JP2013064430A - Device and method for manufacturing high-pressure gas tank - Google Patents

Device and method for manufacturing high-pressure gas tank Download PDF

Info

Publication number
JP2013064430A
JP2013064430A JP2011202598A JP2011202598A JP2013064430A JP 2013064430 A JP2013064430 A JP 2013064430A JP 2011202598 A JP2011202598 A JP 2011202598A JP 2011202598 A JP2011202598 A JP 2011202598A JP 2013064430 A JP2013064430 A JP 2013064430A
Authority
JP
Japan
Prior art keywords
tank
induction heating
heating coil
intermediate product
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011202598A
Other languages
Japanese (ja)
Inventor
Yoshimasa Negishi
良昌 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011202598A priority Critical patent/JP2013064430A/en
Publication of JP2013064430A publication Critical patent/JP2013064430A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress the variation of the temperature rise of a thermosetting resin in a fiber-reinforced resin layer formed on an outer periphery of a liner.SOLUTION: A first induction heating coil 220 is arranged to surround an axially supported intermediate product tank 12 around a tank shaft along a longitudinal direction of the tank, and a coil winding track thereof is substantially aligned with the orientation of a resin-impregnated carbon fiber W at the most outer layer of the fiber-reinforced resin layer 20. A second induction heating coil 222 is arranged opposite to an outer periphery of the intermediate product tank 12, and generates magnetic flux stronger than the first induction heating coil 220. The first induction heating coil 220 and the second induction heating coil 222, which are connected in parallel to the same high-frequency current source 240, form the magnetic flux upon receiving energization of high frequency electric current, and inductively heat the fiber-reinforced resin layer 20 with the resin-impregnated carbon fiber W of the fiber-reinforced resin layer 20 at the intermediate product tank 12 as a conductor.

Description

本発明は、高圧ガスタンクの製造に関する。   The present invention relates to the manufacture of high pressure gas tanks.

近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、カーボン繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で中空のライナーを被覆したFRP(Fiber Reinforced Plastics : 繊維強化プラスチック)製の高圧ガスタンク(以下、単に高圧ガスタンクと称する)の採用が進んでいる。ライナーとしては、軽量化の観点から、通常、ガスバリア性を有する樹脂製の中空容器が用いられる。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, there is a demand for weight reduction of high-pressure gas tanks, and FRP (Fiber) in which a hollow liner is covered with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). The adoption of high-pressure gas tanks (hereinafter simply referred to as high-pressure gas tanks) made of Reinforced Plastics (fiber reinforced plastics) is advancing. As the liner, a resin hollow container having gas barrier properties is usually used from the viewpoint of weight reduction.

一般に、こうした高圧ガスタンクの製造に際しては、フィラメントワインディング法(以下、FW法)が採用され、このFW法により、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維をライナーの外周に繰り返し巻回して繊維強化樹脂層とする。そして、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させることで、ライナーを繊維強化樹脂層で被覆・補強した高圧ガスタンクが製造される。   In general, when manufacturing such a high-pressure gas tank, a filament winding method (hereinafter referred to as FW method) is adopted. By this FW method, a fiber impregnated with a thermosetting resin such as an epoxy resin is repeatedly wound around the outer periphery of a liner. A reinforced resin layer is used. After that, the thermosetting resin contained in the resin layer is thermally cured, whereby a high-pressure gas tank in which the liner is covered and reinforced with the fiber reinforced resin layer is manufactured.

得られた高圧ガスタンクでは、硬化済みの繊維強化樹脂層の内部にクラックがないことが強度や耐久性の確保の上から望ましい。樹脂層の内部クラックは、熱硬化樹脂の昇温が樹脂層内部でばらつくために樹脂の硬化速度が不均一となって起きることが知られている。よって、近年では、クラックの発生防止と生産性の向上の観点から、熱硬化性樹脂の熱硬化のための加熱に際して、高周波誘導加熱を誘起する誘導加熱コイルを用いて誘導加熱する手法が提案されている(例えば、特許文献1)。   In the obtained high-pressure gas tank, it is desirable from the viewpoint of ensuring strength and durability that there is no crack inside the cured fiber-reinforced resin layer. It is known that internal cracks in the resin layer occur due to uneven resin curing speed because the temperature rise of the thermosetting resin varies within the resin layer. Therefore, in recent years, from the viewpoint of preventing the occurrence of cracks and improving productivity, a method of induction heating using an induction heating coil that induces high frequency induction heating has been proposed when heating for thermosetting a thermosetting resin. (For example, Patent Document 1).

特開平6−335973号公報JP-A-6-335773

ところで、繊維はライナー両端のドーム部と円筒状のシリンダー部との外周に繰り返し巻回されるが、この繊維巻回に際しては、ライナー軸芯に対して繊維がなす角度である繊維の配向を一律とするのではなく、この繊維の配向を変えたフープ巻きとヘリカル巻きとが通常使い分けられる。ヘリカル巻きは、ライナー軸芯に対して、例えば10°〜60°の角度(繊維配向)をつけて繊維を巻回する手法であり、この角度範囲の内の10°〜30°程度の低角度ヘリカル巻きと、それ以上の角度の高角度ヘリカル巻きとに区別される。フープ巻きは上記の角度を90°に近似させて繊維を周方向に揃えて巻回する手法である。ここで言う角度は、ライナー10のタンク軸芯に対してなす角度であって繊維の配向程度を表す。そして、タンク製造に際しては、フープ巻きとヘリカル巻きを、繊維強化樹脂層におけるライナー側の樹脂層とこれより外側の樹脂層とで使い分けることがなされている。   By the way, the fiber is repeatedly wound around the outer periphery of the dome part and the cylindrical cylinder part at both ends of the liner. In this fiber winding, the fiber orientation, which is the angle formed by the fiber with respect to the liner shaft core, is uniform. Rather, hoop winding and helical winding in which the orientation of the fiber is changed are usually used properly. Helical winding is a method of winding fibers with an angle (fiber orientation) of, for example, 10 ° to 60 ° with respect to the liner axis, and a low angle of about 10 ° to 30 ° within this angle range. A distinction is made between helical winding and higher-angle helical winding at higher angles. Hoop winding is a method in which the above-mentioned angle is approximated to 90 ° and the fibers are wound in the circumferential direction. The angle referred to here is an angle formed with respect to the tank axis of the liner 10 and represents the degree of fiber orientation. In manufacturing the tank, the hoop winding and the helical winding are separately used for the liner-side resin layer and the outer resin layer in the fiber-reinforced resin layer.

繊維強化樹脂層において上記したようにフープ巻きとヘリカル巻きを使い分けると、フープ巻きの樹脂層とヘリカル巻きの樹脂層とでは、繊維の配向が異なることになる。その一方、誘導加熱コイルに高周波電流を流すことにより発生する磁束の向きは、コイル巻き軌跡に依存して定まり不変であることから、フープ巻きの樹脂層とヘリカル巻きの樹脂層とでは、各樹脂層を巻回形成する繊維と誘導加熱コイルの生じた磁束の交差の様子が相違することになる。繊維強化樹脂層を巻回形成する繊維は、磁束との交差に基づいて誘起した渦電流と繊維固有の抵抗によって発熱するので、上記したように磁束との交差の様子が相違すると、発熱状況に差が生じ、繊維強化樹脂層において樹脂の昇温が不均一となることが危惧される。この場合、磁束の向きはコイル巻き軌跡に依存することから、繊維の配向とコイル巻き軌跡が揃うほど渦電流の流れる範囲が増して加熱が進みやすくなる。このため、コイル巻き軌跡と揃うような配向で繊維が巻回された樹脂層部位が、仮に繊維強化樹脂層の外表層側であると、この外表層側の樹脂層では加熱が進むことになる。その一方、外表層側より内側の樹脂層では、繊維強化樹脂層の外表層表面から離れるために渦電流自体が低下することと、繊維の配向とコイル巻き軌跡が揃わなくなることとによって、加熱が進まず、繊維強化樹脂層における樹脂の昇温のバラツキが顕在化する。上記した特許文献で提案された手法では、上記した繊維の配向に対しての配慮に欠けるため、繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキの抑制を図る新たな手法が要請されるに到った。   When the hoop winding and the helical winding are properly used as described above in the fiber reinforced resin layer, the fiber orientation is different between the hoop winding resin layer and the helical winding resin layer. On the other hand, the direction of the magnetic flux generated by applying a high-frequency current to the induction heating coil is determined and does not change depending on the coil winding trajectory. Therefore, each resin is different between the hoop-wrapped resin layer and the helical-wrap resin layer. The state of the crossing of the magnetic flux generated by the fibers forming the layers and the induction heating coil is different. The fiber that forms the fiber-reinforced resin layer is heated by the eddy current induced based on the crossing with the magnetic flux and the inherent resistance of the fiber. There is a concern that a difference occurs and the temperature rise of the resin becomes nonuniform in the fiber reinforced resin layer. In this case, since the direction of the magnetic flux depends on the coil winding trajectory, the more the orientation of the fiber and the coil winding trajectory are aligned, the more the range in which eddy current flows increases and the heating becomes easier. For this reason, if the resin layer portion in which the fibers are wound in an orientation aligned with the coil winding locus is on the outer surface layer side of the fiber reinforced resin layer, the resin layer on the outer surface layer side is heated. . On the other hand, in the resin layer on the inner side from the outer surface layer side, the eddy current itself is lowered because it is separated from the outer surface surface of the fiber reinforced resin layer, and the heating of the fiber layer is not achieved due to the fiber orientation and the coil winding locus being not aligned. Without progressing, the variation in the temperature rise of the resin in the fiber reinforced resin layer becomes obvious. In the method proposed in the above-mentioned patent document, since there is a lack of consideration for the above-described fiber orientation, a new method for suppressing variation in temperature rise of the thermosetting resin in the fiber-reinforced resin layer is required. I reached.

本発明は、上記した課題を踏まえ、ライナー外周に形成した繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキの抑制をもたらす新たなタンク製造手法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a new tank manufacturing method that can suppress variation in temperature rise of a thermosetting resin in a fiber reinforced resin layer formed on the outer periphery of a liner.

上記した目的の少なくとも一部を達成するために、本発明は、以下の適用例として実施することができる。   In order to achieve at least a part of the above object, the present invention can be implemented as the following application examples.

