JP2013161610A - Induction heating apparatus, and method of manufacturing high-pressure gas tank - Google Patents

Induction heating apparatus, and method of manufacturing high-pressure gas tank Download PDF

Info

Publication number
JP2013161610A
JP2013161610A JP2012021734A JP2012021734A JP2013161610A JP 2013161610 A JP2013161610 A JP 2013161610A JP 2012021734 A JP2012021734 A JP 2012021734A JP 2012021734 A JP2012021734 A JP 2012021734A JP 2013161610 A JP2013161610 A JP 2013161610A
Authority
JP
Japan
Prior art keywords
induction heating
tank
winding
heating coil
intermediate product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012021734A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
安起良 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012021734A priority Critical patent/JP2013161610A/en
Publication of JP2013161610A publication Critical patent/JP2013161610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating apparatus capable of simplifying setting of a heated object.SOLUTION: An induction heating apparatus 200 has an induction heating coil 222 surrounding an intermediate tank 12 to perform high-frequency induction heating of a fiber-reinforced resin layer 20 of the intermediate tank 12 so that an individual coil portion can be divided. The induction heating coil 222 makes an upper coil portion 224t and a lower coil portion 224b, which are divided portions of the coil portion, separate from each other by releasing fitting attachment between both a male type terminal 226 and a female type terminal 228 provided at a coil front end to form an opening not interfered with the intermediate tank 12. The intermediate tank 12 is set to the opening. The induction heating coil 222 surrounds the intermediate tank 12 after fitting attachment between both the terminals, and receives energization of a high-frequency current from a high-frequency power supply 220.

Description

本発明は、被加熱物を誘導加熱コイルにて高周波誘導加熱する誘導加熱装置と高圧ガスタンクの製造方法に関する。   The present invention relates to an induction heating apparatus that heats an object to be heated by high frequency induction using an induction heating coil and a method for manufacturing a high-pressure gas tank.

近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、カーボン繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で中空のライナーを被覆したFRP(Fiber Reinforced Plastics : 繊維強化プラスチック)製の高圧ガスタンク(以下、単に高圧ガスタンクと称する)の採用が進んでいる。ライナーとしては、軽量化の観点から、通常、ガスバリア性を有する樹脂製の中空容器が用いられる。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, there is a demand for weight reduction of high-pressure gas tanks, and FRP (Fiber) in which a hollow liner is covered with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). The adoption of high-pressure gas tanks (hereinafter simply referred to as high-pressure gas tanks) made of Reinforced Plastics (fiber reinforced plastics) is advancing. As the liner, a resin hollow container having gas barrier properties is usually used from the viewpoint of weight reduction.

一般に、こうした高圧ガスタンクの製造に際しては、フィラメントワインディング法(以下、FW法)が採用され、このFW法により、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維をライナーの外周に繰り返し巻回して繊維強化樹脂層とする。そして、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させることで、ライナーを繊維強化樹脂層で被覆・補強した高圧ガスタンクが製造される(例えば、特許文献1)。   In general, when manufacturing such a high-pressure gas tank, a filament winding method (hereinafter referred to as FW method) is adopted. By this FW method, a fiber impregnated with a thermosetting resin such as an epoxy resin is repeatedly wound around the outer periphery of a liner. A reinforced resin layer is used. And the high pressure gas tank which coat | covered and reinforced the liner with the fiber reinforced resin layer by thermosetting the thermosetting resin contained in the said resin layer after that is manufactured (for example, patent document 1).

特開2011−027218号公報JP 2011-027218 A

ところで、上述したFRP製の圧力容器を製造する際には、熱硬化性樹脂を熱硬化するために、誘導加熱コイルにて高周波誘導加熱する誘導加熱装置が用いられる場合がある。この誘導加熱装置では、熱硬化性樹脂が含浸された炭素繊維をライナーの外表面に繰り返し巻き付けた当該ライナー(被加熱物)を、誘導加熱コイルの内部の空間にセットした状態で、誘導加熱コイルに高周波電流が通電される。そして導電性を有する炭素繊維が高周波誘導加熱を受けて発熱することによって、熱硬化性樹脂は加熱し硬化する。   By the way, when manufacturing the above-mentioned FRP pressure vessel, an induction heating apparatus that performs high-frequency induction heating with an induction heating coil may be used in order to thermoset the thermosetting resin. In this induction heating device, an induction heating coil is set in a state where the liner (object to be heated) in which carbon fibers impregnated with a thermosetting resin are repeatedly wound around the outer surface of the liner is set in the space inside the induction heating coil. A high-frequency current is passed through. When the carbon fiber having conductivity is heated by high frequency induction heating, the thermosetting resin is heated and cured.

図8は既存の誘導加熱装置における誘導加熱コイルへのライナー(被加熱物)の装着の様子を模式的に示す説明図である。図示するように、既存の誘導加熱装置では、一般に、被加熱物であるライナーの一端を固定端として他端を自由端とした片持ち状態で、自由端側から上記被加熱物を誘導加熱コイルの内部の空間にセットする必要がある。このため、誘導加熱装置への被加熱物の装着および取り外し作業の非効率化を招いていた。なお、このような課題は、上述した圧力容器としての高圧ガスタンクの製造工程において、熱硬化性樹脂を熱硬化する誘導加熱装置に限られず、他の被加熱物を加熱する誘導加熱装置に共通する課題である。   FIG. 8 is an explanatory view schematically showing how the liner (object to be heated) is attached to the induction heating coil in the existing induction heating apparatus. As shown in the figure, in the existing induction heating apparatus, generally, the heated object is introduced from the free end side in a cantilever state where one end of the liner as the heated object is a fixed end and the other end is a free end. It is necessary to set in the space inside. For this reason, inefficiency of the work of mounting and removing the object to be heated on the induction heating device has been caused. Such a problem is not limited to the induction heating device that thermosets the thermosetting resin in the manufacturing process of the high-pressure gas tank as the pressure vessel described above, but is common to induction heating devices that heat other objects to be heated. It is a problem.

本発明は、上述の課題を解決するためになされたものであり、誘導加熱装置において、被加熱物のセッティングを簡便化することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to simplify the setting of an object to be heated in an induction heating apparatus.

上記した目的の少なくとも一部を達成するために、本発明は、以下の適用例として実施することができる。   In order to achieve at least a part of the above object, the present invention can be implemented as the following application examples.

[適用例1:誘導加熱装置]
被加熱物を誘導加熱コイルにて高周波誘導加熱する誘導加熱装置であって、
前記被加熱物を取り囲んで配設された前記誘導加熱コイルに高周波電流を通電する電源を備え、前記誘導加熱コイルは、個々の巻線部位を分割可能に備え、該巻線部位を分割して分離し前記被加熱物と干渉しない開口部を形成し、前記巻線部位の分離を元に戻して前記電源から通電を受けることを要旨とする。
[Application Example 1: Induction heating device]
An induction heating apparatus for induction heating an object to be heated with an induction heating coil,
The induction heating coil disposed around the object to be heated is provided with a power source for supplying a high-frequency current, and the induction heating coil is provided with an individual winding part so as to be divided, and the winding part is divided. The gist is to form an opening that is separated and does not interfere with the object to be heated, and to return the separation of the winding portion to the original state and receive energization from the power source.

