JP2012028290A - Method and device for impregnating electrolyte - Google Patents

Method and device for impregnating electrolyte Download PDF

Info

Publication number
JP2012028290A
JP2012028290A JP2010168982A JP2010168982A JP2012028290A JP 2012028290 A JP2012028290 A JP 2012028290A JP 2010168982 A JP2010168982 A JP 2010168982A JP 2010168982 A JP2010168982 A JP 2010168982A JP 2012028290 A JP2012028290 A JP 2012028290A
Authority
JP
Japan
Prior art keywords
electrolytic solution
voltage
current
negative electrode
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168982A
Other languages
Japanese (ja)
Other versions
JP5552941B2 (en
Inventor
Kenha Cho
剣波 張
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010168982A priority Critical patent/JP5552941B2/en
Priority to KR1020110074339A priority patent/KR101347416B1/en
Publication of JP2012028290A publication Critical patent/JP2012028290A/en
Application granted granted Critical
Publication of JP5552941B2 publication Critical patent/JP5552941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for impregnating an electrolyte, suitable for improving impregnation properties of an electrolyte with a simpler device.SOLUTION: In an electrolyte impregnation method for impregnating a poured electrolyte into a battery element 2, which is housed within an exterior member 3 and includes a positive electrode 4 and a negative electrode 6 laminated via a separator 5, an AC voltage or an AC current is applied between the positive electrode 4 and the negative electrode 6 of the battery element 2.

Description

本発明は、二次電池への電解液含浸方法及び電解液含浸装置に関するものである。   The present invention relates to an electrolytic solution impregnation method and an electrolytic solution impregnation apparatus for a secondary battery.

従来から二次電池の製造過程で電解液を効率よく注液するため、減圧した雰囲気中において、電解液を二次電池の外装部材内に注液して電池要素に浸透させる電解液注液方法が提案されている(特許文献1参照)。   Conventionally, in order to efficiently inject an electrolytic solution during the manufacturing process of a secondary battery, an electrolytic solution injection method in which the electrolytic solution is injected into the exterior member of the secondary battery and penetrates into the battery element in a reduced pressure atmosphere Has been proposed (see Patent Document 1).

これは、電池要素を収容して上部を開口させた外装部材を注液槽内にセットし、注液槽内の空気を排出して減圧した雰囲気中において、電解液を外装部材内に注液する。そして、注液槽内を減圧と加圧を繰返す方法により、電解液の含浸性を向上させることが記載されている。   This is because an exterior member containing a battery element and having an upper opening is set in the injection tank, and the electrolyte is injected into the exterior member in an atmosphere where the air in the injection tank is discharged and decompressed. To do. And it is described that the impregnation property of the electrolytic solution is improved by a method of repeatedly depressurizing and pressurizing the liquid filling tank.

特開平10−50339号公報Japanese Patent Laid-Open No. 10-50339

しかしながら、上記従来例では、減圧及び加圧した雰囲気中で電解液を注液・含浸させるため、減圧装置、加圧装置及び密閉された注液槽等の複雑で大掛かりな設備が必要になる。   However, in the above-described conventional example, in order to inject and impregnate the electrolytic solution in a decompressed and pressurized atmosphere, complicated and large-scale facilities such as a decompressing device, a pressurizing device, and a sealed infusion tank are required.

そこで本発明は、上記問題点に鑑みてなされたもので、より簡易な構成により、電解液の含浸性を向上させるに好適な電解液含浸方法及び電解液含浸装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide an electrolytic solution impregnation method and an electrolytic solution impregnation apparatus suitable for improving the impregnation property of the electrolytic solution with a simpler configuration. .

本発明は、外装部材内に収容した、セパレータを介して積層された正極と負極とからなる電池要素に、注液された電解液を含浸させる電解液含浸方法である。そして、前記電池要素の正極・負極間に交流電圧または交流電流を印加することにより、電解液を含浸させることを特徴とする。   The present invention is an electrolytic solution impregnation method for impregnating a poured electrolytic solution into a battery element composed of a positive electrode and a negative electrode, which are housed in an exterior member and stacked via a separator. The battery element is impregnated with an electrolytic solution by applying an alternating voltage or an alternating current between the positive electrode and the negative electrode of the battery element.

