JP2013157139A - Sealed battery and manufacturing method therefor - Google Patents

Sealed battery and manufacturing method therefor Download PDF

Info

Publication number
JP2013157139A
JP2013157139A JP2012015533A JP2012015533A JP2013157139A JP 2013157139 A JP2013157139 A JP 2013157139A JP 2012015533 A JP2012015533 A JP 2012015533A JP 2012015533 A JP2012015533 A JP 2012015533A JP 2013157139 A JP2013157139 A JP 2013157139A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrode body
electrode plate
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012015533A
Other languages
Japanese (ja)
Other versions
JP5887957B2 (en
Inventor
Toshihiko Mihashi
利彦 三橋
Akihiro Ochiai
章浩 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012015533A priority Critical patent/JP5887957B2/en
Publication of JP2013157139A publication Critical patent/JP2013157139A/en
Application granted granted Critical
Publication of JP5887957B2 publication Critical patent/JP5887957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery in which electrification to an electrode body can be interrupted reliably by decomposing and polymerizing CHB added to an electrolyte efficiently during overcharge thereby generating more gas, and to provide a manufacturing method of such a sealed battery.SOLUTION: A sealed battery 1 includes an electrode body 10 having a positive electrode plate 20 in a battery case 80, an electrolyte 50 impregnating the electrode body, and a current interruption mechanism 62 which interrupts a current flowing through the electrode body when the internal pressure Pi of the battery case exceeds a working pressure Pf. The positive electrode plate has a membrane 22 derived from biphenyl, and the electrolyte contains cyclohexylbenzene 51.

Description

本発明は、電池ケースの内圧が自身の作動圧を超えた場合に作動して、電極体に流れる電流の遮断を行う電流遮断機構と、過充電とされた場合にガスを発生するシクロヘキシルベンゼン(以下、CHBともいう)とを備えた密閉型電池(以下、単に電池ともいう)、及び、このような密閉型電池の製造方法に関する。   The present invention operates when the internal pressure of the battery case exceeds its own operating pressure and cuts off the current flowing through the electrode body, and cyclohexylbenzene that generates gas when overcharged ( Hereinafter, the present invention also relates to a sealed battery (hereinafter also simply referred to as a battery) provided with CHB) and a method for manufacturing such a sealed battery.

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能な電池が利用されている。
このような電池のうち、過充電となった場合に電極体への通電を遮断する電池として、例えば、CHBなど、過充電とされた場合にガスを発生するガス発生剤を含む電解液と、電池ケースの内圧が作動圧を超えた場合に、電極体を流れる電流を遮断する電流遮断機構とを備える電池が知られている(例えば、特許文献1)。
In recent years, a chargeable / dischargeable battery has been used as a driving power source for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders.
Among such batteries, as a battery that cuts off the power supply to the electrode body when overcharged, for example, CHB or the like, an electrolyte containing a gas generating agent that generates gas when overcharged, and A battery is known that includes a current cut-off mechanism that cuts off the current flowing through the electrode body when the internal pressure of the battery case exceeds the operating pressure (for example, Patent Document 1).

特開2006−324235号公報JP 2006-324235 A

ところで、ガス発生剤としてCHBのみを含んだ電解液を用いるよりも、CHBに加えてビフェニル(以下、BPともいう)を含んだ電解液を用いた方が多くのガスを発生しうることが判ってきた。これは、先にBPが分解重合して形成された皮膜(以下、ビフェニル由来皮膜、あるいは、BP由来皮膜ともいう)が存在すると、このBP由来皮膜がCHBの分解、及び、これによって生じた生成物同士の反応(重合反応)を促進するためであると考えられる。
しかしながら、電解液中にBP及びCHBを含む電池が過充電状態になる場合において、電池電圧(正極板の電位)の上昇速度が高いと、CHBの分解よりも先にBPを十分に分解し、さらには重合させてBP由来皮膜を生成できない。すると、BP由来皮膜の量が十分でなく、CHBの分解、及び、生成物同士の重合反応を十分に促進できない虞がある。
By the way, it has been found that using an electrolyte containing biphenyl (hereinafter also referred to as BP) in addition to CHB can generate more gas than using an electrolyte containing only CHB as a gas generating agent. I came. This is because, when a film formed by decomposing and polymerizing BP (hereinafter also referred to as a biphenyl-derived film or a BP-derived film) is present, the BP-derived film is decomposed by CHB, and the production caused thereby. This is considered to promote the reaction between the products (polymerization reaction).
However, in the case where the battery containing BP and CHB in the electrolytic solution is in an overcharged state, if the battery voltage (the potential of the positive electrode plate) is increased at a high rate, BP is sufficiently decomposed prior to the decomposition of CHB, Furthermore, it cannot be polymerized to produce a BP-derived film. Then, the amount of the BP-derived film is not sufficient, and there is a possibility that the decomposition reaction of CHB and the polymerization reaction between the products cannot be sufficiently promoted.

本発明は、かかる課題に鑑みてなされたものであって、電解液に添加したCHBを過充電時に効率良く分解及び重合させて、より多くのガスを発生させ、電極体への通電を確実に遮断できる密閉型電池、及び、このような密閉型電池の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and CHB added to the electrolytic solution is efficiently decomposed and polymerized at the time of overcharging to generate more gas and reliably energize the electrode body. It is an object of the present invention to provide a sealed battery that can be shut off and a method for manufacturing such a sealed battery.

本発明の一態様は、電池ケース内に、正極活物質層を含む正極板を有する電極体と、上記電極体に含浸された電解液と、上記電池ケースの内圧が作動圧を超えた場合に、上記電極体を流れる電流を遮断する電流遮断機構と、を備える密閉型電池であって、上記正極板は、ビフェニル由来皮膜を有し、上記電解液は、シクロヘキシルベンゼンを含む密閉型電池である。   In one embodiment of the present invention, an electrode body having a positive electrode plate including a positive electrode active material layer in a battery case, an electrolytic solution impregnated in the electrode body, and an internal pressure of the battery case exceeding an operating pressure A sealed battery including a current blocking mechanism for blocking current flowing through the electrode body, wherein the positive electrode plate has a biphenyl-derived film, and the electrolyte is a sealed battery containing cyclohexylbenzene. .

上述の電池は、正極板に予めビフェニル由来皮膜を形成してあり、電解液はCHBを含んでいる。このため、電池が過充電の状態となった場合、正極板に予め形成したBP由来皮膜により、この正極板付近に存在する電解液中のCHBの分解及び重合によるガス発生を促進でき、多くのガスを電池ケース内に発生させることができる。かくして、過充電時における電極体への通電を電流遮断機構を用いて確実に遮断できる。   In the battery described above, a biphenyl-derived film is formed in advance on the positive electrode plate, and the electrolytic solution contains CHB. For this reason, when the battery is overcharged, the BP-derived film formed in advance on the positive electrode plate can promote gas generation due to decomposition and polymerization of CHB in the electrolyte solution present in the vicinity of the positive electrode plate, Gas can be generated in the battery case. Thus, energization of the electrode body during overcharge can be reliably interrupted using the current interrupt mechanism.

なお、「ビフェニル由来皮膜」とは、BPの分解(酸化分解)により生成した生成物(構造式(1)に示すラジカルカチオン。以下、第1ラジカルカチオンともいう)が重合した膜状の物質(重合体)をいう。具体的には、例えば、構造式(2)〜(4)に示す物質が挙げられる。
なお、BP由来皮膜の種類(組成)を同定する手法として、マトリックス支援レーザー脱離イオン化法(Matrix Assisted Laser Desorption/Ionization, MALDI)を用いた質量分析によって同定する手法が挙げられる。

Figure 2013157139
The “biphenyl-derived film” is a film-like substance obtained by polymerizing a product (radical cation shown in the structural formula (1) (hereinafter also referred to as a first radical cation) generated by decomposition (oxidative decomposition) of BP. Polymer). Specifically, for example, substances shown in structural formulas (2) to (4) can be given.
In addition, as a technique for identifying the type (composition) of the BP-derived film, there is a technique of identifying by mass analysis using a matrix-assisted laser desorption / ionization (MALDI).
Figure 2013157139

また、BP由来皮膜としては、例えば、正極板のうち正極活物質層上や、正極板のうち露出した正極箔上に形成されたものが挙げられる。なお、正極活物質層上にBP由来皮膜を形成すると、このBP由来皮膜は電極体に含浸させた電解液に触れやすく、電解液中のCHBの分解及び重合を確実に促進できるため、露出した正極箔上にBP由来皮膜を形成するよりも好ましい。
また、電流遮断機構としては、例えば、過充電等により電池(電池ケース)の内圧が作動圧以上となった場合に、電流が流れる経路をなす部材の一部が破断したり移動して、電極体を流れる電流の遮断を行う圧力型の電流遮断機構が挙げられる。なお、電流を遮断するのに併せて、ガスを電池の外部に放出して内圧を低下させる機構を設けたものも用いることができる。
Further, examples of the BP-derived film include those formed on the positive electrode active material layer in the positive electrode plate and on the exposed positive electrode foil in the positive electrode plate. In addition, when a BP-derived film was formed on the positive electrode active material layer, the BP-derived film was easily exposed to the electrolytic solution impregnated in the electrode body, and was able to reliably promote the decomposition and polymerization of CHB in the electrolytic solution. It is more preferable than forming a BP-derived film on the positive foil.
In addition, as the current interruption mechanism, for example, when the internal pressure of the battery (battery case) becomes equal to or higher than the operating pressure due to overcharge or the like, a part of the member that forms a path through which the current flows is broken or moved, There is a pressure type current interruption mechanism that cuts off the current flowing through the body. It is also possible to use a device provided with a mechanism for reducing the internal pressure by discharging gas to the outside of the battery in conjunction with cutting off the current.

