JP2013140782A - Method and device for manufacturing film-wrapped electric device - Google Patents

Method and device for manufacturing film-wrapped electric device Download PDF

Info

Publication number
JP2013140782A
JP2013140782A JP2012262457A JP2012262457A JP2013140782A JP 2013140782 A JP2013140782 A JP 2013140782A JP 2012262457 A JP2012262457 A JP 2012262457A JP 2012262457 A JP2012262457 A JP 2012262457A JP 2013140782 A JP2013140782 A JP 2013140782A
Authority
JP
Japan
Prior art keywords
pressure
liquid injection
electrolyte
injection
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012262457A
Other languages
Japanese (ja)
Other versions
JP6163739B2 (en
Inventor
Koichi Takada
孝一 高田
Hirota Motohashi
裕太 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012262457A priority Critical patent/JP6163739B2/en
Priority to KR1020120139570A priority patent/KR101395497B1/en
Priority to CN201210518352.7A priority patent/CN103137997B/en
Publication of JP2013140782A publication Critical patent/JP2013140782A/en
Application granted granted Critical
Publication of JP6163739B2 publication Critical patent/JP6163739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a film-wrapped electric device which is less likely to cause uneven impregnation of an electrolyte in an electrode group, and can inject the electrolyte in a short time.SOLUTION: A method for manufacturing a film-wrapped electric device includes the steps of: reducing a pressure in a liquid injection chamber 2 in which a bag-like laminate film exterior material 29 is installed which includes an opening housing an electrode group 21' having a positive and a negative electrode laminated via a separator to a pressure lower than atmospheric pressure; injecting an electrolyte of a prescribed injection amount into the exterior material 29 from the opening after the pressure reduction step; and further reducing the pressure in the liquid injection chamber 2 by increasing it to a pressure higher than the pressure during the liquid injection step before sealing the opening after the liquid injection step.

Description

本発明は、電池やキャパシタに代表される、電気デバイス要素をラミネートフィルムに収容したフィルム外装電気デバイスの製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a film-covered electrical device represented by a battery or a capacitor, in which electrical device elements are accommodated in a laminate film.

電解コンデンサや電池に代表される電気デバイスは、電極群を入れた金属等からなるケースに電解液を注液して電気デバイス要素を得、その後ケースを閉塞して製造される。なお、本明細書における説明では、セパレータを介して積層された正極と負極とを有し、電解液の一連の注液工程が完了する前の状態(段階)のものを「電極群」と称し、電解液の一連の注液工程が完了した状態(段階)のものを「電気デバイス要素」として区別している。   An electric device typified by an electrolytic capacitor or a battery is manufactured by injecting an electrolytic solution into a case made of a metal or the like containing an electrode group to obtain an electric device element, and then closing the case. In the description in the present specification, a state having a positive electrode and a negative electrode laminated via a separator and in a state (stage) before completion of a series of injection steps of the electrolytic solution is referred to as an “electrode group”. In addition, a state (stage) in which a series of injection steps of the electrolytic solution is completed is distinguished as an “electric device element”.

従来、垂直に立てたケースに所定量の電解液を注液し、その後長時間静置することで電極群の隙間に徐々に電解液を浸透させていた。しかしながら、一般に、電極群は、電極板を密に積層してなるものであることから電極群の隙間に電解液を含浸させるには時間を要する。静置した電解液が自然に電極間の隙間に浸透するまで、たとえば一昼夜放置させておく必要があり、極めて生産効率が悪い。   Conventionally, a predetermined amount of electrolytic solution is poured into a vertically standing case, and then allowed to stand for a long time, so that the electrolytic solution is gradually infiltrated into the gaps between the electrode groups. However, since the electrode group is generally formed by densely laminating electrode plates, it takes time to impregnate the gap between the electrode groups with the electrolytic solution. For example, it is necessary to leave the electrolyte solution standing still for a whole day and night until it naturally penetrates into the gap between the electrodes, and the production efficiency is extremely low.

また、電解液の含浸速度が極めて遅いことから、ケース内に必要な量の電解液を一度に供給すると電解液がケースから溢れてしまう。よって、ケースの開口部に水密にカバーを装着しておき、このカバー内に、所定量の電解液を注液しておく等の方法が採用されていた。しかしながら、この方法はケースに一つずつカバーを装着する手間がかかるため、製造効率を高めることを困難にしている。   Further, since the impregnation rate of the electrolytic solution is extremely slow, if the necessary amount of electrolytic solution is supplied into the case at once, the electrolytic solution overflows from the case. Therefore, a method has been employed in which a cover is attached in a watertight manner to the opening of the case, and a predetermined amount of electrolyte is poured into the cover. However, this method requires time and effort for attaching covers to the case one by one, making it difficult to increase manufacturing efficiency.

特許文献1では、このような課題を解決すべく、電解液の注液・含浸方法を開示している。すなわち、ケースの開口部を気密に閉塞して減圧し、減圧したケースに電解液を注液して電極群の隙間に電解液を含浸させる。電解液を注液して減圧するのではなく、ケースの開口部を減圧した後に電解液を注液し、一端液溜まりを形成する。減圧したケースに電解液を注液して、電極群の隙間に電解液を浸透させた後、さらに、ケース内の圧力を上昇させて液溜まりの電解液を電極群の隙間に浸透させる。   Patent Document 1 discloses a method for injecting and impregnating an electrolytic solution in order to solve such a problem. That is, the opening of the case is hermetically closed and depressurized, and the electrolytic solution is injected into the depressurized case, and the gap between the electrode groups is impregnated with the electrolytic solution. Rather than injecting the electrolyte solution and reducing the pressure, the electrolyte solution is injected after reducing the opening of the case to form a liquid reservoir. After injecting the electrolytic solution into the decompressed case and allowing the electrolytic solution to penetrate into the gap between the electrode groups, the pressure in the case is further increased to allow the accumulated electrolytic solution to penetrate into the gap between the electrode groups.

この方法は、いったん減圧状態として、電極群の隙間にある、電解液の含浸を阻害する空気を排除し、隙間に電解液が浸透しやすい状態としてから電解液を注液し、その後、さらに加圧して液溜まりの電解液を注液する。このように減圧と加圧との組み合わせにより、電解液の含浸に要する時間の短縮化のみならず、加圧を開放した際に電解液の飛び散りも防止している。   In this method, once the pressure is reduced, the air in the gap between the electrode groups, which impedes the impregnation of the electrolyte, is removed, the electrolyte is poured into the gap, and then the electrolyte is injected. Pressure and inject the electrolyte in the reservoir. Thus, the combination of reduced pressure and increased pressure not only shortens the time required for impregnation with the electrolyte, but also prevents the electrolyte from scattering when the pressure is released.

一方、上述のような金属製のケースを用いた電気デバイスの他、外装体にアルミニウムなどの金属層と熱溶着性の樹脂層とを接着剤層を介して重ね合わせて薄いフィルムとなしたラミネートフィルム外装材を用いたフィルム外装電気デバイスが開発されている。ラミネートフィルム外装材は、一般に、アルミニウム等の薄い金属層の両表面を薄い樹脂層で被覆した構造をなしており、酸やアルカリに強く、かつ軽量で柔軟な性質を有するものである。   On the other hand, in addition to the electrical device using the metal case as described above, a laminate in which a metal layer such as aluminum and a heat-weldable resin layer are laminated on the exterior body through an adhesive layer to form a thin film A film-clad electrical device using a film-clad material has been developed. Laminate film exterior materials generally have a structure in which both surfaces of a thin metal layer such as aluminum are covered with a thin resin layer, are resistant to acids and alkalis, and are lightweight and flexible.

特許3467135号公報Japanese Patent No. 3467135

フィルム外装電気デバイスのラミネートフィルム外装材は、金属製のケースとは異なり柔軟性を有する。つまりラミネートフィルム外装材は容易に変形するため、電解液の注液においても変形しにくい金属製のケースにはない課題を生じる。   Unlike the metal case, the laminate film exterior material of the film exterior electrical device has flexibility. That is, since the laminate film exterior material is easily deformed, there arises a problem that is not found in a metal case that is difficult to deform even when an electrolyte is injected.

まず、袋状ラミネートフィルム外装材の開口部に注入された電解液は、開口部に液だまりを形成することなく、電極群の主面とラミネートフィルムとの間に流れ込んでしまう。このため液だまりによって電極群を一時的に外部に対して封止し、電極群と外部と間に圧力差を設けて液だまりを形成している電解液を電極群に含浸させるという特許文献1に開示された方法をそのまま採用することはできない。そのため、ラミネートフィルム外装材を用いてなるフィルム外装電気デバイスでは、上記したように、電極群の隙間に電解液を含浸させるには時間を要する。静置した電解液が自然に電極間の隙間に浸透するまで、たとえば一昼夜放置させておく必要があり、極めて生産効率が悪い。   First, the electrolyte injected into the opening of the bag-shaped laminate film exterior material flows between the main surface of the electrode group and the laminate film without forming a liquid pool in the opening. Therefore, the electrode group is temporarily sealed to the outside by a liquid pool, and the electrode group is impregnated with an electrolytic solution forming a liquid pool by providing a pressure difference between the electrode group and the outside. The method disclosed in the above cannot be adopted as it is. Therefore, in a film-clad electrical device using a laminate film packaging material, as described above, it takes time to impregnate the gap between the electrode groups with the electrolytic solution. For example, it is necessary to leave the electrolyte solution standing still for a whole day and night until it naturally penetrates into the gap between the electrodes, and the production efficiency is extremely low.

また、電解液は一様な速度で電極群内へと含浸するわけではなく、含浸させる部位、特に電極群の中央部において、電解液が十分に含浸し得ない現象(含浸ムラ)を生じやすいという問題がある。この電解液の含浸ムラは、ラミネートフィルムが柔軟性を有することでラミネートフィルムの表面にしわとして現れてくることにもなり得る。   In addition, the electrolyte solution does not impregnate into the electrode group at a uniform rate, and a phenomenon (impregnation unevenness) that the electrolyte solution cannot be sufficiently impregnated easily occurs in the portion to be impregnated, particularly in the central portion of the electrode group. There is a problem. The uneven impregnation of the electrolytic solution may appear as wrinkles on the surface of the laminate film because the laminate film has flexibility.

また、この電極群内での電解液の含浸ムラは、正負極間のイオン伝導特性の低い領域を面内で部分的に生じさせ、その結果、電池の電気特性を低下させてしまうという不具合を生じる。   Further, the uneven impregnation of the electrolytic solution in the electrode group partially causes a region having low ion conduction characteristics between the positive and negative electrodes in the plane, and as a result, deteriorates the electric characteristics of the battery. Arise.

そこで、本発明は、電極群内での電解液の含浸ムラを生じさせ難く、短時間で電解液の注液後の浸透、含浸を促進させることが可能なフィルム外装電気デバイスの製造方法及びその装置を提供することを目的とする。   Accordingly, the present invention provides a method for manufacturing a film-covered electrical device that is less likely to cause impregnation unevenness of the electrolyte in the electrode group, and can promote penetration and impregnation after injection of the electrolyte in a short time, and its An object is to provide an apparatus.

上記目的を達成するため本発明のフィルム外装電気デバイスの製造方法は、以下の(1)〜(3)の各工程を含む点に特徴を有するものである。   In order to achieve the above object, the film-clad electrical device manufacturing method of the present invention is characterized in that it includes the following steps (1) to (3).

(1)セパレータを介して積層された正極と負極とを有する電極群を収納した開口部を有する袋状ラミネートフィルム外装材が設置された注液チャンバ内を大気圧より低い圧力まで減圧する減圧工程を有する。   (1) Depressurization step of depressurizing the liquid injection chamber in which a bag-like laminate film exterior material having an opening containing an electrode group having a positive electrode and a negative electrode laminated via a separator is set to a pressure lower than atmospheric pressure Have

(2)前記減圧工程後、前記開口部から外装材内に所定注液量の電解液を注液する注液工程を有する。   (2) After the pressure reducing step, a liquid injection step of injecting a predetermined amount of electrolyte into the exterior material from the opening is provided.

(3)前記注液工程後、前記開口部を封止する前に、注液チャンバ内の圧力を、前記注液工程時よりも加圧し、さらに減圧する加減圧工程を有する。   (3) After the liquid injection step, before the opening is sealed, the pressure in the liquid injection chamber is increased from that during the liquid injection step, and the pressure increase / decrease step is further reduced.

また、上記目的を達成するため本発明のフィルム外装電気デバイスの製造装置は、以下の(1)〜(3)の各手段を含む点に特徴を有するものである。   Moreover, in order to achieve the said objective, the manufacturing apparatus of the film-clad electrical device of this invention has the characteristics in the point containing each means of the following (1)-(3).

(1)セパレータを介して積層された正極と負極とを有する電極群を収納した開口部を有する袋状ラミネートフィルム外装材が設置された注液チャンバ内の圧力を調整する圧力調整手段を有する。   (1) It has a pressure adjusting means for adjusting the pressure in the liquid injection chamber in which a bag-like laminate film exterior material having an opening containing an electrode group having a positive electrode and a negative electrode laminated via a separator is installed.

(2)前記開口部から外装材内に電解液を注入する注液手段を有する。   (2) It has a liquid injection means for injecting an electrolytic solution into the exterior material from the opening.

(3)前記圧力調整手段により、注液チャンバ内を大気圧より低い圧力まで減圧させ、減圧後、前記注入手段により外装材内に所定注液量の電解液を注液させる制御手段を有する。さらに前記圧力調整手段により、前記開口部を封止する前に、注液チャンバ内の圧力を、前記注液時よりも加圧し、さらに減圧する制御手段を有する。   (3) Control means for reducing the pressure in the liquid injection chamber to a pressure lower than atmospheric pressure by the pressure adjusting means, and for pouring a predetermined amount of electrolyte into the exterior material by the injection means after the pressure reduction. Furthermore, before sealing the said opening part by the said pressure adjustment means, it has a control means which pressurizes the pressure in a liquid injection chamber rather than the time of the said liquid injection, and also pressure-reduces.

本発明によれば、注液した後に封止前に加減圧を行うので、注液後、電解液の含浸を促進することができる。注液後なので、セパレータに電解液が保持されており、加減圧しても、飛び散りは起こらない。その結果、電解液の含浸ムラを生じさせず、注液後、短時間で電解液を浸透、含浸させることが可能なフィルム外装電気デバイスの製造方法及びその装置を提供することが可能となる。   According to the present invention, since the pressure is increased / decreased before the sealing after the injection, the impregnation of the electrolytic solution can be promoted after the injection. Since it is after the injection, the electrolyte is held in the separator, and even if the pressure is increased or decreased, no scattering occurs. As a result, it is possible to provide a method and apparatus for manufacturing a film-clad electrical device that does not cause uneven impregnation of the electrolytic solution and can permeate and impregnate the electrolytic solution in a short time after injection.

第1実施形態のフィルム外装電池の構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the film-clad battery of 1st Embodiment. 第1実施形態のフィルム外装電池を模式的に表した完成斜視図である。It is a completion perspective view showing typically the film-clad battery of a 1st embodiment. 図2(a)の第1実施形態のフィルム外装電池を各構成要件ごとに分解した状態を模式的に表した分解斜視図である。It is the disassembled perspective view which represented typically the state which decomposed | disassembled the film-clad battery of 1st Embodiment of FIG. 第1実施形態のフィルム外装電池内の発電要素の主面および積層側面を説明するための発電要素の模式的な斜視図である。It is a typical perspective view of the electric power generation element for demonstrating the main surface and lamination | stacking side surface of the electric power generation element in the film-clad battery of 1st Embodiment. 本発明のフィルム外装電気デバイス製造装置の代表的な一実施形態(第1実施形態)として、電極群を収納した開口部を有する袋状ラミネートフィルム外装材内(電池セル)に電解液を注液・含浸するための注液・含浸装置の構成を示す模式図である。As a typical embodiment (first embodiment) of the film-clad electrical device manufacturing apparatus of the present invention, an electrolytic solution is injected into a bag-shaped laminate film packaging material (battery cell) having an opening containing an electrode group. -It is a schematic diagram which shows the structure of the injection / impregnation apparatus for impregnation. 本実施形態の注液・含浸装置による電解液の注液・含浸方法による、注液プロファイルと含浸状態を表す図面である。It is drawing which shows the injection profile and the impregnation state by the injection / impregnation method of the electrolyte solution by the injection / impregnation apparatus of this embodiment. 本実施形態の注液・含浸装置による電解液の注液・含浸方法による、各注液ステップによる注液量と真空圧を表す図面である。It is drawing which shows the liquid injection quantity and vacuum pressure by each liquid injection step by the liquid injection / impregnation method of the electrolyte solution by the liquid injection / impregnation apparatus of this embodiment. 注液時の泡発生の様子を示す図である。It is a figure which shows the mode of the bubble generation | occurrence | production at the time of liquid injection.