したがって、本発明では、電池要素の正極・負極間に交流電圧または交流電流を印加することにより、電解液の電極間移動を促進させて、電解液の撹拌作用を発生させる。このため、電解液の毛細管作用に加えて前記電解液の撹拌作用により、セパレータおよび電極活物質中への電解液の浸透が促進され、電解液の含浸性を向上させることができる。   Therefore, in the present invention, by applying an alternating voltage or an alternating current between the positive electrode and the negative electrode of the battery element, the movement of the electrolytic solution between electrodes is promoted, and the stirring action of the electrolytic solution is generated. For this reason, the penetration of the electrolyte into the separator and the electrode active material is promoted by the stirring action of the electrolyte in addition to the capillary action of the electrolyte, and the impregnation of the electrolyte can be improved.

本発明を適用する二次電池の一例を示す概略断面図。The schematic sectional drawing which shows an example of the secondary battery to which this invention is applied. 本発明を適用した第1実施形態の電解液含浸装置の概略構成図。The schematic block diagram of the electrolyte solution impregnation apparatus of 1st Embodiment to which this invention is applied. 第1実施形態の電解液注液方法を示す工程図。Process drawing which shows the electrolyte solution pouring method of 1st Embodiment. 本発明を適用するリチウムイオン二次電池の等価回路を示す説明図。Explanatory drawing which shows the equivalent circuit of the lithium ion secondary battery to which this invention is applied. 含浸工程で印加される交流の周波数変化を示す特性図。The characteristic view which shows the frequency change of the alternating current applied at the impregnation process. 含浸工程で印加される交流電圧または交流電流の振幅変化を示す特性図。The characteristic view which shows the amplitude change of the alternating voltage applied in an impregnation process or an alternating current. 含浸工程での交流インピダンス変化を示す特性図。The characteristic view which shows the alternating current impedance change in an impregnation process. 交流電圧または交流電流の印加方法の変形例を示す概略説明図。Schematic explanatory drawing which shows the modification of the application method of alternating voltage or alternating current. 本発明を適用した第2実施形態の交流電圧または交流電流の周波数変化を示す特性図。The characteristic view which shows the frequency change of the alternating voltage or alternating current of 2nd Embodiment to which this invention is applied. 本発明を適用した第2実施形態の交流電圧または交流電流の振幅変化を示す特性図。The characteristic view which shows the amplitude change of the alternating voltage or alternating current of 2nd Embodiment to which this invention is applied.

以下、本発明の電池の電解液含浸方法及び電解液含浸装置を各実施形態に基づいて説明する。   Hereinafter, an electrolytic solution impregnation method and an electrolytic solution impregnation apparatus for a battery according to the present invention will be described based on each embodiment.

(第1実施形態)
まず、二次電池の構成を、例えば、図1に示すリチウムイオン二次電池を一例として、その概要を説明する。図1は、本発明の適用例としてのリチウムイオン二次電池の断面図である。図1に示すように、リチウムイオン二次電池1は、電池要素2と、電池要素2を収容する外装部材3と、を備える。
(First embodiment)
First, an outline of the configuration of the secondary battery will be described by taking, for example, the lithium ion secondary battery shown in FIG. 1 as an example. FIG. 1 is a cross-sectional view of a lithium ion secondary battery as an application example of the present invention. As shown in FIG. 1, the lithium ion secondary battery 1 includes a battery element 2 and an exterior member 3 that houses the battery element 2.

電池要素2は、正極4、電解質層としてのセパレータ5、及び負極6を順次積層した積層体として構成される。正極4は板状の正極集電体4aの両面に正極層4bを有しており、負極6は板状の負極集電体6aの両面に負極層6bを有している。なお、電池要素2の最外層に配置される正極4においては、正極集電体4aの片面のみに正極層4bが形成される。   The battery element 2 is configured as a laminate in which a positive electrode 4, a separator 5 as an electrolyte layer, and a negative electrode 6 are sequentially laminated. The positive electrode 4 has a positive electrode layer 4b on both sides of a plate-like positive electrode current collector 4a, and the negative electrode 6 has a negative electrode layer 6b on both sides of a plate-like negative electrode current collector 6a. In the positive electrode 4 disposed in the outermost layer of the battery element 2, the positive electrode layer 4b is formed only on one surface of the positive electrode current collector 4a.