さらに、本発明の他の一態様は、電池ケース内に、正極活物質層を含む正極板を有する電極体と、上記電極体に含浸された電解液と、上記電池ケースの内圧が作動圧を超えた場合に、上記電極体を流れる電流を遮断する電流遮断機構と、を備え、上記正極板は、ビフェニル由来皮膜を有し、上記電解液は、シクロヘキシルベンゼンを含む密閉型電池の製造方法であって、上記ビフェニル由来皮膜を形成された上記正極板を有する上記電極体を収容した上記電池ケースに、上記電解液を注入する電解液注入工程を備える密閉型電池の製造方法である。   Furthermore, in another aspect of the present invention, an electrode body having a positive electrode plate including a positive electrode active material layer in a battery case, an electrolytic solution impregnated in the electrode body, and an internal pressure of the battery case is an operating pressure. A current interruption mechanism that cuts off the current flowing through the electrode body when exceeded, the positive electrode plate has a biphenyl-derived film, and the electrolytic solution is a method for producing a sealed battery containing cyclohexylbenzene. And it is a manufacturing method of a sealed type battery provided with the electrolyte solution injection | pouring process which inject | pours the said electrolyte solution into the said battery case which accommodated the said electrode body which has the said positive electrode plate in which the said biphenyl origin membrane | film | coat was formed.

上述の電池の製造方法では、BP由来皮膜が形成された正極板を有する電極体を収容した電池ケースに、CHBを含む電解液を注入する電解液注入工程を備える。このため、BP由来皮膜の付近にCHBを容易に届けることができる。   The above-described battery manufacturing method includes an electrolyte solution injection step of injecting an electrolyte solution containing CHB into a battery case containing an electrode body having a positive electrode plate on which a BP-derived film is formed. For this reason, CHB can be easily delivered in the vicinity of the BP-derived film.

さらに、上述の密閉型電池の製造方法であって、前記電解液注入工程に先立って、前記電極体を前記電池ケースに収容する収容工程と、ビフェニルを溶解した溶液を上記電池ケース内に注入し、上記電極体内に含浸させる溶液注入工程と、上記溶液中の上記ビフェニルを用いて、前記正極板の正極活物質層上に前記ビフェニル由来皮膜を形成させる第1皮膜形成工程と、を備える密閉型電池の製造方法とすると良い。   Further, in the above-described sealed battery manufacturing method, prior to the electrolyte solution injection step, a housing step of housing the electrode body in the battery case, and a solution in which biphenyl is dissolved is injected into the battery case. A sealed type comprising: a solution injection step for impregnating the electrode body; and a first film formation step for forming the biphenyl-derived film on the positive electrode active material layer of the positive electrode plate using the biphenyl in the solution. A battery manufacturing method is preferable.

上述の電池の製造方法では、前述した電解液注入工程に先立って、上述の収容工程と溶液注入工程と第1皮膜形成工程とを備える。これにより、BP由来皮膜形成のための特別な設備等を設けなくとも正極板の正極活物質層上にBP由来皮膜を簡易に形成することができる。
また、BP由来皮膜を正極活物質層上に形成するため、電極体に含浸された電解液がBP由来皮膜に接し易く、過充電時に電解液中のCHBの分解及び重合を確実に促進できる電池を製造できる。
The above-described battery manufacturing method includes the above-described accommodation step, solution injection step, and first film formation step prior to the above-described electrolyte injection step. Thereby, it is possible to easily form the BP-derived film on the positive electrode active material layer of the positive electrode plate without providing special equipment for forming the BP-derived film.
In addition, since the BP-derived film is formed on the positive electrode active material layer, the electrolyte impregnated in the electrode body can easily come into contact with the BP-derived film, and the battery can reliably promote the decomposition and polymerization of CHB in the electrolyte during overcharge. Can be manufactured.

なお、前述の第1皮膜形成工程としては、例えば、電池を充電して正極板の電位をBPの分解電位(=4.5V vs.Li/Li+)以上の電位として、溶液に含まれたBPを分解及び重合させて正極活物質層上にBP由来皮膜を形成する手法が挙げられる。 In addition, as the above-mentioned first film formation step, for example, the battery was charged and the potential of the positive electrode plate was included in the solution with a potential equal to or higher than the decomposition potential of BP (= 4.5 V vs. Li / Li + ). There is a method of decomposing and polymerizing BP to form a BP-derived film on the positive electrode active material layer.

あるいは、前述の密閉型電池の製造方法であって、前記電解液注入工程に先立って、作製した前記正極板の正極活物質層上に前記ビフェニル由来皮膜を形成する第2皮膜形成工程と、上記ビフェニル由来皮膜を形成した上記正極板を用いて、前記電極体を作製する電極体作製工程と、上記電極体を前記電池ケースに収容する収容工程と、を備える密閉型電池の製造方法とすると良い。   Or it is a manufacturing method of the above-mentioned closed type battery, Comprising: The 2nd membrane formation process which forms the above-mentioned biphenyl origin membrane on the cathode active material layer of the produced above-mentioned cathode plate prior to the above-mentioned electrolyte solution injection process, It is preferable to use a positive electrode plate on which a biphenyl-derived film is formed, and an electrode body manufacturing step for manufacturing the electrode body and a housing step for storing the electrode body in the battery case. .

上述の電池の製造方法では、前述した電解液注入工程に先立って、上述の第2皮膜形成工程と電極体作製工程と収容工程とを備える。これにより、正極活物質層上にBP由来皮膜を確実に形成した正極板、さらには電池を確実に製造できる。
また、BP由来皮膜を正極活物質層上に形成するため、電極体に含浸された電解液がBP由来皮膜に接し易く、過充電時に電解液中のCHBの分解及び重合を確実に促進できる電池を製造できる。
The above-described battery manufacturing method includes the above-described second film forming step, electrode body manufacturing step, and housing step prior to the above-described electrolyte solution injection step. Thereby, the positive electrode plate which formed the BP origin membrane | film | coat reliably on the positive electrode active material layer, and also the battery can be manufactured reliably.
In addition, since the BP-derived film is formed on the positive electrode active material layer, the electrolyte impregnated in the electrode body can easily come into contact with the BP-derived film, and the battery can reliably promote the decomposition and polymerization of CHB in the electrolyte during overcharge. Can be manufactured.

なお、前述の第2皮膜形成工程としては、例えば、正極板にビフェニルを溶解した溶液を接触させ、この状態で、正極板の電位をBPの分解電位(=4.5V vs.Li/Li+)以上の電位として、溶液に含まれたBPを分解及び重合させて正極活物質層上にBP由来皮膜を形成する手法が挙げられる。なお、ビフェニルを溶解した溶液を正極板に接触させる手法としては、例えば、正極板に溶液を塗布する手法や、正極板を溶液中に浸漬する手法が挙げられる。 In the above-described second film forming step, for example, a solution in which biphenyl is dissolved is brought into contact with the positive electrode plate, and in this state, the potential of the positive electrode plate is changed to the decomposition potential of BP (= 4.5 V vs. Li / Li + ) As the above potential, there is a method of decomposing and polymerizing BP contained in the solution to form a BP-derived film on the positive electrode active material layer. Examples of the method for bringing the solution in which biphenyl is dissolved into contact with the positive electrode plate include a method for applying the solution to the positive electrode plate and a method for immersing the positive electrode plate in the solution.

実施形態,変形形態にかかる電池の斜視図である。It is a perspective view of the battery concerning embodiment and a modification. 実施形態,変形形態にかかる電池の断面図である。It is sectional drawing of the battery concerning embodiment and a modification. 実施形態,変形形態にかかる電池の部分拡大断面図(図2のA部)である。It is a partial expanded sectional view (A section of Drawing 2) of a battery concerning an embodiment and a modification. 実施形態,変形形態の電流遮断機構の説明図である。It is explanatory drawing of the electric current interruption mechanism of embodiment and modification. 実施形態,変形形態にかかる電池の正極板の斜視図である。It is a perspective view of the positive electrode plate of the battery concerning embodiment and a modification. 過充電試験における内圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the internal pressure in an overcharge test. 実施形態,変形形態にかかる電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the battery concerning embodiment and a modification. 実施形態,変形形態にかかる電池の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the battery concerning embodiment and a modification. 実施形態にかかる電池の製造方法の説明図(フローチャート)である。It is explanatory drawing (flowchart) of the manufacturing method of the battery concerning embodiment. 変形形態にかかる電池の製造方法の説明図(フローチャート)である。It is explanatory drawing (flowchart) of the manufacturing method of the battery concerning a modification.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる電池1について説明する。この電池1は、電極体10と、この電極体10に含浸させた電解液50と、これら電極体10及び電解液50を収容する電池ケース80とを備える。さらに、電極体10をなす正極板20(後述)と導通し、電池ケース80の外部まで延出する正極端子構造体60と、電極体10をなす負極板30(後述)と導通し、電池ケース80の外部まで延出する負極端子構造体70とを備える密閉型のリチウムイオン二次電池である(図1参照)。このうち正極端子構造体60は、電池ケース80の内圧Piが作動圧Pfを超えた場合に、電極体10を流れる電流を遮断する電流遮断機構62(後述)を含む。また、電解液50は、シクロヘキシルベンゼン(CHB)51を含んでいる。
なお、電極体10をなす正極板20の正極活物質層21(後述)上には、ビフェニル(BP)を分解及び重合させてできたBP由来皮膜22(後述)が形成されている。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the battery 1 according to the present embodiment will be described. The battery 1 includes an electrode body 10, an electrolytic solution 50 impregnated in the electrode body 10, and a battery case 80 that houses the electrode body 10 and the electrolytic solution 50. Furthermore, it is electrically connected to a positive electrode plate 20 (described later) forming the electrode body 10 and is extended to a positive electrode terminal structure 60 extending to the outside of the battery case 80 and a negative electrode plate 30 (described later) forming the electrode body 10, and the battery case. 80 is a sealed lithium ion secondary battery including a negative electrode terminal structure 70 extending to the outside of 80 (see FIG. 1). Among these, the positive electrode terminal structure 60 includes a current interrupt mechanism 62 (described later) that interrupts the current flowing through the electrode body 10 when the internal pressure Pi of the battery case 80 exceeds the operating pressure Pf. Further, the electrolytic solution 50 includes cyclohexylbenzene (CHB) 51.
A BP-derived film 22 (described later) formed by decomposing and polymerizing biphenyl (BP) is formed on a positive electrode active material layer 21 (described later) of the positive electrode plate 20 constituting the electrode body 10.