この適用例1の誘導加熱装置では、被加熱部をその両端を支持等して安定した姿勢のまま、誘導加熱コイルの巻線部位の分割を経て形成された開口部から当該巻線部位と干渉することなく、セットできる。このセット後には、巻線部位の分離を元に戻すことで、被加熱物は誘導加熱コイルで取り囲まれる。そして、この状態で誘導加熱コイルに電源から高周波電流を通電することで、被加熱物を誘導加熱コイルにて高周波誘導加熱できる。この結果、上記の適用例1の誘導加熱装置によれば、被加熱物の片持ちが不要となるので、被加熱物のセッティングの簡便化を図ることができる。   In the induction heating device of this application example 1, the heated portion is supported in a stable posture by supporting both ends thereof, and interferes with the winding portion from the opening formed through the division of the winding portion of the induction heating coil. You can set without having to. After this setting, the object to be heated is surrounded by the induction heating coil by returning the winding part to the original state. In this state, a high-frequency current is supplied from the power source to the induction heating coil, so that the object to be heated can be induction-heated by the induction heating coil. As a result, according to the induction heating device of Application Example 1 described above, since the cantilever of the heated object is not necessary, the setting of the heated object can be simplified.

上記した適用例1の誘導加熱装置は、次のような態様とすることができる。例えば、前記被加熱物を、未硬化の熱硬化性樹脂が含浸された導電性を有する繊維をライナーの外表面に巻き付けた繊維強化層を有する高圧ガスタンクとした上で、前記誘導加熱コイルが前記電源から通電を受ける際に、軸支部により、前記ライナーを軸回りに回転させる。こうすれば、ライナー外周において均等に熱硬化性樹脂を加熱硬化できるので、補強のムラが少なくなり、望ましい。   The induction heating apparatus of the application example 1 described above can be configured as follows. For example, the object to be heated is a high-pressure gas tank having a fiber reinforced layer in which conductive fibers impregnated with an uncured thermosetting resin are wound around the outer surface of a liner, and the induction heating coil is When receiving power from the power source, the liner is rotated around the axis by the shaft support. In this way, the thermosetting resin can be heated and cured evenly on the outer periphery of the liner, which is desirable because unevenness in reinforcement is reduced.

また、前記誘導加熱コイルを、個々の巻線部位を前記繊維強化樹脂層における前記繊維の巻き付け方向に倣って巻いて形成したものとできる。こうすれば、ライナーの外周の繊維強化樹脂層における繊維の巻き付け方向とコイルの巻線の方向が揃うことから、繊維の誘導加熱が進み、繊維の加熱による繊維強化樹脂層の樹脂の硬化を速やかに進めることができる。   In addition, the induction heating coil can be formed by winding individual winding portions along the winding direction of the fiber in the fiber reinforced resin layer. In this way, since the fiber winding direction and the coil winding direction in the fiber reinforced resin layer on the outer periphery of the liner are aligned, the induction heating of the fiber proceeds, and the resin in the fiber reinforced resin layer is rapidly cured by heating the fiber. Can proceed.

[適用例2:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させるに当たり、前記タンク中間生成品の高周波誘導加熱用の誘導加熱コイルを個々の巻線部位が分割可能な構成とした上で、該巻線部位を分割して分離し前記タンク中間生成品と干渉しない開口部を形成し、該開口部から前記タンク中間生成品を前記分割済みの前記誘導加熱コイルの内部にセットした上で、前記巻線部位の分離を元に戻して前記タンク中間生成品を前記誘導加熱コイルで取り囲み、前記誘導加熱コイルに高周波電流を通電することを要旨とする。
[Application Example 2: Manufacturing Method of High Pressure Gas Tank]
A method for manufacturing a high-pressure gas tank, comprising:
A tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container is pivotally supported, and the tank intermediate product is pivotally supported. In order to heat the fiber reinforced resin layer by rotating while rotating around the tank axis, the induction heating coil for high frequency induction heating of the tank intermediate product is configured so that individual winding parts can be divided. Then, the winding part is divided and separated to form an opening that does not interfere with the tank intermediate product, and the tank intermediate product is set in the divided induction heating coil from the opening. Then, the separation of the winding part is restored, the tank intermediate product is surrounded by the induction heating coil, and a high frequency current is applied to the induction heating coil.

上記した適用例2の高圧ガスタンクの製造方法によれば、ライナー外周に繊維強化樹脂層を形成した高圧ガスタンクを、その両端を支持等して安定した姿勢のまま、誘導加熱コイルにセットしたり取り外したりでき、誘導加熱を図る際のライナーのセッティングを簡便化できる。   According to the manufacturing method of the high-pressure gas tank of Application Example 2 described above, the high-pressure gas tank having the fiber reinforced resin layer formed on the outer periphery of the liner is set on or removed from the induction heating coil while supporting its both ends and keeping a stable posture. It is possible to simplify the setting of the liner when performing induction heating.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. この製造工程に用いるFW装置100の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of FW apparatus 100 used for this manufacturing process. 繊維強化樹脂層の形成の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of formation of a fiber reinforced resin layer. 得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子を示す説明図である。It is explanatory drawing which shows the mode of the orientation of the resin impregnation carbon fiber W in the resin layer inside and outside the fiber reinforced resin layer 20 in the obtained intermediate product tank 12. FIG. 中間生成品タンク12のセットの様子を誘導加熱コイル222の状況と合わせて説明する説明図である。It is explanatory drawing explaining the mode of the set of the intermediate product tank 12 together with the state of the induction heating coil 222. 誘導加熱コイル222により中間生成品タンク12を取り囲む様子を示す説明図である。It is explanatory drawing which shows a mode that the intermediate product tank 12 is surrounded by the induction heating coil 222. FIG. 中間生成品タンク12のセット完了状況を示す説明図である。It is explanatory drawing which shows the completion status of the set of the intermediate product tank. 既存の誘導加熱装置における誘導加熱コイルへのライナー(被加熱物)の装着の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of mounting | wearing with the liner (to-be-heated material) to the induction heating coil in the existing induction heating apparatus.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図、図2はこの製造工程に用いるFW装置100の構成を概略的に示す説明図、図3は繊維強化樹脂層の形成の様子を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention, FIG. 2 is an explanatory view schematically showing a configuration of an FW device 100 used in the manufacturing process, and FIG. It is explanatory drawing which shows the mode of formation of a resin layer typically. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、水素ガスに対するガスバリア性を有する樹脂製容器をライナー10として用意する。ライナー10は、半径が均一である略円筒形状のシリンダー部10aと、シリンダー部両端に設けられた凸曲面形状のドーム部10bを有する。ドーム部10bは、等張力曲面によって構成されており、その頂点に、外部配管等と接続するための口金14を有する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、水素ガスに対するガスバリア性を有すれば、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, as shown in FIG. 1A, a resin container having a gas barrier property against hydrogen gas is prepared as a liner 10. The liner 10 includes a substantially cylindrical cylinder portion 10a having a uniform radius, and convex dome portions 10b provided at both ends of the cylinder portion. The dome portion 10b is configured by an isotonic curved surface, and has a base 14 for connecting to an external pipe or the like at the apex thereof. In this embodiment, a resin container made of a nylon resin is used as the resin container. A resin container made of another resin may be used as long as it has a gas barrier property against hydrogen gas.

