material having excellent high-temperature wear resistance and salt damage resistance and method for producing same
US11578393B2 (en) 2017-04-27 2023-02-14 Diamet Corporation Heat-resistant sintered material having excellent high-temperature wear resistance and salt damage resistance and method for producing same

Also Published As

Publication number Publication date
WO2013122076A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5684977B2 (en) Cu-based sintered sliding member
US20070258668A1 (en) A bearing made of sintered cu alloy for recirculation exhaust gas flow rate control valve of egr type internal combustion engine or the like exhibiting high strength and excellent abrasion resistance under high temperature environment
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
KR101600907B1 (en) Manufacturing method for valve seat
CN105986147B (en) A kind of wide temperature range self-lubricating nickel-based composite and preparation method thereof
JP5337884B2 (en) Sintered sliding member
CN110382728B (en) Heat-resistant sintered material having excellent high-temperature wear resistance and salt resistance, and method for producing same
JP5386585B2 (en) Sintered sliding material and manufacturing method thereof
JP7150406B2 (en) Heat-resistant sintered alloy material
JP2013163854A (en) Sintered member
CN107429350B (en) Heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt corrosion resistance, and method for producing same
JP2018172768A (en) Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same
JP2020180375A (en) Sinter slide member, and production method of the same
JP5595998B2 (en) Solid solution or solid solution and dispersion strengthened metal-based self-lubricating composite material
JP6222815B2 (en) Sintered member
WO2020218479A1 (en) Sintered sliding member and method for producing same
JP2017133091A (en) Heat resistant sintered material excellent in oxidation resistance, high temperature wear resistance and salt damage resistance and production method therefor
JPH0115581B2 (en)
JPH0428850A (en) Heat-resistant ferrous sintered alloy for sliding
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JP2015187296A (en) Sinter member
JPH0456101B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524