これらのうちの電池ケース80は、開口を含むケース本体部材81及び封口蓋82を有する。このうち封口蓋82は、矩形板状であり、ケース本体部材81の開口を閉塞して、このケース本体部材81に溶接されている。   Of these, the battery case 80 includes a case body member 81 including an opening and a sealing lid 82. Among these, the sealing lid 82 has a rectangular plate shape, closes the opening of the case body member 81, and is welded to the case body member 81.

また、負極端子構造体70は、銅からなり、主として電池ケース80の内部に位置する負極内部端子部材71、同じく銅からなり、電池ケース80の外部に位置する負極外部端子部材78、及び、絶縁性樹脂のガスケット79からなる(図2参照)。
このうち、クランク状に屈曲してなる負極外部端子部材78は、先端側にバスバ等をボルト締結する貫通孔78Hを有する。また、ガスケット79は、負極外部端子部材78及び負極内部端子部材71と電池ケース80との間に介在し、これらを絶縁している。
また、負極内部端子部材71は、電池ケース80内で、負極板30の負極リード部38fに接合している一方、電池ケース80の封口蓋82を貫通して、負極外部端子部材78及びガスケット79を封口蓋82にかしめると共に、負極外部端子部材78に導通している。
The negative electrode terminal structure 70 is made of copper, and is mainly composed of a negative electrode internal terminal member 71 located inside the battery case 80, a negative electrode external terminal member 78 also made of copper and located outside the battery case 80, and insulation. It consists of a gasket 79 of a conductive resin (see FIG. 2).
Among these, the negative external terminal member 78 bent in a crank shape has a through hole 78H for fastening a bus bar or the like with a bolt on the tip side. The gasket 79 is interposed between the negative electrode external terminal member 78 and the negative electrode internal terminal member 71 and the battery case 80 to insulate them.
Further, the negative electrode internal terminal member 71 is joined to the negative electrode lead portion 38 f of the negative electrode plate 30 in the battery case 80, while penetrating the sealing lid 82 of the battery case 80, and the negative electrode external terminal member 78 and the gasket 79. Is crimped to the sealing lid 82 and is electrically connected to the negative electrode external terminal member 78.

一方、正極端子構造体60は、主として電池ケース80の内部に位置する正極内部端子構造体61、アルミニウムからなり、電池ケース80の外部に位置する正極外部端子部材68、及び、絶縁性樹脂のガスケット69からなる(図2参照)。なお、電流遮断機構62(後述)は、正極内部端子構造体61に含まれる。
このうち、クランク状に屈曲してなる正極外部端子部材68は、先端側にバスバ等をボルト締結する貫通孔68Hを有する。また、ガスケット69は、正極外部端子部材68及び正極内部端子構造体61と電池ケース80との間に介在し、これらを絶縁している。
On the other hand, the positive electrode terminal structure 60 is mainly composed of a positive electrode internal terminal structure 61 positioned inside the battery case 80, a positive electrode external terminal member 68 positioned outside the battery case 80, and an insulating resin gasket. 69 (see FIG. 2). A current interrupt mechanism 62 (described later) is included in the positive electrode internal terminal structure 61.
Among these, the positive external terminal member 68 bent in a crank shape has a through hole 68H for fastening a bus bar or the like with a bolt on the tip side. The gasket 69 is interposed between the positive electrode external terminal member 68 and the positive electrode internal terminal structure 61 and the battery case 80 to insulate them.

また、正極内部端子構造体61は、図2,3に示すように、いずれもアルミニウムからなる、正極集電部材63と、平板状のダイヤフラム64と、矩形凹状の中継部材65と、かしめ部材67とを有する。また、樹脂(ポリエチレン)からなり、正極集電部材63の次述する本体部63Xを包囲する包囲部材66を有する。
このうち、かしめ部材67は、封口蓋82の貫通孔82Hを貫通してかしめ変形されて、中継部材65、正極外部端子部材68及びガスケット69を封口蓋82に結合している。かつ、これと共に、中継部材65と正極外部端子部材68とを電気的に導通している。
As shown in FIGS. 2 and 3, the positive electrode internal terminal structure 61 includes a positive electrode current collecting member 63, a flat diaphragm 64, a rectangular concave relay member 65, and a caulking member 67, all of which are made of aluminum. And have. Moreover, it has the surrounding member 66 which consists of resin (polyethylene) and surrounds the main-body part 63X which the positive electrode current collection member 63 mentions next.
Among these, the caulking member 67 is caulked and deformed through the through hole 82H of the sealing lid 82, and the relay member 65, the positive external terminal member 68, and the gasket 69 are coupled to the sealing lid 82. At the same time, the relay member 65 and the positive external terminal member 68 are electrically connected.

また、正極集電部材63は、図7(a)に示すような、矩形板状の本体部63Xと、この本体部63Xから図7(a)中、下方に延出している帯板状の集電部63Yとからなる。このうち、集電部63Yは、正極板20の正極リード部28fに接合している(図2参照)。また、本体部63Xには、この本体部63X自身を貫通する2つの貫通孔63H,63Hが形成されている。さらに、図7(b)に示すように、この本体部63Xを包囲部材66で包囲した状態で、2つの貫通孔63H、63Hの間には、本体部63Xの一部である露出部63Aが包囲部材66から露出している。   Further, the positive electrode current collecting member 63 has a rectangular plate-like main body portion 63X as shown in FIG. 7A, and a belt-plate-like member extending downward from the main body portion 63X in FIG. 7A. And a current collector 63Y. Among these, the current collector 63Y is joined to the positive electrode lead portion 28f of the positive electrode plate 20 (see FIG. 2). The main body 63X is formed with two through holes 63H and 63H that pass through the main body 63X itself. Further, as shown in FIG. 7B, in a state where the main body portion 63X is surrounded by the surrounding member 66, an exposed portion 63A which is a part of the main body portion 63X is interposed between the two through holes 63H and 63H. It is exposed from the surrounding member 66.

また、包囲部材66は、正極集電部材63の貫通孔63Hを被覆してなる貫通孔66Hを有している(図3参照)。このため、貫通孔66Hを通じて、ダイヤフラム64に電池ケース80の内圧Piがかかる。   Moreover, the surrounding member 66 has the through-hole 66H formed by covering the through-hole 63H of the positive electrode current collecting member 63 (see FIG. 3). For this reason, the internal pressure Pi of the battery case 80 is applied to the diaphragm 64 through the through hole 66H.

また、中継部材65は、その周縁部65Eにおいて、ダイヤフラム64の周縁部64Eと気密に接合している。これにより、中継部材65とダイヤフラム64とかしめ部材67とは空間Cを形成している(図3参照)。なお、本実施形態では、この空間Cは、かしめ部材67の貫通孔67Hを通じて、電池ケース80の外部と連通しているため、この空間C内は大気圧になっている。   Further, the relay member 65 is airtightly joined to the peripheral edge portion 64E of the diaphragm 64 at the peripheral edge portion 65E. As a result, the relay member 65, the diaphragm 64, and the caulking member 67 form a space C (see FIG. 3). In the present embodiment, the space C communicates with the outside of the battery case 80 through the through hole 67H of the caulking member 67, so that the space C is at atmospheric pressure.

また、ダイヤフラム64は、上述した正極集電部材63の本体部63X側に突出して、正極集電部材63の露出部63Aに当接する接触部64Aと、U字状に屈曲してなり、包囲部材66の貫通孔66Hよりも外側で接触部64Aを環状に囲む屈曲部64Dとを有する(図3,4,8参照)。なお、このダイヤフラム64のうち、接触部64Aを含む、屈曲部64Dに囲まれた部位は、屈曲部64Dの変形により、図3,4中、上方向に移動可能となっている。   The diaphragm 64 protrudes toward the main body 63X side of the positive current collector 63 described above, and is bent into a U-shape with a contact portion 64A that contacts the exposed portion 63A of the positive current collector 63. And a bent portion 64D that annularly surrounds the contact portion 64A outside the through hole 66H (see FIGS. 3, 4, and 8). Of the diaphragm 64, the portion surrounded by the bent portion 64D including the contact portion 64A is movable upward in FIGS. 3 and 4 by deformation of the bent portion 64D.