次に、図1(b)に示したように、ライナー10の外周に繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、図2に示すFW装置100を用いる。このFW装置100は、ライナー10の外周に、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻回することにより、繊維強化樹脂層20としてのカーボン繊維層を形成する。これにより、ライナー10の外周に樹脂硬化前の繊維強化樹脂層20を有する中間生成品タンク12が得られる。FW装置100の構成と当該装置による繊維巻回の様子については、後述する。   Next, as shown in FIG.1 (b), the fiber reinforced resin layer 20 is formed in the outer periphery of the liner 10 (fiber reinforced resin layer formation process). In this embodiment, the FW device 100 shown in FIG. 2 is used as the fiber reinforced resin layer forming step. The FW device 100 forms a carbon fiber layer as the fiber reinforced resin layer 20 by repeatedly winding a carbon fiber impregnated with an epoxy resin as a thermosetting resin on the outer periphery of the liner 10. Thereby, the intermediate product tank 12 which has the fiber reinforced resin layer 20 before resin hardening on the outer periphery of the liner 10 is obtained. The configuration of the FW device 100 and the state of fiber winding by the device will be described later.

繊維強化樹脂層20の形成に続いては、熱硬化を行う。熱硬化工程では、図1(c)に示す誘導加熱装置200を用いる。この誘導加熱装置200は、被加熱物としての中間生成品タンク12を高周波誘導加熱する装置である。誘導加熱装置200は、図示しない架台に、タンク両端のタンク軸支シャフト212を介して中間生成品タンク12を回転可能に軸支し、図示しないモーターにて中間生成品タンク12を加熱の過程において回転させる。この他、誘導加熱装置200は、分割可能に構成された後述の誘導加熱コイル222と、その高周波電源220とを有する。誘導加熱コイル222は、軸支した中間生成品タンク12を取り囲み、高周波電源220から高周波電流の通電を受けることで、磁束を形成し、中間生成品タンク12の繊維強化樹脂層20におけるカーボン繊維(樹脂含浸カーボン繊維W)を導体として繊維強化樹脂層20を誘導加熱する。また、この誘導加熱コイル222は、その巻線部位のコイル巻き軌跡をタンク軸に対して約18°程傾けている。   Subsequent to the formation of the fiber reinforced resin layer 20, thermosetting is performed. In the thermosetting process, an induction heating device 200 shown in FIG. The induction heating device 200 is a device that performs high-frequency induction heating of the intermediate product tank 12 as an object to be heated. The induction heating apparatus 200 rotatably supports the intermediate product tank 12 on a gantry (not shown) via tank support shafts 212 at both ends of the tank, and in the process of heating the intermediate product tank 12 by a motor (not shown). Rotate. In addition, the induction heating apparatus 200 includes an induction heating coil 222, which will be described later, and a high-frequency power source 220. The induction heating coil 222 surrounds the intermediate product tank 12 supported by the shaft, receives a high-frequency current from the high-frequency power supply 220 to form a magnetic flux, and forms carbon fibers (in the fiber reinforced resin layer 20 of the intermediate product tank 12 ( The fiber reinforced resin layer 20 is induction-heated using the resin-impregnated carbon fiber W) as a conductor. Further, the induction heating coil 222 has a coil winding locus of the winding portion inclined about 18 ° with respect to the tank axis.

図1(c)に示す上記の誘導加熱装置200を用いた熱硬化工程では、誘導加熱装置200への中間生成品タンク12の搬入に先だち、繊維強化樹脂層20を形成済みの中間生成品タンク12にタンク軸支シャフト212を装着する。タンク軸支シャフト212は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、中間生成品タンク12を水平に軸支する。こうして中間生成品タンク12を軸支した後、誘導加熱装置200は、中間生成品タンク12を熱硬化工程に処する。この熱硬化工程では、中間生成品タンク12をタンク軸支シャフト212ごと定速で回転させ、その回転を熱硬化工程の間に亘って維持する。タンク回転と同時に、或いは、定速回転となると、誘導加熱装置200は、繊維強化樹脂層20の形成に用いた上記の熱硬化樹脂(例えば、エポキシ樹脂)の熱硬化が起きるよう、制御機器230にて誘導加熱コイル222に高周波電流を通電して繊維強化樹脂層20を誘導加熱する。これにより、中間生成品タンク12では、ライナー10の外周に形成された繊維強化樹脂層20における熱硬化樹脂の熱硬化がライナー外周回りにほぼ均等に起きる。よって、繊維強化樹脂層20によるライナー10の補強にムラが少なくなる。なお、上記コイルへの通電タイミングについては後述する。   In the thermosetting process using the induction heating device 200 shown in FIG. 1C, the intermediate product tank in which the fiber reinforced resin layer 20 has been formed prior to the intermediate product tank 12 being carried into the induction heating device 200. 12 is mounted with a tank shaft 212. The tank support shafts 212 are inserted into the caps 14 at both ends of the intermediate product tank 12, and support the intermediate product tank 12 horizontally with the shafts extending from both ends of the tank. After the intermediate product tank 12 is pivotally supported in this way, the induction heating device 200 processes the intermediate product tank 12 in a thermosetting process. In this thermosetting process, the intermediate product tank 12 is rotated at a constant speed together with the tank shaft 212, and the rotation is maintained during the thermosetting process. At the same time as the tank rotation or at a constant speed, the induction heating device 200 controls the control device 230 so that the thermosetting resin (for example, epoxy resin) used for forming the fiber reinforced resin layer 20 is cured. A high frequency current is passed through the induction heating coil 222 to inductively heat the fiber reinforced resin layer 20. Thereby, in the intermediate product tank 12, the thermosetting of the thermosetting resin in the fiber reinforced resin layer 20 formed on the outer periphery of the liner 10 occurs substantially evenly around the outer periphery of the liner. Therefore, unevenness is reduced in the reinforcement of the liner 10 by the fiber reinforced resin layer 20. The timing of energizing the coil will be described later.

誘導加熱装置200による上記した樹脂の熱硬化後には、加熱を受けた中間生成品タンク12は、冷却養生に処される。そして、この冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。   After the above-described thermosetting of the resin by the induction heating device 200, the intermediate product tank 12 that has been heated is subjected to cooling curing. Then, through this cooling curing, a high-pressure hydrogen tank 30 having a fiber reinforced resin layer 20 impregnated with an epoxy resin on the outer periphery of the liner 10 and thermally cured is obtained.

ここで、FW装置100による繊維強化樹脂層20の形成の様子(図1(b))と、その後の誘導加熱装置200による繊維強化樹脂層20の熱硬化(図1(c))について順を追って説明する。図2に示すように、本実施例のFW装置100は、クリールスタンド110と、巻取部130と、クリールスタンド110と巻取部130とを結ぶ経路部120と、制御部150とを備える。   Here, the order of the formation of the fiber reinforced resin layer 20 by the FW device 100 (FIG. 1B) and the subsequent thermosetting of the fiber reinforced resin layer 20 by the induction heating device 200 (FIG. 1C) are followed. I will explain later. As illustrated in FIG. 2, the FW device 100 according to the present embodiment includes a creel stand 110, a winding unit 130, a path unit 120 that connects the creel stand 110 and the winding unit 130, and a control unit 150.