以下、図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

図1は、第1実施形態のフィルム外装電池の構成を模式的に表した断面図である。図2は、第1実施形態のフィルム外装電池を模式的に表した斜視図であり、図2(a)はフィルム外装電池の完成斜視図、図2(b)は、図2(a)の第1実施形態のフィルム外装電池を各構成要件ごとに分解した状態を模式的に表した分解斜視図である。
(フィルム外装電池)
第1実施形態のフィルム外装電池10の構成の概要を説明する。
FIG. 1 is a cross-sectional view schematically showing the configuration of the film-clad battery of the first embodiment. FIG. 2 is a perspective view schematically showing the film-clad battery of the first embodiment. FIG. 2 (a) is a completed perspective view of the film-clad battery, and FIG. 2 (b) is a diagram of FIG. 2 (a). It is the disassembled perspective view which represented typically the state which decomposed | disassembled the film-clad battery of 1st Embodiment for every component requirement.
(Film outer battery)
The outline | summary of a structure of the film-clad battery 10 of 1st Embodiment is demonstrated.

本実施形態のフィルム外装電池10は、図1に示すように、実際に充放電反応が進行する略矩形の発電要素21が、外装体29である袋状ラミネートフィルムの内部に封止された構造を有する。詳しくは、発電要素21と、発電要素21に設けられた正極集電部12bおよび負極集電部11bとを、ともに収納する袋状ラミネートフィルムからなる外装体29とを有する。更にフィルム外装電池10は、正極集電部12bに接続された正極タブ27と、負極集電部11bに接続された負極タブ25とを有する。   As shown in FIG. 1, the film-covered battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a bag-shaped laminate film that is an exterior body 29. Have Specifically, it has a power generation element 21 and an exterior body 29 made of a bag-like laminate film that houses both the positive electrode current collector 12b and the negative electrode current collector 11b provided in the power generation element 21. Furthermore, the film-clad battery 10 includes a positive electrode tab 27 connected to the positive electrode current collector 12b and a negative electrode tab 25 connected to the negative electrode current collector 11b.

ここで、本実施形態では、セパレータを介して積層された正極板(正極)16と負極板(負極)14とを有し、電解液20の一連の注液工程が完了する前の状態(段階)のものを「電極群」と称し、電解液20の一連の注液工程が完了した状態(段階)のものを「発電要素」として区別している。電解液20は、主に発電要素21を構成する電解質層17に用いられる。詳しくは、セパレータに電解液20を含浸することで電解質層17を形成することができる。但し、電解液20は、必ずしも全量がセパレータのみに含浸されている必要はなく、電極活物質層13、15にも含浸されているのが望ましく、さらに発電要素21と外装材29との隙間(空隙部)にも存在していてもよい。   Here, in this embodiment, it has the positive electrode plate (positive electrode) 16 and the negative electrode plate (negative electrode) 14 laminated | stacked via the separator, and the state (stage) before completing a series of liquid injection processes of the electrolyte solution 20 ) Are referred to as “electrode groups”, and those in a state (stage) in which a series of liquid injection steps of the electrolytic solution 20 are completed are distinguished as “power generation elements”. The electrolytic solution 20 is mainly used for the electrolyte layer 17 constituting the power generation element 21. Specifically, the electrolyte layer 17 can be formed by impregnating the separator with the electrolytic solution 20. However, the electrolytic solution 20 does not necessarily need to be impregnated only in the separator, and is preferably impregnated in the electrode active material layers 13 and 15, and the gap between the power generation element 21 and the exterior material 29 ( It may also exist in the voids).

図2(a)、図2(b)に示すように、発電要素21の各層の電極(の集電体11、12)から電流を取り出すために、金属板(または金属箔)からなる電極集電部11b、12bの延出部11a、12aが延びている。各層の電極(の集電体11、12)それぞれの延出部11a、12aが正極集電部12b、負極集電部11bにおいて、それぞれ負極タブ25、正極タブ27に接続されている。詳しくは、それぞれの負極集電体11および正極集電体12に延出部11a、12aの一端がそれぞれ接続されており、各延出部11a、12aの他端には各集電部11b、12bが設置ないし接続されている。また、負極タブ25及び正極タブ27は、袋状ラミネートフィルムからなる外装材29の端部(封止部ないしシール部29f)に挟まれるようにして該外装材29の外部に導出される構造を有している。負極タブ25および正極タブ27、電極集電部11b、12bの延出部11a、12a、各電極の負極集電体11および正極集電体12の間のそれぞれの接続は、超音波溶接や抵抗溶接等により取り付けるのが望ましい。   As shown in FIGS. 2 (a) and 2 (b), in order to extract current from the electrodes (current collectors 11 and 12) of each layer of the power generating element 21, an electrode collector made of a metal plate (or metal foil) is used. The extension parts 11a and 12a of the electric parts 11b and 12b extend. The extending portions 11a and 12a of the electrodes (current collectors 11 and 12) of each layer are connected to the negative electrode tab 25 and the positive electrode tab 27, respectively, in the positive electrode current collecting portion 12b and the negative electrode current collecting portion 11b. Specifically, one end of each of the extending portions 11a and 12a is connected to each of the negative electrode current collector 11 and the positive electrode current collector 12, and each of the current collecting portions 11b, 12b is installed or connected. Further, the negative electrode tab 25 and the positive electrode tab 27 have a structure that is led out of the exterior material 29 so as to be sandwiched between end portions (sealing portion or seal portion 29f) of the exterior material 29 made of a bag-like laminate film. Have. The respective connections between the negative electrode tab 25 and the positive electrode tab 27, the extending portions 11a and 12a of the electrode current collectors 11b and 12b, and the negative electrode current collector 11 and the positive electrode current collector 12 of each electrode are ultrasonic welding or resistance. It is desirable to attach by welding or the like.

図2(a)、図2(b)には袋状ラミネートフィルムからなる外装材29に発電要素21を収納するための凹部29eが形成されており、また、外装材29には2枚のラミネートフィルムを対向させて4辺を封止するタイプを示している。ただし、本実施形態ではこれに限らず、凹部を形成しない平坦なラミネートフィルムを外装材29として用いてもよく、1枚のラミネートフィルムを折り返して3辺を封止するタイプに適用してもよい。あるいは、凹部を形成しない2枚の平坦なラミネートフィルムを外装材29として用いてもよく、2枚のラミネートフィルムを重ね合せて4辺を封止するタイプに適用してもよいなど、特に制限されるものではない。   In FIG. 2A and FIG. 2B, a recess 29e for accommodating the power generating element 21 is formed in an exterior material 29 made of a bag-like laminate film. A type in which four sides are sealed with a film facing each other is shown. However, the present embodiment is not limited to this, and a flat laminate film that does not form a recess may be used as the exterior material 29, or may be applied to a type in which one laminate film is folded and sealed on three sides. . Alternatively, two flat laminate films that do not form recesses may be used as the exterior material 29, or may be applied to a type in which two laminate films are overlapped to seal four sides. It is not something.

図1に示すように、発電要素21は、いずれも略矩形の複数の負極板(負極)14と複数の正極板(正極)16とを、いずれも略矩形の電解質層17を介して交互に複数積層して構成されている。負極板(負極)14は、負極集電体11と該負極集電体11の両面に形成された負極活物質層13とからなる。正極板(正極)16は、正極集電体12と該正極集電体12の両面に形成された正極活物質層15とからなる。また電解質層17は、多孔質のセパレータ(不織布セパレータを含む)に電解液20を含浸してなるものである。即ち、負極板(負極)14、電解質層17および正極板(正極)16がこの順に複数積層されており、負極板14の1つの負極活物質層13とこれに隣接する正極板16の1つの正極活物質層15とが、電解質層17を介して対向するようにして、1つの単電池層19を構成する。したがって、本実施形態のフィルム外装電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に負極活物質層13が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面または両面に正極活物質層15が配置されているようにしてもよい。以下、本実施形態においては、図3に示すように、発電要素21を、積層方向に見た面を主面21aとし、積層方向を横方向からみた面を積層側面21bと呼称するものとする。   As shown in FIG. 1, the power generation element 21 includes a plurality of substantially rectangular negative plates (negative electrodes) 14 and a plurality of positive plates (positive electrodes) 16 that are alternately arranged through a substantially rectangular electrolyte layer 17. A plurality of layers are stacked. The negative electrode plate (negative electrode) 14 includes a negative electrode current collector 11 and a negative electrode active material layer 13 formed on both surfaces of the negative electrode current collector 11. The positive electrode plate (positive electrode) 16 includes a positive electrode current collector 12 and a positive electrode active material layer 15 formed on both surfaces of the positive electrode current collector 12. The electrolyte layer 17 is formed by impregnating a porous separator (including a nonwoven fabric separator) with the electrolytic solution 20. That is, a plurality of negative electrode plates (negative electrodes) 14, electrolyte layers 17 and positive electrode plates (positive electrodes) 16 are laminated in this order, and one negative electrode active material layer 13 of the negative electrode plate 14 and one of the positive electrode plates 16 adjacent thereto are provided. One unit cell layer 19 is configured so that the positive electrode active material layer 15 faces the electrolyte layer 17. Therefore, it can be said that the film-clad battery 10 of the present embodiment has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel. Note that the negative electrode active material layer 13 is disposed only on one side of the outermost layer negative electrode current collector located on both outermost layers of the power generation element 21, but the negative electrode active material layer 13 may be provided on both sides. Good. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost positive electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost positive electrode current collector is disposed on one or both surfaces of the outermost layer positive electrode current collector. The positive electrode active material layer 15 may be disposed. Hereinafter, in the present embodiment, as shown in FIG. 3, the surface of the power generating element 21 viewed in the stacking direction is referred to as a main surface 21 a, and the surface viewed in the stacking direction from the lateral direction is referred to as a stacking side surface 21 b. .

図3に示すように、各負極板14は、負極集電体11(例えば、銅箔)の両面に負極活物質層(負極電極)13が塗布、形成されており、各正極板(正極)16は、正極集電体12(例えば、アルミニウム箔)の両面に正極活物質層(正極電極)15が塗布、形成されている。負極集電体11及び正極集電体12は、積層領域から延出している。詳しくは、図1、図2(b)に示すように各集電体11、12の電極材料が塗布されていない延出部は、負極板側の延出部11a同士及び正極板側の延出部12a同士がそれぞれ一括して超音波溶接されている。これにより、中継部である正極集電部12bおよび負極集電部11bが形成される。これと同時に負極集電部11bへの負極タブ25の接続、および正極集電部12bへの正極タブ27の接続も超音波溶接がなされる。   As shown in FIG. 3, each negative electrode plate 14 has a negative electrode active material layer (negative electrode) 13 applied and formed on both sides of a negative electrode current collector 11 (for example, copper foil), and each positive electrode plate (positive electrode). 16, a positive electrode active material layer (positive electrode) 15 is applied and formed on both surfaces of a positive electrode current collector 12 (for example, an aluminum foil). The negative electrode current collector 11 and the positive electrode current collector 12 extend from the stacked region. Specifically, as shown in FIG. 1 and FIG. 2B, the extension portions of the current collectors 11 and 12 where the electrode material is not applied are the extension portions 11a on the negative electrode side and the extension on the positive electrode side. The protruding portions 12a are ultrasonically welded together. Thereby, the positive electrode current collector 12b and the negative electrode current collector 11b, which are relay parts, are formed. At the same time, the connection of the negative electrode tab 25 to the negative electrode current collector 11b and the connection of the positive electrode tab 27 to the positive electrode current collector 12b are also ultrasonically welded.

ラミネートフィルム外装材29は、1例として、上記したように1枚の矩形状のラミネートフィルムを2つ折りにして電池要素21をその厚み方向両側から挟んで包囲している。外装材29に用いるラミネートフィルムは、熱融着性を有する熱融着性樹脂層、金属層(例えばアルミニウム箔)および(絶縁性)保護層を積層してなるものである。1例を挙げれば、PP(ポリプロピレン)からなる熱融着性樹脂層が本実施形態のフィルム外装電池10の内側の層となるようにして、ラミネートフィルム外装材29の外周部(外縁部)の熱融着部を熱融着することで封止部(シール部)29fが形成される。これにより、収納されている電池要素21が封止(密封ないし絶縁シール)される。ただし、本実施形態のラミネートフィルム外装材29に関しては、上記構成に何ら制限されるものではなく、従来公知の各種ラミネートフィルム外装材を適宜用いることができる。   As an example, the laminate film exterior material 29 surrounds the battery element 21 from both sides in the thickness direction by folding one rectangular laminate film in half as described above. The laminate film used for the exterior material 29 is formed by laminating a heat-fusible resin layer having heat-fusibility, a metal layer (for example, aluminum foil), and an (insulating) protective layer. As an example, the outer peripheral portion (outer edge portion) of the laminate film outer packaging material 29 is formed such that the heat-fusible resin layer made of PP (polypropylene) becomes an inner layer of the film outer battery 10 of the present embodiment. A sealing part (seal part) 29f is formed by heat-sealing the heat-sealing part. Thereby, the battery element 21 accommodated is sealed (sealed or insulated). However, the laminate film exterior material 29 of the present embodiment is not limited to the above configuration, and various conventionally known laminate film exterior materials can be appropriately used.

電解液20としては、1mol/リットルのLiPFを支持塩とし、プロピレンカーボネートとエチレンカーボネートの混合溶媒(質量比50:50)を溶媒とするものなどを用いることができる。ただし、本実施形態では、これらに何ら制限されるものではない。即ち、電解液20は、溶媒に支持塩が適量溶解した形態を有する。溶媒としては、例えば、上記したエチレンカーボネート(EC)及びプロピレンカーボネート(PC)のほか、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート類などを用いることができる。これらは1種単独で用いてもよいし、2種以上を併用して用いてもよい。また、支持塩としては、上記したLiPFのほか、Li(CFSON、Li(CSON、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等を用いることができる。これらは1種単独で用いてもよいし、2種以上を併用して用いてもよい。また、支持塩の濃度も0.5〜2mol/リットル程度の範囲で適宜決定すればよいが、かかる範囲に何ら制限されるものではない。 As the electrolytic solution 20, one using 1 mol / liter of LiPF 6 as a supporting salt and using a mixed solvent of propylene carbonate and ethylene carbonate (mass ratio 50:50) as a solvent can be used. However, the present embodiment is not limited to these. That is, the electrolytic solution 20 has a form in which an appropriate amount of a supporting salt is dissolved in a solvent. As the solvent, for example, carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC) can be used in addition to the above-described ethylene carbonate (EC) and propylene carbonate (PC). These may be used alone or in combination of two or more. As the supporting salt, addition of LiPF 6 mentioned above, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 or the like can be used. These may be used alone or in combination of two or more. Further, the concentration of the supporting salt may be appropriately determined in the range of about 0.5 to 2 mol / liter, but is not limited to this range.

(フィルム外装電池の製造装置)
以下に、フィルム外装電池セルに電解液を注液・含浸するための本実施形態における注液・含浸装置の構成について図面を用いて説明する。
(Film-clad battery manufacturing equipment)
Hereinafter, the configuration of the liquid injection / impregnation apparatus in the present embodiment for injecting / impregnating the electrolyte solution into the film-clad battery cell will be described with reference to the drawings.

図4は、本発明のフィルム外装電気デバイス製造方法の代表的な一実施形態(第1実施形態)として、フィルム外装電池セルに電解液を注液・含浸するための注液・含浸装置の構成を示す模式図である。   FIG. 4 shows a configuration of a liquid injection / impregnation apparatus for injecting / impregnating an electrolyte into a film-clad battery cell as a typical embodiment (first embodiment) of the film-clad electrical device manufacturing method of the present invention. It is a schematic diagram which shows.

図4に示すように、本実施形態の注液・含浸装置1は、注液チャバー2と、押さえ治具3aを有する注液マガジン3と、電解液供給ライン4と、排気ライン5と、ガス導入ライン6と、制御部7とを有する。   As shown in FIG. 4, the liquid injection / impregnation apparatus 1 of the present embodiment includes a liquid injection barber 2, a liquid injection magazine 3 having a holding jig 3a, an electrolyte supply line 4, an exhaust line 5, and a gas. An introduction line 6 and a control unit 7 are included.

制御部7は、押さえ治具3a、排気ライン5に接続された真空ポンプ5b、電解液供給ライン4に接続された電解液の貯蔵タンク4aの動作制御を行う。なお、制御部7により制御される各部の動作については、以下、詳細に説明する。   The control unit 7 controls the operation of the holding jig 3 a, the vacuum pump 5 b connected to the exhaust line 5, and the electrolyte storage tank 4 a connected to the electrolyte supply line 4. The operation of each unit controlled by the control unit 7 will be described in detail below.

注液チャバー2内には電解液20が未注液状態の電池セル10aを多数(図4)収納する押さえ治具3aを有する注液マガジン3が設置されており、注液チャバー2の壁面には電解液供給ライン4、排気ライン5及びガス導入ライン6がそれぞれ接続されている。   A liquid injection magazine 3 having a holding jig 3 a for storing a large number of battery cells 10 a in which the electrolytic solution 20 has not been injected (FIG. 4) is installed in the liquid injection bar 2. Are connected to an electrolyte supply line 4, an exhaust line 5, and a gas introduction line 6, respectively.