なお、本実施形態にかかる電池1では、上述した正極内部端子構造体61のうち、正極集電部材63、ダイヤフラム64、中継部材65及び包囲部材66が、電流遮断機構62をなしており、電池ケース80の内圧Piが上がった場合に、電極体10を流れる電流の遮断を行う。具体的には、例えば、電池1への過充電により、電池ケース80の内圧Piが上昇して作動圧Pf以上となった場合を考える。この場合、図4に示すように、包囲部材66の貫通孔66Hと正極集電部材63における本体部63Xの貫通孔63Hを通じて、ダイヤフラム64には、図4中、下方から電池1の内圧Piがかかる。この内圧Piが作動圧Pfを超えた場合(Pi>Pf)には、空間Cとの気圧差により、ダイヤフラム64が、図4中、上方へ持ち上がる。これにより、ダイヤフラム64の接触部64Aが、正極集電部材63の露出部63Aから離間するので、(正極外部端子部材68)−(かしめ部材67)−(中継部材65)−(ダイヤフラム64)−(正極集電部材63)の経路で電極体10に流れる電流が遮断されて、電池1の充電(過充電)が停止される。   In the battery 1 according to the present embodiment, the positive electrode current collecting member 63, the diaphragm 64, the relay member 65, and the surrounding member 66 of the positive electrode internal terminal structure 61 described above constitute the current interruption mechanism 62. When the internal pressure Pi of the case 80 increases, the current flowing through the electrode body 10 is interrupted. Specifically, for example, a case is considered where the internal pressure Pi of the battery case 80 rises to the operating pressure Pf or higher due to overcharging of the battery 1. In this case, as shown in FIG. 4, the internal pressure Pi of the battery 1 is applied to the diaphragm 64 from below in FIG. 4 through the through hole 66 </ b> H of the surrounding member 66 and the through hole 63 </ b> H of the main body 63 </ b> X of the positive electrode current collector 63. Take it. When the internal pressure Pi exceeds the operating pressure Pf (Pi> Pf), the diaphragm 64 is lifted upward in FIG. As a result, the contact portion 64A of the diaphragm 64 is separated from the exposed portion 63A of the positive electrode current collecting member 63, so that (positive electrode external terminal member 68)-(caulking member 67)-(relay member 65)-(diaphragm 64)- The current flowing through the electrode body 10 is cut off through the path of the (positive electrode current collecting member 63), and charging (overcharge) of the battery 1 is stopped.

一方、電極体10は、帯状の正極板20及び負極板30が、ポリエチレンからなる帯状のセパレータ(図示しない)を介して扁平形状に捲回されてなる(図1参照)。なお、この電極体10の正極板20は前述した正極内部端子構造体61(正極集電部材63)と、負極板30は前述した負極内部端子部材71とそれぞれ接合している(図2参照)。   On the other hand, the electrode body 10 is formed by winding a belt-like positive electrode plate 20 and a negative electrode plate 30 into a flat shape via a belt-like separator (not shown) made of polyethylene (see FIG. 1). The positive electrode plate 20 of the electrode body 10 is joined to the above-described positive electrode internal terminal structure 61 (positive electrode current collecting member 63), and the negative electrode plate 30 is joined to the above-described negative electrode internal terminal member 71 (see FIG. 2). .

電極体10の負極板30は、帯状の負極箔(図示しない)のうち、一方辺に沿う負極リード部38fを残して、その両面に負極活物質層(図示しない)を担持してなる。
また、正極板20は、帯状の正極箔28と、この正極箔28の両主面上に形成した正極活物質層21,21と、この正極活物質層21上に形成されたBP由来皮膜22とを有する(図5参照)。この正極板20では、図5に示すように、正極箔28の、長手方向DAに延びる一方辺に沿って正極活物質層21が配置されている。また、正極箔28の他方辺に沿って、正極活物質層21から正極箔28が露出する正極リード部28fがなされている。
The negative electrode plate 30 of the electrode body 10 carries a negative electrode active material layer (not shown) on both sides of the strip-like negative electrode foil (not shown), leaving a negative electrode lead portion 38f along one side.
The positive electrode plate 20 includes a strip-shaped positive electrode foil 28, positive electrode active material layers 21 and 21 formed on both main surfaces of the positive electrode foil 28, and a BP-derived film 22 formed on the positive electrode active material layer 21. (See FIG. 5). In this positive electrode plate 20, as shown in FIG. 5, the positive electrode active material layer 21 is disposed along one side of the positive electrode foil 28 extending in the longitudinal direction DA. In addition, a positive electrode lead portion 28 f where the positive electrode foil 28 is exposed from the positive electrode active material layer 21 is formed along the other side of the positive electrode foil 28.

この正極板20のBP由来皮膜22は、ビフェニル(BP)の分解(酸化分解)及び重合により形成された膜状の物質(重合体)である。このBP由来皮膜22は、例えば、BPを溶解させた溶液を正極板20の正極活物質層21に接触させ、電極体10内に含浸させた電池1において、正極板20の電位をBPの分解電位(=4.5V vs.Li/Li+)以上として形成する。BPが分解(酸化分解)すると、前述した構造式(1)を有する第1ラジカルカチオンとなる。この第1ラジカルカチオンは不安定であり、第1ラジカルカチオン同士間で重合してBP由来皮膜22(及びプロトン(H+))が生成される。
なお、本実施形態かかる電池1では、BP由来皮膜22を、後述する皮膜形成工程によって正極板20のうち正極活物質層21上に形成する。
The BP-derived film 22 of the positive electrode plate 20 is a film-like substance (polymer) formed by decomposition (oxidative decomposition) and polymerization of biphenyl (BP). For example, in the battery 1 in which a solution in which BP is dissolved is brought into contact with the positive electrode active material layer 21 of the positive electrode plate 20 and the electrode body 10 is impregnated, the potential of the positive electrode plate 20 is decomposed into BP. It is formed with a potential (= 4.5 V vs. Li / Li + ) or higher. When BP decomposes (oxidative decomposition), it becomes the first radical cation having the structural formula (1) described above. This first radical cation is unstable and polymerizes between the first radical cations to generate the BP-derived film 22 (and proton (H + )).
In the battery 1 according to the present embodiment, the BP-derived film 22 is formed on the positive electrode active material layer 21 in the positive electrode plate 20 by a film forming process described later.

また、電解液50は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを、体積比でEC:DMC:EMC=3:4:3に調製した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1.1mol/lの濃度とした有機電解液である。加えて、この電解液50には、シクロヘキシルベンゼン(CHB)51が外割りで2wt%添加されている。 In addition, the electrolytic solution 50 was prepared by mixing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) with a volume ratio of EC: DMC: EMC = 3: 4: 3 to a mixed organic solvent. It is an organic electrolytic solution in which LiPF 6 is added as a solute and the concentration of lithium ions is 1.1 mol / l. In addition, 2 wt% of cyclohexylbenzene (CHB) 51 is added to the electrolytic solution 50 on an external basis.

このCHB51は、正極板20の電位が分解電位(=4.7V vs.Li/Li+)以上になると酸化分解及び重合してガスを発生する。
具体的には、正極板20(正極活物質層21)の電位がCHB51の分解電位以上になると、電解液50に含まれるCHB51のうち正極板20付近に位置するものが、分解(酸化分解)されてラジカルカチオン(構造式(5)を参照。以下、第2ラジカルカチオンともいう)になる。さらに、この第2ラジカルカチオン同士間で重合反応が進行しプロトン(H+)及び重合皮膜が生成される。そして、このうちのプロトンが、負極板30付近の電解液50に移動して水素ガスとなり、電池ケース80内に充満する。

Figure 2013157139
The CHB 51 generates gas by oxidative decomposition and polymerization when the potential of the positive electrode plate 20 becomes equal to or higher than the decomposition potential (= 4.7 V vs. Li / Li + ).
Specifically, when the potential of the positive electrode plate 20 (the positive electrode active material layer 21) becomes equal to or higher than the decomposition potential of the CHB 51, the CHB 51 contained in the electrolytic solution 50 is located near the positive electrode plate 20 for decomposition (oxidative decomposition). It becomes a radical cation (see structural formula (5), hereinafter also referred to as a second radical cation). Furthermore, a polymerization reaction proceeds between the second radical cations to generate protons (H + ) and a polymer film. Of these, protons move to the electrolyte solution 50 in the vicinity of the negative electrode plate 30 to become hydrogen gas, which fills the battery case 80.
Figure 2013157139

なお、上述したCHB51の分解電位は、本実施形態にかかる電池1の満充電(電池1の充電状態(SOC)がSOC100%)時の正極板20の正極電位(4.1V vs.Li/Li+)よりも高い。このため、電池1が過充電状態となり、なかでも正極電位がCHB51の分解電位以上となった場合に、CHB51の分解によりガスが発生する。 Note that the above-described decomposition potential of CHB 51 is the positive electrode potential (4.1 V vs. Li / Li) of the positive electrode plate 20 when the battery 1 according to the present embodiment is fully charged (the charged state (SOC) of the battery 1 is SOC 100%). + ) Higher than. For this reason, when the battery 1 is overcharged and the positive electrode potential becomes equal to or higher than the decomposition potential of CHB51, gas is generated due to decomposition of CHB51.

ところで、本実施形態にかかる電池1について、過充電をし続けた場合における電池の内圧Piの変化を調べた。
具体的には、前述した電池1と同様の正極板20、負極板30、セパレータ(図示しない)を円柱形状に捲回した電極体を、電解液50と共に電池ケースに収容して作製した18650型の電池(実施例の電池)を用意した。なお、電池ケース内には、内圧Piを測定する既知の圧力センサを配置している。
この実施例の電池を一旦満充電にした後、過充電試験、即ち、25℃の温度環境下で、定電流(1C)で36分間充電(過充電)操作を行った(SOC160%に相当)。そして、この過充電試験中の内圧Piの変化を調べた。結果について図6のグラフに示す。
By the way, about the battery 1 concerning this embodiment, the change of the internal pressure Pi of a battery in the case of continuing overcharge was investigated.
Specifically, the 18650 type produced by accommodating a positive electrode plate 20, a negative electrode plate 30, and a separator (not shown) similar to the battery 1 described above in a cylindrical shape together with an electrolytic solution 50 in a battery case. The battery (battery of an Example) was prepared. A known pressure sensor for measuring the internal pressure Pi is arranged in the battery case.
After the battery of this example was fully charged, an overcharge test, that is, a charge (overcharge) operation was performed for 36 minutes at a constant current (1 C) in a temperature environment of 25 ° C. (corresponding to SOC 160%) . And the change of the internal pressure Pi during this overcharge test was investigated. The results are shown in the graph of FIG.