クリールスタンド110は、熱硬化樹脂としてのエポキシ樹脂を含浸済みのカーボン繊維(以下、樹脂含浸カーボン繊維Wと称する)を巻きつけた複数のボビン112を備え、固定滑車114等を用いて各ボビン112から所定の方向に樹脂含浸カーボン繊維Wを繰り出す機能を有する。本実施例では、熱硬化性樹脂を含浸済みのいわゆるプリプレグの樹脂含浸カーボン繊維Wとしたが、ボビン112にはカーボン繊維のみを巻き取って備え、クリールスタンド110からの繊維繰り出し経路途中で、その繰り出されるカーボン繊維に熱硬化性樹脂を含浸させるようにすることもできる。なお、カーボン繊維に代えて、適当な強度と導電性を有するフィラメントワインディングに適した他の材料の繊維とすることもできる。また、エポキシ樹脂に代えて、熱硬化により適当な接合強度を有するフィラメントワインディングに適した熱硬化性樹脂、例えばポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂とすることもできる。   The creel stand 110 includes a plurality of bobbins 112 around which carbon fibers impregnated with an epoxy resin as a thermosetting resin (hereinafter referred to as resin-impregnated carbon fibers W) are wound, and each bobbin 112 using a fixed pulley 114 or the like. The resin-impregnated carbon fiber W is fed out in a predetermined direction. In this embodiment, the resin-impregnated carbon fiber W of a so-called prepreg that has been impregnated with a thermosetting resin is used. The drawn carbon fiber may be impregnated with a thermosetting resin. In addition, it can replace with carbon fiber and can also be used as the fiber of the other material suitable for the filament winding which has appropriate intensity | strength and electroconductivity. In place of the epoxy resin, a thermosetting resin suitable for filament winding having an appropriate bonding strength by thermosetting, for example, a thermosetting resin such as a polyester resin or a polyamide resin can be used.

各ボビン112からは、巻取部130の働きにより樹脂含浸カーボン繊維Wがそれぞれ引き出され、各樹脂含浸カーボン繊維Wは経路部120を介して巻取部130へ導かれる。   From each bobbin 112, the resin-impregnated carbon fiber W is drawn out by the action of the winding part 130, and each resin-impregnated carbon fiber W is guided to the winding part 130 via the path part 120.

経路部120は、ローラーやガイド等を備え、クリールスタンド110から巻取部130への樹脂含浸カーボン繊維Wへの経路を構成する。   The path portion 120 includes a roller, a guide, and the like, and constitutes a path from the creel stand 110 to the resin-impregnated carbon fiber W from the winding portion 130.

巻取部130は、アイクチガイド132と、ライナー10がセットされる回転駆動装置134とを備える。回転駆動装置134は、ライナー10を軸支してそのタンク軸周りにライナー10を回転駆動させる。   The winding unit 130 includes an ikuchi guide 132 and a rotation driving device 134 on which the liner 10 is set. The rotational drive device 134 pivotally supports the liner 10 and rotationally drives the liner 10 around its tank axis.

アイクチガイド132は、ライナー10の外周に樹脂含浸カーボン繊維Wを供給しつつ、ライナー10に樹脂含浸カーボン繊維Wが巻回される際の巻回張力を調整する。また、樹脂含浸カーボン繊維Wのフープ巻きとヘリカル巻きの使い分けにも関与する。つまり、アイクチガイド132は、ライナー10の長軸方向であるx軸、x軸に垂直なy軸、x軸およびy軸に垂直なz軸の3次元で移動して、経路部120から供給された複数本の樹脂含浸カーボン繊維Wを束ねてライナー10に向かって供給する。制御部150による制御を経たアイクチガイド132の3次元方向への移動と回転駆動装置134によるライナー10の回転とにより、樹脂含浸カーボン繊維Wは、ライナー10の外周に繰り返し巻回されることになる。詳細には、図3に示すように、フープ巻きとヘリカル巻きとが使い分けられて、樹脂含浸カーボン繊維Wは、ライナー両端のドーム部10bと円筒状のシリンダー部10aとの外周に繰り返し巻回される。図示するように、まず、ライナー10の略円筒状のシリンダー部10aの領域をフープ巻きにて樹脂含浸カーボン繊維Wを巻回し、その後に、シリンダー部両端のドーム部10bに掛け渡るよう、その折り返し位置に応じた角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。   The ikuchi guide 132 adjusts the winding tension when the resin-impregnated carbon fiber W is wound around the liner 10 while supplying the resin-impregnated carbon fiber W to the outer periphery of the liner 10. Further, it is also involved in properly using hoop winding and helical winding of the resin-impregnated carbon fiber W. In other words, the ikuchi guide 132 is supplied from the path unit 120 by moving in three dimensions: the x-axis which is the major axis direction of the liner 10, the y-axis perpendicular to the x-axis, the z-axis perpendicular to the x-axis and the y-axis. The plurality of resin-impregnated carbon fibers W are bundled and supplied toward the liner 10. The resin-impregnated carbon fiber W is repeatedly wound around the outer circumference of the liner 10 by the movement of the ikuchi guide 132 controlled by the control unit 150 in the three-dimensional direction and the rotation of the liner 10 by the rotation driving device 134. Become. Specifically, as shown in FIG. 3, hoop winding and helical winding are used properly, and the resin-impregnated carbon fiber W is repeatedly wound around the outer periphery of the dome portion 10b and the cylindrical cylinder portion 10a at both ends of the liner. The As shown in the figure, first, the resin-impregnated carbon fiber W is wound around the region of the substantially cylindrical cylinder portion 10a of the liner 10 by hoop winding, and then folded over the dome portions 10b at both ends of the cylinder portion. The resin-impregnated carbon fiber W is wound by helical winding at an angle corresponding to the position.

図3(A)に示すように、シリンダー部10aにおいては、フープ巻きをシリンダー部両端で折り返しつつ繰り返すことで、繊維強化樹脂層20のライナー外周側の内側樹脂層を形成する。つまり、ライナー10をタンク中心軸AXの回りで回転させつつ、樹脂含浸カーボン繊維Wの供給元であるアイクチガイド132をタンク中心軸AXに沿って所定速度で往復動させることで、繊維強化樹脂層20における内側樹脂層が樹脂含浸カーボン繊維Wにて巻回形成される。このフープ巻きでは、アイクチガイド132からの樹脂含浸カーボン繊維Wが、シリンダー部10aのタンク中心軸AXに対してほぼ垂直に近い巻き角度(繊維角α0:例えば約89°)をなすようにされる。そして、ライナー回転速度とアイクチガイド132の往復動速度を調整した上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aに繰り返し巻回する。   As shown in FIG. 3A, in the cylinder portion 10a, the inner resin layer on the outer periphery side of the liner of the fiber reinforced resin layer 20 is formed by repeating the hoop winding while turning back both ends of the cylinder portion. That is, by rotating the liner 10 around the tank center axis AX and reciprocating the ikuchi guide 132 that is a supply source of the resin-impregnated carbon fiber W along the tank center axis AX at a predetermined speed, the fiber reinforced resin The inner resin layer in the layer 20 is formed by winding with resin-impregnated carbon fibers W. In this hoop winding, the resin-impregnated carbon fiber W from the ikuchi guide 132 forms a winding angle (fiber angle α0: for example, about 89 °) that is almost perpendicular to the tank center axis AX of the cylinder portion 10a. The Then, after adjusting the liner rotational speed and the reciprocating speed of the ikuchi guide 132, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound around the cylinder portion 10a. Turn.