注液マガジン3に備え付けの押さえ治具3aは、電解液未注液状態の多数の電池セル10aを安定して保持するように設置された板状治具(板部材)である。かかる押さえ治具3aにより、電池群21’を収納した袋状ラミネートフィルム外装材29内に、その開口部29aより電解液20を注液する際に、外装材29を電池群21’の厚み方向両側(両主面21a側;図3参照)から挟持して保持し得るものである。   The holding jig 3a provided in the liquid injection magazine 3 is a plate-shaped jig (plate member) that is installed so as to stably hold a large number of battery cells 10a that are not filled with an electrolyte. When the electrolytic solution 20 is injected from the opening 29a into the bag-shaped laminate film exterior material 29 in which the battery group 21 ′ is accommodated by the holding jig 3a, the exterior material 29 is placed in the thickness direction of the battery group 21 ′. It can be sandwiched and held from both sides (both main surfaces 21a side; see FIG. 3).

押さえ治具3aに挟持された電池群21’を収納したラミネートフィルム外装材29は、袋状に形成されている。すなわち、袋状ラミネートフィルム外装材29は、上方の開口部29a以外の辺において熱融着されており、開口部29aだけが開口されている。これは、開口部29aから、電池群21’を収納した袋状ラミネートフィルム外装材29内に電解液20を注入可能な袋形状とるためである。   The laminate film exterior material 29 that houses the battery group 21 ′ sandwiched between the pressing jigs 3 a is formed in a bag shape. That is, the bag-shaped laminate film exterior material 29 is heat-sealed at sides other than the upper opening 29a, and only the opening 29a is opened. This is because the opening 29a has a bag shape in which the electrolyte solution 20 can be injected into the bag-shaped laminate film outer packaging material 29 containing the battery group 21 '.

注液手段を構成する電解液供給ライン4は、その一端は電解液を貯留するタンク4aに接続されている。電解液供給ライン4の他端は、途中で複数に分割され、各系統ごとに、電解液移送ポンプ4cに接続されている。電解液移送ポンプ4cは、バルブ4dに接続されている。バルブ4dは、制御部7により開閉が制御され、また開度が調節されて、各系統ごとに少量ずつ数回に分けて注液を可能とする。これらのポンプ4cとバルブ4dは、注液チャンバ2の外部に設置され、注液チャンバ2内に設けられた各注液ノズル4bと連結されている。電解液供給ライン4の他端側の注液ノズル4bは、上方に向けて開口しているラミネートフィルム外装材29の開口部29aに対応するように配置されている。電解液供給ライン4から供給された電解液20をこの開口部29aから注入するためである。   One end of the electrolytic solution supply line 4 constituting the liquid injection means is connected to a tank 4a for storing the electrolytic solution. The other end of the electrolytic solution supply line 4 is divided into a plurality of parts on the way, and connected to the electrolytic solution transfer pump 4c for each system. The electrolyte transfer pump 4c is connected to the valve 4d. Opening and closing of the valve 4d is controlled by the control unit 7, and the opening degree is adjusted, so that the liquid can be injected in small portions several times for each system. The pump 4c and the valve 4d are installed outside the liquid injection chamber 2 and connected to each liquid injection nozzle 4b provided in the liquid injection chamber 2. The liquid injection nozzle 4b on the other end side of the electrolytic solution supply line 4 is disposed so as to correspond to the opening 29a of the laminate film exterior material 29 that opens upward. This is because the electrolytic solution 20 supplied from the electrolytic solution supply line 4 is injected from the opening 29a.

本実施形態では、複数の注液ノズル4bは、並んだ複数の電池セル10aの開口部29a上方に順次移動可能である。したがって、1つのノズル4bにより複数の電池セル10aに順次、繰り返して電解液20を供給できる。注液ノズル4bを移動可能にする構成としては、例えば、注液チャンバ2内に設けられた走行レール(図示せず)が考えられる。このレールに沿って注液ノズル4bを移動させることができる。   In the present embodiment, the plurality of liquid injection nozzles 4b are sequentially movable above the openings 29a of the plurality of battery cells 10a arranged side by side. Therefore, the electrolytic solution 20 can be repeatedly supplied to the plurality of battery cells 10a sequentially by one nozzle 4b. For example, a traveling rail (not shown) provided in the liquid injection chamber 2 can be considered as a configuration that allows the liquid injection nozzle 4b to move. The liquid injection nozzle 4b can be moved along this rail.

圧力調整手段(主に減圧側の調整手段)を構成する排気ライン5は、主にバルブ5a及び真空ポンプ5bを有し、注液チャンバ2内部を真空引きして減圧することができるように制御部7に接続されている。   The exhaust line 5 constituting pressure adjusting means (mainly pressure reducing side adjusting means) mainly includes a valve 5a and a vacuum pump 5b, and is controlled so that the inside of the liquid injection chamber 2 can be evacuated to reduce pressure. Connected to the unit 7.

圧力調整手段(主に加圧側の調整手段)を構成するガス導入ライン6は、排気ライン5により真空引きされた注液チャンバ2内部に乾燥空気・あるいは不活性ガスを導入することで、注液チャンバ2の内圧を真空状態ないし減圧状態から上昇させるためのものである。このガス導入ライン6は、主に、バルブ6a及びガス貯留タンク6bを有し、注液チャンバ2内部を真空状態ないし減圧状態から上昇(加圧・昇圧)させることができるようにバルブ6aなどが制御部7に接続されている。   A gas introduction line 6 constituting pressure adjustment means (mainly pressure-side adjustment means) introduces dry air or inert gas into the liquid injection chamber 2 evacuated by the exhaust line 5 to inject liquid. This is for increasing the internal pressure of the chamber 2 from a vacuum state or a reduced pressure state. This gas introduction line 6 mainly has a valve 6a and a gas storage tank 6b. The valve 6a and the like are provided so that the inside of the injection chamber 2 can be raised (pressurized / pressured) from a vacuum state or a reduced pressure state. It is connected to the control unit 7.

(フィルム外装電池の製造方法)
次に本実施形態のフィルム外装電池の製造方法に含まれる工程について説明する。
(Method for producing film-clad battery)
Next, steps included in the method for producing the film-clad battery of this embodiment will be described.

(電解液の注液・含浸方法)
以下に、フィルム外装電池セルに電解液を注液・含浸するための本実施形態の注液・含浸装置1による電解液20の注液・含浸方法について図面を用いて説明する。図5は、本実施形態の注液・含浸装置1による電解液20の注液・含浸方法による、注液プロファイルと含浸状態を表す図面である。図6は、本実施形態の注液・含浸装置1による電解液20の注液・含浸方法による、各注液ステップによる注液量と真空圧を表す図面である。図7は、注液時の泡の発生の様子を示す図である。
(Electrolytic solution injection / impregnation method)
Hereinafter, a method for injecting and impregnating the electrolytic solution 20 by the injecting and impregnating apparatus 1 of the present embodiment for injecting and impregnating the electrolytic solution into the film-coated battery cell will be described with reference to the drawings. FIG. 5 is a drawing showing an injection profile and an impregnation state by the injection / impregnation method of the electrolytic solution 20 by the injection / impregnation apparatus 1 of the present embodiment. FIG. 6 is a drawing showing the injection amount and the vacuum pressure in each injection step by the injection / impregnation method of the electrolytic solution 20 by the injection / impregnation apparatus 1 of this embodiment. FIG. 7 is a diagram showing how bubbles are generated during injection.

なお、図5中の(a)から(j)は、注液初期から終盤、更には注液後の圧力操作による、注液マガジンの左端の電池表面に電解液が含浸する様子を表した図面である。図中、白色で表されている部分は、電池表面に設けた最外層のセパレータが電解液を含浸する前の未注液の部分である。一方、黒色で表されている部分は、電池表面に設けた最外層のセパレータが電解液を含浸した部分である。これは、図1に示すように、通常の電池表面には電極が位置するが、本図では、セパレータへの電解液の含浸状態のモニタリングを容易にするために、電池表面にセパレータを更に設置したものである。このように、本実施形態のフィルム外装電池においては、電極群の最外層にセパレータを設置する形態を何ら排除するものではない。   5A to 5J are drawings showing the state in which the electrolyte is impregnated on the battery surface at the left end of the liquid injection magazine by the pressure operation after the liquid injection from the beginning to the end of the liquid injection. It is. In the figure, the portion represented in white is the portion of the uninjected liquid before the outermost separator provided on the battery surface is impregnated with the electrolytic solution. On the other hand, the portion represented in black is a portion in which the outermost separator provided on the battery surface is impregnated with the electrolytic solution. This is because, as shown in FIG. 1, electrodes are located on the normal battery surface, but in this figure, a separator is further installed on the battery surface to facilitate monitoring of the impregnation state of the electrolyte into the separator. It is a thing. Thus, in the film-clad battery of this embodiment, the form which installs a separator in the outermost layer of an electrode group is not excluded at all.

図5、6に示すグラフでは、図4の注液ノズルにより注液される、電池セル10aについての注液量および時間の関係を示す。   The graphs shown in FIGS. 5 and 6 show the relationship between the injection amount and time for the battery cell 10a injected by the injection nozzle of FIG.

図7(a)は、電解液の含浸を阻害する空気膨張が起こる圧力まで注液時の減圧度を高めて(高真空度として)、泡発生が生じて電解液の飛び散りが起こっている既存の注液状態を示す図面である。図7(b)は、電解液の含浸を阻害する空気膨張が起こらない圧力にて、注液時の減圧度を抑えて、泡発生を抑えることで電解液の飛び散りを抑えた本実施形態による注液状態を示す図面である。   FIG. 7 (a) shows an example in which the degree of pressure reduction during injection is increased to a pressure at which air expansion that impedes impregnation of the electrolytic solution occurs (as a high degree of vacuum), bubbles are generated, and the electrolytic solution is scattered. It is drawing which shows the liquid injection state. FIG. 7 (b) shows the embodiment according to the present embodiment in which the scattering of the electrolytic solution is suppressed by suppressing the generation of bubbles by suppressing the degree of decompression at the time of injection at a pressure at which air expansion that impedes impregnation of the electrolytic solution does not occur. It is drawing which shows a liquid injection state.

本実施形態の注液・含浸装置1による電解液20の注液・含浸方法は、図5に示すように、注液チャンバ2内を大気圧より低い圧力に維持したまま、前記開口部29aから外装材29内に所定注液量の電解液20の全量を注液するものである。所定注液量の電解液20の全量を注液した時点が、図5中の丸印Aの時点になる。本実施形態の電解液20の注液・含浸方法は、注液チャンバ2内の圧力(減圧)を減圧したまま、電池群21’を収納した袋状ラミネートフィルム外装材29の開口部29aに電解液20の全量を注液することである、詳しくは、図5、6に示すように注液ステップ#1〜ステップ#7の間に圧力(減圧)を維持したままで、以下の手順により電解液20の注液が行われる。   The injection / impregnation method of the electrolytic solution 20 by the injection / impregnation apparatus 1 of the present embodiment is performed from the opening 29a while maintaining the inside of the injection chamber 2 at a pressure lower than the atmospheric pressure, as shown in FIG. The entire amount of the electrolytic solution 20 having a predetermined injection amount is injected into the exterior material 29. The point in time when the entire amount of the electrolyte solution 20 of a predetermined injection amount is injected is the time indicated by a circle A in FIG. In the method for injecting and impregnating the electrolytic solution 20 according to the present embodiment, the opening 29a of the bag-shaped laminate film exterior material 29 containing the battery group 21 ′ is electrolyzed while the pressure (reduced pressure) in the injection chamber 2 is reduced. More specifically, the entire amount of the liquid 20 is injected. Specifically, as shown in FIGS. 5 and 6, the pressure (reduced pressure) is maintained between the injection steps # 1 to # 7, and electrolysis is performed according to the following procedure. The liquid 20 is injected.

(減圧工程)
図4に示すようにチャンバ2内に、複数の電池セル10aが整列される。
(Decompression step)
As shown in FIG. 4, a plurality of battery cells 10 a are aligned in the chamber 2.

次に、制御部7を通じて、バルブ5aを開いた状態で排気ライン5の真空ポンプ5bを駆動して注液チャンバ2内を大気圧より低い圧力まで減圧する。所定の真空度に達したならバルブ5aを閉じる。この状態では、前記電極群21’の内部を含む注液チャンバ2の内部は等しく所定の圧力に減圧されている。なお、図5に示すように、注液段階(例えば、図5のT1まで)では、注液後に圧力操作する際(例えば、図5のT5、T8、T10)の減圧度よりも高い圧力で行うのが望ましい。これは、注液段階では、電解液20がセパレータなどに含浸する間に、発泡して飛び散ったりするのを有効に防止することができる点で優れている(図7(a)と図7(b)とを対比参照のこと)。また、図5、6に示すように、注液チャンバ2内の減圧度は、大気圧より低い圧力であればよいが、好ましくは電解液20が沸騰して激しく発泡する状態にならない範囲内で、より真空に近い圧力まで減圧するのが好ましい。これにより、電池セル10a内の余分な空気(ガス)を追い出し、ガス溜まりの発生を防止し、電解液を十分に含浸できるようにすることができる。例えば、5kPa以下の圧力、より好ましくは3kPa以下、特に好ましくは1.5〜2kPa程度の範囲内である。但し、本実施形態では、かかる範囲に何ら制限されるものではない。   Next, the vacuum pump 5b of the exhaust line 5 is driven through the control unit 7 with the valve 5a being opened to reduce the pressure in the liquid injection chamber 2 to a pressure lower than the atmospheric pressure. When the predetermined degree of vacuum is reached, the valve 5a is closed. In this state, the inside of the liquid injection chamber 2 including the inside of the electrode group 21 ′ is equally depressurized to a predetermined pressure. As shown in FIG. 5, in the liquid injection stage (for example, up to T1 in FIG. 5), the pressure is higher than the degree of pressure reduction during the pressure operation after the liquid injection (for example, T5, T8, T10 in FIG. 5). It is desirable to do it. This is excellent in that it can effectively prevent foaming and scattering while the electrolyte solution 20 is impregnated in the separator or the like in the liquid injection stage (FIG. 7A and FIG. 7). (See b) for comparison). As shown in FIGS. 5 and 6, the degree of decompression in the liquid injection chamber 2 may be a pressure lower than the atmospheric pressure, but is preferably within a range where the electrolytic solution 20 does not boil and become violently foamed. It is preferable to reduce the pressure to a pressure closer to vacuum. Thereby, excess air (gas) in the battery cell 10a can be expelled, the occurrence of gas accumulation can be prevented, and the electrolyte can be sufficiently impregnated. For example, the pressure is 5 kPa or less, more preferably 3 kPa or less, and particularly preferably in the range of about 1.5 to 2 kPa. However, in the present embodiment, the range is not limited at all.

本工程での含浸状態は、図5の(a)に示されるように、セパレータへの電解液の含浸はなく、全面が白色である。   In the impregnation state in this step, as shown in FIG. 5A, the separator is not impregnated with the electrolytic solution, and the entire surface is white.

(注液工程)
次に、前記注液チャンバ2内を上記減圧工程により達成した圧力(大気圧より低い圧力)に維持したまま、前記開口部29aから前記外装材29内に所定注液量(規定の電解液量)の電解液の全量を注液する。
(Liquid injection process)
Next, while maintaining the inside of the liquid injection chamber 2 at the pressure achieved by the pressure reducing step (pressure lower than the atmospheric pressure), a predetermined liquid injection amount (a prescribed amount of electrolytic solution) from the opening 29 a into the exterior material 29. The whole amount of the electrolyte solution is poured.

詳しくは、外装材29の上方部分の開口部29aを介して電解液供給ライン4から注液ノズル4bを通じて少量ずつ数回に分けて(図5、6では7回に分けて)、所定注液量(規定の電解液量)の電解液20の全量を注入する。電池群21’は、その厚さ方向は、押さえ部材3aの板部材の主面全面で適度に押さえられているので、電池群21’の主面21a側の中央部まで電解液20が流れ込む隙間はない。また、押さえ部材3aに押さえられていることで、電極群21’を構成する複数の正極板、セパレータ、負極板の間の隙間は小さく、複数の正極板、セパレータ、負極板の間に電解液20が流れ込むことも殆どない。さらには、電池群21’の内部を含む注液チャンバ2の内部は等しく所定の圧力に減圧されていることから電解液20が電池群21’内の負圧によって電池群21’の内部に吸引されることもない。そのため、注液工程では、電池群21’の外周部から中央部付近までが電解液20で浸される状態となるまで、所定注液量(規定の電解液量)の電解液20が少量ずつ数回に分けて注入される(図5の(a)→(b)→(d’)参照)。   Specifically, a predetermined injection is performed by dividing the electrolyte solution supply line 4 through the injection nozzle 4b through the opening 29a in the upper part of the exterior material 29 in small portions (seven times in FIGS. 5 and 6). A total amount of the electrolyte solution 20 in an amount (specified electrolyte amount) is injected. The battery group 21 ′ is moderately pressed across the entire main surface of the plate member of the pressing member 3a in the thickness direction, and therefore the gap through which the electrolyte 20 flows to the central portion on the main surface 21a side of the battery group 21 ′. There is no. Further, by being pressed by the pressing member 3a, the gaps between the plurality of positive plates, separators, and negative plates constituting the electrode group 21 ′ are small, and the electrolyte 20 flows between the plurality of positive plates, separators, and negative plates. There is almost no. Furthermore, since the inside of the liquid injection chamber 2 including the inside of the battery group 21 ′ is equally reduced to a predetermined pressure, the electrolytic solution 20 is sucked into the battery group 21 ′ by the negative pressure in the battery group 21 ′. It is never done. Therefore, in the liquid injection step, the electrolyte solution 20 of a predetermined liquid injection amount (a prescribed amount of electrolyte solution) is little by little until the outer periphery of the battery group 21 ′ and the vicinity of the center are immersed in the electrolyte solution 20. The injection is performed in several times (see (a) → (b) → (d ′) in FIG. 5).