隣接する正極4、セパレータ5、及び負極6が一つの単電池7を構成しており、リチウムイオン電池1は積層された複数の単電池7をそれぞれ電気的に並列接続して構成される。   The adjacent positive electrode 4, separator 5, and negative electrode 6 constitute one unit cell 7, and the lithium ion battery 1 is configured by electrically connecting a plurality of stacked unit cells 7 in parallel.

外装部材3は、アルミニウム等の金属をポリプロピレンフィルム等の絶縁体で被覆した高分子−金属複合ラミネートフィルムのシート材からなる。外装部材3は、電池要素2を収納した状態で、ケース外周部が熱融着によって接合される。この外装部材3には、電池要素2からの電力を外部に取り出すため、外部端子としての正極タブ8及び負極タブ9が設けられる。   The exterior member 3 is made of a sheet material of a polymer-metal composite laminate film in which a metal such as aluminum is covered with an insulator such as a polypropylene film. The exterior member 3 is joined to the outer periphery of the case by thermal fusion in a state in which the battery element 2 is accommodated. The exterior member 3 is provided with a positive electrode tab 8 and a negative electrode tab 9 as external terminals for taking out the electric power from the battery element 2 to the outside.

正極タブ8の一端は外装部材3の外側にあり、正極タブ8の他端は外装部材3の内部で各正極集電体4aの集合部に接続する。負極タブ9の一端は外装部材3の外側にあり、負極タブ9の他端は外装部材3の内部で各負極集電体6aの集合部に接続する。   One end of the positive electrode tab 8 is on the outer side of the exterior member 3, and the other end of the positive electrode tab 8 is connected to the assembly portion of each positive electrode current collector 4 a inside the exterior member 3. One end of the negative electrode tab 9 is on the outer side of the exterior member 3, and the other end of the negative electrode tab 9 is connected to the assembly portion of each negative electrode current collector 6 a inside the exterior member 3.

前記外装部材3は、二次電池の組立時に、1枚のラミネートフィルムを折り返して、内部に電池要素2を収容し、正極タブ8及び負極タブ9を取出す2辺を熱融着により封止し、残る一辺は封止せずに上方へ開いた開口を備える袋状に形成する。前記上方に開いた開口は、外装部材3内に収容された電池要素2への電解液の注液口に使用され、注液完了後に封止する。   When the secondary battery is assembled, the exterior member 3 folds one laminate film, accommodates the battery element 2 therein, and seals the two sides from which the positive electrode tab 8 and the negative electrode tab 9 are taken out by heat sealing. The remaining one side is formed in a bag shape having an opening opened upward without sealing. The opening opened upward is used as an electrolyte injection port for the battery element 2 accommodated in the exterior member 3 and sealed after completion of the injection.

なお、本実施形態では1枚のラミネートフィルムを2つ折りにしたものを例示しているが、本発明はこれに限定されるものではなく、2枚のラミネートフィルムを用いてもよい。この場合、3辺をまず熱融着してラミネートフィルムを袋状に形成する。また、本実施形態では、外装部材3として、ラミネートフィルムにより袋状としたものについて説明しているが、缶等による外装部材3であってもよい。   In addition, in this embodiment, what folds one laminate film is illustrated, However, This invention is not limited to this, You may use two laminate films. In this case, three sides are first heat-sealed to form a laminated film in a bag shape. In the present embodiment, the exterior member 3 is described as being formed into a bag shape with a laminate film, but the exterior member 3 may be a can.

電解液は、例えば、1mol/リットルのLiPF6,LiBF4等を支持塩とし、プロピレンカーボネートとエチレンカーボネートの混合溶媒(質量比50:50)を溶媒とするものが用いられる。   As the electrolytic solution, for example, one using 1 mol / liter of LiPF6, LiBF4 or the like as a supporting salt and using a mixed solvent of propylene carbonate and ethylene carbonate (mass ratio 50:50) as a solvent is used.

次に、本実施形態の電解液含浸装置の構成について、図2を参照して、説明する。   Next, the configuration of the electrolytic solution impregnation apparatus of the present embodiment will be described with reference to FIG.