こうしたフープ巻きに続き、図3(B)に示す低角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。低角度のヘリカル巻きでは、ドーム部10bの湾曲外表面領域とフープ巻き済みのシリンダー部10aを繊維巻回対象とし、ライナー10をタンク中心軸AXの回りで回転させつつ、アイクチガイド132から延びた樹脂含浸カーボン繊維Wをタンク中心軸AXに対して低角度の繊維角αLH(例えば、約11〜25°)で交差させた状態を保持し、ライナー回転速度とアイクチガイド132の往復動速度を調整する。その上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aの両端のドーム部10bに掛け渡るよう螺旋状に繰り返し巻回する。この場合、両側のドーム部10bでは、アイクチガイド132の往路・復路の切換に伴って繊維の巻き付け方向が折り返されると共に、タンク中心軸AXからの折り返し位置も調整される。ドーム部10bにおける巻き付け方向の折り返しを何度も繰り返すことにより、ライナー10の外表面には、低角度の繊維角αLHで樹脂含浸カーボン繊維Wが網目状に張り渡された繊維巻回層が形成され、この層が繊維強化樹脂層20における外表面側の最外層側樹脂層となる。なお、上記した低角度のヘリカル巻きを行う前に、タンク中心軸AXに対して高角度の繊維角(例えば、約30〜60°)で樹脂含浸カーボン繊維Wを巻回する高角度のヘリカル巻きを組み込むこともできる。上記したフープ巻きおよびヘリカル巻きにおいて、制御部150は、ライナー10の回転速度制御やアイクチガイド132での巻回張力調整等を行うが、本発明の要旨と直接関係しないので、その説明については省略する。   Following such hoop winding, the resin-impregnated carbon fiber W is wound by low-angle helical winding as shown in FIG. In the low-angle helical winding, the curved outer surface region of the dome portion 10b and the hoop-wound cylinder portion 10a are targets for fiber winding, and the liner 10 extends from the ikuchi guide 132 while rotating around the tank center axis AX. The resin-impregnated carbon fiber W is kept crossed at a low fiber angle αLH (for example, about 11 to 25 °) with respect to the tank center axis AX, and the liner rotational speed and the reciprocating speed of the ikuchi guide 132 are maintained. Adjust. Then, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound spirally so as to hang over the dome portions 10b at both ends of the cylinder portion 10a. In this case, in the dome portions 10b on both sides, the fiber winding direction is turned back and the turn-back position from the tank center axis AX is adjusted in accordance with switching between the forward path and the return path of the ikuchi guide 132. By repeating the wrapping in the winding direction in the dome portion 10b many times, a fiber wound layer in which the resin-impregnated carbon fibers W are stretched in a mesh shape with a low angle fiber angle αLH is formed on the outer surface of the liner 10. This layer becomes the outermost resin layer on the outer surface side of the fiber reinforced resin layer 20. In addition, before performing the above-described low-angle helical winding, the high-angle helical winding in which the resin-impregnated carbon fiber W is wound at a high-angle fiber angle (for example, about 30 to 60 °) with respect to the tank center axis AX. Can also be incorporated. In the above-described hoop winding and helical winding, the control unit 150 performs the rotation speed control of the liner 10 and the winding tension adjustment with the ikuchi guide 132, but is not directly related to the gist of the present invention. Omitted.

こうして樹脂含浸カーボン繊維Wのフープ巻きおよびヘリカル巻きが使い分けてなされることで、樹脂含浸カーボン繊維Wがライナー10の外周に層状に重なった繊維強化樹脂層20が形成される。そして、樹脂含浸カーボン繊維WのFW法による巻回を経て、ライナー10の外周に繊維強化樹脂層20を形成した中間生成品タンク12が得られる(図1(b)参照)。図4は得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子を示す説明図である。   Thus, the fiber-reinforced resin layer 20 in which the resin-impregnated carbon fibers W are layered on the outer periphery of the liner 10 is formed by properly using the hoop winding and the helical winding of the resin-impregnated carbon fibers W. And the intermediate product tank 12 which formed the fiber reinforced resin layer 20 in the outer periphery of the liner 10 is obtained through winding of the resin impregnation carbon fiber W by FW method (refer FIG.1 (b)). FIG. 4 is an explanatory view showing the orientation of the resin-impregnated carbon fibers W in the resin layers inside and outside the fiber reinforced resin layer 20 in the obtained intermediate product tank 12.

図示するように、ライナー10の外表面に形成された繊維強化樹脂層20は、ライナー10の外周側から、最内層の樹脂層と中間層の樹脂層と最外層の樹脂層に区分でき、最内層の樹脂層は、図3(A)に示したフープ巻きによる繊維巻回層となり、繊維の配向は既述した約89°となる。中間層は、フープ巻きから低角度のヘリカル巻きに推移する層であり、繊維の巻き方向である繊維の配向は89°から既述した約11〜25°に切り替わる。最外層の樹脂層は、図3(B)に示した低角度のヘリカル巻きによる繊維巻回層となり、繊維の配向は既述した約11〜25°となる。そして、ライナー10の外周側のフープ巻きの樹脂層に低角度のヘリカル巻きの樹脂層を積層した繊維強化樹脂層20とすることで、最終製品たる高圧水素タンク30のタンク強度を高めることができる。   As shown in the figure, the fiber reinforced resin layer 20 formed on the outer surface of the liner 10 can be divided into an innermost resin layer, an intermediate resin layer, and an outermost resin layer from the outer peripheral side of the liner 10. The inner resin layer is a fiber wound layer by hoop winding shown in FIG. 3A, and the fiber orientation is about 89 ° as described above. The intermediate layer is a layer that transitions from hoop winding to low-angle helical winding, and the fiber orientation, which is the winding direction of the fiber, is switched from 89 ° to about 11 to 25 ° described above. The outermost resin layer is a fiber wound layer by helical winding at a low angle shown in FIG. 3B, and the fiber orientation is about 11 to 25 ° as described above. The tank strength of the high-pressure hydrogen tank 30 that is the final product can be increased by using the fiber reinforced resin layer 20 in which a low-angle helically wound resin layer is laminated on the hoop wound resin layer on the outer peripheral side of the liner 10. .