詳しくは、図5の(d’)に示すように、本工程完了時点では、電池群21’の主面21a側の中央部までは電解液20が含浸しておらず、セパレータの含浸状態も中央部は白色のままであり、未含浸であることがわかる。   Specifically, as shown in FIG. 5 (d ′), at the time of completion of this process, the electrolyte solution 20 is not impregnated up to the central portion on the main surface 21a side of the battery group 21 ′, and the impregnated state of the separator is also It can be seen that the central portion remains white and is not impregnated.

なお、図5、6に示すように本工程で電解液20を少量ずつ数回に分けて注液するのは、電解液が外装材29から溢れ出て、飛散するのを防止するためである。電池群21’に電解液が含浸するには時間がかかる。最終的には含浸される量の電解液でも、含浸しきれていない状態で一度に注液してしまうと、外装材29から溢れてしまう可能性がある。ただし、本工程で注液された電解液20は、たとえ少量ずつに分けて注液した場合であっても素早く流れ込む隙間はない。そのため電池群21’の上部側で若干泡立ちながら(図7(b)参照)、徐々に電極群21’の比較的含浸しやすい(即ち、若干隙間があり押圧力が印加されにくい)外周部から浸透(含浸)されていくことがわかる。(図5の(a)→(b)→(d’)参照)。なお、本工程中の真空圧は、図5、6に示すように、前工程で大気圧より低い圧力に減圧した状態を維持したまま、一定に保持されている。   In addition, as shown in FIGS. 5 and 6, the electrolytic solution 20 is injected in small portions several times in this step in order to prevent the electrolytic solution from overflowing from the outer packaging material 29 and scattering. . It takes time for the battery group 21 'to be impregnated with the electrolyte. Even if the amount of the electrolyte solution to be finally impregnated is poured all at once without being completely impregnated, it may overflow from the exterior material 29. However, the electrolytic solution 20 injected in this step does not have a gap that quickly flows even if it is injected in small portions. Therefore, while slightly bubbling on the upper side of the battery group 21 ′ (see FIG. 7 (b)), the electrode group 21 ′ gradually gradually impregnates (that is, there is a slight gap and the pressing force is difficult to be applied) from the outer peripheral portion. It can be seen that it is infiltrated (impregnated). (See (a) → (b) → (d ′) in FIG. 5). As shown in FIGS. 5 and 6, the vacuum pressure in this step is kept constant while maintaining the pressure reduced to a pressure lower than the atmospheric pressure in the previous step.

また、本工程では、注液ノズル4bを通じて電池セル10aに少量ずつ数回に分けて所定注液量(規定の電解液量)の電解液20を注入している。具体的には、図5、6に示す注液プロファイルのグラフに示すように、注液ステップ#1〜#7まで7回に分けて所定注液量(規定の電解液量)を、所定の時間内で徐々に注液している。   Further, in this step, the electrolyte solution 20 of a predetermined injection amount (a prescribed amount of electrolyte) is injected into the battery cell 10a in small portions several times through the injection nozzle 4b. Specifically, as shown in the graphs of the injection profiles shown in FIGS. 5 and 6, a predetermined injection amount (a prescribed amount of electrolyte) is divided into seven steps from injection steps # 1 to # 7. The liquid is gradually poured in time.

図5、6に示すように、1つの電池セル10aについてみれば、自身が注液された後、他の電池セル10aが注液されてから、もう一度注液される。したがって、他の電池セル10aが注液されている間は、注液されずに状態が維持されていることがわかる。こうすることで、各回の注液後の一定時間中に電解液の含浸が促進される点で望ましい。但し、本実施形態では、上記に何ら制限されるものではなく、注液回数、注液量、注液時間、減圧度などは、電池サイズや形状、電解液濃度などに応じて適宜決定すればよい。例えば、注液回数は、大量に電解液を注液して吹き出したり、飛び散ったりしない範囲内でできるだけ少なくすることで電解液量を無駄なく有効に注液し、電解液の注液時間を短縮することが望ましい。圧力条件により注液回数を増やす方が電解液の注液時間を短縮することができる場合には、注液回数を増やすのが望ましいといえる。   As shown in FIGS. 5 and 6, when one battery cell 10a is seen, after itself is injected, another battery cell 10a is injected and then injected again. Therefore, it can be seen that the state is maintained without being injected while the other battery cell 10a is being injected. By doing so, it is desirable in that the impregnation of the electrolytic solution is promoted during a certain time after each injection. However, in the present embodiment, it is not limited to the above, and the number of times of injection, the amount of injection, the time of injection, the degree of pressure reduction, etc. may be appropriately determined according to the battery size, shape, electrolyte concentration, etc. Good. For example, the number of injections is reduced as much as possible within the range that does not blow out or splash the electrolyte in large quantities, so that the amount of electrolyte can be effectively injected without waste, and the time required for electrolyte injection can be reduced. It is desirable to do. It can be said that it is desirable to increase the number of injections when increasing the number of injections depending on the pressure condition can reduce the injection time of the electrolyte.

以上のように、各種条件を最適化する過程で最適な注液回数等を決定すればよい。また注液量は、図6に示すように、本工程内において注液ステップ数が増えるに従って注液量は減少傾向にある。これは注液回数が増えるに従って、電池群21’の主面21a側の中央部まで電解液2が含浸しにくくなるため、注液ステップ数が増えるに従って注液量は減少させることで飛び散りを効果的に抑えることができるものである。注液時間は、真空度や電池群21’への含浸速度から適宜決定できる。減圧度は、上記したように電解液20が沸騰して激しく泡立ち、飛散するのを抑えることができる範囲内で、より高真空度とするのが望ましい。これは、電池セル10a内部に空気が残存することで、注液段階でも当該残存する空気部分に電解液が浸透できず、ガス溜まりを生じる恐れがあるためである。   As described above, an optimal number of injections may be determined in the process of optimizing various conditions. Further, as shown in FIG. 6, the liquid injection amount tends to decrease as the number of liquid injection steps increases in this process. As the number of injections increases, the electrolytic solution 2 becomes less likely to be impregnated to the central portion on the main surface 21a side of the battery group 21 '. Therefore, the amount of injection is reduced as the number of injection steps increases, thereby causing scattering. Can be suppressed. The injection time can be appropriately determined from the degree of vacuum and the impregnation rate into the battery group 21 '. As described above, the degree of vacuum is preferably set to a higher degree of vacuum within a range in which the electrolytic solution 20 can be boiled and violently bubbled and scattered. This is because the air remains in the battery cell 10a, so that the electrolytic solution cannot penetrate into the remaining air portion even at the liquid injection stage, which may cause a gas pool.

また、電池セル数や注液ノズル数も適宜決定すればよい。例えば、電池セル10aと注液ノズル4bを同数として、固定式のノズルを用いて、可動式の機構やこれを制御するシステムなどを省略することで、システムトラブルを低減するようにしてもよい。また、注液チャンバ2の大きさにもよるが、複数の注液マガジンを平面内に設置してもよいし、複数の注液マガジンを適当な間隔をあけて立体的に積み重ねるようにして設置してもよいし、これらを組み合わせてもよい。注液マガジン3も、図4に示すように複数の電池セル10aを1列に並べる形態であってもよいし、複数の電池セル10aを複数列に並べる形態であってもよい。また、注液マガジン3は、図4に示すように箱型であってもよいし、円型であってもよい。円形の場合には、複数の電池セル10aは半径方向に順に並べればよい。   Moreover, what is necessary is just to determine the number of battery cells and the number of liquid injection nozzles suitably. For example, the same number of battery cells 10a and injection nozzles 4b may be used, and a fixed type nozzle may be used to omit a movable mechanism or a system for controlling the mechanism, thereby reducing system trouble. Depending on the size of the liquid injection chamber 2, a plurality of liquid injection magazines may be installed in a plane, or a plurality of liquid injection magazines may be stacked three-dimensionally at appropriate intervals. Or they may be combined. As shown in FIG. 4, the liquid injection magazine 3 may have a form in which a plurality of battery cells 10 a are arranged in one row, or a form in which a plurality of battery cells 10 a are arranged in a plurality of rows. Moreover, the injection magazine 3 may be box-shaped as shown in FIG. 4 or may be circular. In the case of a circular shape, the plurality of battery cells 10a may be arranged in order in the radial direction.

注液ステップ#1〜#7まで、各ステップの注液量が徐々に減っているのは、注液ステップが進むにつれて電池群21’の周辺部からより中央部に向けて含浸していく必要があり、電解液20が含浸し得る注液量も徐々に少なくなるためである。そのため、本工程では、所定注液量(規定の電解液量)を注液後も電池群21’のセパレータの中央部のかなりの部分が未注液状態のままとなっている(図5の(a)→(b)→(d’)参照)。   From the liquid injection steps # 1 to # 7, the amount of liquid injection at each step is gradually reduced because it is necessary to impregnate from the peripheral part of the battery group 21 ′ toward the central part as the liquid injection step proceeds. This is because the amount of liquid that can be impregnated with the electrolytic solution 20 gradually decreases. Therefore, in this step, a considerable portion of the central portion of the separator of the battery group 21 ′ remains in an uninjected state even after injecting a predetermined injection amount (specified electrolyte amount) (see FIG. 5). (See (a) → (b) → (d ′)).

注液工程の変形例
次に本実施形態の電解液20の注液・含浸方法の好適な変形例としては、前記注液工程として、注液チャンバ内を減圧後の圧力に維持したまま、前記開口部から外装材内に所定注液量の電解液の一部を注液する第1注液工程を行う。その後、さらに注液チャンバ内を前記圧力よりも高い圧力に昇圧した後、昇圧後の圧力を一定時間保持して電解液の所定注液量の残部を注液する第2注液工程を行う。以下、本実施形態の前記注液工程として好適な第1注液工程と第2注液工程とを行う好適例につき、詳しく説明する。
Modified example of the liquid injection process Next, as a preferable modification of the liquid injection / impregnation method of the electrolytic solution 20 of the present embodiment, as the liquid injection process, while maintaining the pressure in the liquid injection chamber at the pressure after depressurization, A first injection process is performed in which a part of the electrolyte solution having a predetermined injection amount is injected into the exterior material from the opening. Thereafter, after the pressure in the liquid injection chamber is further increased to a pressure higher than the above pressure, a second liquid injection process is performed in which the pressure after the pressure increase is maintained for a certain period of time and the remainder of the predetermined liquid injection volume is injected. Hereinafter, a preferred example in which the first liquid injection process and the second liquid injection process suitable as the liquid injection process of the present embodiment are performed will be described in detail.

本変形例の電解液20の注液・含浸方法は、電池群21’を収納した袋状ラミネートフィルム外装材29の開口部29aに電解液20を注液中に、圧力(減圧)を大気圧側(大気圧未満)に戻し、一定時間保持することを特徴とするものである、詳しくは、図5、6に示すように注液ステップ#4とステップ#5の間に圧力(減圧)を大気圧側(大気圧未満)に戻し、その圧力を注液ステップ#5〜#7の間、一定時間保持することを特徴とするものである。そこで、以下の手順により電解液20の注液が行われる。   The method of pouring and impregnating the electrolytic solution 20 of this modification is such that the electrolytic solution 20 is poured into the opening 29a of the bag-shaped laminate film packaging material 29 containing the battery group 21 ', and the pressure (decompression) is atmospheric pressure. The pressure is reduced between the liquid injection step # 4 and step # 5 as shown in FIGS. 5 and 6 in detail. The pressure is returned to the atmospheric pressure side (below atmospheric pressure), and the pressure is maintained for a certain period of time during the liquid injection steps # 5 to # 7. Therefore, the electrolytic solution 20 is injected by the following procedure.

(第1注液工程)
次に本実施形態の好適な態様では、注液チャンバ2内を上記減圧工程により達成した圧力(大気圧より低い圧力)に維持したまま、前記開口部29aから前記外装材29内に所定注液量(規定の電解液量)の電解液の一部を注液する。
(First injection process)
Next, in a preferred aspect of the present embodiment, a predetermined liquid injection is made from the opening 29a into the exterior material 29 while the liquid injection chamber 2 is maintained at the pressure achieved by the pressure reducing step (pressure lower than atmospheric pressure). A part of the electrolyte (a specified amount of electrolyte) is injected.

詳しくは、外装材29の上方部分の開口部29aを介して電解液供給ライン4から注液ノズル4bを通じて少量ずつ数回に分けて(図5、6では4回に分けて)、所定注液量(規定の電解液量)の電解液20の一部を注入する。たとえば、図5、6の注液プロファイルに示すように、所定注液量(規定の電解液量)の電解液20の約60%が注液される。   Specifically, a predetermined amount of liquid injection is divided into small portions several times through the liquid supply nozzle 4b from the electrolyte solution supply line 4 through the opening 29a in the upper part of the exterior material 29 (in FIG. 5 and FIG. 6, four times). A part of the electrolyte solution 20 in an amount (a prescribed electrolyte amount) is injected. For example, as shown in the injection profiles of FIGS. 5 and 6, about 60% of the electrolyte 20 having a predetermined injection volume (a prescribed electrolyte volume) is injected.

電池群21’は、その厚さ方向は、押さえ部材3aの板部材の主面全面で適度に押さえられているので、電池群21’の主面21a側の中央部まで電解液20が流れ込む隙間はない。また、押さえ部材3aに押さえられていることで、電極群21’を構成する複数の正極板、セパレータ、負極板の間の隙間は小さく、複数の正極板、セパレータ、負極板の間に電解液20が流れ込むことも殆どない。さらには、電池群21’の内部を含む注液チャンバ2の内部は等しく所定の圧力に減圧されていることから電解液20が電池群21’内の負圧によって電池群21’の内部に吸引されることもない。そのため、第1注液工程では、所定注液量(規定の電解液量)の電解液20の一部(図5、6では全体の約6割)を少量ずつ数回に分けて電池群21’の外周部が電解液20で浸される状態となるまで注入される(図5の(b)参照)。   The battery group 21 ′ is moderately pressed across the entire main surface of the plate member of the pressing member 3a in the thickness direction, and therefore the gap through which the electrolyte 20 flows to the central portion on the main surface 21a side of the battery group 21 ′. There is no. Further, by being pressed by the pressing member 3a, the gaps between the plurality of positive plates, separators, and negative plates constituting the electrode group 21 ′ are small, and the electrolyte 20 flows between the plurality of positive plates, separators, and negative plates. There is almost no. Furthermore, since the inside of the liquid injection chamber 2 including the inside of the battery group 21 ′ is equally reduced to a predetermined pressure, the electrolytic solution 20 is sucked into the battery group 21 ′ by the negative pressure in the battery group 21 ′. It is never done. For this reason, in the first injection step, a part of the electrolyte solution 20 (about 60% of the total in FIGS. 5 and 6) having a predetermined injection amount (specified electrolyte amount) is divided into small portions and divided into several times. It is injected until the outer peripheral portion of 'is immersed in the electrolytic solution 20 (see FIG. 5B).

詳しくは、図5(b)の含浸状態に示すように、本工程完了時点では、電池群21’の主面21a側の中央部までは電解液20が含浸しておらず、セパレータの含浸状態も中央部は白色のままであり、未含浸であることがわかる。なお、図5、6に示すように本工程で電解液を少量ずつ数回に分けて注液するのは、電解液が外装材29から溢れ出て、飛散するのを防止するためである。電池群21’に電解液が含浸するには時間がかかる。最終的には含浸される量の電解液でも、含浸しきれていない状態で一度に注液してしまうと、外装材29から溢れてしまう可能性がある。ただし、本工程で注液された電解液20は、たとえ少量ずつに分けて注液した場合であっても素早く流れ込む隙間はない。そのため電池群21’の上部側で若干泡立ちながら(図7(a)参照)、徐々に電極群21’の比較的含浸しやすい(即ち、若干隙間があり押圧力が印加されにくい)外周部から浸透(含浸)されていくことがわかる。(図5の(b)参照)。なお、本工程中の真空圧は、図5、6に示すように、前工程で大気圧より低い圧力に減圧した状態を維持したまま、一定に保持されている。   Specifically, as shown in the impregnated state of FIG. 5 (b), the electrolyte solution 20 is not impregnated up to the central portion on the main surface 21a side of the battery group 21 ′ at the time of completion of this process, and the impregnated state of the separator. It can be seen that the central portion remains white and is not impregnated. In addition, as shown in FIGS. 5 and 6, the electrolytic solution is injected in small portions several times in this step in order to prevent the electrolytic solution from overflowing from the outer packaging material 29 and scattering. It takes time for the battery group 21 'to be impregnated with the electrolyte. Even if the amount of the electrolyte solution to be finally impregnated is poured all at once without being completely impregnated, it may overflow from the exterior material 29. However, the electrolytic solution 20 injected in this step does not have a gap that quickly flows even if it is injected in small portions. Therefore, while slightly bubbling on the upper side of the battery group 21 ′ (see FIG. 7A), the electrode group 21 ′ gradually gradually impregnates (that is, there is a slight gap and it is difficult to apply a pressing force) from the outer periphery. It can be seen that it is infiltrated (impregnated). (See (b) of FIG. 5). As shown in FIGS. 5 and 6, the vacuum pressure in this step is kept constant while maintaining the pressure reduced to a pressure lower than the atmospheric pressure in the previous step.