この電解液含浸装置10は、リチウムイオン二次電池1の製造において、電池要素2を収容した外装部材3内に、電解液を注液し、注液された電解液を電池要素2へ含浸させる工程に使用される。外装部材3は、正極4、負極6を、セパレータ5を介在させて積層した電池要素2を収容した状態で、開いた開口を上方にして設置される。   In the production of the lithium ion secondary battery 1, the electrolytic solution impregnation apparatus 10 injects the electrolytic solution into the exterior member 3 that houses the battery element 2 and impregnates the injected electrolytic solution into the battery element 2. Used in the process. The exterior member 3 is installed with the open opening facing upward in a state in which the battery element 2 in which the positive electrode 4 and the negative electrode 6 are stacked with the separator 5 interposed therebetween is accommodated.

電解液含浸装置10は、電解液を外装部材3内へ注液する電解液供給ライン11と、注液された電解液の電池要素2への含浸を促進する交直両用電源装置15と、これらを制御する制御装置20とを備える。   The electrolytic solution impregnation device 10 includes an electrolytic solution supply line 11 for injecting the electrolytic solution into the exterior member 3, an AC / DC power supply device 15 for promoting the impregnation of the injected electrolytic solution into the battery element 2, and the like. And a control device 20 for controlling.

前記電解液供給ライン11は、電解液供給装置12と、注液ノズル13と、注液された液面レベルを測定するレベルセンサ14とを備える。そして、電解液供給装置12より供給された電解液を注液ノズル13により外装部材3内に注液し、レベルセンサ14により検出された液面レベルが設定値に達した段階で、注液ノズル13よりの注液を停止させる。また、電解液の電池要素2への浸透により液面レベルが低下した場合には、これをレベルセンサ14により検出して、注液ノズル13から追加注液を実施する。この追加注液は、電解液の電池要素2への含浸が完了するまで随時実施される。電解液供給装置12と注液ノズル13は、レベルセンサ14よりのレベル信号に応じて、制御装置20により、その動作が制御される。   The electrolytic solution supply line 11 includes an electrolytic solution supply device 12, a liquid injection nozzle 13, and a level sensor 14 that measures a liquid level that has been injected. Then, the electrolytic solution supplied from the electrolytic solution supply device 12 is injected into the exterior member 3 by the injection nozzle 13, and when the liquid level detected by the level sensor 14 reaches the set value, the injection nozzle Stop pouring from No.13. Further, when the liquid level is lowered due to penetration of the electrolytic solution into the battery element 2, this is detected by the level sensor 14, and additional liquid injection is performed from the liquid injection nozzle 13. This additional injection is performed as needed until the impregnation of the electrolytic solution into the battery element 2 is completed. The operation of the electrolyte supply device 12 and the liquid injection nozzle 13 is controlled by the control device 20 in accordance with a level signal from the level sensor 14.

前記交直両用電源装置15は、二次電池の外装部材3から突出した正極タブ8及び負極タブ9を介して、二次電池1の電池要素2に対して、後述する予備充電、交流印加、及びSEI生成のための後充電を実施する。   The AC / DC power supply device 15 is connected to a battery element 2 of the secondary battery 1 through a positive electrode tab 8 and a negative electrode tab 9 protruding from the exterior member 3 of the secondary battery. Perform post-charging for SEI generation.

このため、交直両用電源装置15は、充電(直流)電圧電流及び交流電圧電流を発生する電源装置16と、発生している電圧及び電流を測定する電圧センサ17及び電流センサ18とを備える。電圧センサ17及び電流センサ18により検出した電圧・電流信号は制御装置20にフィードバック入力され、制御装置20はこれらの信号に基づいて電源装置16を制御する。   For this reason, the AC / DC power supply device 15 includes a power supply device 16 that generates a charging (DC) voltage current and an AC voltage current, and a voltage sensor 17 and a current sensor 18 that measure the generated voltage and current. The voltage / current signals detected by the voltage sensor 17 and the current sensor 18 are fed back to the control device 20, and the control device 20 controls the power supply device 16 based on these signals.

本実施形態の電解液含浸装置10による電解液含浸方法は、図3に示す工程により実施される。即ち、先ず注液工程S1により電池要素2を収容した外装部材3内に所定量の電解液を注液し、負極電位調整工程S2により負極6の電位を調整し、含浸工程S3により電解液の電池要素2内への含浸を促進させ、そしてSEI生成工程S4を経て、注液作業を終了する。   The electrolytic solution impregnation method by the electrolytic solution impregnation apparatus 10 of the present embodiment is performed by the steps shown in FIG. That is, first, a predetermined amount of electrolyte is injected into the exterior member 3 containing the battery element 2 in the injection step S1, the potential of the negative electrode 6 is adjusted in the negative electrode potential adjustment step S2, and the electrolyte solution is adjusted in the impregnation step S3. The impregnation into the battery element 2 is promoted, and the liquid injection operation is finished through the SEI generation step S4.