一方、比較例1〜3の電池として、正極活物質層21上等にBP由来皮膜22を形成していない正極板を用いた電池を用意した。但し、比較例1の電池には、電解液として、BPを外割りで3wt%含む電解液を注液してある。また、比較例2の電池には、電解液として、CHBを外割りで3wt%含む電解液を注液してある。また、比較例3の電池には、電解液として、BPを外割りで1.5wt%、及び、CHBを外割りで1.5wt%含む電解液が注液してある。
これら比較例1〜3の各電池を満充電にした後、実施例の電池と同様に過充電試験を行い、この間の内圧Piの変化を調べた。結果について図6のグラフに示す。
なお、図6のグラフにおいて、実施例の電池の測定結果は太線で、比較例1は破線で、比較例2は一点鎖線で、比較例3は実線でそれぞれ示している。また、電流遮断機構62の作動圧Pfは二点鎖線で示している。
On the other hand, as batteries of Comparative Examples 1 to 3, batteries using a positive electrode plate on which the BP-derived film 22 was not formed on the positive electrode active material layer 21 or the like were prepared. However, the battery of Comparative Example 1 was injected with an electrolyte containing 3 wt% of BP as an electrolyte. In addition, the battery of Comparative Example 2 was injected with an electrolytic solution containing 3 wt% of CHB as an electrolytic solution. In addition, the battery of Comparative Example 3 is injected with an electrolytic solution containing 1.5 wt% of BP as an electrolytic solution and 1.5 wt% of CHB as an electrolytic solution.
After each of the batteries of Comparative Examples 1 to 3 was fully charged, an overcharge test was performed in the same manner as the battery of the example, and changes in the internal pressure Pi during this period were examined. The results are shown in the graph of FIG.
In the graph of FIG. 6, the measurement results of the battery of the example are indicated by bold lines, the comparative example 1 is indicated by a broken line, the comparative example 2 is indicated by a one-dot chain line, and the comparative example 3 is indicated by a solid line. The operating pressure Pf of the current interrupt mechanism 62 is indicated by a two-dot chain line.

図6によれば、比較例2の電池では、その内圧Piが過充電試験を開始してから約20分経過した(SOCがSOC約133%になった)頃から上昇し始め、その後も徐々に上昇する。しかし、36分間の過充電試験の間に、前述した電流遮断機構62の作動圧Pfを超えられないことが判る。これは、CHBの分解電位が高く、かつ、CHB単体では分解及び重合が十分に進行しないためであると考えられる。   According to FIG. 6, in the battery of Comparative Example 2, the internal pressure Pi started to increase from about 20 minutes after the start of the overcharge test (SOC reached about 133% SOC), and gradually thereafter. To rise. However, it can be seen that the operating pressure Pf of the current interruption mechanism 62 cannot be exceeded during the 36-minute overcharge test. This is considered to be because the decomposition potential of CHB is high, and decomposition and polymerization do not proceed sufficiently with CHB alone.

一方、比較例1の電池では、比較例2より早い過充電試験の開始から約12分経過した(SOC約120%になった)頃から、その内圧Piが上昇し始める。そして、開始から約19分経過(SOC約132%になった)頃から急激に上昇して、開始から約22分経過後に電流遮断機構62の作動圧Pfを超える。
これらから、分解電位がBPよりも高いCHBをガス発生剤として用いると、BPを用いた場合よりも過充電時にガスの発生が遅れることが判る。また、電解液に外割りで3wt%のCHBを含めた比較例2の電池では、過充電となっても、電流遮断機構62の作動圧Pfに到達させるのに十分な量のガスを発生できないことが判る。
On the other hand, in the battery of Comparative Example 1, the internal pressure Pi starts to increase from about 12 minutes after the start of the overcharge test earlier than Comparative Example 2 (SOC becomes about 120%). Then, it rises rapidly from about 19 minutes after the start (SOC becomes about 132%), and exceeds the operating pressure Pf of the current interrupt mechanism 62 after about 22 minutes from the start.
From these, it can be seen that when CHB having a decomposition potential higher than that of BP is used as a gas generating agent, the generation of gas is delayed during overcharging as compared with the case of using BP. In addition, in the battery of Comparative Example 2 in which 3% by weight of CHB is included in the electrolyte, the amount of gas sufficient to reach the operating pressure Pf of the current interrupt mechanism 62 cannot be generated even when overcharged. I understand that.

また、比較例3の電池では、その内圧Piが、比較例1と同じく、過充電試験を開始してから約12分経過した(SOC約120%になった)頃から上昇し始める。そして、開始から約20分経過(SOC約133%になった)頃から急激に上昇して、開始から約24分後に電流遮断機構62の作動圧Pfを超える。加えて、比較例1の電池と比較すると、比較例3の電池は、過充電試験の開始から約26分経過以降、過充電試験終了までの間、その電池の内圧Piを比較例1の電池の内圧Piよりも高くできることが判る。   Further, in the battery of Comparative Example 3, as in Comparative Example 1, the internal pressure Pi starts to rise from about 12 minutes after the start of the overcharge test (SOC becomes about 120%). Then, about 20 minutes have elapsed from the start (SOC has become about 133%), the temperature suddenly increases, and after about 24 minutes from the start, the operating pressure Pf of the current interrupt mechanism 62 is exceeded. In addition, when compared with the battery of Comparative Example 1, the battery of Comparative Example 3 has the internal pressure Pi of the battery of Comparative Example 1 after about 26 minutes from the start of the overcharge test until the end of the overcharge test. It can be seen that it can be higher than the internal pressure Pi.

比較例1では、正極板の電位がBPの分解電位を超えるとBPの分解(酸化分解)及び重合によりガスが発生する。しかし、比較例3では、BPの酸化分解及び重合によってBP由来皮膜が正極活物質層21上に生成され始めると、正極活物質層21付近に存在するCHBの分解(酸化分解)及び重合が促進されるため、BPに起因するガスに加えて、CHBに起因するガスも発生する。このため、過充電開始から約26分経過した以降は、比較例1の電池に比べて、比較例3の電池の内圧Piが高くなったと考えられる。   In Comparative Example 1, when the potential of the positive electrode plate exceeds the decomposition potential of BP, gas is generated due to decomposition (oxidative decomposition) and polymerization of BP. However, in Comparative Example 3, when a BP-derived film starts to be formed on the positive electrode active material layer 21 by BP oxidative decomposition and polymerization, decomposition (oxidative decomposition) and polymerization of CHB existing in the vicinity of the positive electrode active material layer 21 are accelerated. Therefore, in addition to the gas due to BP, gas due to CHB is also generated. For this reason, it is considered that the internal pressure Pi of the battery of Comparative Example 3 was higher than that of the battery of Comparative Example 1 after about 26 minutes had elapsed since the start of overcharge.

一方、実施例の電池は、過充電試験の開始から約12分経過した(SOC約120%になった)頃から内圧Piが上昇し始める。そして、開始から約16分経過(SOC約123%になった)頃から急激に上昇して、開始から約19分経過後に電流遮断機構62の作動圧Pfを超える。つまり、実施例の電池は、比較例1〜3のいずれの電池よりも早く内圧Piが作動圧Pfに到達した。
実施例の電池では、正極板20上に予めBP由来皮膜22を形成しているため、このBP由来皮膜22が電解液50に含まれるCHBの酸化分解及び重合反応を促進するためであると考えられる。このため、CHBよりも分解電位の低いBPを用いた比較例1よりも早期に内圧Piが上昇し始めている。
また、実施例と比較例3とを比べると、ほぼ同じタイミングで内圧Piが上昇し始めているが、内圧Piが急激に上昇する時期は、実施例の方が比較例3よりも早い。これは、電池内(正極板20)に予めBP由来皮膜22が存在するので、比較例3よりも多くのCHBについてガス発生を促進できるためであると考えられる。
On the other hand, in the battery of the example, the internal pressure Pi starts to increase from about 12 minutes after the start of the overcharge test (SOC becomes about 120%). Then, about 16 minutes have passed since the start (SOC has become about 123%), and then suddenly rises, and after about 19 minutes from the start, the operating pressure Pf of the current interrupt mechanism 62 is exceeded. That is, in the battery of the example, the internal pressure Pi reached the operating pressure Pf earlier than any of the batteries of Comparative Examples 1 to 3.
In the battery of the example, since the BP-derived film 22 is formed in advance on the positive electrode plate 20, it is considered that this BP-derived film 22 promotes the oxidative decomposition and polymerization reaction of CHB contained in the electrolytic solution 50. It is done. For this reason, the internal pressure Pi begins to rise earlier than Comparative Example 1 using BP having a lower decomposition potential than CHB.
Further, when the example and the comparative example 3 are compared, the internal pressure Pi starts to increase at almost the same timing, but the time of the internal pressure Pi increasing rapidly is earlier in the example than in the comparative example 3. This is considered to be because gas generation can be promoted for more CHBs than Comparative Example 3 because the BP-derived film 22 exists in advance in the battery (positive electrode plate 20).

以上で説明したように、本実施形態(実施例)にかかる電池1は、正極板20に予めビフェニル由来皮膜22を形成してあり、電解液50はCHB51を含んでいる。このため、電池1が過充電の状態となった場合、正極板20に予め形成したBP由来皮膜22により、この正極板20付近に存在する電解液50中のCHB51の分解及び重合によるガス発生を促進でき、多くのガスを電池ケース80内に発生させることができる。かくして、過充電時における電極体10への通電を電流遮断機構62を用いて確実に遮断できる。   As described above, in the battery 1 according to this embodiment (example), the biphenyl-derived film 22 is formed on the positive electrode plate 20 in advance, and the electrolytic solution 50 includes CHB 51. For this reason, when the battery 1 is in an overcharged state, the BP-derived film 22 formed in advance on the positive electrode plate 20 causes gas generation due to decomposition and polymerization of the CHB 51 in the electrolyte solution 50 present in the vicinity of the positive electrode plate 20. It can be promoted and a lot of gas can be generated in the battery case 80. Thus, energization of the electrode body 10 during overcharge can be reliably interrupted using the current interrupt mechanism 62.