図4では、タンク中心軸AXを含んでタンクを長手方向に断面視していることから、繊維の配向が約89°の最内層〜中間層では、樹脂含浸カーボン繊維Wは繊維と交差するよう切断したほぼ円形に断面視される。その一方、繊維の配向が約11〜25°の中間層〜最外層では、樹脂含浸カーボン繊維Wは繊維長手方向に沿って切断した矩形状に断面視され、誘導加熱コイル222は、その巻線部位のコイル巻き軌跡の傾斜(約18°)を、中間層〜最外層での繊維の巻き付け方向である繊維の配向のほぼ平均の角度に倣わせている。   In FIG. 4, since the tank including the tank center axis AX is viewed in a longitudinal section, the resin-impregnated carbon fibers W intersect the fibers in the innermost layer to the intermediate layer where the fiber orientation is about 89 °. A cross-sectional view of the cut substantially circular shape. On the other hand, in the intermediate layer to the outermost layer where the fiber orientation is about 11 to 25 °, the resin-impregnated carbon fiber W is viewed in a rectangular shape cut along the fiber longitudinal direction, and the induction heating coil 222 has its windings. The inclination (about 18 °) of the coil winding locus of the part is made to follow the almost average angle of the fiber orientation, which is the fiber winding direction in the intermediate layer to the outermost layer.

次に、図1(c)に示した誘導加熱装置200の誘導加熱コイル222への中間生成品タンク12のセットの様子と、誘導加熱のタイミングについて、誘導加熱コイル222の構成と合わせて説明する。図5は中間生成品タンク12のセットの様子を誘導加熱コイル222の状況と合わせて説明する説明図、図6は誘導加熱コイル222により中間生成品タンク12を取り囲む様子を示す説明図、図7は中間生成品タンク12のセット完了状況を示す説明図である。   Next, the setting state of the intermediate product tank 12 to the induction heating coil 222 of the induction heating apparatus 200 shown in FIG. 1C and the timing of induction heating will be described together with the configuration of the induction heating coil 222. . FIG. 5 is an explanatory view for explaining the setting of the intermediate product tank 12 together with the state of the induction heating coil 222. FIG. 6 is an explanatory view showing the state of surrounding the intermediate product tank 12 by the induction heating coil 222. FIG. 6 is an explanatory diagram showing a setting completion status of the intermediate product tank 12.

図5〜図6に示すように、誘導加熱コイル222は、タンク軸を含む略水平面において個々の巻線部位を上下にほぼ1/2で分割可能に備え、分割された上部巻線部位224tの両巻線先端に雄型端子226を備える。また、誘導加熱コイル222は、分割された下部巻線部位224bについては、その両巻線先端に雌型端子228を備える。雄型端子226と雌型端子228とは、着脱自在な雄雌嵌合端子タイプの通電コネクタとして構成され、作業者により或いは図示しない着脱ジグにより、着脱される。そして、誘導加熱コイル222は、中間生成品タンク12のセットに備えて、図5に示すように、上部巻線部位224tを下部巻線部位224bから分割して分離させる。この巻線分離は、雄型端子226と雌型端子228の分離にて起こり、誘導加熱コイル222は、上部巻線部位224tを上方に持ち上げることで、中間生成品タンク12と干渉しない開口部を下部巻線部位224bの雌型端子228の側に形成する。これにより、中間生成品タンク12のセットに進む。この場合、誘導加熱コイル222は、タンク軸を含む略垂直平面において個々の巻線部位を左右に分割可能とすることもでき、この場合には、上部巻線部位224tに相当する左右の巻線部位の一方を、側方に移動させればよい。   As shown in FIGS. 5 to 6, the induction heating coil 222 includes individual winding portions that can be divided substantially vertically by a half in a substantially horizontal plane including the tank shaft, and the divided upper winding portion 224 t. A male terminal 226 is provided at both winding tips. Further, the induction heating coil 222 includes a female terminal 228 at the tip of both of the divided lower winding portions 224b. The male terminal 226 and the female terminal 228 are configured as detachable male / female fitting terminal type energizing connectors, and are attached / detached by an operator or by an attaching / detaching jig (not shown). Then, the induction heating coil 222 is provided in the set of the intermediate product tank 12, and as shown in FIG. 5, the upper winding part 224t is divided from the lower winding part 224b and separated. This winding separation occurs when the male terminal 226 and the female terminal 228 are separated, and the induction heating coil 222 lifts the upper winding part 224t upward, thereby opening an opening that does not interfere with the intermediate product tank 12. It is formed on the female terminal 228 side of the lower winding part 224b. Thereby, the process proceeds to the setting of the intermediate product tank 12. In this case, the induction heating coil 222 can also divide the individual winding parts into left and right parts in a substantially vertical plane including the tank axis. In this case, the left and right windings corresponding to the upper winding part 224t One of the parts may be moved to the side.

中間生成品タンク12は、誘導加熱コイル222へのセットに先立ち、口金14にタンク軸支シャフト212を装着する。その上で、中間生成品タンク12をその両端を支持等して安定した姿勢とし、図中に矢印で示すように、中間生成品タンク12をその姿勢のまま、誘導加熱コイル222の開口部まで、換言すれば、上部巻線部位224tと下部巻線部位224bが向き合う箇所に移動する(ステップS10)。その後、中間生成品タンク12を、そのタンク軸が下部巻線部位224bの雌型端子228とほぼ一致する高さとなるまで降下させる(ステップS20)。この降下後においては、図1(c)で説明したように、中間生成品タンク12は、タンク軸支シャフト212を介して架台(図示略)に回転自在軸支されることになる。   Prior to setting the intermediate product tank 12 to the induction heating coil 222, the tank support shaft 212 is attached to the base 14. Then, the intermediate product tank 12 is held in a stable posture by supporting both ends thereof, and the intermediate product tank 12 is kept in that posture to the opening of the induction heating coil 222 as shown by arrows in the figure. In other words, the upper winding part 224t and the lower winding part 224b move to a place where they face each other (step S10). Thereafter, the intermediate product tank 12 is lowered until the tank shaft reaches a height that substantially coincides with the female terminal 228 of the lower winding portion 224b (step S20). After the lowering, as described with reference to FIG. 1C, the intermediate product tank 12 is rotatably supported on a gantry (not shown) via the tank shaft 212.

次に、上部巻線部位224tを下部巻線部位224bの側に降下さる(ステップS30)。この降下の様子は、図6に示されており、降下後においては、下部巻線部位224bの雌型端子228に上部巻線部位224tの雄型端子226を嵌合装着する。この端子装着が済んだ状態では、図7に示すように、誘導加熱コイル222は、分割して分離されていた上部巻線部位224tと下部巻線部位224bを元に戻して、上部巻線部位224tと下部巻線部位224bとを電気的に接続し、高周波電流の通電を可能とする。しかも、誘導加熱コイル222は、図7に示すように、中間生成品タンク12を取り囲むことになる。こうなると、誘導加熱装置200(図1(c)参照)は、その制御機器230の制御を経て、中間生成品タンク12をタンク軸回りに回転させつつ、高周波電源220から誘導加熱コイル222に高周波電流を通電する。   Next, the upper winding part 224t is lowered to the lower winding part 224b (step S30). The state of the lowering is shown in FIG. 6. After the lowering, the male terminal 226 of the upper winding part 224t is fitted and mounted on the female terminal 228 of the lower winding part 224b. In the state in which the terminal is mounted, as shown in FIG. 7, the induction heating coil 222 returns the upper winding part 224t and the lower winding part 224b which have been divided and separated to the original, and the upper winding part 224t and the lower winding part 224b are electrically connected to enable energization of a high-frequency current. Moreover, the induction heating coil 222 surrounds the intermediate product tank 12 as shown in FIG. In this case, the induction heating device 200 (see FIG. 1C) is controlled by the control device 230 to rotate the intermediate product tank 12 around the tank axis from the high frequency power supply 220 to the induction heating coil 222. Energize current.