[適用例1:高圧ガスタンクの製造装置]
タンク容器となる中空のライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記熱硬化性樹脂を含浸した繊維を前記ライナーの外周に巻回して前記繊維強化樹脂層を形成し、タンク中間生成品を得る繊維巻回手段と、
前記タンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させる熱硬化手段とを備え、
前記熱硬化手段は、
前記回転する前記タンク中間生成品の全体を加熱する第1加熱手段と、
前記タンク中間生成品を高周波誘導加熱する誘導加熱コイルを前記タンク中間生成品の外周と対向して配設し、前記回転する前記タンク中間生成品を前記外周の側から前記誘導加熱コイルにより局所的に高周波誘導加熱する第2加熱手段とを備える
ことを要旨とする。
[Application Example 1: High pressure gas tank manufacturing equipment]
An apparatus used for manufacturing a high-pressure gas tank having a fiber-reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of a hollow liner serving as a tank container,
A fiber winding means for winding the fiber impregnated with the thermosetting resin before thermosetting around the outer periphery of the liner to form the fiber reinforced resin layer, and obtaining a tank intermediate product;
The tank intermediate product is pivotally supported, and the tank intermediate product that is pivotally supported is heated while rotating around the tank axis, and thermosetting means for thermosetting the fiber reinforced resin layer,
The thermosetting means is
First heating means for heating the entire tank intermediate product that rotates;
An induction heating coil for high-frequency induction heating of the tank intermediate product is disposed opposite to the outer periphery of the tank intermediate product, and the rotating tank intermediate product is locally disposed from the outer periphery side by the induction heating coil. And a second heating means for high-frequency induction heating.

この適用例1の高圧ガスタンクの製造装置では、ライナーの外周に巻回形成した繊維強化樹脂層の熱硬化を経て高圧ガスタンクを製造する当たり、回転するタンク中間生成品の全体を第1加熱手段にて加熱しつつ、第2加熱手段では、タンク中間生成品の外周と対向する誘導加熱コイルにより、タンク中間生成品をその外周の側から局所的に高周波誘導加熱する。このため、第1加熱手段だけでは、繊維強化樹脂層において他の樹脂層部位より昇温が進まない部位(以下、説明の便宜上、低昇温部位と称する)が生じたとしても、この低昇温部位を第2加熱手段の誘導加熱コイルにより局所的に高周波誘導加熱して昇温を高めることができる。よって、上記の適用例1の高圧ガスタンクの製造装置によれば、低昇温部位の昇温を高めることで、繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキを抑制することが可能となる。換言すれば、上記した適用例1の高圧ガスタンクの製造装置は、ライナー外周に形成した繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキを抑制可能な新たなタンク製造装置となる。   In the high pressure gas tank manufacturing apparatus according to the first application example, when the high pressure gas tank is manufactured through thermal curing of the fiber reinforced resin layer wound around the outer periphery of the liner, the entire rotating tank intermediate product is used as the first heating means. In the second heating means, the tank intermediate product is locally high-frequency induction heated from the outer periphery side by the induction heating coil facing the outer periphery of the tank intermediate product. For this reason, even if a portion where the temperature rise does not proceed from the other resin layer portions in the fiber reinforced resin layer only by the first heating means (hereinafter referred to as a low temperature rise portion for convenience of explanation), this low rise is achieved. High temperature induction can be increased by locally high-frequency induction heating the hot part by the induction heating coil of the second heating means. Therefore, according to the high pressure gas tank manufacturing apparatus of Application Example 1 described above, it is possible to suppress variations in the temperature rise of the thermosetting resin in the fiber reinforced resin layer by increasing the temperature rise in the low temperature rise portion. Become. In other words, the high-pressure gas tank manufacturing apparatus according to Application Example 1 described above is a new tank manufacturing apparatus capable of suppressing variations in the temperature rise of the thermosetting resin in the fiber reinforced resin layer formed on the outer periphery of the liner.

上記した適用例1の高圧ガスタンクの製造装置は、次のような態様とすることができる。例えば、第1加熱手段については、これを、前記タンク中間生成品を高周波誘導加熱する誘導加熱コイルを備えるものとした上で、当該誘導加熱コイルを、前記軸支した前記タンク中間生成品をタンク長手方向に沿って前記タンク軸周囲にて取り囲むタンク長手方向誘導加熱コイルとする。そして、このタンク長手方向誘導加熱コイルにより、前記タンク中間生成品の全体を高周波誘導加熱する。その一方、第2加熱手段については、その有する誘導加熱コイルを、前記タンク長手方向誘導加熱コイルより強い磁束を形成する誘導加熱コイルとする。こうすれば、第2加熱手段の誘導加熱コイルによる局所的な高周波誘導加熱は、繊維の配向がコイル巻き軌跡に揃う・揃わないを問わず、強い磁束により起きることになる。ライナーの外周に形成された繊維強化樹脂層の内周層は、繊維強化樹脂層の外表層表面から離れてタンク長手方向誘導加熱コイルでの誘導加熱の際の渦電流が低下するために昇温が往々にして進まないが、上記の態様によれば、昇温が進み難い内周層の昇温を強い磁束に基づいた高周波誘導加熱により高めるので、繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキ抑制の実効性が高まる。この場合、タンク長手方向誘導加熱コイルについては、ライナーの外周に形成された繊維強化樹脂層の外表層側の樹脂層における繊維の配向が当該誘導加熱コイルのコイル巻き軌跡と揃うようにされていれば、この外表層側の樹脂層の熱硬化性樹脂を効率よく加熱昇温させる。   The apparatus for manufacturing a high-pressure gas tank according to Application Example 1 described above can be configured as follows. For example, the first heating means is provided with an induction heating coil for high-frequency induction heating the tank intermediate product, and the tank intermediate product that is pivotally supported by the induction heating coil is tanked. It is set as the tank longitudinal direction induction heating coil which surrounds the said tank axis periphery along a longitudinal direction. Then, the entire tank intermediate product is subjected to high-frequency induction heating by the tank longitudinal induction heating coil. On the other hand, about the 2nd heating means, let the induction heating coil which it has be an induction heating coil which forms magnetic flux stronger than the tank longitudinal direction induction heating coil. By so doing, local high frequency induction heating by the induction heating coil of the second heating means is caused by a strong magnetic flux regardless of whether or not the fiber orientation is aligned with the coil winding locus. The inner peripheral layer of the fiber reinforced resin layer formed on the outer circumference of the liner is separated from the outer surface of the fiber reinforced resin layer, and the temperature rises due to a decrease in eddy current during induction heating in the tank longitudinal induction heating coil. However, according to the above aspect, the temperature rise of the inner peripheral layer where the temperature rise is difficult to proceed is increased by high frequency induction heating based on a strong magnetic flux, so that the rise of the thermosetting resin in the fiber reinforced resin layer is increased. The effectiveness of temperature variation suppression increases. In this case, with respect to the tank longitudinal direction induction heating coil, the fiber orientation in the resin layer on the outer surface side of the fiber reinforced resin layer formed on the outer periphery of the liner is aligned with the coil winding locus of the induction heating coil. For example, the thermosetting resin of the resin layer on the outer surface layer side is efficiently heated and heated.

その一方、繊維強化樹脂層においてこの外表層側の樹脂層より内側の樹脂層では、当該樹脂層における繊維の配向がタンク長手方向誘導加熱コイルのコイル巻き軌跡と揃っていないと、繊維強化樹脂層の外表層表面から離れていることと相まって、タンク長手方向誘導加熱コイルによる誘導加熱は外表層側ほど進まない。ところが、上記の態様では、このように加熱が進まないことが有り得る内側の樹脂層については、タンク長手方向誘導加熱コイルより強い磁束を形成する誘導加熱コイルにて、その昇温を高める。つまり、タンク長手方向誘導加熱コイル以外の誘導加熱コイルは、軸支した前記タンク中間生成品の外周と対向するよう配設された上で、タンク長手方向誘導加熱コイルより強い磁束を形成するので、加熱が進まないことが有り得る内側の樹脂層での繊維の配向がコイル巻き軌跡と揃っていなくても、当該内側の樹脂層を誘導加熱して昇温を高める。この結果、上記の態様によれば、繊維強化樹脂層の外表層側の樹脂層における繊維の配向がタンク長手方向誘導加熱コイルのコイル巻き軌跡と揃い、外表層側の樹脂層より内側の樹脂層における繊維の配向がタンク長手方向誘導加熱コイルのコイル巻き軌跡と揃っていないとしても、このような繊維強化樹脂層での熱硬化性樹脂の昇温のバラツキを高い実効性で抑制できる。   On the other hand, in the fiber reinforced resin layer, in the resin layer inside the resin layer on the outer surface side, if the fiber orientation in the resin layer is not aligned with the coil winding locus of the tank longitudinal induction heating coil, the fiber reinforced resin layer In combination with the distance from the outer surface layer surface, induction heating by the tank longitudinal induction heating coil does not proceed as much as the outer surface layer side. However, in the above-described aspect, the temperature rise of the inner resin layer in which heating may not proceed in this way is increased by the induction heating coil that forms a stronger magnetic flux than the tank longitudinal direction induction heating coil. That is, since the induction heating coil other than the tank longitudinal direction induction heating coil is disposed so as to face the outer periphery of the axially supported tank intermediate product, it forms a stronger magnetic flux than the tank longitudinal direction induction heating coil. Even if the orientation of the fibers in the inner resin layer where heating may not proceed is not aligned with the coil winding locus, the inner resin layer is induction-heated to increase the temperature rise. As a result, according to the above aspect, the fiber orientation in the resin layer on the outer surface layer side of the fiber reinforced resin layer is aligned with the coil winding locus of the tank longitudinal induction heating coil, and the resin layer on the inner side of the resin layer on the outer surface layer side. Even if the orientation of the fibers is not aligned with the coil winding locus of the tank longitudinal direction induction heating coil, it is possible to suppress the variation in the temperature rise of the thermosetting resin in the fiber reinforced resin layer with high effectiveness.

また、第2加熱手段の誘導加熱コイルについては、これをタンク長手方向誘導加熱コイルより短いコイル長と低い抵抗とを有するものとできる。こうすれば、タンク長手方向誘導加熱コイルより強い磁束を形成する上で、簡便となる。   Further, the induction heating coil of the second heating means can have a shorter coil length and lower resistance than the tank longitudinal direction induction heating coil. By doing so, it is easy to form a stronger magnetic flux than the tank longitudinal induction heating coil.

また、前記第1加熱手段の前記タンク長手方向誘導加熱コイルと前記第2加熱手段の前記誘導加熱コイルとを、共通する高周波電流生成電源に並列に接続するようにできる。こうすれば、第2加熱手段の誘導加熱コイルの形成する磁束を、高周波電流生成電源が共通でありながらタンク長手方向誘導加熱コイルより強くできるので、通電制御の簡略化や、低コスト化が可能となる。   Further, the tank longitudinal induction heating coil of the first heating means and the induction heating coil of the second heating means can be connected in parallel to a common high-frequency current generating power source. In this way, the magnetic flux formed by the induction heating coil of the second heating means can be made stronger than the tank longitudinal direction induction heating coil while sharing the high-frequency current generating power source, so that it is possible to simplify energization control and reduce costs. It becomes.