次に、実施形態にかかる電池1の製造方法について、図面を参照しつつ説明する。
まず、前述したBP由来皮膜22を形成する前の正極板20、及び、負極板30を公知の手法でそれぞれ作製する。そして、これら正極板20と負極板30との間にセパレータ(図示しない)を介在させ、これらを捲回して扁平捲回型の電極体10とした(図1参照)。
Next, a method for manufacturing the battery 1 according to the embodiment will be described with reference to the drawings.
First, the positive electrode plate 20 and the negative electrode plate 30 before forming the above-described BP-derived film 22 are respectively produced by a known method. Then, a separator (not shown) was interposed between the positive electrode plate 20 and the negative electrode plate 30, and these were wound to form a flat wound electrode body 10 (see FIG. 1).

一方、図7(a)に示す正極集電部材63の本体部63Xを、絶縁樹脂部材からなる包囲部材66で被覆する。具体的には、正極集電部材63の本体部63Xを2つの板状の絶縁樹脂部材66A,66Bで挟み、これらを接着して固定する。なお、2つの板状の絶縁樹脂部材66A,66Bには、本体部63Xの貫通孔63Hに重なる位置、及び、これらの中間の位置に、それぞれ貫通孔を有している。このため、できあがった包囲部材66が2つの貫通孔66H,66Hを有すると共に、正極集電部材63の露出部63Aがその包囲部材66から露出する(図7(b)参照)。   On the other hand, the main body 63X of the positive electrode current collector 63 shown in FIG. 7A is covered with an enclosing member 66 made of an insulating resin member. Specifically, the main body portion 63X of the positive electrode current collecting member 63 is sandwiched between two plate-like insulating resin members 66A and 66B, and these are bonded and fixed. Note that the two plate-like insulating resin members 66A and 66B have through-holes at a position overlapping with the through-hole 63H of the main body 63X and an intermediate position therebetween. For this reason, the completed surrounding member 66 has two through holes 66H and 66H, and the exposed portion 63A of the positive electrode current collecting member 63 is exposed from the surrounding member 66 (see FIG. 7B).

また、図8に示すように、ガスケット69を配置した封口蓋82において、中継部材65、正極外部端子部材68及びガスケット69を封口蓋82にかしめる。具体的には、一方の先端が径方向に拡げられていない、アルミニウム製のリベット67Bを、中継部材65、ガスケット69(封口蓋82)及び正極外部端子部材68の順に挿通させる。次いで、公知の手法を用いて、リベット67Bの先端を径方向に拡げて、これら中継部材65、正極外部端子部材68及びガスケット69を封口蓋82にかしめた。その後、中継部材65の周縁部65Eとダイヤフラム64の周縁部64Eとを重ね合わせて、これらを溶接した。   As shown in FIG. 8, the relay member 65, the positive electrode external terminal member 68, and the gasket 69 are caulked to the sealing lid 82 in the sealing lid 82 on which the gasket 69 is disposed. Specifically, an aluminum rivet 67B whose one end is not expanded in the radial direction is inserted through the relay member 65, the gasket 69 (sealing lid 82), and the positive electrode external terminal member 68 in this order. Next, using a known method, the tip of the rivet 67B was expanded in the radial direction, and the relay member 65, the positive external terminal member 68, and the gasket 69 were caulked to the sealing lid 82. Thereafter, the peripheral edge portion 65E of the relay member 65 and the peripheral edge portion 64E of the diaphragm 64 were overlapped and welded.

次いで、図7(b)に示す正極集電部材63の集電部63Yを、電極体10の正極板20の正極リード部28fに溶接した。そして、正極集電部材63の露出部63Aを、ダイヤフラム64の接触部64Aに接触するように接続させて、ダイヤフラム64の周縁部64Eを包囲部材66に接着し固定した。かくして、正極端子構造体60が完成し、正極内部端子構造体61(正極集電部材63,ダイヤフラム64,中継部材65,かしめ部材67)を通じて、正極外部端子部材68と電極体10の正極板20とが導通する(図1〜3参照)。
一方、公知の手法で電極体10の負極板30(負極リード部38f)に負極内部端子部材71を溶接した。さらに、公知の手法で、負極内部端子部材71、負極外部端子部材78及びガスケット79を封口蓋82にかしめ、前述した負極端子構造体70を作製した(図2参照)。これにより、負極内部端子部材71を通じて、電極体10の負極板30と負極外部端子部材78とが導通する(図1,2参照)。
なお、この時点で、電極体10は、上述した正極端子構造体60、負極端子構造体70及び封口蓋82と一体になっている。
Next, the current collecting portion 63Y of the positive electrode current collecting member 63 shown in FIG. 7B was welded to the positive electrode lead portion 28f of the positive electrode plate 20 of the electrode body 10. Then, the exposed portion 63A of the positive electrode current collecting member 63 was connected so as to contact the contact portion 64A of the diaphragm 64, and the peripheral portion 64E of the diaphragm 64 was adhered and fixed to the surrounding member 66. Thus, the positive electrode terminal structure 60 is completed, and the positive electrode external terminal member 68 and the positive electrode plate 20 of the electrode body 10 are passed through the positive electrode internal terminal structure 61 (the positive electrode current collecting member 63, the diaphragm 64, the relay member 65, and the caulking member 67). And conduct (see FIGS. 1 to 3).
On the other hand, the negative electrode internal terminal member 71 was welded to the negative electrode plate 30 (negative electrode lead portion 38f) of the electrode body 10 by a known method. Further, the negative electrode internal terminal member 71, the negative electrode external terminal member 78, and the gasket 79 were caulked to the sealing lid 82 by a known method, and the negative electrode terminal structure 70 described above was produced (see FIG. 2). Thereby, the negative electrode plate 30 of the electrode body 10 and the negative electrode external terminal member 78 are conducted through the negative electrode internal terminal member 71 (see FIGS. 1 and 2).
At this point, the electrode body 10 is integrated with the positive electrode terminal structure 60, the negative electrode terminal structure 70, and the sealing lid 82 described above.

次いで、本実施形態にかかる電池1の製造方法のうちの収容工程について説明する(図9参照)。
この工程は、電極体10を電池ケース80に収容する工程である。具体的には、封口蓋82、正極端子構造体60及び負極端子構造体70と一体の電極体10をケース本体部材81内に収容する。そして、封口蓋82でケース本体部材81の開口を塞ぎ、レーザ溶接を用いてこれらケース本体部材81と封口蓋82とを隙間なく接合する。かくして、内部に電極体10を収容した電池ケース80ができあがる。
Next, a housing step in the method for manufacturing the battery 1 according to the present embodiment will be described (see FIG. 9).
This step is a step of housing the electrode body 10 in the battery case 80. Specifically, the electrode body 10 integrated with the sealing lid 82, the positive electrode terminal structure 60, and the negative electrode terminal structure 70 is accommodated in the case body member 81. Then, the opening of the case main body member 81 is closed with the sealing lid 82, and the case main body member 81 and the sealing lid 82 are joined without gaps using laser welding. Thus, a battery case 80 in which the electrode body 10 is accommodated is completed.

続いて、本実施形態にかかる電池1の製造方法のうちの溶液注入工程について説明する(図9参照)。この工程では、ビフェニルを溶解した溶液(図示しない)を電池ケース80内に注入し、電池ケース80に収容した電極体10内に含浸させる。なお、この溶液注入工程に用いる溶液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを、体積比でEC:DMC:EMC=3:4:3に調製した溶媒に、ビフェニル粒子を外割りで3wt%溶かした溶液である。
具体的には、まず、電池ケース80(封口蓋82)の注液孔(図示しない)から、上述した溶液を注入する。その後、電池ケース80内を負圧及び正圧を数回繰り返して、注入した溶液を電極体10に含浸させる。なお、電極体10への溶液を含浸が終了したら、注液孔を一旦封止(仮封止)する。
Next, a solution injection step in the method for manufacturing the battery 1 according to the present embodiment will be described (see FIG. 9). In this step, a solution (not shown) in which biphenyl is dissolved is injected into the battery case 80 and impregnated in the electrode body 10 accommodated in the battery case 80. In addition, the solution used for this solution injection | pouring process is a solvent which prepared ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) by volume ratio EC: DMC: EMC = 3: 4: 3. In addition, it is a solution in which biphenyl particles are dissolved in an external ratio of 3 wt%.
Specifically, first, the above-described solution is injected from a liquid injection hole (not shown) of the battery case 80 (sealing lid 82). Thereafter, negative pressure and positive pressure are repeated several times in the battery case 80 to impregnate the electrode body 10 with the injected solution. When the impregnation of the solution into the electrode body 10 is completed, the liquid injection hole is once sealed (temporarily sealed).