前記含浸工程S3においては、電源装置15により正極4・負極6に対して交流電圧を印加することにより電解液の電池要素2内への含浸を促進させ、交流調整手段21により含浸経過時間若しくは含浸進行状態に応じて印加する交流電圧を調整しつつ含浸を促進させる。そして、電池要素2内への電解液の含浸状態を判定し(終了判定・異常判定)、含浸が完了した二次電池についてはSEI生成工程S4により負極活物質に対して均一なSEI被膜を生成させて注液・含浸作業を終了する。また、電解液の含浸状態の判定において、含浸異常と判定した二次電池1については注液作業を中止する。   In the impregnation step S3, the alternating current voltage is applied to the positive electrode 4 and the negative electrode 6 by the power supply device 15 to promote the impregnation of the electrolytic solution into the battery element 2, and the alternating adjustment means 21 causes the impregnation elapsed time or impregnation. Impregnation is promoted while adjusting the AC voltage applied according to the progress state. Then, the impregnation state of the electrolytic solution into the battery element 2 is determined (termination determination / abnormality determination), and a uniform SEI film is generated on the negative electrode active material in the SEI generation step S4 for the secondary battery that has been impregnated. The liquid injection / impregnation work is completed. Further, in the determination of the impregnation state of the electrolytic solution, the injection operation is stopped for the secondary battery 1 determined to be abnormal in impregnation.

各工程について、以下に詳述する。先ず、注液工程S1においては、図2に示すように、電池要素2を収容して上部が開口した外装部材3を注液ノズル13の下方に設置し、レベルセンサ14を外装部材3内の所定位置に設置する。そして、外装部材3から露出した正極タブ8及び負極タブ9を、制御装置20により制御される交直両用電源装置を接続する。   Each step will be described in detail below. First, in the liquid injection step S1, as shown in FIG. 2, the exterior member 3 containing the battery element 2 and opened at the top is installed below the liquid injection nozzle 13, and the level sensor 14 is installed inside the exterior member 3. Install in place. The positive and negative tabs 8 and 9 exposed from the exterior member 3 are connected to an AC / DC power supply device controlled by the control device 20.

次いで、注液ノズル13を開放して、電解液20を外装部材3内に注液する。外装部材3内に注液された電解液20は、先ず、電池要素2の上部に注液される。そして、電池要素2の上部から両側面に流れ、次いで、外装部材3の底面に流れる。そして、外装部材3底面と電池要素2の下部との隙間空間が満たされる。   Next, the liquid injection nozzle 13 is opened, and the electrolytic solution 20 is injected into the exterior member 3. The electrolytic solution 20 injected into the exterior member 3 is first injected into the upper part of the battery element 2. And it flows from the upper part of the battery element 2 to both side surfaces, and then flows to the bottom surface of the exterior member 3. And the clearance gap of the exterior member 3 bottom face and the lower part of the battery element 2 is satisfy | filled.

次いで、外装部材3の互いに融着されている封止部と電池要素2の両側面との隙間空間に充填される。この両側面が電解液20で満たされるに連れて、電解液20は電池要素2の下部から電池要素2の内部に電解液の毛細管作用により浸透されると共に、電池要素2の両側面からも電池要素2の内部に毛細管作用により浸透される。以上の注液が継続されて、外装部材3の開放されている開口部に面している電池要素2の上面側に回り込んで充填され、注液量が所定の液面レベルに達した段階で注液が一旦停止される。   Subsequently, the gap space between the sealing portion of the exterior member 3 that is fused to each other and both side surfaces of the battery element 2 is filled. As the both side surfaces are filled with the electrolytic solution 20, the electrolytic solution 20 penetrates from the lower part of the battery element 2 into the battery element 2 by the capillary action of the electrolytic solution, and from both side surfaces of the battery element 2. It penetrates inside the element 2 by capillary action. The above-described liquid injection is continued, filling around the upper surface side of the battery element 2 facing the open opening of the exterior member 3, and the amount of liquid injection reaches a predetermined liquid level. The injection is temporarily stopped.