[適用例2:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、
前記タンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させる工程(b)とを備え、
前記工程(b)では、
前記軸支した前記タンク中間生成品をタンク長手方向に沿って前記タンク軸周囲にて取り囲んで前記タンク中間生成品を高周波誘導加熱するタンク長手方向の誘導加熱コイルにより、前記回転する前記タンク中間生成品の全体を高周波誘導加熱しつつ、
前記タンク中間生成品の外周と対向して配設され前記タンク長手方向の誘導加熱コイルより強い磁束を形成する誘導加熱コイルにより、前記回転する前記タンク中間生成品を前記外周の側から局所的に高周波誘導加熱する
ことを要旨とする。
[Application Example 2: Manufacturing Method of High Pressure Gas Tank]
A method for manufacturing a high-pressure gas tank, comprising:
A step (a) of preparing a tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container;
A step (b) of supporting the tank intermediate product, and heating the fiber intermediate layer by heating the tank intermediate product rotated around the tank axis;
In the step (b),
The rotating tank intermediate product is surrounded by a tank longitudinal induction heating coil that surrounds the axially supported tank intermediate product around the tank axis along the tank longitudinal direction and heats the tank intermediate product by high frequency induction heating. While high frequency induction heating the entire product,
The rotating tank intermediate product is locally supplied from the outer periphery side by an induction heating coil that is arranged opposite to the outer periphery of the tank intermediate product and forms a magnetic flux stronger than the induction heating coil in the tank longitudinal direction. The main point is high-frequency induction heating.

上記した適用例2の高圧ガスタンクの製造方法によれば、ライナー外周に形成した繊維強化樹脂層における熱硬化性樹脂の昇温のバラツキが抑制された高圧ガスタンクを製造できる。   According to the manufacturing method of the high pressure gas tank of the application example 2 described above, it is possible to manufacture a high pressure gas tank in which variation in temperature rise of the thermosetting resin in the fiber reinforced resin layer formed on the outer periphery of the liner is suppressed.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. この製造工程に用いるFW装置100の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of FW apparatus 100 used for this manufacturing process. 繊維強化樹脂層の形成の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of formation of a fiber reinforced resin layer. 得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子を示す説明図である。It is explanatory drawing which shows the mode of the orientation of the resin impregnation carbon fiber W in the resin layer inside and outside the fiber reinforced resin layer 20 in the obtained intermediate product tank 12. FIG. 図1(c)に示した熱硬化炉200における誘導加熱コイルの配置構成を中間生成品タンク12の側面側から概略的に示す説明図である。FIG. 2 is an explanatory view schematically showing the arrangement configuration of induction heating coils in the thermosetting furnace 200 shown in FIG. 1C from the side surface side of the intermediate product tank 12. 図5を平面視して誘導加熱コイルの配置構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the arrangement structure of the induction heating coil by planarly viewing FIG. 誘導加熱コイルの配置構成を中間生成品タンク12を断面視して概略的に示す説明図である。It is explanatory drawing which shows the arrangement | positioning structure of an induction heating coil roughly by cross-sectional view of the intermediate product tank. 本実施例の熱硬化炉200と対比される既存の高周波誘導加熱炉におけるコイル構成を図5相当に概略的に示す説明図である。It is explanatory drawing which shows roughly the coil structure in the existing high frequency induction heating furnace contrasted with the thermosetting furnace 200 of a present Example equivalent to FIG. 本実施例の熱硬化炉200と既存の高周波誘導加熱炉とにおける繊維強化樹脂層20の内外の樹脂層ごとの昇温の様子を対比して示す説明図である。It is explanatory drawing which shows the mode of temperature rising for every resin layer inside and outside the fiber reinforced resin layer 20 in the thermosetting furnace 200 of an Example, and the existing high frequency induction heating furnace. 図5相当に変形例の熱硬化炉200における誘導加熱コイルの配置構成を中間生成品タンク12の側面側から概略的に示す説明図である。FIG. 6 is an explanatory view schematically showing an arrangement configuration of induction heating coils in a thermosetting furnace 200 of a modified example corresponding to FIG. 5 from the side surface side of the intermediate product tank 12. 図6相当に誘導加熱コイルの配置構成を平面視して概略的に示す説明図である。It is explanatory drawing which shows roughly the arrangement structure of the induction heating coil by planar view equivalent to FIG. 図7相当に誘導加熱コイルの配置構成を中間生成品タンク12を断面視して概略的に示す説明図である。FIG. 8 is an explanatory view schematically showing the arrangement configuration of the induction heating coil corresponding to FIG. 7 in a cross-sectional view of the intermediate product tank 12. 第2誘導加熱コイル223を有する変形例の熱硬化炉200による繊維強化樹脂層20の昇温の様子を示す説明図である。It is explanatory drawing which shows the mode of the temperature rising of the fiber reinforced resin layer 20 by the thermosetting furnace 200 of the modification which has the 2nd induction heating coil 223.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図、図2はこの製造工程に用いるFW装置100の構成を概略的に示す説明図、図3は繊維強化樹脂層の形成の様子を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention, FIG. 2 is an explanatory view schematically showing a configuration of an FW device 100 used in the manufacturing process, and FIG. It is explanatory drawing which shows the mode of formation of a resin layer typically. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、水素ガスに対するガスバリア性を有する樹脂製容器をライナー10として用意する。ライナー10は、半径が均一である略円筒形状のシリンダー部10aと、シリンダー部両端に設けられた凸曲面形状のドーム部10bを有する。ドーム部10bは、等張力曲面によって構成されており、その頂点に、外部配管等と接続するための口金14を有する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、水素ガスに対するガスバリア性を有すれば、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, as shown in FIG. 1A, a resin container having a gas barrier property against hydrogen gas is prepared as a liner 10. The liner 10 includes a substantially cylindrical cylinder portion 10a having a uniform radius, and convex dome portions 10b provided at both ends of the cylinder portion. The dome portion 10b is configured by an isotonic curved surface, and has a base 14 for connecting to an external pipe or the like at the apex thereof. In this embodiment, a resin container made of a nylon resin is used as the resin container. A resin container made of another resin may be used as long as it has a gas barrier property against hydrogen gas.

次に、図1(b)に示したように、ライナー10の外周に繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、図2に示すFW装置100を用いる。このFW装置100は、ライナー10の外周に、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻回することにより、繊維強化樹脂層20としてのカーボン繊維層を形成する。これにより、ライナー10の外周に樹脂硬化前の繊維強化樹脂層20を有する中間生成品タンク12が得られる。FW装置100の構成と当該装置による繊維巻回の様子については、後述する。   Next, as shown in FIG.1 (b), the fiber reinforced resin layer 20 is formed in the outer periphery of the liner 10 (fiber reinforced resin layer formation process). In this embodiment, the FW device 100 shown in FIG. 2 is used as the fiber reinforced resin layer forming step. The FW device 100 forms a carbon fiber layer as the fiber reinforced resin layer 20 by repeatedly winding a carbon fiber impregnated with an epoxy resin as a thermosetting resin on the outer periphery of the liner 10. Thereby, the intermediate product tank 12 which has the fiber reinforced resin layer 20 before resin hardening on the outer periphery of the liner 10 is obtained. The configuration of the FW device 100 and the state of fiber winding by the device will be described later.

繊維強化樹脂層20の形成に続いては、熱硬化を行う。熱硬化工程では、図1(c)に示す熱硬化炉200を用いる。この熱硬化炉200は、高周波誘導加熱炉として構成され、図示しない架台に、タンク両端のタンク軸支シャフト212を介して中間生成品タンク12を回転可能に軸支し、図示しないモーターにて中間生成品タンク12を加熱の過程において回転させる。この他、熱硬化炉200は、第1誘導加熱コイル220と、第2誘導加熱コイル222とを有する。第1誘導加熱コイル220は、軸支した中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲むよう配設され、そのコイル巻き軌跡は、タンク軸に対して15°程傾いている。なお、このコイル巻き軌跡の傾斜程度は、タンク形状、詳しくは軸方向のタンク寸法等に応じて変わるようにすることができる。第2誘導加熱コイル222は、本実施例では、5個用意され、軸支した中間生成品タンク12の外周と対向するよう配設されている。これら第1、第2の誘導加熱コイルは、高周波電流の通電を受けて磁束を形成し、中間生成品タンク12の繊維強化樹脂層20におけるカーボン繊維(樹脂含浸カーボン繊維W)を導体として繊維強化樹脂層20を誘導加熱する。   Subsequent to the formation of the fiber reinforced resin layer 20, thermosetting is performed. In the thermosetting process, a thermosetting furnace 200 shown in FIG. The thermosetting furnace 200 is configured as a high-frequency induction heating furnace, and supports an intermediate product tank 12 rotatably on a gantry (not shown) via tank pivot shafts 212 at both ends of the tank. The product tank 12 is rotated in the course of heating. In addition, the thermosetting furnace 200 includes a first induction heating coil 220 and a second induction heating coil 222. The first induction heating coil 220 is disposed so as to surround the axially supported intermediate product tank 12 around the tank axis along the tank longitudinal direction, and the coil winding locus is inclined by about 15 ° with respect to the tank axis. Yes. It should be noted that the degree of inclination of the coil winding locus can be changed according to the tank shape, specifically, the tank dimension in the axial direction. In the present embodiment, five second induction heating coils 222 are prepared and disposed so as to face the outer periphery of the intermediate product tank 12 that is pivotally supported. These first and second induction heating coils form a magnetic flux when energized with a high-frequency current, and are reinforced with carbon fibers (resin-impregnated carbon fibers W) in the fiber-reinforced resin layer 20 of the intermediate product tank 12 as conductors. The resin layer 20 is induction-heated.

図1(c)に示す上記の熱硬化炉200を用いた熱硬化工程では、熱硬化炉200への中間生成品タンク12の搬入に先だち、繊維強化樹脂層20を形成済みの中間生成品タンク12にタンク軸支シャフト212を装着する。タンク軸支シャフト212は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、中間生成品タンク12を水平に軸支する。こうして中間生成品タンク12を軸支した後、熱硬化炉200は、中間生成品タンク12を熱硬化工程に処する。この熱硬化工程では、中間生成品タンク12をタンク軸支シャフト212ごと定速で回転させ、その回転を熱硬化工程の間に亘って維持する。タンク回転と同時に、或いは、定速回転となると、熱硬化炉200は、繊維強化樹脂層20の形成に用いた上記の熱硬化樹脂(例えば、エポキシ樹脂)の熱硬化が起きるよう、制御機器230にて第1誘導加熱コイル220と第2誘導加熱コイル222とに高周波電流を通電して繊維強化樹脂層20を誘導加熱する。これにより、中間生成品タンク12では、ライナー10の外周に形成された繊維強化樹脂層20における熱硬化樹脂の熱硬化が起きる。上記両コイルの特性と両コイルによる誘導加熱の様子については後述する。   In the thermosetting process using the thermosetting furnace 200 shown in FIG. 1C, the intermediate product tank 20 in which the fiber reinforced resin layer 20 has been formed prior to the intermediate product tank 12 being carried into the thermosetting furnace 200. 12 is mounted with a tank shaft 212. The tank support shafts 212 are inserted into the caps 14 at both ends of the intermediate product tank 12, and support the intermediate product tank 12 horizontally with the shafts extending from both ends of the tank. After the intermediate product tank 12 is pivotally supported in this way, the thermosetting furnace 200 processes the intermediate product tank 12 in a thermosetting process. In this thermosetting process, the intermediate product tank 12 is rotated at a constant speed together with the tank shaft 212, and the rotation is maintained during the thermosetting process. At the same time as the tank rotation or at a constant speed rotation, the thermosetting furnace 200 controls the control device 230 so that the thermosetting resin (for example, epoxy resin) used for forming the fiber reinforced resin layer 20 is cured. A high-frequency current is passed through the first induction heating coil 220 and the second induction heating coil 222 to inductively heat the fiber reinforced resin layer 20. Thereby, in the intermediate product tank 12, thermosetting of the thermosetting resin in the fiber reinforced resin layer 20 formed on the outer periphery of the liner 10 occurs. The characteristics of both coils and the state of induction heating by both coils will be described later.