また、本工程では、注液ノズル4bを通じて電池セル10aに少量ずつ数回に分けて所定注液量(規定の電解液量)の電解液20の一部を注入している。具体的には、図5、6に示す注液プロファイルのグラフに示すように、注液ステップ#1〜#4まで4回に分けて所定注液量(規定の電解液量)の60%程度まで、徐々に注液している。   Further, in this step, a part of the electrolyte solution 20 having a predetermined injection volume (a prescribed electrolyte volume) is injected into the battery cell 10a in small portions through the injection nozzle 4b. Specifically, as shown in the graphs of the injection profiles shown in FIGS. 5 and 6, the injection steps # 1 to # 4 are divided into four times and about 60% of the predetermined injection amount (specified electrolyte amount). Until the liquid is gradually poured.

図5、6に示すように、1つの電池セル10aについてみれば、自身が注液された後、他の電池セル10aが注液されてから、もう一度注液される。したがって、他の電池セル10aが注液されている間は、注液されずに状態が維持されていることがわかる。こうすることで、各回の注液後の一定時間中に電解液の含浸が促進される点で望ましい。但し、本実施形態では、上記に何ら制限されるものではなく、注液回数、注液量、注液時間、減圧度などは、電池サイズや形状、電解液濃度などになどに応じて適宜決定すればよい。例えば、注液回数は、大量に電解液を注液して吹き出したり、飛び散ったりしない範囲内でできるだけ少なくすることで電解液量を無駄なく有効に注液し、電解液の注液時間を短縮することが望ましい。圧力条件により注液回数を増やす方が電解液の注液時間を短縮することができる場合には、注液回数を増やすのが望ましいといえる。   As shown in FIGS. 5 and 6, when one battery cell 10a is seen, after itself is injected, another battery cell 10a is injected and then injected again. Therefore, it can be seen that the state is maintained without being injected while the other battery cell 10a is being injected. By doing so, it is desirable in that the impregnation of the electrolytic solution is promoted during a certain time after each injection. However, in the present embodiment, there is no limitation on the above, and the number of times of injection, the amount of injection, the injection time, the degree of pressure reduction, etc. are appropriately determined according to the battery size, shape, electrolyte concentration, etc. do it. For example, the number of injections is reduced as much as possible within the range that does not blow out or splash the electrolyte in large quantities, so that the amount of electrolyte can be effectively injected without waste, and the time required for electrolyte injection can be reduced. It is desirable to do. It can be said that it is desirable to increase the number of injections when increasing the number of injections depending on the pressure condition can reduce the injection time of the electrolyte.

以上のように、各種条件を最適化する過程で最適な注液回数等を決定すればよい。また注液量は、図6に示すように、本工程内において注液ステップ数が増えるに従って注液量は減少傾向にある。このことから、大気圧より低い圧力を維持した状態での注液可能な量は、概ね50〜70%程度とするのが、電解液の飛散を防止しつつ電解液の注液時間を短縮する観点から望ましいといえる。注液時間は、真空度や電池群への含浸速度から適宜決定できる。減圧度は、上記したように電解液が沸騰して激しく泡立ち、飛散するのを抑えることができる範囲内で、より高真空度とするのが望ましい。これは、電池セル10a内部に空気が残存することで、注液段階でも当該残存する空気部分に電解液が浸透できず、ガス溜まりを生じる恐れがあるためである。   As described above, an optimal number of injections may be determined in the process of optimizing various conditions. Further, as shown in FIG. 6, the liquid injection amount tends to decrease as the number of liquid injection steps increases in this process. For this reason, the amount that can be injected while maintaining a pressure lower than the atmospheric pressure is approximately 50 to 70%, which shortens the injection time of the electrolyte while preventing the electrolyte from being scattered. This is desirable from the viewpoint. The injection time can be appropriately determined from the degree of vacuum and the impregnation rate into the battery group. As described above, the degree of vacuum is preferably set to a higher degree of vacuum as long as the electrolyte can be prevented from boiling and violently bubbling and scattering. This is because the air remains in the battery cell 10a, so that the electrolytic solution cannot penetrate into the remaining air portion even at the liquid injection stage, which may cause a gas pool.

また、電池セル数や注液ノズル数も適宜決定すればよい。例えば、電池セル10aと注液ノズル4bを同数として、固定式のノズルを用いて、可動式の機構やこれを制御するシステムなどを省略することで、システムトラブルを低減するようにしてもよい。また、注液チャンバの大きさにもよるが、複数の注液マガジンを平面内に設置してもよいし、複数の注液マガジンを適当な間隔をあけて立体的に積み重ねるようにして設置してもよいし、これらを組み合わせてもよい。注液マガジン3も、図4に示すように複数の電池セル10aを1列に並べる形態であってもよいし、複数の電池セル10aを複数列に並べる形態であってもよい。また、注液マガジン3は、図4に示すように箱型であってもよいし、円型であってもよい。円形の場合には、複数の電池セル10aは半径方向に順に並べればよい。   Moreover, what is necessary is just to determine the number of battery cells and the number of liquid injection nozzles suitably. For example, the same number of battery cells 10a and injection nozzles 4b may be used, and a fixed type nozzle may be used to omit a movable mechanism or a system for controlling the mechanism, thereby reducing system trouble. Depending on the size of the injection chamber, a plurality of injection magazines may be installed in a plane, or a plurality of injection magazines are installed in a three-dimensional manner with appropriate intervals. These may be combined. As shown in FIG. 4, the liquid injection magazine 3 may have a form in which a plurality of battery cells 10 a are arranged in one row, or a form in which a plurality of battery cells 10 a are arranged in a plurality of rows. Moreover, the injection magazine 3 may be box-shaped as shown in FIG. 4 or may be circular. In the case of a circular shape, the plurality of battery cells 10a may be arranged in order in the radial direction.

上記したように、注液ステップ#1〜#4まで、各ステップの注液量が徐々に減っているのは、注液ステップが進むにつれて電池群21’の周辺部からより中央部に向けて含浸していく必要があり、電解液20が含浸し得る注液量も徐々に少なくなるためである。そのため、上記した本実施形態の注液工程では、所定注液量(規定の電解液量)を注液後も電池群21’のセパレータの中央部のかなりの部分が未注液状態のままとなっている(図5の(a)→(b)→(d’)参照)。一方、本実施形態の好適な態様の注液工程では、本工程の第1注液工程後に、次工程の第2注液工程を実施することで、所定注液量(規定の電解液量)を注液・含浸させるまでに時間を大幅に短縮できる。さらに注液後も電池群21’のセパレータの中央部までほぼ完全に注液状態とすることができる。(図5の(a)→(b)→(c)→(d)までの含浸状態と、(a)→(b)→(d’)までの含浸状態を対比参照のこと)。   As described above, from the liquid injection steps # 1 to # 4, the amount of liquid injection in each step is gradually reduced from the peripheral part of the battery group 21 ′ toward the central part as the liquid injection step proceeds. This is because it is necessary to impregnate, and the amount of liquid that can be impregnated with the electrolyte 20 gradually decreases. For this reason, in the liquid injection process of the present embodiment described above, a considerable portion of the central portion of the separator of the battery group 21 ′ remains in an uninjected state even after a predetermined amount of liquid injection (a prescribed amount of electrolytic solution) is injected. (See (a) → (b) → (d ′) in FIG. 5). On the other hand, in the liquid injection process according to a preferred aspect of the present embodiment, the second liquid injection process of the next process is performed after the first liquid injection process of the present process, whereby a predetermined liquid injection amount (a prescribed amount of electrolyte) The time required to inject and impregnate can be greatly reduced. Furthermore, even after the liquid injection, the liquid injection state can be almost completely achieved up to the center of the separator of the battery group 21 ′. (Refer to FIG. 5 for comparison between the impregnation state from (a) → (b) → (c) → (d) and the impregnation state from (a) → (b) → (d ′)).

(第2注液工程)
本実施形態の好適な態様では、第2注液工程として、注液チャンバ2内を前記圧力(大気圧より低い圧力)よりも高い圧力に昇圧した後、当該圧力(昇圧後の圧力)を一定時間保持して前記電解液の所定注液量(規定の電解液量)の残部を注液する(図5、6参照)。
(Second injection process)
In a preferred aspect of the present embodiment, as the second liquid injection step, the pressure in the liquid injection chamber 2 is increased to a pressure higher than the pressure (pressure lower than atmospheric pressure), and then the pressure (pressure after pressure increase) is constant. Holding the time, the remaining part of the predetermined amount of electrolyte (specified amount of electrolyte) is injected (see FIGS. 5 and 6).

具体的には、制御部7を通じて、ガス導入ライン6のバルブ6aを開き、注液チャンバ2内にガスを導入し、注液チャンバ2内の前記圧力(大気圧より低い圧力)よりも高い圧力に昇圧する。かかる操作により、電池群21’の主面21a側は、図5の(b)から図5(c)の含浸状態になるが、大きな変化は認められない。これは、この間、電解液20は注液していないため、中央部まで含浸させるのに必要な電解液量はなく、セパレータの含浸状態も中央部は白色のままであり、大きな変化は生じ得ないものといえる。   Specifically, the valve 6a of the gas introduction line 6 is opened through the control unit 7, the gas is introduced into the injection chamber 2, and a pressure higher than the pressure in the injection chamber 2 (pressure lower than atmospheric pressure). Boost to. By such an operation, the main surface 21a side of the battery group 21 'is brought into the impregnated state from FIG. 5B to FIG. 5C, but no significant change is recognized. This is because the electrolyte solution 20 is not injected during this period, so there is no amount of electrolyte solution necessary for impregnation up to the central portion, and the impregnation state of the separator remains white in the central portion, and a large change can occur. It can be said that there is nothing.

前記圧力(大気圧より低い圧力)よりも高い圧力に昇圧した後、ガス導入ライン6のバルブ6aを閉じて当該圧力(昇圧後の圧力)を一定時間保持する。この間、外装材29の上方部分の開口部29aを介して電解液供給ライン4から注液ノズル4bを通じて電解液20の所定注液量(規定の電解液量)の残部を少量ずつ数回に分けて(図5、6では3回に分けて)注液する。具体的には、図5、6の注液プロファイルに示すように、所定注液量(規定の電解液量)の電解液20の残り約40%が注液されていることがわかる。こうした操作により、電池群21’の主面21a側の中央部までは電解液20を含浸させることができる。また所定注液量(規定の電解液量)を全て注液することで、液面が電極群21’の上端面より上になる状態まで注入されることになる。なお、所定注液量(規定の電解液量)を全て注液しても液面が電極群21’の上端面より下の状態だと、注液不足の状態であり、充放電過程で電極やセパレータの一部が乾いた状態になり、電池性能の低下を招く恐れがある。これは、注液中に電解液の一部が飛散することで、所望の電解液量が電池セル10a内に注液できないなどの原因が考えられる。そのため、こうした場合には、更に電解液20の注液を行うことで、液面が電極群21’の上端面より上になる状態まで注入するのが望ましい。   After the pressure is increased to a pressure higher than the pressure (pressure lower than atmospheric pressure), the valve 6a of the gas introduction line 6 is closed and the pressure (pressure after pressure increase) is maintained for a certain time. During this time, the remaining portion of the predetermined injection amount (specified electrolyte amount) of the electrolyte solution 20 is divided into small portions several times from the electrolyte solution supply line 4 through the injection nozzle 4b through the opening 29a in the upper part of the exterior material 29. (3 times in FIGS. 5 and 6). Specifically, as shown in the injection profiles of FIGS. 5 and 6, it can be seen that the remaining about 40% of the electrolyte solution 20 with a predetermined injection amount (a prescribed amount of electrolyte solution) is injected. By such an operation, the electrolytic solution 20 can be impregnated up to the central portion on the main surface 21a side of the battery group 21 '. Further, by injecting the entire predetermined injection amount (a prescribed amount of electrolyte), the liquid level is injected to a state above the upper end surface of the electrode group 21 '. Note that if the liquid level is below the upper end surface of the electrode group 21 ′ even if all of the predetermined liquid injection amount (the prescribed amount of electrolytic solution) is injected, the liquid injection is insufficient, and the electrode is charged during the charge / discharge process. In addition, a part of the separator may be in a dry state, which may cause a decrease in battery performance. This may be caused by the fact that a part of the electrolytic solution is scattered during the injection, so that a desired amount of the electrolytic solution cannot be injected into the battery cell 10a. Therefore, in such a case, it is desirable to inject the electrolytic solution 20 so that the liquid level is higher than the upper end surface of the electrode group 21 ′.

図5の(d)に示すように、本工程完了時点では、電池群21’の主面21a側の中央部までは電解液20が含浸しており、セパレータの含浸状態も中央部の一部だけが白色のままであり、十分に含浸できることがわかる。これは、ガスの導入により注液チャンバ2内の圧力は瞬時に前記圧力よりも高い圧力まで上昇するが、電池群21’の内部は真空引きされて減圧された状態のままである。よって、電池セル10aの電池群21’の内部と注液チャンバ2内との間で圧力差を生じることとなる。即ち、電池群21’の内部がより高真空状態(減圧状態)であることから、電解液20を少量ずつ数回に分けて(図5、6では3回に分けて)注液することで、この負圧によって電池群21’の中央部にまで電解液が速やかに含浸される(吸い込まれる)ことになる。その結果、電解液の含浸性が向上し、注液時間を短縮することができる。一方、第1注液工程時の減圧のまま当該圧力よりも高い圧力まで昇圧することなく、図5に示す丸印のAの点まで、電解液20を少量ずつ数回に分けて(図5では全部で7回に分けて)注液した場合には、図5の(d’)の含浸状態のように、中央部への含浸はほとんど進行せず、中央部に大きな未含浸部分が残る結果となることがわかる。   As shown in FIG. 5 (d), when this step is completed, the electrolyte solution 20 is impregnated up to the central portion on the main surface 21a side of the battery group 21 ′, and the impregnated state of the separator is also a part of the central portion. Only remains white and can be sufficiently impregnated. This is because the pressure in the liquid injection chamber 2 instantaneously rises to a pressure higher than the pressure due to the introduction of the gas, but the inside of the battery group 21 ′ is still in a vacuumed state. Therefore, a pressure difference is generated between the inside of the battery group 21 ′ of the battery cell 10 a and the inside of the liquid injection chamber 2. That is, since the inside of the battery group 21 ′ is in a higher vacuum state (reduced pressure state), the electrolytic solution 20 is divided into several portions (in FIG. 5 and 6, three times) and injected. The negative pressure causes the electrolytic solution to be quickly impregnated (sucked) into the central portion of the battery group 21 ′. As a result, the impregnation property of the electrolytic solution is improved, and the injection time can be shortened. On the other hand, without increasing the pressure to a pressure higher than the pressure while maintaining the reduced pressure during the first injection step, the electrolytic solution 20 is divided into small portions several times until the point A indicated by a circle in FIG. 5 (FIG. 5). In the case of liquid injection (divided into 7 times in total), the impregnation into the central portion hardly proceeds as in the impregnation state of FIG. 5 (d ′), and a large unimpregnated portion remains in the central portion. It turns out that it becomes a result.

なお、電解液20の量がフィルム外装電池10として必要な量に満たない場合、本工程をさらに少量ずつ数回に分けて注液する操作として繰り返してもよい。   In addition, when the amount of the electrolytic solution 20 is less than the amount necessary for the film-clad battery 10, this step may be repeated as an operation of injecting the solution in small portions.

本工程において、注液チャンバ2内を一定時間保持する圧力は、第1注液時の真空圧と大気圧との半値よりも低いことが望ましい(図5及び図6参照のこと)。即ち、第1注液時の真空圧と大気圧との半値よりも低いので、第1注液時の圧力(大気圧より低い圧力)との圧力差が大きくなりすぎず、電解液の飛び散りを防止できる(図7a参照のこと)。ただし、逆に前の圧力(大気圧より低い圧力)との圧力差が小さすぎても、図5の(d’)のように十分な含浸性向上効果が得られない恐れがあるため、具体的には、少なくとも1kPa以上の圧力差、好ましくは10kPa以上の圧力差、より好ましくは15〜20kPa程度の圧力差を設けるのが望ましいといえる。但し、本実施形態の好適な態様では、かかる範囲に何ら制限されるものではない。   In this step, it is desirable that the pressure for holding the inside of the liquid injection chamber 2 for a certain period of time is lower than the half value of the vacuum pressure and the atmospheric pressure at the time of the first liquid injection (see FIGS. 5 and 6). That is, since it is lower than the half value of the vacuum pressure and the atmospheric pressure during the first injection, the pressure difference from the pressure during the first injection (pressure lower than the atmospheric pressure) does not become too large, and the electrolyte is scattered. Can be prevented (see FIG. 7a). However, if the pressure difference from the previous pressure (pressure lower than the atmospheric pressure) is too small, there is a possibility that a sufficient impregnation improving effect may not be obtained as shown in FIG. Specifically, it can be said that it is desirable to provide a pressure difference of at least 1 kPa or more, preferably a pressure difference of 10 kPa or more, more preferably a pressure difference of about 15 to 20 kPa. However, the preferred embodiment of the present embodiment is not limited to this range.