こうして通電を受けた誘導加熱コイル222は、水平に軸支されてタンク軸回りに回転する中間生成品タンク12を、タンク軸方向と傾斜してタンク軸方向に貫く磁束を発生する。繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wは、この誘導加熱コイル222による磁束と交差することから渦電流を誘起し、カーボン繊維固有の抵抗によって発熱して、繊維強化樹脂層20の熱硬化性樹脂を高周波誘導加熱する。   The induction heating coil 222 thus energized generates a magnetic flux that penetrates the intermediate product tank 12 that is supported horizontally and rotates around the tank axis in the tank axis direction while being inclined with respect to the tank axis direction. Since the resin-impregnated carbon fiber W constituting the fiber reinforced resin layer 20 intersects with the magnetic flux generated by the induction heating coil 222, an eddy current is induced, and heat is generated due to the inherent resistance of the carbon fiber. High frequency induction heating of the curable resin.

以上説明したように、本実施例の誘導加熱装置200は、図5〜図7に示すように、被加熱物たる中間生成品タンク12を誘導加熱コイル222で取り囲んで高周波誘導加熱するようセットするに当たり、中間生成品タンク12を片持ちする必要がない。よって、本実施例の誘導加熱装置200によれば、延いては、これを用いた高圧水素タンク30の製造方法によれば、中間生成品タンク12のセッティングを簡便化できる。   As described above, the induction heating apparatus 200 of the present embodiment is set so as to surround the intermediate product tank 12 as the object to be heated with the induction heating coil 222 and perform high-frequency induction heating, as shown in FIGS. The intermediate product tank 12 does not need to be cantilevered. Therefore, according to the induction heating apparatus 200 of the present embodiment, the setting of the intermediate product tank 12 can be simplified according to the method of manufacturing the high-pressure hydrogen tank 30 using the same.

また、本実施例の誘導加熱装置200は、未硬化のエポキシ樹脂が含浸された樹脂含浸カーボン繊維Wをライナー10の外表面に巻き付けた中間生成品タンク12を、誘導加熱コイル222が高周波電源220から通電を受ける際に、軸支部により軸回りに回転させる。よって、ライナー外周において均等にエポキシ樹脂を加熱硬化できるので、補強のムラが少なくなり、望ましい。   In addition, the induction heating apparatus 200 of this embodiment includes an intermediate product tank 12 in which a resin-impregnated carbon fiber W impregnated with an uncured epoxy resin is wound around the outer surface of the liner 10, and an induction heating coil 222 includes a high-frequency power source 220. When receiving energization from the shaft, the shaft is rotated around the shaft. Therefore, since the epoxy resin can be heat-cured evenly on the outer periphery of the liner, the unevenness of reinforcement is reduced, which is desirable.

また、本実施例の誘導加熱装置200では、雄型端子226と雌型端子228とにより上部巻線部位224tと下部巻線部位224bとを電気的に接続した状態の誘導加熱コイル222において、その個々の巻線部位を繊維強化樹脂層20の最外層における樹脂含浸カーボン繊維Wの巻き付け方向に倣って巻き付けている。このため、繊維強化樹脂層20の最外層における樹脂含浸カーボン繊維Wの巻き付け方向とコイル巻線の方向とは、繊維強化樹脂層20の最内層側に比べて、その方向が揃うことから、樹脂含浸カーボン繊維Wの誘導加熱が進み、繊維加熱による繊維強化樹脂層20の樹脂の硬化を速やかに、且つ最外周側から進めることができる。   In addition, in the induction heating apparatus 200 of the present embodiment, in the induction heating coil 222 in a state where the upper winding part 224t and the lower winding part 224b are electrically connected by the male terminal 226 and the female terminal 228, The individual winding portions are wound following the winding direction of the resin-impregnated carbon fiber W in the outermost layer of the fiber reinforced resin layer 20. For this reason, since the winding direction of the resin-impregnated carbon fiber W in the outermost layer of the fiber reinforced resin layer 20 and the direction of the coil winding are aligned in comparison with the innermost layer side of the fiber reinforced resin layer 20, the resin The induction heating of the impregnated carbon fiber W proceeds, and the curing of the resin of the fiber reinforced resin layer 20 by the fiber heating can be promptly advanced from the outermost peripheral side.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。また、タンク以外の被加熱物を誘導加熱コイル222により高周波誘導加熱するようにすることもできる。この他、誘導加熱コイル222を分割するに当たっては、その巻線部位の分割により、中間生成品タンク12と干渉しない開口が形成できればよく、既述した1/2での分割に限らない。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 30, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used. In addition, the object to be heated other than the tank can be induction-heated by the induction heating coil 222. In addition, when the induction heating coil 222 is divided, it is only necessary to form an opening that does not interfere with the intermediate product tank 12 by dividing the winding portion, and the division is not limited to the above-described division by 1/2.

10…ライナー
10a…シリンダー部
10b…ドーム部
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
30…高圧水素タンク
100…FW装置
110…クリールスタンド
112…ボビン
114…固定滑車
120…経路部
130…巻取部
132…アイクチガイド
134…回転駆動装置
150…制御部
200…誘導加熱装置
212…タンク軸支シャフト
220…高周波電源
222…誘導加熱コイル
224b…下部巻線部位
224t…上部巻線部位
226…雄型端子
228…雌型端子
230…制御機器
W…樹脂含浸カーボン繊維
AX…タンク中心軸
DESCRIPTION OF SYMBOLS 10 ... Liner 10a ... Cylinder part 10b ... Dome part 12 ... Intermediate product tank 14 ... Base 20 ... Fiber reinforced resin layer 30 ... High pressure hydrogen tank 100 ... FW apparatus 110 ... Creel stand 112 ... Bobbin 114 ... Fixed pulley 120 ... Path part DESCRIPTION OF SYMBOLS 130 ... Winding part 132 ... Ikuchi guide 134 ... Rotation drive apparatus 150 ... Control part 200 ... Induction heating apparatus 212 ... Tank axial support shaft 220 ... High frequency power supply 222 ... Induction heating coil 224b ... Lower winding part 224t ... Upper winding Part 226 ... Male terminal 228 ... Female terminal 230 ... Control equipment W ... Resin impregnated carbon fiber AX ... Tank central axis

Claims (4)