熱硬化炉200による上記した樹脂の熱硬化後には、加熱を受けた中間生成品タンク12は、冷却養生に処される。そして、この冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。   After the above-described heat curing of the resin by the heat curing furnace 200, the intermediate product tank 12 that has been heated is subjected to cooling curing. Then, through this cooling curing, a high-pressure hydrogen tank 30 having a fiber reinforced resin layer 20 impregnated with an epoxy resin on the outer periphery of the liner 10 and thermally cured is obtained.

ここで、FW装置100による繊維強化樹脂層20の形成の様子(図1(b))と、その後の熱硬化炉200による繊維強化樹脂層20の熱硬化(図1(c))について順を追って説明する。図2に示すように、本実施例のFW装置100は、クリールスタンド110と、巻取部130と、クリールスタンド110と巻取部130とを結ぶ経路部120と、制御部150とを備える。   Here, the order of the formation of the fiber reinforced resin layer 20 by the FW device 100 (FIG. 1B) and the subsequent heat curing of the fiber reinforced resin layer 20 by the thermosetting furnace 200 (FIG. 1C) are performed in order. I will explain later. As illustrated in FIG. 2, the FW device 100 according to the present embodiment includes a creel stand 110, a winding unit 130, a path unit 120 that connects the creel stand 110 and the winding unit 130, and a control unit 150.

クリールスタンド110は、熱硬化樹脂としてのエポキシ樹脂を含浸済みのカーボン繊維(以下、樹脂含浸カーボン繊維Wと称する)を巻きつけた複数のボビン112を備え、固定滑車114等を用いて各ボビン112から所定の方向に樹脂含浸カーボン繊維Wを繰り出す機能を有する。本実施例では、熱硬化性樹脂を含浸済みのいわゆるプリプレグの樹脂含浸カーボン繊維Wとしたが、ボビン112にはカーボン繊維のみを巻き取って備え、クリールスタンド110からの繊維繰り出し経路途中で、その繰り出されるカーボン繊維に熱硬化性樹脂を含浸させるようにすることもできる。なお、カーボン繊維に代えて、適当な強度と導電性を有するフィラメントワインディングに適した他の材料の繊維とすることもできる。また、エポキシ樹脂に代えて、熱硬化により適当な接合強度を有するフィラメントワインディングに適した熱硬化性樹脂、例えばポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂とすることもできる。   The creel stand 110 includes a plurality of bobbins 112 around which carbon fibers impregnated with an epoxy resin as a thermosetting resin (hereinafter referred to as resin-impregnated carbon fibers W) are wound, and each bobbin 112 using a fixed pulley 114 or the like. The resin-impregnated carbon fiber W is fed out in a predetermined direction. In this embodiment, the resin-impregnated carbon fiber W of a so-called prepreg that has been impregnated with a thermosetting resin is used. The drawn carbon fiber may be impregnated with a thermosetting resin. In addition, it can replace with carbon fiber and can also be used as the fiber of the other material suitable for the filament winding which has appropriate intensity | strength and electroconductivity. In place of the epoxy resin, a thermosetting resin suitable for filament winding having an appropriate bonding strength by thermosetting, for example, a thermosetting resin such as a polyester resin or a polyamide resin can be used.

各ボビン112からは、巻取部130の働きにより樹脂含浸カーボン繊維Wがそれぞれ引き出され、各樹脂含浸カーボン繊維Wは経路部120を介して巻取部130へ導かれる。   From each bobbin 112, the resin-impregnated carbon fiber W is drawn out by the action of the winding part 130, and each resin-impregnated carbon fiber W is guided to the winding part 130 via the path part 120.

経路部120は、ローラーやガイド等を備え、クリールスタンド110から巻取部130への樹脂含浸カーボン繊維Wへの経路を構成する。   The path portion 120 includes a roller, a guide, and the like, and constitutes a path from the creel stand 110 to the resin-impregnated carbon fiber W from the winding portion 130.

巻取部130は、アイクチガイド132と、ライナー10がセットされる回転駆動装置134とを備える。回転駆動装置134は、ライナー10を軸支してそのタンク軸周りにライナー10を回転駆動させる。   The winding unit 130 includes an ikuchi guide 132 and a rotation driving device 134 on which the liner 10 is set. The rotational drive device 134 pivotally supports the liner 10 and rotationally drives the liner 10 around its tank axis.

アイクチガイド132は、ライナー10の外周に樹脂含浸カーボン繊維Wを供給しつつ、ライナー10に樹脂含浸カーボン繊維Wが巻回される際の巻回張力を調整する。また、樹脂含浸カーボン繊維Wのフープ巻きとヘリカル巻きの使い分けにも関与する。つまり、アイクチガイド132は、ライナー10の長軸方向であるx軸、x軸に垂直なy軸、x軸およびy軸に垂直なz軸の3次元で移動して、経路部120から供給された複数本の樹脂含浸カーボン繊維Wを束ねてライナー10に向かって供給する。制御部150による制御を経たアイクチガイド132の3次元方向への移動と回転駆動装置134によるライナー10の回転とにより、樹脂含浸カーボン繊維Wは、ライナー10の外周に繰り返し巻回されることになる。詳細には、図3に示すように、フープ巻きとヘリカル巻きとが使い分けられて、樹脂含浸カーボン繊維Wは、ライナー両端のドーム部10bと円筒状のシリンダー部10aとの外周に繰り返し巻回される。図示するように、まず、ライナー10の略円筒状のシリンダー部10aの領域をフープ巻きにて樹脂含浸カーボン繊維Wを巻回し、その後に、シリンダー部両端のドーム部10bに掛け渡るよう、その折り返し位置に応じた角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。   The ikuchi guide 132 adjusts the winding tension when the resin-impregnated carbon fiber W is wound around the liner 10 while supplying the resin-impregnated carbon fiber W to the outer periphery of the liner 10. Further, it is also involved in properly using hoop winding and helical winding of the resin-impregnated carbon fiber W. In other words, the ikuchi guide 132 is supplied from the path unit 120 by moving in three dimensions: the x-axis which is the major axis direction of the liner 10, the y-axis perpendicular to the x-axis, the z-axis perpendicular to the x-axis and the y-axis. The plurality of resin-impregnated carbon fibers W are bundled and supplied toward the liner 10. The resin-impregnated carbon fiber W is repeatedly wound around the outer circumference of the liner 10 by the movement of the ikuchi guide 132 controlled by the control unit 150 in the three-dimensional direction and the rotation of the liner 10 by the rotation driving device 134. Become. Specifically, as shown in FIG. 3, hoop winding and helical winding are used properly, and the resin-impregnated carbon fiber W is repeatedly wound around the outer periphery of the dome portion 10b and the cylindrical cylinder portion 10a at both ends of the liner. The As shown in the figure, first, the resin-impregnated carbon fiber W is wound around the region of the substantially cylindrical cylinder portion 10a of the liner 10 by hoop winding, and then folded over the dome portions 10b at both ends of the cylinder portion. The resin-impregnated carbon fiber W is wound by helical winding at an angle corresponding to the position.

図3(A)に示すように、シリンダー部10aにおいては、フープ巻きをシリンダー部両端で折り返しつつ繰り返すことで、繊維強化樹脂層20のライナー外周側の内側樹脂層を形成する。つまり、ライナー10をタンク中心軸AXの回りで回転させつつ、樹脂含浸カーボン繊維Wの供給元であるアイクチガイド132をタンク中心軸AXに沿って所定速度で往復動させることで、繊維強化樹脂層20における内側樹脂層が樹脂含浸カーボン繊維Wにて巻回形成される。このフープ巻きでは、アイクチガイド132からの樹脂含浸カーボン繊維Wが、シリンダー部10aのタンク中心軸AXに対してほぼ垂直に近い巻き角度(繊維角α0:例えば約89°)をなすようにされる。そして、ライナー回転速度とアイクチガイド132の往復動速度を調整した上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aに繰り返し巻回する。   As shown in FIG. 3A, in the cylinder portion 10a, the inner resin layer on the outer periphery side of the liner of the fiber reinforced resin layer 20 is formed by repeating the hoop winding while turning back both ends of the cylinder portion. That is, by rotating the liner 10 around the tank center axis AX and reciprocating the ikuchi guide 132 that is a supply source of the resin-impregnated carbon fiber W along the tank center axis AX at a predetermined speed, the fiber reinforced resin The inner resin layer in the layer 20 is formed by winding with resin-impregnated carbon fibers W. In this hoop winding, the resin-impregnated carbon fiber W from the ikuchi guide 132 forms a winding angle (fiber angle α0: for example, about 89 °) that is almost perpendicular to the tank center axis AX of the cylinder portion 10a. The Then, after adjusting the liner rotational speed and the reciprocating speed of the ikuchi guide 132, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound around the cylinder portion 10a. Turn.