以後の注液は、電解液の電池要素2への浸透により液面レベルが低下した場合に、これをレベルセンサ14により検出して、注液ノズル13から追加注液を実施する。この追加注液は、電解液の電池要素2への含浸が完了するまで随時実施される。このため、電解液20が電池要素2内への浸透される浸透速度を超えて注液することがなく、注液した電解液20が外装部材3から溢れる不具合を防止できる。   Subsequent liquid injection, when the liquid level decreases due to penetration of the electrolytic solution into the battery element 2, is detected by the level sensor 14, and additional liquid injection is performed from the liquid injection nozzle 13. This additional injection is performed as needed until the impregnation of the electrolytic solution into the battery element 2 is completed. For this reason, the electrolyte solution 20 does not inject beyond the permeation speed at which the battery element 2 is infiltrated, and the infused electrolyte solution 20 can be prevented from overflowing from the exterior member 3.

前記注液が電池要素2の上面側に回り込んで充填され、注液量が所定の液面レベルに達した段階で注液が一旦停止されると、負極電位調整工程S2が開始される。この負極電位調整工程S2は、次工程である交流電圧の印加時における負極電位の(約3.0Vを超える)上昇及び(約1.5Vを下回る)下がりすぎを防止して、負極集電板6aである銅の溶出及び負極活物質であるグラファイト若しくはハードカーボンへの不均一なSEI皮膜の生成を防止するために実施される。即ち、注液した直後に、負極集電板6aが銅である場合に、負極電位が高い(約3.0Vを超える)と銅が溶出する。また、負極活物質がグラファイト若しくはハードカーボンである場合に、注液した直後の電解液が均等に電池要素2に浸透していない時点で、負極電位を下げすぎる(約1.5Vを下回る)と、不均一なSEI皮膜が生成される。   When the liquid injection wraps around and fills the upper surface side of the battery element 2 and the liquid injection is temporarily stopped when the liquid injection amount reaches a predetermined liquid level, the negative electrode potential adjustment step S2 is started. This negative electrode potential adjusting step S2 prevents the negative electrode potential from rising (above about 3.0V) and falling too low (below about 1.5V) during the application of the AC voltage, which is the next step. This is carried out to prevent elution of copper as 6a and formation of a nonuniform SEI film on graphite or hard carbon as the negative electrode active material. That is, immediately after the injection, when the negative electrode current collector plate 6a is copper, copper is eluted when the negative electrode potential is high (above about 3.0 V). In addition, when the negative electrode active material is graphite or hard carbon, the negative electrode potential is lowered too much (below about 1.5 V) at the point in time when the electrolyte immediately after pouring does not uniformly penetrate into the battery element 2. A non-uniform SEI film is produced.

従って、この負極電位調整工程S2では、負極6の電位を上記範囲に調整することにより、後続する交流印加による含浸工程S3での負極集電板6aの溶出を防ぎ、均一なSEI皮膜を生成させ、電池要素2の安全性、耐久性を向上することを狙って実施する。   Therefore, in this negative electrode potential adjustment step S2, by adjusting the potential of the negative electrode 6 to the above range, elution of the negative electrode current collector plate 6a in the subsequent impregnation step S3 due to alternating current application is prevented, and a uniform SEI film is generated. The aim is to improve the safety and durability of the battery element 2.

この負極電位調整工程S2では、電源装置16より二次電池1の正極タブ8・負極タブ9間に直流の充電電流を加えて、負極電位を3.0V以下1.5V以上に低下させる。印加する充電電流は、正極4および負極6を組み立てて得られる電極組立物に対して、0.05×C(mA)以下の充電電流とする。ここで、Cは、負極理論容量(対極をリチウムとした場合に初回に充電される容量)を1時間で放電しきる電流値を表す。負極理論容量は、きわめて小さい電流値(0Vに到達するまで20時間程度要する電流値)で定電流充電を行い、終止電圧0Vに到達後、0.1mA以下の電流値になるまで充電して得られる容量である。   In this negative electrode potential adjustment step S2, a DC charging current is applied between the positive electrode tab 8 and the negative electrode tab 9 of the secondary battery 1 from the power supply device 16 to lower the negative electrode potential to 3.0V or lower and 1.5V or higher. The charging current to be applied is 0.05 × C (mA) or less with respect to the electrode assembly obtained by assembling the positive electrode 4 and the negative electrode 6. Here, C represents a current value at which the theoretical capacity of the negative electrode (capacity charged for the first time when the counter electrode is lithium) can be discharged in one hour. The theoretical capacity of the negative electrode is obtained by performing constant current charging with an extremely small current value (current value required for about 20 hours until reaching 0 V), and charging until reaching a final voltage of 0 V and a current value of 0.1 mA or less. Capacity.