被加熱物を誘導加熱コイルにて高周波誘導加熱する誘導加熱装置であって、
前記被加熱物を取り囲んで配設された前記誘導加熱コイルに高周波電流を通電する電源を備え、
前記誘導加熱コイルは、個々の巻線部位を分割可能に備え、該巻線部位を分割して分離し前記被加熱物と干渉しない開口部を形成し、前記巻線部位の分離を元に戻して前記電源から通電を受ける
誘導加熱装置。
An induction heating apparatus for induction heating an object to be heated with an induction heating coil,
A power source for supplying a high-frequency current to the induction heating coil disposed around the object to be heated;
The induction heating coil is provided so that the individual winding parts can be divided, the winding parts are divided and separated to form an opening that does not interfere with the object to be heated, and the separation of the winding parts is restored. An induction heating device that receives power from the power source.
請求項1に記載の誘導加熱装置であって、
前記被加熱物は、未硬化の熱硬化性樹脂が含浸された導電性を有する繊維をライナーの外表面に巻き付けた繊維強化層を有する高圧ガスタンクであり、
前記誘導加熱コイルが前記電源から通電を受ける際に、前記ライナーを軸回りに回転させる軸支部を備える誘導加熱装置。
The induction heating device according to claim 1,
The heated object is a high-pressure gas tank having a fiber reinforced layer in which conductive fibers impregnated with an uncured thermosetting resin are wound around the outer surface of a liner,
An induction heating apparatus including a shaft support portion that rotates the liner around an axis when the induction heating coil is energized from the power source.
前記誘導加熱コイルは、個々の巻線部位を前記繊維強化樹脂層における前記繊維の巻き付け方向に倣って巻いて形成した請求項2に記載の誘導加熱装置。   The induction heating device according to claim 2, wherein the induction heating coil is formed by winding individual winding portions in accordance with a winding direction of the fiber in the fiber reinforced resin layer. 高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させるに当たり、
前記タンク中間生成品の高周波誘導加熱用の誘導加熱コイルを個々の巻線部位が分割可能な構成とした上で、該巻線部位を分割して分離し前記タンク中間生成品と干渉しない開口部を形成し、
該開口部から前記タンク中間生成品を前記分割済みの前記誘導加熱コイルの内部にセットした上で、前記巻線部位の分離を元に戻して前記タンク中間生成品を前記誘導加熱コイルで取り囲み、
前記誘導加熱コイルに高周波電流を通電する
高圧ガスタンクの製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
A tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container is pivotally supported, and the tank intermediate product is pivotally supported. In heating the fiber reinforced resin layer by heating while rotating around the tank axis,
The induction heating coil for high-frequency induction heating of the tank intermediate product has a structure in which individual winding parts can be divided, and the winding part is divided and separated so as not to interfere with the tank intermediate product. Form the
The tank intermediate product is set inside the divided induction heating coil from the opening, and then the separation of the winding part is returned to surround the tank intermediate product with the induction heating coil.
A method for manufacturing a high-pressure gas tank in which a high-frequency current is passed through the induction heating coil.
JP2012021734A 2012-02-03 2012-02-03 Induction heating apparatus, and method of manufacturing high-pressure gas tank Pending JP2013161610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021734A JP2013161610A (en) 2012-02-03 2012-02-03 Induction heating apparatus, and method of manufacturing high-pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021734A JP2013161610A (en) 2012-02-03 2012-02-03 Induction heating apparatus, and method of manufacturing high-pressure gas tank

Publications (1)

Publication Number Publication Date
JP2013161610A true JP2013161610A (en) 2013-08-19

Family

ID=49173713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021734A Pending JP2013161610A (en) 2012-02-03 2012-02-03 Induction heating apparatus, and method of manufacturing high-pressure gas tank

Country Status (1)

Country Link
JP (1) JP2013161610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045660A (en) * 2013-10-21 2015-04-29 엘지디스플레이 주식회사 Heater for thermal evaporation system
CN104827613A (en) * 2015-05-13 2015-08-12 航天材料及工艺研究所 Low-cost quick solidifying method for composite material
KR101746088B1 (en) 2015-09-21 2017-06-13 가천대학교 산학협력단 A hardening heat coil for pipeline maintenance work
RU2748287C1 (en) * 2019-12-25 2021-05-21 Тойота Дзидося Кабусики Кайся High-pressure tank and its production method
CN113236958A (en) * 2021-05-08 2021-08-10 江西省送变电工程有限公司 Heating device and heating method for sulfur hexafluoride gas cylinder of extra-high voltage alternating current station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112925A (en) * 1988-10-21 1990-04-25 Mazda Motor Corp Manufacture of arm member made of frp
JPH04294091A (en) * 1991-03-22 1992-10-19 Mitsubishi Heavy Ind Ltd Induction heating device
JP2002158086A (en) * 2000-11-17 2002-05-31 Dai Ichi High Frequency Co Ltd Segment-uniting induction heating coil
JP2011027218A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Method of manufacturing pressure vessel and pressure vessel
JP2011255581A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Method of manufacturing tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112925A (en) * 1988-10-21 1990-04-25 Mazda Motor Corp Manufacture of arm member made of frp
JPH04294091A (en) * 1991-03-22 1992-10-19 Mitsubishi Heavy Ind Ltd Induction heating device
JP2002158086A (en) * 2000-11-17 2002-05-31 Dai Ichi High Frequency Co Ltd Segment-uniting induction heating coil
JP2011027218A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Method of manufacturing pressure vessel and pressure vessel
JP2011255581A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Method of manufacturing tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045660A (en) * 2013-10-21 2015-04-29 엘지디스플레이 주식회사 Heater for thermal evaporation system
KR102140494B1 (en) 2013-10-21 2020-08-03 엘지디스플레이 주식회사 Heater for thermal evaporation system
CN104827613A (en) * 2015-05-13 2015-08-12 航天材料及工艺研究所 Low-cost quick solidifying method for composite material
CN104827613B (en) * 2015-05-13 2017-05-10 航天材料及工艺研究所 Low-cost quick solidifying method for composite material
KR101746088B1 (en) 2015-09-21 2017-06-13 가천대학교 산학협력단 A hardening heat coil for pipeline maintenance work
RU2748287C1 (en) * 2019-12-25 2021-05-21 Тойота Дзидося Кабусики Кайся High-pressure tank and its production method
CN113236958A (en) * 2021-05-08 2021-08-10 江西省送变电工程有限公司 Heating device and heating method for sulfur hexafluoride gas cylinder of extra-high voltage alternating current station

Similar Documents

Publication Publication Date Title
JP5531040B2 (en) Manufacturing method of high-pressure gas tank
JP5656752B2 (en) Filament winding method, filament winding apparatus and tank
JP2013161610A (en) Induction heating apparatus, and method of manufacturing high-pressure gas tank
JP2011179638A (en) Manufacturing device and manufacturing method of high pressure tank
JP5443116B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic container
JP5630614B2 (en) Gas tank manufacturing method
JP5796508B2 (en) Induction heating method and apparatus, and high pressure gas tank manufacturing method
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2006082276A (en) Manufacturing method of pressure-resistant container and fiber bundle winding apparatus
JP6337398B2 (en) Manufacturing method of composite container and composite container
CN111664348B (en) Method for manufacturing can
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP2009138858A (en) Tank manufacturing method, tank manufacturing facility, and tank
JP2020020420A (en) Manufacturing method of tank
JP5937546B2 (en) Filament winding equipment
JP2021154639A (en) Method for manufacturing high pressure tank and high pressure tank
JP2017094518A (en) Method for producing high pressure tank
JP5716905B2 (en) Gas tank manufacturing method and thermosetting device
JP2009028961A (en) Manufacturing process and manufacturing system of frp molding
JP5898038B2 (en) Tank manufacturing method
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2012152911A (en) Method and apparatus for manufacturing gas tank
JP2009184223A (en) Apparatus and method for manufacturing fiber-reinforced plastic molded object
JP2021014019A (en) Method for manufacturing tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630