こうしたフープ巻きに続き、図3(B)に示す低角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。低角度のヘリカル巻きでは、ドーム部10bの湾曲外表面領域とフープ巻き済みのシリンダー部10aを繊維巻回対象とし、ライナー10をタンク中心軸AXの回りで回転させつつ、アイクチガイド132から延びた樹脂含浸カーボン繊維Wをタンク中心軸AXに対して低角度の繊維角αLH(例えば、約11〜25°)で交差させた状態を保持し、ライナー回転速度とアイクチガイド132の往復動速度を調整する。その上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aの両端のドーム部10bに掛け渡るよう螺旋状に繰り返し巻回する。この場合、両側のドーム部10bでは、アイクチガイド132の往路・復路の切換に伴って繊維の巻き付け方向が折り返されると共に、タンク中心軸AXからの折り返し位置も調整される。ドーム部10bにおける巻き付け方向の折り返しを何度も繰り返すことにより、ライナー10の外表面には、低角度の繊維角αLHで樹脂含浸カーボン繊維Wが網目状に張り渡された繊維巻回層が形成され、この層が繊維強化樹脂層20における外表面側の最外層側樹脂層となる。なお、上記した低角度のヘリカル巻きを行う前に、タンク中心軸AXに対して高角度の繊維角(例えば、約30〜60°)で樹脂含浸カーボン繊維Wを巻回する高角度のヘリカル巻きを組み込むこともできる。上記したフープ巻きおよびヘリカル巻きにおいて、制御部150は、ライナー10の回転速度制御やアイクチガイド132での巻回張力調整等を行うが、本発明の要旨と直接関係しないので、その説明については省略する。   Following such hoop winding, the resin-impregnated carbon fiber W is wound by low-angle helical winding as shown in FIG. In the low-angle helical winding, the curved outer surface region of the dome portion 10b and the hoop-wound cylinder portion 10a are targets for fiber winding, and the liner 10 extends from the ikuchi guide 132 while rotating around the tank center axis AX. The resin-impregnated carbon fiber W is kept crossed at a low fiber angle αLH (for example, about 11 to 25 °) with respect to the tank center axis AX, and the liner rotational speed and the reciprocating speed of the ikuchi guide 132 are maintained. Adjust. Then, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound spirally so as to hang over the dome portions 10b at both ends of the cylinder portion 10a. In this case, in the dome portions 10b on both sides, the fiber winding direction is turned back and the turn-back position from the tank center axis AX is adjusted in accordance with switching between the forward path and the return path of the ikuchi guide 132. By repeating the wrapping in the winding direction in the dome portion 10b many times, a fiber wound layer in which the resin-impregnated carbon fibers W are stretched in a mesh shape with a low angle fiber angle αLH is formed on the outer surface of the liner 10. This layer becomes the outermost resin layer on the outer surface side of the fiber reinforced resin layer 20. In addition, before performing the above-described low-angle helical winding, the high-angle helical winding in which the resin-impregnated carbon fiber W is wound at a high-angle fiber angle (for example, about 30 to 60 °) with respect to the tank center axis AX. Can also be incorporated. In the above-described hoop winding and helical winding, the control unit 150 performs the rotation speed control of the liner 10 and the winding tension adjustment with the ikuchi guide 132, but is not directly related to the gist of the present invention. Omitted.

こうして樹脂含浸カーボン繊維Wのフープ巻きおよびヘリカル巻きが使い分けてなされることで、樹脂含浸カーボン繊維Wがライナー10の外周に層状に重なった繊維強化樹脂層20が形成される。そして、樹脂含浸カーボン繊維WのFW法による巻回を経て、ライナー10の外周に繊維強化樹脂層20を形成した中間生成品タンク12が得られる(図1(b)参照)。図4は得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子を示す説明図である。   Thus, the fiber-reinforced resin layer 20 in which the resin-impregnated carbon fibers W are layered on the outer periphery of the liner 10 is formed by properly using the hoop winding and the helical winding of the resin-impregnated carbon fibers W. And the intermediate product tank 12 which formed the fiber reinforced resin layer 20 in the outer periphery of the liner 10 is obtained through winding of the resin impregnation carbon fiber W by FW method (refer FIG.1 (b)). FIG. 4 is an explanatory view showing the orientation of the resin-impregnated carbon fibers W in the resin layers inside and outside the fiber reinforced resin layer 20 in the obtained intermediate product tank 12.

図示するように、ライナー10の外表面に形成された繊維強化樹脂層20は、ライナー10の外周側から、最内層の樹脂層と中間層の樹脂層と最外層の樹脂層に区分でき、最内層の樹脂層は、図3(A)に示したフープ巻きによる繊維巻回層となり、繊維の配向は既述した約89°となる。中間層は、フープ巻きから低角度のヘリカル巻きに推移する層であり、繊維の配向は89°から既述した約11〜25°に切り替わる。最外層の樹脂層は、図3(B)に示した低角度のヘリカル巻きによる繊維巻回層となり、繊維の配向は既述した約11〜25°となる。そして、ライナー10の外周側のフープ巻きの樹脂層に低角度のヘリカル巻きの樹脂層を積層した繊維強化樹脂層20とすることで、最終製品たる高圧水素タンク30のタンク強度を高めることができる。   As shown in the figure, the fiber reinforced resin layer 20 formed on the outer surface of the liner 10 can be divided into an innermost resin layer, an intermediate resin layer, and an outermost resin layer from the outer peripheral side of the liner 10. The inner resin layer is a fiber wound layer by hoop winding shown in FIG. 3A, and the fiber orientation is about 89 ° as described above. The intermediate layer is a layer that transitions from hoop winding to low-angle helical winding, and the fiber orientation is switched from 89 ° to about 11 to 25 ° described above. The outermost resin layer is a fiber wound layer by helical winding at a low angle shown in FIG. 3B, and the fiber orientation is about 11 to 25 ° as described above. The tank strength of the high-pressure hydrogen tank 30 that is the final product can be increased by using the fiber reinforced resin layer 20 in which a low-angle helically wound resin layer is laminated on the hoop wound resin layer on the outer peripheral side of the liner 10. .

図4では、タンク中心軸AXを含んでタンクを長手方向に断面視していることから、繊維の配向が約89°の最内層〜中間層では、樹脂含浸カーボン繊維Wは繊維と交差するよう切断したほぼ円形に断面視される。その一方、繊維の配向が約11〜25°の中間層〜最外層では、樹脂含浸カーボン繊維Wは繊維長手方向に沿って切断した矩形状に断面視される。   In FIG. 4, since the tank including the tank center axis AX is viewed in a longitudinal section, the resin-impregnated carbon fibers W intersect the fibers in the innermost layer to the intermediate layer where the fiber orientation is about 89 °. A cross-sectional view of the cut substantially circular shape. On the other hand, in the intermediate layer to the outermost layer where the fiber orientation is about 11 to 25 °, the resin-impregnated carbon fiber W is viewed in cross-section in a rectangular shape cut along the fiber longitudinal direction.

次に、図4で示したような樹脂層構成の繊維強化樹脂層20の熱硬化炉200による熱硬化について説明する。図5は図1(c)に示した熱硬化炉200における誘導加熱コイルの配置構成を中間生成品タンク12の側面側から概略的に示す説明図、図6は図5を平面視して誘導加熱コイルの配置構成を概略的に示す説明図、図7は誘導加熱コイルの配置構成を中間生成品タンク12を断面視して概略的に示す説明図、図8は本実施例の熱硬化炉200と対比される既存の高周波誘導加熱炉におけるコイル構成を図5相当に概略的に示す説明図である。   Next, the thermal curing of the fiber reinforced resin layer 20 having the resin layer configuration as shown in FIG. FIG. 5 is an explanatory view schematically showing the arrangement configuration of the induction heating coil in the thermosetting furnace 200 shown in FIG. 1C from the side surface side of the intermediate product tank 12, and FIG. FIG. 7 is an explanatory diagram schematically showing the arrangement of the heating coils, FIG. 7 is an explanatory diagram schematically showing the arrangement of the induction heating coils in a cross-sectional view of the intermediate product tank 12, and FIG. 8 is a thermosetting furnace of the present embodiment. FIG. 6 is an explanatory diagram schematically showing a coil configuration in an existing high-frequency induction heating furnace compared with FIG.

図5〜図7に示すように、本実施例の熱硬化炉200では、第1誘導加熱コイル220を既述したように中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲むに当たり、繊維強化樹脂層20の外表面からの距離がシリンダー部10aとドーム部10bにおいてほぼ同じとなるよう巻かれている。この際、第1誘導加熱コイル220は、中間生成品タンク12を軸支するタンク軸支シャフト212(図1参照)と干渉しないようにされている。そして、タンク軸に対して15°程の第1誘導加熱コイル220のコイル巻き軌跡は、図7において中間生成品タンク12の両側で第1誘導加熱コイル220が上下にずれて傾斜していることで示されている。   As shown in FIGS. 5 to 7, in the thermosetting furnace 200 of the present embodiment, the intermediate product tank 12 is surrounded around the tank axis along the tank longitudinal direction as described above for the first induction heating coil 220. In this case, the fiber reinforced resin layer 20 is wound so that the distance from the outer surface is substantially the same in the cylinder portion 10a and the dome portion 10b. At this time, the first induction heating coil 220 is configured not to interfere with a tank shaft 212 that supports the intermediate product tank 12 (see FIG. 1). The coil winding locus of the first induction heating coil 220 about 15 ° with respect to the tank axis is that the first induction heating coil 220 is inclined up and down on both sides of the intermediate product tank 12 in FIG. It is shown in

中間生成品タンク12の外周と対向するよう配設された第2誘導加熱コイル222は、図6に示すように、タンク平面視の状態で上下にオフセットされて点在する。このように点在するそれぞれの第2誘導加熱コイル222は、図7に示すように、繊維強化樹脂層20の外表面からの距離がほぼ同じとなるよう、タンク周りに配設されている。そして、第1誘導加熱コイル220とそれぞれの第2誘導加熱コイル222とは、共通する高周波電流生成電源240に並列に接続されている。その上で、それぞれの第2誘導加熱コイル222は、第1誘導加熱コイル220より短いコイル長とされた上で、その断面積にあっても、第1誘導加熱コイル220より小さくされている。このため、それぞれの第2誘導加熱コイル222は、第1誘導加熱コイル220より低い抵抗を有することになるので、高周波電流生成電源240からの高周波電流の通電を受けると、第1誘導加熱コイル220より強い磁束を生成する。こうしたコイル構成を有する熱硬化炉200は、炉内への中間生成品タンク12のセット後のタンク定速回転に合わせて、制御機器230にて第1誘導加熱コイル220と第2誘導加熱コイル222とに高周波電流を通電する。   As shown in FIG. 6, the second induction heating coil 222 disposed so as to face the outer periphery of the intermediate product tank 12 is dotted with being offset in the vertical direction in the plan view of the tank. As shown in FIG. 7, the second induction heating coils 222 scattered in this way are arranged around the tank so that the distances from the outer surface of the fiber reinforced resin layer 20 are substantially the same. The first induction heating coil 220 and each second induction heating coil 222 are connected in parallel to a common high-frequency current generating power supply 240. In addition, each second induction heating coil 222 has a coil length shorter than that of the first induction heating coil 220 and is smaller than the first induction heating coil 220 even in the cross-sectional area thereof. For this reason, each second induction heating coil 222 has a lower resistance than the first induction heating coil 220. Therefore, when receiving a high-frequency current from the high-frequency current generation power supply 240, the first induction heating coil 220. Generate stronger magnetic flux. In the thermosetting furnace 200 having such a coil configuration, the first induction heating coil 220 and the second induction heating coil 222 are controlled by the control device 230 in accordance with the tank constant speed rotation after the intermediate product tank 12 is set in the furnace. A high-frequency current is applied to the