また、本工程において、注液チャンバ2内の圧力を、段階的に高めつつ、各段階で一定時間圧力を保持して電解液20を注液してもよい。この場合にも、上記した圧力条件を満足するのがより望ましいといえる。かかる操作により、段階的に含浸(速度)を促進することができ、注液時間を短縮することができる点で優れている。かかる操作は、図示されていないが、例えば、注液チャンバ2内の圧力を、例えば、前工程の圧力から(1)15kPa→(2)20kPa→(3)25kPaのように段階的に高めつつ、各段階で一定時間圧力を保持して電解液20を注液する。ここで、例えば、前記(1)段階では、T時間15kPaの圧力を保持して、この間に電解液20を少量ずつ2回に分けて注液を行い、その後Tより短いT時間で前記(2)の段階の圧力まで昇圧する。同様にして、前記(2)段階では、T時間20kPaの圧力を保持して、この間に電解液20を少量ずつ2回に分けて注液を行い、その後T時間で前記(3)の段階の圧力まで昇圧する。最後に、前記(3)段階では、T時間25kPaの圧力を保持して、この間に電解液20を少量ずつ2回に分けて注液を行うようにしてもよい。但し、本実施形態の好適な態様ではこれらに何ら制限されるものではない。圧力を段階的に高めることで、段階的に含浸(速度)を促進し得る観点からは、前記(3)段階(=前工程との圧力差が最大となる段階)での保持時間及び注液量(及び注液回数)を他の段階よりも多くするのがより効果的といえる。 Moreover, in this process, you may inject | pour the electrolyte solution 20 by hold | maintaining a pressure for a fixed time in each step, raising the pressure in the injection chamber 2 in steps. Also in this case, it can be said that it is more desirable to satisfy the pressure conditions described above. This operation is excellent in that the impregnation (speed) can be promoted step by step, and the injection time can be shortened. Although this operation is not shown, for example, the pressure in the injection chamber 2 is increased stepwise from, for example, (1) 15 kPa → (2) 20 kPa → (3) 25 kPa from the pressure in the previous process. In each stage, the electrolyte solution 20 is injected while maintaining the pressure for a certain time. Here, for example, the (1) step and the pressure were maintained for T A Time 15 kPa, subjected to liquid injection in small portions twice the electrolytic solution 20 in the meantime, a short T B time than subsequent T A The pressure is increased to the pressure in the step (2). Similarly, the (2) in step and the pressure were maintained for T A Time 20 kPa, subjected to liquid injection in small portions twice the electrolyte 20 during this period, the subsequently T B Time (3) Increase the pressure to the step pressure. Finally, the (3) in step and the pressure were maintained for T A Time 25 kPa, may be performed pouring in small portions twice the electrolyte 20 therebetween. However, the preferred aspects of the present embodiment are not limited to these. From the viewpoint of increasing impregnation (speed) stepwise by increasing the pressure stepwise, the retention time and liquid injection in step (3) (= the step where the pressure difference from the previous step is maximized) It can be said that it is more effective to increase the amount (and the number of injections) than at other stages.

また図5、6に示すように、第1注液工程と本第2注液工程の両工程で注液を(少量ずつ)数回に分けて注液を行うと共に、本第2注液工程での各回の注液量を、第1注液工程の最終回の注液量よりも多くするのが望ましい。かかる操作により、前工程と本工程とで圧力が変わって、本工程で電解液が含浸しやすくなった分、注液量を多くすることができ、注液時間を短縮できる。当該効果は、最後に、注液ノズル4bによる電解液20の注液を停止する。具体的には、制御部7を通じて、各ポンプ4c、バルブ4d及び注液ノズル4bの駆動モータを停止させる。これにより第2注液工程を終えることができ、本実施形態の電解液の注液・含浸方法の好適な態様を達成することができる。   In addition, as shown in FIGS. 5 and 6, the injection is divided into several times (in small portions) in both the first injection step and the second injection step, and the second injection step. It is desirable that the amount of liquid injected at each time is larger than the amount of liquid injected at the final time of the first liquid injection step. By this operation, the pressure is changed between the previous step and the main step, and the amount of liquid injection can be increased by the amount that the electrolytic solution is easily impregnated in the main step, and the injection time can be shortened. The effect finally stops the injection of the electrolytic solution 20 by the injection nozzle 4b. Specifically, the drive motors of the pumps 4c, the valves 4d, and the liquid injection nozzle 4b are stopped through the control unit 7. Thereby, a 2nd liquid injection process can be completed and the suitable aspect of the liquid injection and the impregnation method of the electrolyte solution of this embodiment can be achieved.

以上述べたように、本実施形態の電解液の注液・含浸方法の好適な態様では、高い圧力で一定時間保持するので、圧力差を利用した含浸を促進でき、注液時間を短縮することができる。加えて、フィルム外装電池の外装材として柔軟なラミネートフィルムを使いつつも、積層面間がたるまず、電解液の注液時のセパレータのしわ発生を抑制することもできる。   As described above, in the preferred mode of the electrolytic solution pouring / impregnation method of the present embodiment, the high pressure is maintained for a certain time, so that the impregnation utilizing the pressure difference can be promoted and the pouring time is shortened. Can do. In addition, while using a flexible laminate film as an exterior material for a film-clad battery, it is possible to suppress the occurrence of wrinkles in the separator when the electrolyte solution is injected without causing a gap between the laminated surfaces.

(注液工程以降の操作)
後処理(1)
本実施形態では、図5、6に示すように、後処理(1)として、前記注液工程後、前記開口部を封止する前に、注液チャンバ内の圧力を、前記注液工程時よりも加圧し、さらに減圧する加減圧工程を行うことを特徴とする。その後、開口部29aを封止する封止工程を行った後、注液チャンバ2内の圧力を大気圧に戻す昇圧工程を行うことで、電解液が注液され、より含浸されたフィルム外装電池10を得ることができる。加減圧工程について、説明する。
(Operation after injection process)
Post-processing (1)
In this embodiment, as shown in FIGS. 5 and 6, as post-processing (1), after the liquid injection process, before sealing the opening, the pressure in the liquid injection chamber is changed during the liquid injection process. And pressurizing and depressurizing steps for further depressurization. Then, after performing the sealing process which seals the opening part 29a, the electrolyte solution is injected by performing the pressure | voltage rise process which returns the pressure in the injection chamber 2 to atmospheric pressure, and the film-clad battery more impregnated 10 can be obtained. The pressure increasing / decreasing step will be described.

(加減圧工程)
加減圧工程では、前記注液工程後、開口部29aを封止する前に、注液チャンバ2内の圧力を、前記注液工程時よりも加圧し、さらに減圧する加減圧工程を行う。これにより、注液した後に封止前に加減圧を行うので、含浸を促進できる。注液後なので、セパレータに電解液20が保持されており、加減圧しても、飛び散りは起こらない点でも優れている。
(Pressure and decompression process)
In the pressure increasing / decreasing step, after the liquid injection step, before the opening 29a is sealed, the pressure in the liquid injection chamber 2 is increased from that in the liquid injection step, and the pressure increasing / decreasing step for further reducing the pressure is performed. Thereby, since pressure increase / decrease is performed before sealing after pouring, impregnation can be promoted. Since the electrolyte solution 20 is retained in the separator because it is after the injection, it is also excellent in that no scattering occurs even when the pressure is increased or decreased.

例えば、図5、6に示すように、前記注液工程後(図5(d)(d’)参照)、開口部29aを封止する前に、注液チャンバ2内の圧力を、前記注液工程(上記した好適な態様の第1および第2注液工程を含む)時よりも加圧する。かかる操作は、制御部7を通じて、ガス導入ライン6のバルブ6aを開き、注液チャンバ2内にガスを導入し、注液チャンバ2内を前記注液工程時よりも高い圧力に加圧する(図5、6のT1からT2までの昇圧段階を参照のこと)。   For example, as shown in FIGS. 5 and 6, after the liquid injection process (see FIGS. 5D and 5D ′), before sealing the opening 29a, the pressure in the liquid injection chamber 2 is changed to the liquid injection chamber 2a. Pressurization is performed more than in the liquid step (including the first and second liquid injection steps of the preferred embodiment described above). In such an operation, the valve 6a of the gas introduction line 6 is opened through the controller 7, the gas is introduced into the injection chamber 2, and the inside of the injection chamber 2 is pressurized to a pressure higher than that in the injection step (see FIG. (See steps 5 and 6 from T1 to T2).

本工程では、加圧する際には、図5、6に示すように、大気圧まで加圧にするのが望ましい。大気圧まで加圧することによって、注液時から大きく圧力差が得られ、含浸を促進できるためである。加えて、大気圧に戻すには真空引きを停止するだけでよいので構造が簡易である点でも優れている。かかる操作により、電池群21’の主面21a側は、図5の(d’)→(e’)ないし図5の(d)→(e)の含浸状態になり、中央部で含浸が促進されていることが認められる。加えて、前記注液工程の変形例を採用した場合には、図5(e)の含浸状態のように、注液した電解液20は電極群21’内部に含浸されており、図5、6に示すように、急激な加圧(昇圧)によっても、含浸された電解液20の飛び散りもなく、短時間で大気圧に戻すことができ、注液工程の短縮に寄与し得るものである。   In this step, when pressurizing, it is desirable to pressurize to atmospheric pressure as shown in FIGS. By pressurizing to atmospheric pressure, a large pressure difference is obtained from the time of pouring, and impregnation can be promoted. In addition, in order to return to atmospheric pressure, it is only necessary to stop evacuation, which is excellent in that the structure is simple. By such an operation, the main surface 21a side of the battery group 21 ′ is in the impregnation state of (d ′) → (e ′) in FIG. 5 to (d) → (e) in FIG. 5, and the impregnation is promoted in the central portion. It is recognized that In addition, when the modified example of the liquid injection process is adopted, the injected electrolytic solution 20 is impregnated inside the electrode group 21 ′ as in the impregnated state of FIG. As shown in FIG. 6, even by rapid pressurization (pressure increase), the impregnated electrolytic solution 20 is not scattered and can be returned to atmospheric pressure in a short time, which can contribute to shortening of the liquid injection process. .

図5に示す丸印のAの点まで大気圧より低い圧力のままで、電解液20を注液した後に、注液チャンバ2内の圧力を図5に示す丸印のBの点の大気圧まで戻した場合には、図5の(e’)の含浸状態となる。即ち、図5に示す丸印のAの点の図5の(d’)の含浸状態から大きな変化は生じず、中央部への含浸は十分に促進されず、中央部に大きな未含浸部分が残る結果となることがわかる。   After injecting the electrolytic solution 20 while maintaining the pressure lower than the atmospheric pressure up to the point A of the circle shown in FIG. 5, the pressure in the injection chamber 2 is changed to the atmospheric pressure at the point B of the circle shown in FIG. In the case of returning to the above, the impregnation state shown in FIG. That is, there is no significant change from the impregnated state of FIG. 5 (d ′) at point A of the circle shown in FIG. 5, impregnation into the central part is not sufficiently promoted, and a large unimpregnated part is present in the central part. It can be seen that the remaining results are obtained.

さらに、加圧する時には、図5、6に示すように、さらに、一定時間圧力を保持するのが望ましい(図5、6のT2からT3までのT時間大気圧を保持する段階を参照のこと)。加圧時に一定時間圧力を保持することで含浸を促進できる。かかる操作により、電池群21’の主面21a側は、図5の(e)、(e’)から図5(f)の含浸状態になり、中央部で電解液の含浸が大幅に促進されていることが認められる。これは、この間、電池群21’内が加圧されるため、注液時から大きく圧力差が得られ、注液された電解液20の中央部への含浸が大幅に促進されるものといえる。 Furthermore, when pressurizing, as shown in FIGS. 5 and 6, it is desirable to keep the pressure for a certain time (see the step of holding the atmospheric pressure for TC time from T2 to T3 in FIGS. 5 and 6). ). Impregnation can be promoted by maintaining the pressure for a certain time during pressurization. By such an operation, the main surface 21a side of the battery group 21 ′ is brought into the impregnation state shown in FIGS. 5 (e) and 5 (e ′) to FIG. 5 (f), and the impregnation of the electrolytic solution is greatly promoted in the central portion. It is recognized that This is because the inside of the battery group 21 ′ is pressurized during this time, so that a large pressure difference is obtained from the time of injection, and impregnation of the injected electrolyte 20 into the central portion is greatly promoted. .

本工程においては、前記加圧後に、さらに注液チャンバ2内の圧力を減圧する。減圧する際には、前記注液工程(上記した好適な態様の第1および第2注液工程を含む)の注液時よりも低い圧力まで減圧するのが望ましい。かかる操作は、制御部7を通じて、バルブ5aを開いた状態で排気ライン5の真空ポンプ5bを駆動して注液チャンバ2内を、(好ましくは、前記注液工程の注液時よりも低い圧力まで)減圧する。所定の真空度に達したならバルブ5aを閉じる。本工程では、加圧後に、さらに減圧するので、好ましくは加圧後に、更に注液時よりも減圧するので、注液時よりも電解液20を凝縮してより浸透させることができる点で優れている。このとき、図5の(g)の含浸状態のように、電解液20は電極群21’内部に凝縮してより浸透(含浸)させられており、セパレータの中央部まで含浸が促進され、中央部の未含浸の白色部分が更に減少していることがわかる。また、図5に示すように、注液時よりも低い圧力まで急激に減圧しても、含浸された電解液20の沸騰は抑えられる。そのため、電解液の飛び散りもなく、短時間で減圧することができ、本実施形態における加減圧工程により、電解液を注液後、含浸させるのに要する時間の短縮に大いに寄与し得るものである。   In this step, after the pressurization, the pressure in the liquid injection chamber 2 is further reduced. When depressurizing, it is desirable to depressurize to a pressure lower than that at the time of liquid injection in the liquid injection process (including the first and second liquid injection processes of the above-described preferred embodiments). Such an operation is performed through the controller 7 by driving the vacuum pump 5b of the exhaust line 5 with the valve 5a opened, and in the liquid injection chamber 2 (preferably at a pressure lower than that during the liquid injection step). Until pressure is reduced. When the predetermined degree of vacuum is reached, the valve 5a is closed. In this step, since the pressure is further reduced after the pressurization, the pressure is preferably further reduced after the pressurization, compared with the time of the liquid injection. Therefore, the electrolytic solution 20 can be condensed and penetrated more than the time of the liquid injection. ing. At this time, as in the impregnation state of FIG. 5G, the electrolytic solution 20 is condensed and impregnated (impregnated) inside the electrode group 21 ′, and the impregnation is promoted to the central portion of the separator. It can be seen that the unimpregnated white portion of the portion is further reduced. Moreover, as shown in FIG. 5, even if it pressure-reduces rapidly to the pressure lower than the time of injection, the boiling of the impregnated electrolyte 20 is suppressed. For this reason, the electrolyte solution can be decompressed in a short time without scattering, and the pressurizing and depressurizing step in the present embodiment can greatly contribute to shortening the time required for impregnation after injecting the electrolyte solution. .

また、本工程において、加圧および減圧する時には、それぞれ一定時間圧力を保持し、加圧する時の圧力の保持時間の方が、減圧する時の圧力の保持時間よりも長くすることが望ましい。加圧時の方が含浸が進むので、その時間を長くすることで含浸を促進できるためである。具体的には図5、6に示すように、加圧時はT2〜T3までのT時間大気圧を保持し、減圧時はT4〜T5までのTより短いT時間、注液時よりも低い圧力を保持している。加圧時の方が減圧時の圧力保持時間より長いことがわかる。 Further, in this step, when pressurizing and depressurizing, it is desirable to hold the pressure for a certain period of time, and to maintain the pressure holding time when pressurizing longer than the pressure holding time when depressurizing. This is because impregnation proceeds at the time of pressurization, and the impregnation can be promoted by increasing the time. More specifically, as shown in FIGS. 5 and 6, pressurization maintains a T C Time atmospheric pressure until T2 to T3, short T D time than T C of the pressure reduction time until T4 to T5, the pouring time Holding a lower pressure. It can be seen that the time during pressurization is longer than the pressure holding time during decompression.

さらに、本工程において、加圧および減圧のサイクルを複数回繰り返すことが望ましい(図5、6では、3サイクル行った例を示す)。複数サイクル行うので、より含浸を促進できる。具体的には、1サイクル目の加圧時の図5(e)、一定時間保持後の図5(f)、1サイクル目の減圧時の図5(g)、2サイクル目の加圧時の図5(h)、3サイクル目の加圧時の図5(i)と、各含浸状態から複数サイクル行うことでより電解液の含浸を促進できることがわかる。   Furthermore, in this step, it is desirable to repeat the pressurization and depressurization cycles a plurality of times (FIGS. 5 and 6 show an example in which three cycles are performed). Since multiple cycles are performed, the impregnation can be further promoted. Specifically, FIG. 5 (e) at the time of pressurization in the first cycle, FIG. 5 (f) after holding for a certain time, FIG. 5 (g) at the time of depressurization in the first cycle, and at the time of pressurization in the second cycle 5 (h) in FIG. 5 and FIG. 5 (i) at the time of pressurization in the third cycle, it can be seen that the impregnation of the electrolytic solution can be further promoted by performing a plurality of cycles from each impregnation state.