次いで、本実施形態にかかる電池1の製造方法のうち皮膜形成工程について説明する(図9参照)。なお、本実施形態にかかる皮膜形成工程は、第1皮膜形成工程に相当する。
この工程は、上述した溶液に溶けているビフェニルを用いて、電極体10の正極板20の正極活物質層21上にBP由来皮膜22を形成させる工程である。具体的には、上述の溶液注入工程後に、既知の電源装置(図示しない)を用いて、電極体10の正極板20の電位を、BPの分解電位(=4.5V vs.Li/Li+)以上の電位に20時間保持した。かくして、正極板20(正極活物質層21)付近で、溶液に溶けているビフェニルを分解(酸化分解)及び重合させて、正極板20の正極活物質層21上にBP由来皮膜22を形成させる。
Next, the film formation step in the method for manufacturing the battery 1 according to the present embodiment will be described (see FIG. 9). In addition, the film formation process concerning this embodiment is corresponded to a 1st film formation process.
This step is a step of forming the BP-derived film 22 on the positive electrode active material layer 21 of the positive electrode plate 20 of the electrode body 10 using biphenyl dissolved in the above-described solution. Specifically, after the above-described solution injection step, the potential of the positive electrode plate 20 of the electrode body 10 is changed to the decomposition potential of BP (= 4.5 V vs. Li / Li + using a known power supply device (not shown). ) The above potential was maintained for 20 hours. Thus, in the vicinity of the positive electrode plate 20 (positive electrode active material layer 21), biphenyl dissolved in the solution is decomposed (oxidative decomposition) and polymerized to form the BP-derived film 22 on the positive electrode active material layer 21 of the positive electrode plate 20. .

上述した皮膜形成工程の後、注液孔から電池ケース80内の溶液を排出する(図9に記載の溶液排出工程)。なお、この溶液排出工程の後、次述する電解液注入工程を行っても良いし、例えば、溶液排出工程の後、電解液注入工程に先立ち、前述した溶媒を用いて、電池ケース80の内側、及び、電極体10を洗浄しても良い。   After the film formation step described above, the solution in the battery case 80 is discharged from the injection hole (solution discharge step shown in FIG. 9). In addition, after the solution discharging step, an electrolyte solution injection step described below may be performed. For example, after the solution discharging step, prior to the electrolyte solution injection step, the inside of the battery case 80 may be formed using the above-described solvent. The electrode body 10 may be cleaned.

続いて、本実施形態にかかる電池1の製造方法のうち電解液注入工程について説明する(図9参照)。この工程では、BP由来皮膜22が形成された正極板20(正極活物質層21)を有する電極体10を収容した電池ケース80に、電解液50を注入する。
具体的には、前述した溶媒と同様の混合有機溶媒(ECとDMCとEMCとを体積比でEC:DMC:EMC=3:4:3に調製したもの)にCHB51を外割りで2wt%加えた電解液50を注液孔から注入する。そして、電極体10に電解液50を含浸させ注液孔を封止する。かくして、本実施形態にかかる電池1が完成する(図1参照)。
Next, an electrolyte solution injection step in the method for manufacturing the battery 1 according to the present embodiment will be described (see FIG. 9). In this step, the electrolytic solution 50 is injected into the battery case 80 containing the electrode body 10 having the positive electrode plate 20 (positive electrode active material layer 21) on which the BP-derived film 22 is formed.
Specifically, CHB51 is added to 2% by weight of CHB51 in a mixed organic solvent similar to that described above (EC, DMC, and EMC prepared in a volume ratio of EC: DMC: EMC = 3: 4: 3). The electrolytic solution 50 is injected from the injection hole. Then, the electrode body 10 is impregnated with the electrolytic solution 50 to seal the liquid injection hole. Thus, the battery 1 according to the present embodiment is completed (see FIG. 1).

以上で述べた、本実施形態にかかる電池1の製造方法では、BP由来皮膜22が形成された正極板20を有する電極体10を収容した電池ケース80に、CHB51を含む電解液50を注入する電解液注入工程を備える。このため、BP由来皮膜22の付近にCHB51を容易に届けることができる。   In the manufacturing method of the battery 1 according to the present embodiment described above, the electrolytic solution 50 containing CHB 51 is injected into the battery case 80 containing the electrode body 10 having the positive electrode plate 20 on which the BP-derived film 22 is formed. An electrolyte injection process is provided. For this reason, CHB51 can be easily delivered to the vicinity of the BP-derived film 22.

また、前述した電解液注入工程に先立って、上述の収容工程と溶液注入工程と第1皮膜形成工程とを備える。これにより、BP由来皮膜22形成のための特別な設備等を設けなくとも、正極板20の正極活物質層21上にBP由来皮膜22を簡易に形成することができる。
また、BP由来皮膜22を正極活物質層21上に形成するため、電極体10に含浸される電解液50がBP由来皮膜22に接し易く、電解液50中のCHB51の分解及び重合を確実に促進できる電池1を製造できる。
Further, prior to the above-described electrolyte solution injection step, the above-described accommodation step, solution injection step, and first film formation step are provided. Thereby, the BP-derived film 22 can be easily formed on the positive electrode active material layer 21 of the positive electrode plate 20 without providing special equipment for forming the BP-derived film 22.
In addition, since the BP-derived film 22 is formed on the positive electrode active material layer 21, the electrolytic solution 50 impregnated in the electrode body 10 is easily in contact with the BP-derived film 22, and the decomposition and polymerization of CHB 51 in the electrolytic solution 50 are ensured. The battery 1 that can be promoted can be manufactured.

(変形形態)
次に、本発明の変形形態について、図面を参照しつつ説明する。
本変形形態は、正極活物質層上にBP由来皮膜を形成した正極板を用いて、電極体を作製する点で、上述した実施形態と異なる。
そこで、実施形態と異なる点を中心に説明し、同様の部分の説明は省略又は簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Deformation)
Next, modifications of the present invention will be described with reference to the drawings.
This modification differs from the above-described embodiment in that an electrode body is produced using a positive electrode plate in which a BP-derived film is formed on a positive electrode active material layer.
Therefore, differences from the embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本変形形態にかかる電池1の製造方法では、まず、前述した実施形態と同様にして正極板20を作製する。次いで、皮膜形成工程について説明する(図10参照)。本変形形態にかかる皮膜形成工程は、第2皮膜形成工程に相当する。この工程では、作製した正極板20の正極活物質層21上にビフェニル由来皮膜22を形成する。具体的には、上述した正極板20の正極活物質層21に、前述の実施形態で用いた溶液を塗布し含浸させる。その後、既知の電源装置を用いて、正極板20の電位を、BPの分解電位(=4.5V vs.Li/Li+)以上の電位に数時間保持した。かくして、正極活物質層21でビフェニルを分解(酸化分解)及び重合させて、正極板20の正極活物質層21上にBP由来皮膜22を形成させる。 In the manufacturing method of the battery 1 according to this modification, first, the positive electrode plate 20 is manufactured in the same manner as in the above-described embodiment. Next, the film forming process will be described (see FIG. 10). The film forming process according to this modification corresponds to the second film forming process. In this step, a biphenyl-derived film 22 is formed on the positive electrode active material layer 21 of the produced positive electrode plate 20. Specifically, the positive electrode active material layer 21 of the positive electrode plate 20 described above is applied and impregnated with the solution used in the above-described embodiment. Thereafter, the potential of the positive electrode plate 20 was maintained at a potential equal to or higher than the decomposition potential of BP (= 4.5 V vs. Li / Li + ) for several hours using a known power supply device. Thus, biphenyl is decomposed (oxidative decomposition) and polymerized in the positive electrode active material layer 21 to form the BP-derived film 22 on the positive electrode active material layer 21 of the positive electrode plate 20.

続いて、電極体作製工程ににおいて、BP由来皮膜22を形成した正極板20を用いて、電極体10を作製する(図10参照)。具体的には、まず、公知の手法で負極板30を作製する。次いで、この負極板30と、上述した皮膜形成工程で作製した正極板20との間にセパレータ(図示しない)を介在させ、これらを捲回して扁平捲回型の電極体10を作製する(図1参照)。   Subsequently, in the electrode body manufacturing step, the electrode body 10 is manufactured using the positive electrode plate 20 on which the BP-derived film 22 is formed (see FIG. 10). Specifically, first, the negative electrode plate 30 is produced by a known method. Next, a separator (not shown) is interposed between the negative electrode plate 30 and the positive electrode plate 20 produced in the above-described film forming step, and these are wound to produce a flat wound electrode body 10 (FIG. 1).

なお、上述の電極体作製工程の後は、前述した実施形態と同様にして、封口蓋82に固定された、前述の正極端子構造体60及び負極端子構造体70をそれぞれ作製した。また、これら正極端子構造体60及び負極端子構造体70と電極体10とを接合して、電極体10を、正極端子構造体60と負極端子構造体70と封口蓋82と一体にした。   In addition, after the above-mentioned electrode body preparation process, the above-mentioned positive electrode terminal structure 60 and the negative electrode terminal structure 70 fixed to the sealing lid 82 were each produced similarly to embodiment mentioned above. Moreover, the positive electrode terminal structure 60, the negative electrode terminal structure 70, and the electrode body 10 were joined, and the electrode body 10 was integrated with the positive electrode terminal structure 60, the negative electrode terminal structure 70, and the sealing lid 82.

次いで、収容工程では、実施形態と同様、電極体10を電池ケース80に収容する。具体的には、実施形態と同様にして、封口蓋82、正極端子構造体60及び負極端子構造体70と一体の電極体10をケース本体部材81内に収容する。そして、封口蓋82でケース本体部材81の開口を塞ぎ、これらケース本体部材81と封口蓋82とを接合した。かくして、内部に電極体10を収容した電池ケース80ができあがる。   Next, in the housing step, the electrode body 10 is housed in the battery case 80 as in the embodiment. Specifically, the electrode body 10 integrated with the sealing lid 82, the positive terminal structure 60, and the negative terminal structure 70 is accommodated in the case body member 81 in the same manner as in the embodiment. Then, the opening of the case body member 81 was closed with the sealing lid 82, and the case body member 81 and the sealing lid 82 were joined. Thus, a battery case 80 in which the electrode body 10 is accommodated is completed.