こうして通電を受けた第1誘導加熱コイル220は、水平に軸支されてタンク軸回りに回転する中間生成品タンク12を図7に点線で示すように上下に貫く磁束を発生する。繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wは、この第1誘導加熱コイル220による磁束と交差することから渦電流を誘起し、カーボン繊維固有の抵抗によって発熱して、繊維強化樹脂層20の熱硬化性樹脂を高周波誘導加熱する。中間生成品タンク12の外周に対向する第2誘導加熱コイル222のそれぞれにあっても、高周波電流の通電を受けて磁束を発生し、この生成された磁束は、図7に点線で示すように繊維強化樹脂層20を貫くことになる。このため、繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wは、この第2誘導加熱コイル222による磁束と交差することから渦電流を誘起し、カーボン繊維固有の抵抗によって発熱して、繊維強化樹脂層20の熱硬化性樹脂を高周波誘導加熱する。これに対し、図8に示す既存の高周波誘導加熱炉では、繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wが第1誘導加熱コイル220による磁束と交差することによる繊維強化樹脂層20の熱硬化性樹脂の高周波誘導加熱しか起こさない。以下、本実施例の熱硬化炉200による樹脂加熱の様子と図8の既存の高周波誘導加熱炉による樹脂加熱の様子とを、図4で示した繊維配向との関係を含めて説明する。図9は本実施例の熱硬化炉200と既存の高周波誘導加熱炉とにおける繊維強化樹脂層20の内外の樹脂層ごとの昇温の様子を対比して示す説明図である。   The first induction heating coil 220 thus energized generates a magnetic flux penetrating up and down through the intermediate product tank 12 that is supported horizontally and rotates around the tank axis, as indicated by a dotted line in FIG. Since the resin-impregnated carbon fiber W constituting the fiber reinforced resin layer 20 intersects with the magnetic flux generated by the first induction heating coil 220, an eddy current is induced, and heat is generated due to the inherent resistance of the carbon fiber, so that the fiber reinforced resin layer 20 The thermosetting resin is heated by high frequency induction. Even in each of the second induction heating coils 222 facing the outer periphery of the intermediate product tank 12, a magnetic flux is generated by energization of a high-frequency current, and the generated magnetic flux is shown by a dotted line in FIG. The fiber reinforced resin layer 20 is penetrated. For this reason, the resin-impregnated carbon fiber W constituting the fiber reinforced resin layer 20 crosses the magnetic flux generated by the second induction heating coil 222, so that an eddy current is induced and heat is generated due to the inherent resistance of the carbon fiber, thereby reinforcing the fiber. The thermosetting resin of the resin layer 20 is heated by high frequency induction. On the other hand, in the existing high frequency induction heating furnace shown in FIG. 8, the heat of the fiber reinforced resin layer 20 due to the resin impregnated carbon fibers W constituting the fiber reinforced resin layer 20 intersecting with the magnetic flux generated by the first induction heating coil 220. Only high frequency induction heating of curable resin occurs. Hereinafter, the state of resin heating by the thermosetting furnace 200 of this embodiment and the state of resin heating by the existing high-frequency induction heating furnace of FIG. 8 will be described, including the relationship with the fiber orientation shown in FIG. FIG. 9 is an explanatory diagram showing a comparison of the temperature increase for each of the resin layers inside and outside the fiber reinforced resin layer 20 in the thermosetting furnace 200 of the present embodiment and the existing high frequency induction heating furnace.

まず、図8のコイル構成の既存の高周波誘導加熱炉にて繊維強化樹脂層20を高周波誘導加熱させることを想定し、繊維強化樹脂層20の最内層、最外層、その間の中間層の各層に熱電対を埋め込んだ。そして、この状態で、第1誘導加熱コイル220に高周波電流を通電して、既述したように繊維強化樹脂層20を高周波誘導加熱する。この高周波誘導加熱の経過時間ごとに最内層、最外層、および中間層の熱電対出力をプロットして、図9の左側に示したグラフを得た。このグラフに見られる温度挙動は、次のように説明できる。   First, assuming that the fiber reinforced resin layer 20 is subjected to high frequency induction heating in the existing high frequency induction heating furnace having the coil configuration shown in FIG. 8, the innermost layer, the outermost layer of the fiber reinforced resin layer 20, and the intermediate layer therebetween are used. A thermocouple was embedded. In this state, a high-frequency current is applied to the first induction heating coil 220, and the fiber-reinforced resin layer 20 is induction-heated as described above. The thermocouple outputs of the innermost layer, the outermost layer, and the intermediate layer were plotted for each elapsed time of the high frequency induction heating, and the graph shown on the left side of FIG. 9 was obtained. The temperature behavior seen in this graph can be explained as follows.

図8の第1誘導加熱コイル220による高周波誘導加熱は、繊維強化樹脂層20の上記最内層、中間層および最外層の各層で進むものの、各層での誘導加熱の状況は次のように相違する。繊維強化樹脂層20の最外層は、第1誘導加熱コイル220に最も近くて第1誘導加熱コイル220の発生した磁束の影響を受けやすく生じる渦電流も大きいことから、第1誘導加熱コイル220による高周波誘導加熱が最も進む。そして、第1誘導加熱コイル220から離れる中間層、最内層は、磁束の影響が受け難くなって生じる渦電流も小さくなるので、最外層ほど加熱は進まない。その一方、繊維強化樹脂層20の最外層では、樹脂含浸カーボン繊維Wは、低角度のヘリカル巻きの配向となっている故に、中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲む第1誘導加熱コイル220のコイル巻き軌跡と揃うことになる。よって、渦電流の流れる範囲が増して第1誘導加熱コイル220による高周波誘導加熱がより進むことになる。つまり、繊維強化樹脂層20の最外層は、第1誘導加熱コイル220による高周波誘導加熱が繊維配向の観点からも活発となる。   Although high-frequency induction heating by the first induction heating coil 220 in FIG. 8 proceeds in each of the innermost layer, the intermediate layer, and the outermost layer of the fiber reinforced resin layer 20, the state of induction heating in each layer is different as follows. . The outermost layer of the fiber reinforced resin layer 20 is closest to the first induction heating coil 220 and has a large eddy current that is easily affected by the magnetic flux generated by the first induction heating coil 220. High frequency induction heating is most advanced. The intermediate layer and the innermost layer that are separated from the first induction heating coil 220 are less affected by magnetic flux, and the eddy current that is generated becomes smaller. Therefore, the heating does not proceed as much as the outermost layer. On the other hand, in the outermost layer of the fiber reinforced resin layer 20, the resin-impregnated carbon fiber W has a low-angle helical winding orientation, so that the intermediate product tank 12 is placed around the tank axis along the tank longitudinal direction. The coil winding locus of the surrounding first induction heating coil 220 is aligned. Therefore, the range in which the eddy current flows is increased, and the high frequency induction heating by the first induction heating coil 220 is further advanced. That is, in the outermost layer of the fiber reinforced resin layer 20, high frequency induction heating by the first induction heating coil 220 is active from the viewpoint of fiber orientation.

繊維強化樹脂層20の中間層は、当該層部位での高周波誘導加熱に加えて最外層からの熱伝播を受ける。その一方、最外層ではその層表面からの放熱が起きるので、グラフに見られるように、中間層の温度は最外層より高くなる。こうしたことを考慮して、中間層の温度が制御上限温度となるよう、第1誘導加熱コイル220への高周波電流が通電制御される。この場合の制御上限温度は、ライナー10の源材料樹脂および繊維強化樹脂層20の形成のための熱硬化性樹脂の溶解温度や、樹脂含浸カーボン繊維Wの繊維表面に付着された薬剤、具体的には繊維と樹脂の馴染みを向上させる薬剤の耐性温度等から定まる。そして、中間層の温度が制御上限温度となるよう第1誘導加熱コイル220への高周波電流の通電制御を行って、繊維強化樹脂層20を高周波誘導加熱すると、図9の左側に示したグラフのように、最内層の温度は最外層および中間層より大きく低下する。   The intermediate layer of the fiber reinforced resin layer 20 receives heat propagation from the outermost layer in addition to high-frequency induction heating at the layer portion. On the other hand, since heat is radiated from the surface of the outermost layer, the temperature of the intermediate layer is higher than that of the outermost layer as seen in the graph. Taking this into consideration, energization control of the high-frequency current to the first induction heating coil 220 is performed so that the temperature of the intermediate layer becomes the control upper limit temperature. In this case, the control upper limit temperature is the melting temperature of the thermosetting resin for forming the source material resin of the liner 10 and the fiber reinforced resin layer 20, the agent attached to the fiber surface of the resin-impregnated carbon fiber W, specifically Is determined from the resistance temperature of the drug that improves the familiarity between the fiber and the resin. Then, when high-frequency induction heating is performed on the fiber-reinforced resin layer 20 by performing energization control of the high-frequency current to the first induction heating coil 220 so that the temperature of the intermediate layer becomes the control upper limit temperature, the graph shown on the left side of FIG. As described above, the temperature of the innermost layer is significantly lower than that of the outermost layer and the intermediate layer.

繊維強化樹脂層20の最内層は、第1誘導加熱コイル220からの隔たりが大きいために第1誘導加熱コイル220による高周波誘導加熱が最外層や中間層ほど進まない。これに加え、この最内層での樹脂含浸カーボン繊維Wの配向は、フープ巻きの配向なために既述した第1誘導加熱コイル220のコイル巻き軌跡と揃わない。このため、繊維強化樹脂層20の最内層は、第1誘導加熱コイル220による高周波誘導加熱が繊維配向の観点からも進まないことになる。上記した繊維強化樹脂層20の各層での加熱状況の相違から、図8に示したコイル構成の熱硬化炉での高周波誘導加熱では、繊維強化樹脂層20の最外層、中間層および最内層での樹脂の昇温が図9の左側に示したグラフのようにばらつくことになる。この場合、繊維強化樹脂層20の最内層を低角度のヘリカル巻きした樹脂含浸カーボン繊維Wで形成すれば、最内層でも、樹脂含浸カーボン繊維Wの配向が第1誘導加熱コイル220のコイル巻き軌跡と揃うことから、第1誘導加熱コイル220による高周波誘導加熱を繊維配向の観点からも高めることは可能である。ところが、繊維強化樹脂層20の最内層についても低角度のヘリカル巻きとすれば、繊維強化樹脂層20はその全てが低角度のヘリカル巻きの樹脂含浸カーボン繊維Wで巻回形成されるので、タンク強度の確保の上から現実的ではない。よって、図4に示したように、繊維強化樹脂層20の最内層をフープ巻きとし、最外層を低角度のヘリカル巻きとしてタンク強度を確保した上で、繊維強化樹脂層20の最外層、中間層および最内層での樹脂の昇温のバラツキを抑制する必要があり、本実施例では、次のようになる。   Since the innermost layer of the fiber reinforced resin layer 20 is far from the first induction heating coil 220, the high frequency induction heating by the first induction heating coil 220 does not progress as much as the outermost layer and the intermediate layer. In addition, the orientation of the resin-impregnated carbon fiber W in the innermost layer is not aligned with the coil winding locus of the first induction heating coil 220 described above because of the orientation of the hoop winding. For this reason, in the innermost layer of the fiber reinforced resin layer 20, high-frequency induction heating by the first induction heating coil 220 does not proceed from the viewpoint of fiber orientation. Due to the difference in the heating situation in each layer of the fiber reinforced resin layer 20 described above, in the high frequency induction heating in the thermosetting furnace having the coil configuration shown in FIG. 8, the outermost layer, the intermediate layer, and the innermost layer of the fiber reinforced resin layer 20 are used. The temperature rise of the resin varies as shown in the graph shown on the left side of FIG. In this case, if the innermost layer of the fiber reinforced resin layer 20 is formed of low-angle helically wound resin-impregnated carbon fibers W, the orientation of the resin-impregnated carbon fibers W is the coil winding locus of the first induction heating coil 220 even in the innermost layer. Therefore, high-frequency induction heating by the first induction heating coil 220 can be enhanced from the viewpoint of fiber orientation. However, if the innermost layer of the fiber reinforced resin layer 20 is also helically wound at a low angle, the fiber reinforced resin layer 20 is entirely formed of a low angle helically wound resin-impregnated carbon fiber W. It is not realistic in terms of securing strength. Therefore, as shown in FIG. 4, the innermost layer of the fiber reinforced resin layer 20 is hoop-wrapped and the outermost layer is helically wound at a low angle to ensure tank strength, It is necessary to suppress variations in the temperature rise of the resin in the innermost layer and the innermost layer. In the present embodiment, the following occurs.