上記後工程(1)の工程・操作では、上記した加減圧工程後、以下の封止工程、昇圧工程を順に行うことで、電解液が注液され、含浸されたフィルム外装電池10を得る(取り出す)ことができる。なお、後工程(1)では、注液後の圧力ではなく、加減圧工程後の圧力を保持した状態か、電解液が沸騰しない範囲内でより低い圧力(高真空状態)まで減圧した状態で、開口部29aを熱融着により封止(密封・シール)する。その後、昇圧すると、図5の(i)から図5(j)の含浸状態になった電池セルが得られる。   In the post-step (1) step / operation, after the pressure-increasing / depressurizing step, the following sealing step and pressure-increasing step are sequentially performed to inject the electrolyte solution and obtain the impregnated film-covered battery 10 ( Can be taken out). In the post-process (1), the pressure after the pressurizing and depressurizing process is maintained instead of the pressure after the injection, or the pressure is reduced to a lower pressure (high vacuum state) within the range where the electrolyte does not boil. The opening 29a is sealed (sealed / sealed) by heat sealing. Thereafter, when the pressure is increased, the battery cells in the impregnated state shown in FIG. 5 (i) to FIG. 5 (j) are obtained.

(封止工程)
封止工程では、前記加減圧工程後に、当該圧力を保持したままで(図5の丸印Cの時点での圧力)、あるいは電解液が沸騰しない範囲内でより低い圧力(高真空状態)まで減圧した状態で開口部29aを熱融着により封止(密封・シール)する後者の場合、制御部7を通じて、バルブ5aを開いた状態で排気ライン5の真空ポンプ5bを駆動して注液チャンバ2内を電解液が沸騰しない範囲内でより低い圧力(高真空状態)まで減圧する。所定の真空度に達したならバルブ5aを閉じる。次に、注液チャンバ2内に設けられた熱圧着(融着)手段(図示せず)を用いて、開口部29aを熱融着することにより封止(密封・シール)すればよい。
(Sealing process)
In the sealing step, after the pressure increasing / decreasing step, the pressure is maintained (pressure at the time indicated by a circle C in FIG. 5) or lower pressure (high vacuum state) within a range where the electrolyte does not boil. In the latter case, in which the opening 29a is sealed (sealed / sealed) by heat-sealing under reduced pressure, the vacuum pump 5b of the exhaust line 5 is driven through the controller 7 with the valve 5a opened. 2 is depressurized to a lower pressure (high vacuum state) within a range where the electrolyte does not boil. When the predetermined degree of vacuum is reached, the valve 5a is closed. Next, the opening 29 a may be sealed (sealed / sealed) by thermally fusing the opening 29 a using thermocompression (fusing) means (not shown) provided in the liquid injection chamber 2.

但し、その後の初回充放電時(特に初回充電時)にフィルム外装電池10内に比較的多くのガスが発生する特有の現象があり、2回目以降の充放電時には特にそうしたガス発生は殆ど認められない。そのため、当該封止工程では、開口部の一部を残して熱融着して封止し、残された開口部を適当なクリップ等の着脱自在な封止部材を用いて開閉自在な状態にて封止(仮止め)しておくのが望ましい。そして、後工程で初回充放電を行った後に当該クリップ等の封止部材を外して開口し、フィルム外装電池10内に発生した比較的多くのガスを電池10外部に取り除いた後(例えば、減圧除去した後)、当該開口部を最終的に熱融着により確実に封止(密封、シール)するのが望ましい。   However, there is a peculiar phenomenon in which a relatively large amount of gas is generated in the film-covered battery 10 during the subsequent first charge / discharge (especially during the first charge), and such gas generation is mostly recognized particularly during the second and subsequent charge / discharge. Absent. Therefore, in the sealing step, a part of the opening is left to be heat-sealed and sealed, and the remaining opening is opened and closed using a detachable sealing member such as an appropriate clip. It is desirable to seal (temporarily fix). Then, after performing the first charge / discharge in the post-process, the sealing member such as the clip is removed and opened, and a relatively large amount of gas generated in the film-covered battery 10 is removed to the outside of the battery 10 (for example, reduced pressure After the removal), it is desirable that the opening is finally sealed (sealed, sealed) by thermal fusion.

(昇圧工程)
封止工程後、注液チャンバ2内の圧力を大気圧に戻す昇圧工程を行うことで、電解液20が注液され、含浸されたフィルム外装電池10を得る(取り出す)ことができる。詳しくは、制御部7を通じて、ガス導入ライン6のバルブ6aを開き、注液チャンバ2内にガスを導入し、注液チャンバ2内の圧力を大気圧に戻す。これにより本実施形態の注液・含浸装置1による電解液20の注液・含浸方法を達成することができる。かかる操作により、電池群21’の主面21a側は、図5の(i)から図5(j)の含浸状態になるが、ともに中央部まで含浸が促進されていることから、セパレータの含浸状態も中央部に殆ど白色部分は認められず、セパレータの含浸状態も中央部は白色のままであり、大きな変化は生じていないものといえる。
(Pressure increase process)
After the sealing step, by performing a pressure increasing step for returning the pressure in the liquid injection chamber 2 to atmospheric pressure, the electrolytic solution 20 is injected and the impregnated film-clad battery 10 can be obtained (taken out). Specifically, the valve 6a of the gas introduction line 6 is opened through the control unit 7, the gas is introduced into the injection chamber 2, and the pressure in the injection chamber 2 is returned to atmospheric pressure. Thereby, the injection / impregnation method of the electrolytic solution 20 by the injection / impregnation apparatus 1 of the present embodiment can be achieved. By such an operation, the main surface 21a side of the battery group 21 ′ is in the impregnated state of FIG. 5 (i) to FIG. 5 (j). In the state, almost no white portion is observed in the central part, and the impregnated state of the separator remains white in the central part, and it can be said that no significant change has occurred.

後処理(3)
さらに、本実施形態では、図5、6に示すように、後処理(3)として、前記注液工程後、注液チャンバ2内の圧力を、前記注液工程時よりも低い圧力まで減圧する注液後の減圧工程を行ってもよい。その後、必要に応じて後処理(1)と同様の加減圧工程を行い、後処理(1)と同様の封止工程、昇圧工程を行うことで、より含浸されたフィルム外装電池10を得ることもできる。
Post-processing (3)
Furthermore, in this embodiment, as shown in FIGS. 5 and 6, as post-processing (3), after the liquid injection process, the pressure in the liquid injection chamber 2 is reduced to a pressure lower than that during the liquid injection process. You may perform the pressure reduction process after injection. Thereafter, if necessary, the pressure increasing / decreasing step similar to the post-processing (1) is performed, and the sealing step and the pressure increasing step similar to the post-processing (1) are performed to obtain a more impregnated film-covered battery 10. You can also.

(注液後の減圧工程)
注液後の減圧工程では、前記注液工程(上記した好適な態様を含む)後、注液チャンバ2内の圧力を、前記注液工程時よりも低い圧力まで減圧する。注液チャンバ2内の圧力を注液時よりも低い圧力に減圧するので、注液時よりも電解液を凝縮してより浸透させることができる点で優れている。具体的には、図5中、白抜きの太い矢印で示すように、図5(b)での圧力(注液時の最大負圧)よりも図5(g)での圧力(注液後の最大負圧)の方が低い圧力まで減圧されているのが望ましい。図5中、図5(d’)から図5(g)へ、注液工程時よりも低い圧力まで減圧してもよいし、図5(d)から図5(g)へ、注液工程時よりも低い圧力まで減圧してもよい。好ましくは、図5(d)または(d’)→図5(e)または(e’)→図5(f)→図5(g)に、注液工程時よりも低い圧力まで減圧する。特に好ましくは、注液工程の変形例を経る、図5(d)→図5(e)→図5(f)→図5(g)の実線ルートにより、注液工程時よりも低い圧力まで減圧する。
(Depressurization process after injection)
In the pressure reducing step after the liquid injection, the pressure in the liquid injection chamber 2 is reduced to a pressure lower than that in the liquid injection step after the liquid injection step (including the above-described preferred mode). Since the pressure in the liquid injection chamber 2 is reduced to a pressure lower than that at the time of liquid injection, this is superior in that the electrolytic solution can be condensed and penetrated more than at the time of liquid injection. Specifically, as shown by a thick white arrow in FIG. 5, the pressure in FIG. 5 (g) (after injection) is higher than the pressure in FIG. 5 (b) (maximum negative pressure during injection). It is desirable that the maximum negative pressure is reduced to a lower pressure. In FIG. 5, the pressure may be reduced from FIG. 5 (d ′) to FIG. 5 (g) to a pressure lower than that during the liquid injection process, or from FIG. 5 (d) to FIG. 5 (g). The pressure may be reduced to a pressure lower than that. Preferably, the pressure is reduced to a pressure lower than that in the liquid injection step in FIG. 5 (d) or (d ′) → FIG. 5 (e) or (e ′) → FIG. 5 (f) → FIG. Particularly preferably, the pressure is lower than that in the liquid injection step by the solid line route of FIG. 5 (d) → FIG. 5 (e) → FIG. 5 (f) → FIG. Reduce pressure.

本工程では、前記注液工程(上記した好適な態様を含む)での圧力は、前記電極群への電解液の含浸を阻害する空気膨脹が起こらない圧力とし、前記注液後の減圧工程での圧力は、電解液が沸騰しない圧力とするのが望ましい。これは、注液完了前は、電池群21’中に残存する空気が多いため減圧しすぎると泡が発生して含浸が進まないので(図7(b)参照)、これを考慮した圧力とし、注液完了後は残存空気ではなく電解液の沸点が作業温度とならないように考慮した圧力とする。なお、電解液の含浸を阻害する空気膨脹が起こらない圧力としては、図7(a)に示すように、泡発生を抑え、電解液の含浸が進行し得る圧力であればよい。当該圧力を超えた場合には、図7(b)に示すように激しく泡が発生し、電解液が飛散するなどして電解液の含浸を阻害する空気膨脹が起こる圧力とみなすことができる。また、注液中から注液完了後の注液チャンバ内の温度は特に管理する必要はなく、室温(概ね0〜40℃の範囲)状態で実施可能である。そのため、注液完了後の作業温度である、電解液の沸点を超えない作業温度となるように考慮した圧力とは、図5の丸印Cの圧力(高真空状態)であってもよい。図5の丸印Cの時点での図5(g)の含浸状態においても、電解液の沸騰は認められておらず、上記要件を満足することがわかる。即ち、図5、6に示す大気圧から最大負圧(図5の丸印C等の注液後の減圧時の圧力)の範囲内の圧力であれば、上記要件を満足するものといえる。   In this step, the pressure in the liquid injection step (including the preferred embodiment described above) is a pressure at which air expansion that impedes impregnation of the electrolyte into the electrode group does not occur, and in the pressure reduction step after the liquid injection. The pressure is preferably a pressure at which the electrolyte does not boil. This is because the air remaining in the battery group 21 ′ is large before the injection is completed, and bubbles are generated and impregnation does not proceed if the pressure is reduced too much (see FIG. 7B). After completion of the injection, the pressure is set so that the boiling point of the electrolyte, not residual air, does not reach the working temperature. As shown in FIG. 7 (a), the pressure at which air expansion that impedes impregnation of the electrolytic solution does not occur, as long as the generation of bubbles is suppressed and the impregnation of the electrolytic solution can proceed. When the pressure is exceeded, as shown in FIG. 7 (b), it can be regarded as a pressure at which air bubbles violently occur and air expansion that impedes the electrolytic solution occurs due to scattering of the electrolytic solution. Moreover, it is not necessary to manage especially the temperature in the liquid injection chamber after completion of liquid injection from the liquid injection, and it can be carried out at room temperature (approximately in the range of 0 to 40 ° C.). Therefore, the pressure in consideration of the working temperature after completion of the pouring, which is the working temperature not exceeding the boiling point of the electrolytic solution, may be the pressure indicated by the circle C in FIG. 5 (high vacuum state). Even in the impregnated state of FIG. 5 (g) at the time of the circle C in FIG. 5, boiling of the electrolytic solution is not recognized, and it can be seen that the above requirement is satisfied. That is, it can be said that the above requirements are satisfied if the pressure is within the range from the atmospheric pressure shown in FIGS. 5 and 6 to the maximum negative pressure (pressure at the time of pressure reduction after injection such as circle C in FIG. 5).

また、本工程では、図5、6に示すように、前記注液工程後、本工程を行う前に、注液チャンバ2内の圧力は、事前に加圧されていてもよい。加圧する際には大気圧まで加圧にするのが望ましい。これは、大気圧まで加圧するので、注液時から大きく圧力差が得られ、含浸を促進できるためである。加えて、大気圧に戻すには真空引きを停止するだけでよいので構造が簡易であるためである。かかる操作により、好適な態様の注液工程後に加圧する場合には、電池群21’の主面21a側は、図5(d)から図5(e)の含浸状態になり、中央部で含浸が促進されていることが認められる。これは、この間、電池群21’内が加圧されるため、注液時から大きく圧力差が得られ、注液された電解液20の中央部への含浸が促進されるものといえる。加えて、図5(e)のように、注液した電解液20は電極群21’内部に含浸されており、図5、6に示すように、急激な加圧(昇圧)によっても、含浸された電解液20の飛び散りもなく、短時間で大気圧に戻すことができ、注液工程の短縮に寄与し得るものである。   Moreover, in this process, as shown in FIGS. 5 and 6, the pressure in the liquid injection chamber 2 may be increased in advance after the liquid injection process and before performing this process. When pressurizing, it is desirable to pressurize to atmospheric pressure. This is because the pressure is increased to atmospheric pressure, so that a large pressure difference can be obtained from the time of pouring and the impregnation can be promoted. In addition, the structure is simple because it is only necessary to stop evacuation to return to atmospheric pressure. When the pressure is applied after the liquid injection process of a preferred embodiment by such an operation, the main surface 21a side of the battery group 21 ′ is in the impregnation state of FIG. 5 (d) to FIG. It is recognized that is promoted. During this period, the inside of the battery group 21 ′ is pressurized, so that a large pressure difference is obtained from the time of injection, and it can be said that impregnation of the injected electrolytic solution 20 into the central portion is promoted. In addition, as shown in FIG. 5 (e), the injected electrolytic solution 20 is impregnated inside the electrode group 21 ′. As shown in FIGS. 5 and 6, the impregnation is performed even by rapid pressurization (pressure increase). Thus, the electrolytic solution 20 is not scattered and can be returned to the atmospheric pressure in a short time, which can contribute to shortening of the injection process.

さらに、注液工程後、事前に加圧(昇圧)する時には、図5、6に示すように、一定時間圧力を保持するのが望ましい(図5、6のT2からT3までのT時間大気圧を保持する段階を参照のこと)。加圧時に一定時間圧力を保持することで含浸を促進できる。かかる操作により、電池群21’の主面21a側は、図5(e)又は(e’)→図5(f)の含浸状態になり、中央部で含浸が促進されていることが認められる。これは、この間、電池群21’内が加圧されるため、注液時から大きく圧力差が得ら、注液された電解液20が中央部への含浸が促進されるものといえる。 Further, when pressurizing (pressurizing) in advance after the liquid injection step, it is desirable to maintain the pressure for a certain period of time as shown in FIGS. 5 and 6 (large TC time from T2 to T3 in FIGS. 5 and 6). (See the step of maintaining atmospheric pressure). Impregnation can be promoted by maintaining the pressure for a certain time during pressurization. By this operation, the main surface 21a side of the battery group 21 ′ is in the impregnation state of FIG. 5 (e) or (e ′) → FIG. 5 (f), and it is recognized that the impregnation is promoted in the central portion. . During this period, the inside of the battery group 21 'is pressurized, so that a large pressure difference is obtained from the time of pouring, and it can be said that impregnation of the poured electrolyte 20 into the central portion is promoted.

本実施形態における注液後の減圧工程においては、上記したように必要に応じて加圧後に、注液チャンバ2内の圧力を、前記注液工程時よりも低い圧力まで減圧するものである。ただし、注液後、加圧することなく、注液チャンバ内の圧力を、前記注液工程時よりも低い圧力まで減圧してもといことはいうまでもない。   In the depressurization step after the liquid injection in the present embodiment, as described above, the pressure in the liquid injection chamber 2 is reduced to a pressure lower than that during the liquid injection step after being pressurized as necessary. However, it goes without saying that the pressure in the liquid injection chamber can be reduced to a pressure lower than that during the liquid injection step without applying pressure after the liquid injection.