続いて、実施形態と同様の電解液注入工程を行う。即ち、前述した電解液50を注液孔から注入し、公知の手法で電極体10に電解液50を含浸させた後、注液孔を封止する。かくして、本変形形態にかかる電池1が完成する(図1参照)。   Subsequently, an electrolyte injection process similar to that of the embodiment is performed. That is, the electrolyte solution 50 described above is injected from the injection hole, and the electrode body 10 is impregnated with the electrolyte solution 50 by a known method, and then the injection hole is sealed. Thus, the battery 1 according to this modification is completed (see FIG. 1).

以上で述べた、本変形形態にかかる電池1の製造方法では、前述した電解液注入工程に先立って、上述の皮膜形成工程と電極体作製工程と収容工程とを備える。これにより、正極活物質層21上にBP由来皮膜22を確実に形成した正極板20、さらには電池1を確実に製造できる。
また、BP由来皮膜22を正極活物質層21上に形成するため、電極体10に含浸される電解液50がBP由来皮膜22に接し易く、過充電時に電解液50中のCHB51の分解及び重合を確実に促進できる電池1を製造できる。
The manufacturing method of the battery 1 according to the present modification described above includes the above-described film formation step, electrode body preparation step, and accommodation step prior to the above-described electrolyte injection step. Thereby, the positive electrode plate 20 in which the BP-derived film 22 is reliably formed on the positive electrode active material layer 21 and the battery 1 can be reliably manufactured.
In addition, since the BP-derived film 22 is formed on the positive electrode active material layer 21, the electrolytic solution 50 impregnated in the electrode body 10 easily comes into contact with the BP-derived film 22, and the CHB51 in the electrolytic solution 50 is decomposed and polymerized during overcharging. It is possible to manufacture the battery 1 that can reliably promote the above.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態等では、正極活物質層21にBP由来皮膜22を形成した正極板20を備える電池1を例示した。しかし、正極板のうち露出した正極箔上や、正極活物質層上及び正極箔上の両方にBP由来皮膜を形成しても良い。
また、実施形態等では、CHB51を含む電解液50を用いた電池を示した。しかし、CHBのほかにガスを発生させるガス発生剤を含んだ電解液を用いても良い。
In the above, the present invention has been described with reference to the embodiments and modifications. However, the present invention is not limited to the above-described embodiments and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the embodiment and the like, the battery 1 including the positive electrode plate 20 in which the BP-derived film 22 is formed on the positive electrode active material layer 21 is illustrated. However, the BP-derived film may be formed on the exposed positive electrode foil of the positive electrode plate, or on both the positive electrode active material layer and the positive electrode foil.
Moreover, in embodiment etc., the battery using the electrolyte solution 50 containing CHB51 was shown. However, an electrolytic solution containing a gas generating agent that generates gas in addition to CHB may be used.

1 電池(密閉型電池)
10 電極体
20 正極板
22 ビフェニル由来皮膜
50 電解液
51 シクロヘキシルベンゼン
62 電流遮断機構
80 電池ケース
Pf 作動圧
Pi 内圧
1 battery (sealed battery)
DESCRIPTION OF SYMBOLS 10 Electrode body 20 Positive electrode plate 22 Biphenyl origin membrane | film | coat 50 Electrolytic solution 51 Cyclohexyl benzene 62 Current interruption | blocking mechanism 80 Battery case Pf Operating pressure Pi Internal pressure

Claims (4)

電池ケース内に、正極板を有する電極体と、上記電極体に含浸された電解液と、上記電池ケースの内圧が作動圧を超えた場合に、上記電極体を流れる電流を遮断する電流遮断機構と、を備える
密閉型電池であって、
上記正極板は、
ビフェニル由来皮膜を有し、
上記電解液は、
シクロヘキシルベンゼンを含む
密閉型電池。
An electrode body having a positive electrode plate in the battery case, an electrolytic solution impregnated in the electrode body, and a current blocking mechanism that blocks current flowing through the electrode body when the internal pressure of the battery case exceeds the operating pressure A sealed battery comprising:
The positive plate is
Having a biphenyl-derived film,
The electrolyte is
Sealed battery containing cyclohexylbenzene.
電池ケース内に、正極板を有する電極体と、上記電極体に含浸された電解液と、上記電池ケースの内圧が作動圧を超えた場合に、上記電極体を流れる電流を遮断する電流遮断機構と、を備え、
上記正極板は、
ビフェニル由来皮膜を有し、
上記電解液は、
シクロヘキシルベンゼンを含む
密閉型電池の製造方法であって、
上記ビフェニル由来皮膜が形成された上記正極板を有する上記電極体を収容した上記電池ケースに、上記電解液を注入する電解液注入工程を備える
密閉型電池の製造方法。
An electrode body having a positive electrode plate in the battery case, an electrolytic solution impregnated in the electrode body, and a current blocking mechanism that blocks current flowing through the electrode body when the internal pressure of the battery case exceeds the operating pressure And comprising
The positive plate is
Having a biphenyl-derived film,
The electrolyte is
A method for producing a sealed battery containing cyclohexylbenzene,
A method for producing a sealed battery, comprising: an electrolyte solution injection step of injecting the electrolyte solution into the battery case containing the electrode body having the positive electrode plate on which the biphenyl-derived film is formed.
請求項2に記載の密閉型電池の製造方法であって、
前記電解液注入工程に先立って、
前記電極体を前記電池ケースに収容する収容工程と、
ビフェニルを溶解した溶液を上記電池ケース内に注入し、上記電極体内に含浸させる溶液注入工程と、
上記溶液中の上記ビフェニルを用いて、前記正極板の正極活物質層上に前記ビフェニル由来皮膜を形成させる第1皮膜形成工程と、を備える
密閉型電池の製造方法。
It is a manufacturing method of the sealed battery according to claim 2,
Prior to the electrolyte injection step,
A housing step of housing the electrode body in the battery case;
Injecting a solution of biphenyl into the battery case and impregnating the electrode body; and
And a first film forming step of forming the biphenyl-derived film on the positive electrode active material layer of the positive electrode plate using the biphenyl in the solution.
請求項2に記載の密閉型電池の製造方法であって、
前記電解液注入工程に先立って、
作製した前記正極板の正極活物質層上に前記ビフェニル由来皮膜を形成する第2皮膜形成工程と、
上記ビフェニル由来皮膜を形成した上記正極板を用いて、前記電極体を作製する電極体作製工程と、
上記電極体を前記電池ケースに収容する収容工程と、を備える
密閉型電池の製造方法。
It is a manufacturing method of the sealed battery according to claim 2,
Prior to the electrolyte injection step,
A second film forming step of forming the biphenyl-derived film on the positive electrode active material layer of the prepared positive electrode plate;
Using the positive electrode plate on which the biphenyl-derived film is formed, an electrode body production step of producing the electrode body;
And a housing step of housing the electrode body in the battery case.
JP2012015533A 2012-01-27 2012-01-27 Sealed battery and method for manufacturing sealed battery Active JP5887957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015533A JP5887957B2 (en) 2012-01-27 2012-01-27 Sealed battery and method for manufacturing sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015533A JP5887957B2 (en) 2012-01-27 2012-01-27 Sealed battery and method for manufacturing sealed battery

Publications (2)

Publication Number Publication Date
JP2013157139A true JP2013157139A (en) 2013-08-15
JP5887957B2 JP5887957B2 (en) 2016-03-16

Family

ID=49052132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015533A Active JP5887957B2 (en) 2012-01-27 2012-01-27 Sealed battery and method for manufacturing sealed battery

Country Status (1)

Country Link
JP (1) JP5887957B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100122A1 (en) 2014-01-08 2015-07-09 Toyota Jidosha Kabushiki Kaisha Secondary battery with nonaqueous electrolyte
US10446849B2 (en) 2014-01-08 2019-10-15 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2022141405A (en) * 2021-03-15 2022-09-29 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (en) * 2005-04-26 2006-11-09 Sony Corp Electrolyte and battery
JP2006318839A (en) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd Nonaqueous secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (en) * 2005-04-26 2006-11-09 Sony Corp Electrolyte and battery
JP2006318839A (en) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd Nonaqueous secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100122A1 (en) 2014-01-08 2015-07-09 Toyota Jidosha Kabushiki Kaisha Secondary battery with nonaqueous electrolyte
US10446849B2 (en) 2014-01-08 2019-10-15 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2022141405A (en) * 2021-03-15 2022-09-29 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP7320013B2 (en) 2021-03-15 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5887957B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5556629B2 (en) Sealed battery
JP5880895B2 (en) battery
US10651442B2 (en) Assembled cell
KR101222264B1 (en) Rechargeable battery
US9620762B2 (en) Electrical storage element
JP2010287408A (en) Square battery and battery pack using this
JP2013157149A (en) Sealed battery
EP3261151B1 (en) Battery pack and vehicle comprising same
CN111354980B (en) Manufacturing method of lithium ion battery and lithium ion battery
JP5660057B2 (en) Sealed battery and method for manufacturing sealed battery
KR20150089164A (en) Method of fabricating pouch type battery cell
JP5887957B2 (en) Sealed battery and method for manufacturing sealed battery
JP2000021386A (en) Battery
KR20160079033A (en) Lithium ion secondary battery
KR101718651B1 (en) Production method for sealed batteries
JP2019160391A (en) Method for manufacturing lithium ion secondary battery
JP2014127284A (en) Nonaqueous electrolyte secondary battery
JP6160513B2 (en) Power storage device and method for discharging power storage device
JP2009081059A (en) Lithium secondary battery
EP3731310A1 (en) Positive electrode for lithium ion secondary cell, and lithium ion secondary cell using same
JP2020095837A (en) Manufacturing method for secondary cell
WO2017130702A1 (en) Rectangular secondary battery
JP2001068163A (en) Wound secondary battery
JP2010205545A (en) Lithium ion battery
JP2015176671A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R151 Written notification of patent or utility model registration

Ref document number: 5887957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250