本実施例の熱硬化炉200は、図5〜図7に示すように、第1誘導加熱コイル220に加え、中間生成品タンク12の外周に対向配設した第2誘導加熱コイル222によっても、繊維強化樹脂層20の最外層、中間層および最内層において高周波誘導加熱を起こす。しかも、それぞれの第2誘導加熱コイル222は、第1誘導加熱コイル220より既述したように低抵抗であって第1誘導加熱コイル220より強い磁束を生成する。このため、上記したように加熱が進まない繊維強化樹脂層20の最内層にあっても、図7に点線で示す当該層を貫く強い磁束と交差することから、第1誘導加熱コイル220による誘導加熱の場合より多くの渦電流を誘起して高周波誘導加熱される。つまり、第2誘導加熱コイル222は、強い磁束を発生するが故に、第1誘導加熱コイル220による高周波誘導加熱が進まない繊維強化樹脂層20の最内層での繊維配向がコイル巻き軌跡と揃っていなくても、この最内層を誘導加熱して昇温を高める。この結果、本実施例の熱硬化炉200によれば、延いては、この熱硬化炉200を用いて中間生成品タンク12から高圧水素タンク30を製造する手法によれば、繊維強化樹脂層20の最外層、中間層および最内層での樹脂の昇温のバラツキを図9の右側に示したグラフのように抑制できる。そして、繊維強化樹脂層20の熱硬化の際の樹脂の昇温バラツキが抑制されることから、得られた高圧水素タンク30にあっては、硬化済みの繊維強化樹脂層20の内部でのクラックの発生を抑制して、高いタンク強度や耐久性を有するタンクとなる。この場合、図9の右側のグラフにあっても、既述したように熱電対を埋め込んで測定した結果である。   As shown in FIGS. 5 to 7, the thermosetting furnace 200 of the present embodiment includes a first induction heating coil 220 and a second induction heating coil 222 disposed opposite to the outer periphery of the intermediate product tank 12. High frequency induction heating occurs in the outermost layer, the intermediate layer, and the innermost layer of the fiber reinforced resin layer 20. In addition, each of the second induction heating coils 222 generates a magnetic flux that has a lower resistance than the first induction heating coil 220 and is stronger than the first induction heating coil 220. For this reason, even if it is in the innermost layer of the fiber reinforced resin layer 20 where heating does not proceed as described above, it intersects with the strong magnetic flux penetrating the layer indicated by the dotted line in FIG. Induction heating is induced by inducing more eddy current than in the case of heating. That is, since the second induction heating coil 222 generates a strong magnetic flux, the fiber orientation in the innermost layer of the fiber reinforced resin layer 20 where the high frequency induction heating by the first induction heating coil 220 does not proceed is aligned with the coil winding locus. Even without this, the innermost layer is induction-heated to increase the temperature. As a result, according to the thermosetting furnace 200 of this embodiment, according to the method of manufacturing the high-pressure hydrogen tank 30 from the intermediate product tank 12 using the thermosetting furnace 200, the fiber reinforced resin layer 20 The variation in the temperature rise of the resin in the outermost layer, the intermediate layer, and the innermost layer can be suppressed as in the graph shown on the right side of FIG. And since the temperature rise variation of the resin at the time of thermosetting of the fiber reinforced resin layer 20 is suppressed, in the high pressure hydrogen tank 30 obtained, cracks inside the cured fiber reinforced resin layer 20 are present. Occurrence of this is suppressed, and the tank has high tank strength and durability. In this case, even in the graph on the right side of FIG. 9, it is a result of measurement with a thermocouple embedded as described above.

また、本実施例の熱硬化炉200では、第2誘導加熱コイル222を第1誘導加熱コイル220より低抵抗とした上で、第1誘導加熱コイル220と並列に高周波電流生成電源240に接続したに過ぎない。従って、第2誘導加熱コイル222の形成する磁束を、高周波電流生成電源240が共通でありながら第1誘導加熱コイル220より強くできるので、通電制御の簡略化や、低コスト化を図ることができる。   In the thermosetting furnace 200 of the present embodiment, the second induction heating coil 222 has a lower resistance than the first induction heating coil 220 and is connected to the high-frequency current generation power supply 240 in parallel with the first induction heating coil 220. Only. Accordingly, the magnetic flux formed by the second induction heating coil 222 can be stronger than the first induction heating coil 220 while the high-frequency current generating power supply 240 is common, so that the energization control can be simplified and the cost can be reduced. .

次に、熱硬化炉200の変形例について説明する。図10は図5相当に変形例の熱硬化炉200における誘導加熱コイルの配置構成を中間生成品タンク12の側面側から概略的に示す説明図、図11は図6相当に誘導加熱コイルの配置構成を平面視して概略的に示す説明図、図12は図7相当に誘導加熱コイルの配置構成を中間生成品タンク12を断面視して概略的に示す説明図、図13は第2誘導加熱コイル223を有する変形例の熱硬化炉200による繊維強化樹脂層20の昇温の様子を示す説明図である。   Next, a modified example of the thermosetting furnace 200 will be described. FIG. 10 is an explanatory view schematically showing the arrangement configuration of the induction heating coil in the thermosetting furnace 200 according to a modified example corresponding to FIG. 5 from the side surface side of the intermediate product tank 12, and FIG. FIG. 12 is an explanatory view schematically showing the configuration in plan view, FIG. 12 is an explanatory view schematically showing the arrangement configuration of the induction heating coil in a cross-sectional view of the intermediate product tank 12 corresponding to FIG. 7, and FIG. It is explanatory drawing which shows the mode of the temperature rising of the fiber reinforced resin layer 20 by the thermosetting furnace 200 of the modification which has the heating coil 223. FIG.

この変形例では、一つの第2誘導加熱コイル223を、軸支した中間生成品タンク12の外周と対向するよう配設して備える。第2誘導加熱コイル223は、図12に示すように、いわゆる笠状にコイル巻きされたコイル軌跡を備え、先に説明した第2誘導加熱コイル222と同様、共通する高周波電流生成電源240に第1誘導加熱コイル220と並列に接続されている。その上で、第2誘導加熱コイル223にあっても、第1誘導加熱コイル220より短いコイル長とされた上で、その断面積は第1誘導加熱コイル220より小さくされている。このため、第2誘導加熱コイル223は、第1誘導加熱コイル220より低い抵抗を有することになるので、高周波電流生成電源240からの高周波電流の通電を受けると、第1誘導加熱コイル220より強い磁束を生成する。従って、この変形例によっても、第1誘導加熱コイル220による高周波誘導加熱が進まない繊維強化樹脂層20の最内層での繊維配向がコイル巻き軌跡と揃っていなくても、この最内層を誘導加熱してその昇温を高め、繊維強化樹脂層20の最外層、中間層および最内層での樹脂の昇温のバラツキを図13に示したグラフのように抑制できる。この場合、得られた高圧水素タンク30にあっても、クラックの発生の抑制により高いタンク強度や耐久性とできる。また、この変形例では、第1誘導加熱コイル220の外に一つの第2誘導加熱コイル223を有するに過ぎないので、コイル冷却のための構成が簡略化でき、省スペース化や低コスト化を図ることができる。   In this modification, one second induction heating coil 223 is provided so as to face the outer periphery of the intermediate product tank 12 that is pivotally supported. As shown in FIG. 12, the second induction heating coil 223 has a coil locus coiled in a so-called shade shape, and is connected to a common high-frequency current generating power supply 240 in the same manner as the second induction heating coil 222 described above. The 1 induction heating coil 220 is connected in parallel. In addition, even in the second induction heating coil 223, the coil length is shorter than that of the first induction heating coil 220, and the cross-sectional area is smaller than that of the first induction heating coil 220. For this reason, since the second induction heating coil 223 has a lower resistance than the first induction heating coil 220, the second induction heating coil 223 is stronger than the first induction heating coil 220 when receiving a high-frequency current from the high-frequency current generating power supply 240. Generate magnetic flux. Therefore, even according to this modification, even if the fiber orientation in the innermost layer of the fiber reinforced resin layer 20 where the high frequency induction heating by the first induction heating coil 220 does not proceed is not aligned with the coil winding locus, the innermost layer is induction heated. Thus, the temperature rise is increased, and variations in the temperature rise of the resin in the outermost layer, the intermediate layer, and the innermost layer of the fiber reinforced resin layer 20 can be suppressed as shown in the graph of FIG. In this case, even in the obtained high-pressure hydrogen tank 30, high tank strength and durability can be achieved by suppressing the occurrence of cracks. Moreover, in this modification, since it has only one 2nd induction heating coil 223 outside the 1st induction heating coil 220, the structure for coil cooling can be simplified, and space saving and cost reduction can be achieved. Can be planned.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 30, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used.

また、第2誘導加熱コイル222或いは第2誘導加熱コイル223を第1誘導加熱コイル220と並列に高周波電流生成電源240に接続したが、第1誘導加熱コイル220とは別の電源を設けて当該電源に第2誘導加熱コイル222や第2誘導加熱コイル223を接続するようにすることもできる。   In addition, the second induction heating coil 222 or the second induction heating coil 223 is connected to the high-frequency current generating power source 240 in parallel with the first induction heating coil 220, but a power source different from the first induction heating coil 220 is provided to The second induction heating coil 222 or the second induction heating coil 223 can be connected to the power source.