(電解液の注液の改良)
次に、本実施形態における電解液20の注液・含浸方法について図4を用いて説明する。電解液20は電池群21’の積層側面21b側から電池要素21に含浸されている。矩形形状の電池要素21は4つの積層側面21bを有することとなるがこれら4つの積層側面21bの全てを有効に用いて電解液20の注液を行うのが注液時間の短縮化及びラミネートフィルム外装材29へのしわ発生を防止する点で重要となる。そのため、注液ノズル4bは、1回の注液ごとに、開口部29の一端から他端まで走行しながら、所定量の電解液20を開口部29の一端から他端まで均一に分布するように注液してもよい。さらに、注液ノズル4bの先端が直下から左右に45°程度上方まで傾ける(可動する)ことができるものを用い、1回の注液ごとに、開口部29の一端から他端まで均一に分布するように、所定量の電解液20を注液してもよい。ただし、本実施形態ではこれらに何ら特に制限されるものではなく、均一に注液可能な既存の注液・含浸方法を適宜選択することができる。
(Improved electrolyte injection)
Next, a method for injecting and impregnating the electrolytic solution 20 in the present embodiment will be described with reference to FIG. The electrolytic solution 20 is impregnated in the battery element 21 from the side of the stacked side surface 21b of the battery group 21 ′. The rectangular battery element 21 has four laminated side surfaces 21b. However, injection of the electrolytic solution 20 by effectively using all of the four laminated side surfaces 21b shortens the injection time and laminate film. This is important in preventing wrinkles from occurring on the exterior material 29. Therefore, the liquid injection nozzle 4b uniformly distributes a predetermined amount of the electrolytic solution 20 from one end to the other end of the opening 29 while traveling from one end to the other end of the opening 29 for each liquid injection. You may inject into. Furthermore, using a nozzle in which the tip of the liquid injection nozzle 4b can be tilted (moved) from right below to right and left by about 45 °, it is uniformly distributed from one end to the other end of the opening 29 for each liquid injection. Thus, a predetermined amount of the electrolytic solution 20 may be injected. However, the present embodiment is not particularly limited to these, and an existing liquid injection / impregnation method capable of uniformly liquid injection can be appropriately selected.

以上述べたように本実施形態のフィルム外装電池の製造方法及びその装置、なかでもフィルム外装電池セルへの電解液の注液・含浸方法及びその装置では、以下の作用効果を奏し得るものである。(1)注液後、封止前に、注液時よりも加圧し、さらに減圧するので、電解液の含浸を大幅に促進できる。また、注液後なので、セパレータに電解液が保持されており、加減圧しても、飛び散りも起こらない。また、(2)前記加圧する際には、大気圧まで加圧にすることで、注液時から大きく圧力差が得られ、含浸を促進できる。大気圧に戻すには真空引きを停止するだけでよいので構造が簡易である。(3)減圧する際には、注液時よりも低い圧力(真空側)まで減圧するので、注液時よりも電解液を凝縮してより浸透させることができる。(4)前記加圧および減圧した時には一定時間圧力を保持し、加圧時の圧力の保持時間の方が減圧の保持時間よりも長くすることで、加圧時の方が含浸が進むので、その時間を長くすることで含浸を促進できる。(5)加圧および減圧のサイクルを複数回繰り返すことで、より含浸を促進できる。   As described above, the method and apparatus for manufacturing a film-clad battery and the method for injecting and impregnating an electrolytic solution into the film-clad battery cell and the apparatus thereof can achieve the following effects. . (1) Since the pressure is increased and the pressure is further reduced after the injection and before the sealing, the impregnation with the electrolytic solution can be greatly promoted. Moreover, since it is after injection, the electrolytic solution is held in the separator, and even when the pressure is increased or decreased, no scattering occurs. Further, (2) when the pressurization is performed, by increasing the pressure to atmospheric pressure, a large pressure difference can be obtained from the time of injection, and the impregnation can be promoted. To return to atmospheric pressure, it is only necessary to stop evacuation, so the structure is simple. (3) When the pressure is reduced, the pressure is reduced to a pressure (vacuum side) lower than that at the time of pouring, so that the electrolytic solution can be condensed and penetrated more than at the time of pouring. (4) When the pressure is increased and the pressure is reduced, the pressure is maintained for a certain period of time, and the pressure holding time at the time of pressurization is longer than the pressure holding time, so that the impregnation proceeds at the time of pressurization. Impregnation can be promoted by lengthening the time. (5) Impregnation can be further promoted by repeating the pressurization and depressurization cycles a plurality of times.

1 電解液の注液・含浸装置、
2 注液チャンバ、
3 注液マガジン、
3a 押さえ治具、
4 電解液供給ライン、
4a 電解液の貯蔵タンク、
4b 注液ノズル、
4c 電解液供給ライン上の電解液供給ポンプ、
4d 電解液供給ライン上の開閉ないし液流量調整バルブ、
5 排気ライン、
5a 排気用開閉バルブ、
5b 排気用の真空ポンプ、
6 ガス導入ライン、
6a ガス導入ライン上の開閉ないしガス流量調整バルブ、
6b ガスの貯蔵タンク、
7 制御部、
10 フィルム外装電池(フィルム外装電気デバイス)、
10a フィルム外装電池セル、
11 負極集電体、
11a 負極(集電体からの)延出部、
11b 負極集電部、
12 正極集電体、
12a 正極(集電体からの)延出部、
12b 正極集電部、
13 負極活物質層、
14 負極板(=負極)
15 正極活物質層、
16 正極板(=正極)
17 電解質層(電解液が含浸したセパレータ)、
19 単電池層、
20 電解液、
20a 電解液の液滴、
21 電池要素、
21a 電池要素の主面、
21b 電池要素の積層側面、
25 負極タブ、
27 正極タブ、
29 ラミネートフィルム外装材、
29a ラミネートフィルム外装材の開口部、
29b ラミネートフィルム外装材の底部、
29e ラミネートフィルム外装材の凹部、
29f ラミネートフィルム外装材の封止部ないしシール部。
1 Electrolyte injection / impregnation equipment,
2 Injection chamber,
3 Injection magazine,
3a holding jig,
4 Electrolyte supply line,
4a electrolyte storage tank,
4b Injection nozzle,
4c Electrolyte supply pump on the electrolyte supply line,
4d Open / close or electrolyte flow rate adjustment valve on the electrolyte supply line,
5 Exhaust line,
5a Open / close valve for exhaust,
5b Vacuum pump for exhaust,
6 Gas introduction line,
6a Open / close on gas introduction line or gas flow rate adjustment valve,
6b gas storage tank,
7 Control unit,
10 Film-clad battery (film-clad electrical device),
10a film-clad battery cell,
11 negative electrode current collector,
11a Negative electrode (from the current collector) extension part,
11b negative electrode current collector,
12 positive electrode current collector,
12a positive electrode (from the current collector) extension part,
12b positive electrode current collector,
13 negative electrode active material layer,
14 Negative electrode plate (= negative electrode)
15 positive electrode active material layer,
16 Positive electrode plate (= positive electrode)
17 electrolyte layer (separator impregnated with electrolyte),
19 cell layer,
20 electrolyte,
20a Electrolyte droplets,
21 battery elements,
21a Main surface of the battery element,
21b Laminate side surface of battery element,
25 negative electrode tab,
27 positive electrode tab,
29 Laminate film exterior material,
29a Laminate film opening material opening,
29b Laminate film exterior material bottom,
29e Concave part of laminate film exterior material,
29f Sealing part or sealing part of laminate film exterior material.

Claims (7)

セパレータを介して積層された正極と負極とを有する電極群を収納した開口部を有する袋状ラミネートフィルム外装材が設置された注液チャンバ内を大気圧より低い圧力まで減圧する減圧工程と、
前記減圧工程に前記開口部から外装材内に所定注液量の電解液を注液する注液工程と、
前記注液工程後、前記開口部を封止する前に、注液チャンバ内の圧力を、前記注液工程時よりも加圧し、さらに減圧する加減圧工程と、を含むフィルム外装電気デバイスの製造方法。
Depressurization step of depressurizing the liquid injection chamber in which a bag-like laminate film exterior material having an opening containing an electrode group having a positive electrode and a negative electrode laminated via a separator to a pressure lower than atmospheric pressure,
A liquid injection step of injecting a predetermined amount of electrolyte into the exterior material from the opening in the pressure reducing step;
After the liquid injection step, before sealing the opening, the pressure in the liquid injection chamber is higher than that during the liquid injection step, and the pressure increasing / decreasing step for reducing the pressure is further produced. Method.
前記加減圧工程において、加圧する際には、大気圧まで加圧にすることを特徴とする請求項1に記載のフィルム外装電気デバイスの製造方法。   The method for producing a film-covered electrical device according to claim 1, wherein in the pressurizing / depressurizing step, the pressure is increased to atmospheric pressure when pressurizing. 前記加減圧工程において、減圧する際には、注液工程の注液時よりも低い圧力まで減圧することを特徴とする請求項1または2に記載のフィルム外装電気デバイスの製造方法。   The method for producing a film-clad electrical device according to claim 1 or 2, wherein in the pressurizing and depressurizing step, the pressure is reduced to a pressure lower than that during the pouring in the pouring step. 前記加減圧工程において、加圧および減圧する時には、それぞれ一定時間圧力を保持し、加圧する時の圧力の保持時間の方が、減圧する時の圧力の保持時間よりも長いことを特徴とする請求項1〜3のいずれか1項に記載のフィルム外装電気デバイスの製造方法。   In the pressurizing and depressurizing step, when pressurizing and depressurizing, respectively, the pressure is held for a certain time, and the holding time of the pressure when pressurizing is longer than the holding time of the pressure when depressurizing. The manufacturing method of the film-clad electrical device of any one of claim | item 1-3. 前記加減圧工程において、加圧および減圧のサイクルを複数回繰り返すことを特徴とする請求項1〜4のいずれか1項に記載のフィルム外装電気デバイスの製造方法。   5. The method for producing a film-covered electrical device according to claim 1, wherein in the pressurizing / depressurizing step, a cycle of pressurization and decompression is repeated a plurality of times. 前記注液工程は、注液チャンバ内を減圧後の圧力に維持したまま、前記開口部から外装材内に所定注液量の電解液の少なくとも一部を注液することを特徴とする請求項1〜5のいずれか1項に記載のフィルム外装電気デバイスの製造方法。   2. The liquid injection step of injecting at least a part of a predetermined amount of electrolyte into the exterior material from the opening while maintaining the pressure inside the liquid injection chamber at a reduced pressure. The manufacturing method of the film-clad electrical device of any one of 1-5. セパレータを介して積層された正極と負極とを有する電極群を収納した開口部を有する袋状ラミネートフィルム外装材が設置された注液チャンバ内の圧力を調整する圧力調整手段と、
前記開口部から外装材内に電解液を注入する注液手段と、
前記圧力調整手段により、注液チャンバ内を大気圧より低い圧力まで減圧させ、減圧後、前記注入手段により外装材内に所定注液量の電解液を注液させ、その後、前記圧力調整手段により、前記開口部を封止する前に、注液チャンバ内の圧力を、前記注液時よりも加圧し、さらに減圧する制御手段と、を有することを特徴とするフィルム外装電気デバイスの製造装置。
A pressure adjusting means for adjusting the pressure in the liquid injection chamber in which the bag-shaped laminate film outer packaging material having an opening containing an electrode group having a positive electrode and a negative electrode stacked via a separator is installed;
Injecting means for injecting an electrolyte into the exterior material from the opening,
The pressure adjusting means reduces the pressure in the injection chamber to a pressure lower than atmospheric pressure, and after the pressure reduction, causes the injection means to inject a predetermined amount of electrolyte into the exterior material, and then the pressure adjusting means. An apparatus for manufacturing a film-covered electrical device, comprising: a control unit that pressurizes and further depressurizes the pressure in the liquid injection chamber before the opening is sealed.
JP2012262457A 2011-12-05 2012-11-30 Method and apparatus for manufacturing film-covered electrical device Active JP6163739B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012262457A JP6163739B2 (en) 2011-12-05 2012-11-30 Method and apparatus for manufacturing film-covered electrical device
KR1020120139570A KR101395497B1 (en) 2011-12-05 2012-12-04 Manufacturing method and manufacturing apparatus for electrical device with film covering
CN201210518352.7A CN103137997B (en) 2011-12-05 2012-12-05 Manufacturing method and manufacturing apparatus for electrical device with film covering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011266303 2011-12-05
JP2011266303 2011-12-05
JP2012262457A JP6163739B2 (en) 2011-12-05 2012-11-30 Method and apparatus for manufacturing film-covered electrical device

Publications (2)

Publication Number Publication Date
JP2013140782A true JP2013140782A (en) 2013-07-18
JP6163739B2 JP6163739B2 (en) 2017-07-19

Family

ID=49038029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262457A Active JP6163739B2 (en) 2011-12-05 2012-11-30 Method and apparatus for manufacturing film-covered electrical device

Country Status (1)

Country Link
JP (1) JP6163739B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140783A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device
WO2015056583A1 (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Secondary cell production method
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
KR101841381B1 (en) 2014-03-14 2018-03-22 도요타 지도샤(주) Method for producing secondary battery and secondary battery
WO2018055717A1 (en) 2016-09-23 2018-03-29 日産自動車株式会社 Production method for film-clad battery
WO2018105096A1 (en) 2016-12-09 2018-06-14 日産自動車株式会社 Film-covered battery production method and film-covered battery
JP2018106816A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Method for manufacturing battery
CN112136241A (en) * 2018-06-11 2020-12-25 阿莫绿色技术有限公司 Preparation method of flexible battery
JP2022169234A (en) * 2021-04-27 2022-11-09 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing laminate secondary battery
WO2023119401A1 (en) * 2021-12-21 2023-06-29 京セラ株式会社 Method for manufacturing secondary battery
WO2023119402A1 (en) * 2021-12-21 2023-06-29 京セラ株式会社 Method for manufacturing secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327161A (en) * 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Electrolyte injection method and device of sealed battery
JP2005285584A (en) * 2004-03-30 2005-10-13 Tdk Corp Liquid impregnation method and device
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2012134047A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Method of manufacturing secondary battery and electrolyte injection device
JP2013140783A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327161A (en) * 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Electrolyte injection method and device of sealed battery
JP2005285584A (en) * 2004-03-30 2005-10-13 Tdk Corp Liquid impregnation method and device
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2012134047A (en) * 2010-12-22 2012-07-12 Hitachi Vehicle Energy Ltd Method of manufacturing secondary battery and electrolyte injection device
JP2013140783A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140783A (en) * 2011-12-05 2013-07-18 Nissan Motor Co Ltd Method and device for manufacturing film-wrapped electric device
WO2015056583A1 (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Secondary cell production method
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
KR101841381B1 (en) 2014-03-14 2018-03-22 도요타 지도샤(주) Method for producing secondary battery and secondary battery
KR20190046990A (en) 2016-09-23 2019-05-07 닛산 지도우샤 가부시키가이샤 Manufacturing Method of Film Exterior Battery
JPWO2018055717A1 (en) * 2016-09-23 2019-03-28 日産自動車株式会社 Method for producing film-clad battery
WO2018055717A1 (en) 2016-09-23 2018-03-29 日産自動車株式会社 Production method for film-clad battery
WO2018105096A1 (en) 2016-12-09 2018-06-14 日産自動車株式会社 Film-covered battery production method and film-covered battery
US10847779B2 (en) 2016-12-09 2020-11-24 Envision AESCH Japan Ltd. Film-covered battery production method and film-covered battery
JP2018106816A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Method for manufacturing battery
CN112136241A (en) * 2018-06-11 2020-12-25 阿莫绿色技术有限公司 Preparation method of flexible battery
US11909074B2 (en) 2018-06-11 2024-02-20 Amogreentech Co., Ltd. Flexible battery manufacturing method
CN112136241B (en) * 2018-06-11 2024-03-22 阿莫绿色技术有限公司 Method for preparing flexible battery
JP2022169234A (en) * 2021-04-27 2022-11-09 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing laminate secondary battery
JP7329014B2 (en) 2021-04-27 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing laminated secondary battery
WO2023119401A1 (en) * 2021-12-21 2023-06-29 京セラ株式会社 Method for manufacturing secondary battery
WO2023119402A1 (en) * 2021-12-21 2023-06-29 京セラ株式会社 Method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP6163739B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP5786043B2 (en) Method and apparatus for manufacturing film-covered electrical device
JP6163739B2 (en) Method and apparatus for manufacturing film-covered electrical device
JP6163740B2 (en) Method and apparatus for manufacturing film-covered electrical device
JP5294298B2 (en) Method and apparatus for manufacturing film-covered electrical device
JP5585174B2 (en) Electrolyte injection method and electrolyte injection device
KR101395497B1 (en) Manufacturing method and manufacturing apparatus for electrical device with film covering
KR101705503B1 (en) Battery manufacturing method and manufacturing device
KR101395438B1 (en) Manufacturing method and manufacturing apparatus for electrical device with film covering
US10896786B2 (en) Processes and systems for supercapacitor stack fabrication
WO2018055717A1 (en) Production method for film-clad battery
JP2009238508A (en) Electrochemical device, and manufacturing method of electrochemical device
JP2012028290A (en) Method and device for impregnating electrolyte
JP6790545B2 (en) Electrode manufacturing method
JP2014060016A (en) Method of manufacturing battery
JP2013105564A (en) Manufacturing method of electric device and its manufacturing device, and electric device
JP2013109855A (en) Manufacturing method and manufacturing apparatus of electric device and electric device
JP6847348B2 (en) Secondary battery manufacturing method and manufacturing equipment
WO2022259609A1 (en) Method for manufacturing bipolar power storage device
KR20160142490A (en) Electrolyte Wetting Device Comprising Variable Type Partitions and Method of Manufacturing Battery Cell Using the Same
JP2019040769A (en) Manufacturing method of power storage module and manufacturing installation of power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6163739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250