また、繊維強化樹脂層20については、その最内層をフープ巻きで形成し、最外層については低角度のヘリカル巻きで形成するよう層ごとに区別したが、これに限らない。例えば、フープ巻きによる層と低角度のヘリカル巻きによる層とを、交互に繰り返すようにした繊維強化樹脂層20であっても、最外層もしくはその近傍に低角度ヘリカル巻きによる繊維配向が第1誘導加熱コイル220のコイル巻き軌跡と揃う樹脂層が形成され、その下層側にフープ巻きに夜繊維配向の層が位置するので、第2誘導加熱コイル222或いは第2誘導加熱コイル223による強い磁束での高周波誘導加熱により、樹脂の昇温バラツキを抑制できる。   Further, the fiber reinforced resin layer 20 is distinguished for each layer so that the innermost layer is formed by hoop winding and the outermost layer is formed by low-angle helical winding. However, the present invention is not limited to this. For example, even in a fiber reinforced resin layer 20 in which a layer formed by hoop winding and a layer formed by low-angle helical winding are alternately repeated, fiber orientation by low-angle helical winding is the first induction in the outermost layer or in the vicinity thereof. A resin layer that is aligned with the coil winding trajectory of the heating coil 220 is formed, and a night fiber orientation layer is located on the lower layer side of the hoop winding, so that a strong magnetic flux by the second induction heating coil 222 or the second induction heating coil 223 is used. High-frequency induction heating can suppress resin temperature variation.

10…ライナー
10a…シリンダー部
10b…ドーム部
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
30…高圧水素タンク
100…FW装置
110…クリールスタンド
112…ボビン
114…固定滑車
120…経路部
130…巻取部
132…アイクチガイド
134…回転駆動装置
150…制御部
200…熱硬化炉
212…タンク軸支シャフト
220…第1誘導加熱コイル
222…第2誘導加熱コイル
223…第2誘導加熱コイル
230…制御機器
240…高周波電流生成電源
W…樹脂含浸カーボン繊維
AX…タンク中心軸
DESCRIPTION OF SYMBOLS 10 ... Liner 10a ... Cylinder part 10b ... Dome part 12 ... Intermediate product tank 14 ... Base 20 ... Fiber reinforced resin layer 30 ... High pressure hydrogen tank 100 ... FW apparatus 110 ... Creel stand 112 ... Bobbin 114 ... Fixed pulley 120 ... Path part DESCRIPTION OF SYMBOLS 130 ... Winding part 132 ... Ikuchi guide 134 ... Rotation drive apparatus 150 ... Control part 200 ... Thermosetting furnace 212 ... Tank axial support shaft 220 ... 1st induction heating coil 222 ... 2nd induction heating coil 223 ... 2nd induction heating Coil 230 ... Control device 240 ... High frequency current generating power supply W ... Resin-impregnated carbon fiber AX ... Tank central axis

Claims (5)

タンク容器となる中空のライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記熱硬化性樹脂を含浸した繊維を前記ライナーの外周に巻回して前記繊維強化樹脂層を形成し、タンク中間生成品を得る繊維巻回手段と、
前記タンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させる熱硬化手段とを備え、
前記熱硬化手段は、
前記回転する前記タンク中間生成品の全体を加熱する第1加熱手段と、
前記タンク中間生成品を高周波誘導加熱する誘導加熱コイルを前記タンク中間生成品の外周と対向して配設し、前記回転する前記タンク中間生成品を前記外周の側から前記誘導加熱コイルにより局所的に高周波誘導加熱する第2加熱手段とを備える
高圧ガスタンクの製造装置。
An apparatus used for manufacturing a high-pressure gas tank having a fiber-reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of a hollow liner serving as a tank container,
A fiber winding means for winding the fiber impregnated with the thermosetting resin before thermosetting around the outer periphery of the liner to form the fiber reinforced resin layer, and obtaining a tank intermediate product;
The tank intermediate product is pivotally supported, and the tank intermediate product that is pivotally supported is heated while rotating around the tank axis, and thermosetting means for thermosetting the fiber reinforced resin layer,
The thermosetting means is
First heating means for heating the entire tank intermediate product that rotates;
An induction heating coil for high-frequency induction heating of the tank intermediate product is disposed opposite to the outer periphery of the tank intermediate product, and the rotating tank intermediate product is locally disposed from the outer periphery side by the induction heating coil. A high-pressure gas tank manufacturing apparatus.
請求項1に記載の高圧ガスタンクの製造装置であって、
前記第1加熱手段は、前記タンク中間生成品を高周波誘導加熱する誘導加熱コイルを、前記軸支した前記タンク中間生成品をタンク長手方向に沿って前記タンク軸周囲にて取り囲むタンク長手方向誘導加熱コイルとして備え、該タンク長手方向誘導加熱コイルにより、前記タンク中間生成品の全体を高周波誘導加熱し、
前記第2加熱手段は、前記タンク中間生成品の外周と対向して配設した前記誘導加熱コイルを、前記タンク長手方向誘導加熱コイルより強い磁束を形成する誘導加熱コイルとして備える
高圧ガスタンクの製造装置。
It is a manufacturing apparatus of the high-pressure gas tank according to claim 1,
The first heating means includes an induction heating coil for high-frequency induction heating of the tank intermediate product, and a tank longitudinal induction heating surrounding the tank intermediate product supported around the tank axis along the tank longitudinal direction. Provided as a coil, the tank intermediate product is high-frequency induction heated by the tank longitudinal induction heating coil,
The second heating means includes the induction heating coil disposed opposite to the outer periphery of the tank intermediate product as an induction heating coil that forms a magnetic flux stronger than the tank longitudinal induction heating coil. .
前記第2加熱手段の前記誘導加熱コイルは、前記タンク長手方向誘導加熱コイルより短いコイル長と低い抵抗とを有する誘導加熱コイルとされている請求項2に記載の高圧ガスタンクの製造装置。   The high pressure gas tank manufacturing apparatus according to claim 2, wherein the induction heating coil of the second heating means is an induction heating coil having a shorter coil length and lower resistance than the tank longitudinal direction induction heating coil. 前記第1加熱手段の前記タンク長手方向誘導加熱コイルと前記第2加熱手段の前記誘導加熱コイルとは、共通する高周波電流生成電源に並列に接続されている請求項2または請求項3に記載の高圧ガスタンクの製造装置。   The tank longitudinal direction induction heating coil of the first heating means and the induction heating coil of the second heating means are connected in parallel to a common high-frequency current generating power source. High pressure gas tank manufacturing equipment. 高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、
前記タンク中間生成品を軸支し、該軸支した前記タンク中間生成品をタンク軸回りに回転させつつ加熱して前記繊維強化樹脂層を熱硬化させる工程(b)とを備え、
前記工程(b)では、
前記軸支した前記タンク中間生成品をタンク長手方向に沿って前記タンク軸周囲にて取り囲んで前記タンク中間生成品を高周波誘導加熱するタンク長手方向の誘導加熱コイルにより、前記回転する前記タンク中間生成品の全体を高周波誘導加熱しつつ、
前記タンク中間生成品の外周と対向して配設され前記タンク長手方向の誘導加熱コイルより強い磁束を形成する誘導加熱コイルにより、前記回転する前記タンク中間生成品を前記外周の側から局所的に高周波誘導加熱する
高圧ガスタンクの製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
A step (a) of preparing a tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container;
A step (b) of supporting the tank intermediate product, and heating the fiber intermediate layer by heating the tank intermediate product rotated around the tank axis;
In the step (b),
The rotating tank intermediate product is surrounded by a tank longitudinal induction heating coil that surrounds the axially supported tank intermediate product around the tank axis along the tank longitudinal direction and heats the tank intermediate product by high frequency induction heating. While high frequency induction heating the entire product,
The rotating tank intermediate product is locally supplied from the outer periphery side by an induction heating coil that is arranged opposite to the outer periphery of the tank intermediate product and forms a magnetic flux stronger than the induction heating coil in the tank longitudinal direction. A method of manufacturing a high-pressure gas tank that uses high-frequency induction heating.
JP2011202598A 2011-09-16 2011-09-16 Device and method for manufacturing high-pressure gas tank Withdrawn JP2013064430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011202598A JP2013064430A (en) 2011-09-16 2011-09-16 Device and method for manufacturing high-pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202598A JP2013064430A (en) 2011-09-16 2011-09-16 Device and method for manufacturing high-pressure gas tank

Publications (1)

Publication Number Publication Date
JP2013064430A true JP2013064430A (en) 2013-04-11

Family

ID=48188118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202598A Withdrawn JP2013064430A (en) 2011-09-16 2011-09-16 Device and method for manufacturing high-pressure gas tank

Country Status (1)

Country Link
JP (1) JP2013064430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163305A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Induction heating method and apparatus for the same, and method of manufacturing high pressure gas tank
JP2018173098A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel tank manufacturing apparatus
WO2019151426A1 (en) * 2018-01-31 2019-08-08 三菱重工業株式会社 Method for molding composite material, composite material, pressing head, and device for molding composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163305A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Induction heating method and apparatus for the same, and method of manufacturing high pressure gas tank
JP2018173098A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel tank manufacturing apparatus
WO2019151426A1 (en) * 2018-01-31 2019-08-08 三菱重工業株式会社 Method for molding composite material, composite material, pressing head, and device for molding composite material

Similar Documents

Publication Publication Date Title
JP5531040B2 (en) Manufacturing method of high-pressure gas tank
JP2011179638A (en) Manufacturing device and manufacturing method of high pressure tank
JP6099039B2 (en) Manufacturing method of composite container
JP5796508B2 (en) Induction heating method and apparatus, and high pressure gas tank manufacturing method
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP5630614B2 (en) Gas tank manufacturing method
JP2013161610A (en) Induction heating apparatus, and method of manufacturing high-pressure gas tank
JP5443116B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic container
JP2012042032A (en) High pressure gas tank, its manufacturing method and manufacturing device
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP6337398B2 (en) Manufacturing method of composite container and composite container
CN111664348B (en) Method for manufacturing can
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2020020420A (en) Manufacturing method of tank
JP2017094518A (en) Method for producing high pressure tank
JP5716905B2 (en) Gas tank manufacturing method and thermosetting device
JP5840961B2 (en) High pressure fluid tank and manufacturing method thereof
JP2009028961A (en) Manufacturing process and manufacturing system of frp molding
JP2018012235A (en) Method for producing tank
JP2014080999A (en) Manufacturing method of tank
JP2008307791A (en) Manufacturing method of frp container
JP6189791B2 (en) Tank manufacturing method
JP2011094644A (en) Method and device for manufacturing high-pressure gas tank
JP2012192621A (en) Method for heating molded article and heating apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202