負極集電板6aの電位は、参照電極がある場合には、参照電極の電位と比較し、参照電極がない場合には、正極タブ8と負極タブ9との電位差を電圧センサ17により検出して負極集電板6aの電位を推定する。そして、負極集電板6aの電位が1.5V以上3.0V未満の設定値、例えば、2.2Vに達した段階で、充電電流の印加を終了する。   The potential of the negative electrode current collector plate 6a is compared with the potential of the reference electrode when there is a reference electrode. When there is no reference electrode, the potential difference between the positive electrode tab 8 and the negative electrode tab 9 is detected by the voltage sensor 17. Thus, the potential of the negative electrode current collector plate 6a is estimated. Then, when the potential of the negative electrode current collector plate 6a reaches a set value of 1.5 V or more and less than 3.0 V, for example, 2.2 V, the application of the charging current is finished.

このように、交流電圧を印加する前に、予備充電し、負極6の電位を負極集電板6aの溶出電位とSEI生成電位の中間値(2.2V)付近に調整することにより、交流電圧の振幅をもっとも大きく印加することができ、電池要素2の劣化を防ぐと同時に、電解液の浸透性を促進できる。従って、二次電池1としての安全性、耐久性を損なうことなく、電解液浸透速度を促進することができ、生産コストを低減できる。   As described above, the AC voltage is precharged before the AC voltage is applied, and the AC voltage is adjusted by adjusting the potential of the negative electrode 6 to an intermediate value (2.2 V) between the elution potential of the negative current collector 6a and the SEI generation potential. Can be applied with the largest amplitude, and the battery element 2 can be prevented from being deteriorated, and at the same time, the permeability of the electrolyte can be promoted. Therefore, the electrolyte penetration rate can be accelerated without impairing the safety and durability of the secondary battery 1, and the production cost can be reduced.

なお、負極集電板6aが銅でない場合や負極活物質がグラファイト若しくはハードカーボンでない場合には、この負極電位調整工程S2は省略することができる。   When the negative electrode current collector plate 6a is not copper or when the negative electrode active material is not graphite or hard carbon, this negative electrode potential adjusting step S2 can be omitted.

含浸工程S3では、電源装置16より二次電池の正極タブ8・負極タブ9間に交流を加えて、電解液の電池要素2への含浸を促進させる。正極タブ8・負極タブ9間に印加する交流としては、電圧を正負方向に変化させる交流電圧とする。なお、電流を正負方向に変化させる交流電流であってもよい。電解液に電圧を印加すると、Migration現象により、マイナスイオンとプラスイオンが反対の方向に動き、イオンの移動につれて、電解液も動く。   In the impregnation step S3, alternating current is applied between the positive electrode tab 8 and the negative electrode tab 9 of the secondary battery from the power supply device 16 to promote the impregnation of the electrolyte into the battery element 2. The alternating current applied between the positive electrode tab 8 and the negative electrode tab 9 is an alternating voltage that changes the voltage in the positive and negative directions. An alternating current that changes the current in the positive and negative directions may be used. When a voltage is applied to the electrolytic solution, negative ions and positive ions move in opposite directions due to the migration phenomenon, and the electrolytic solution moves as the ions move.

図4は二次電池1の等価電気回路モデルである。即ち、二次電池1は電解質層を挟んで正極4・負極6が直列に配置されたモデルで近似でき、また、正極4・負極6の電極は、電極表面の活物質と電解液との間の電気二重層と反応抵抗を並列としたモデルで近似できる。   FIG. 4 is an equivalent electric circuit model of the secondary battery 1. That is, the secondary battery 1 can be approximated by a model in which the positive electrode 4 and the negative electrode 6 are arranged in series with the electrolyte layer interposed therebetween, and the electrodes of the positive electrode 4 and the negative electrode 6 are between the active material on the electrode surface and the electrolytic solution. It can be approximated by a model in which the electric double layer and reaction resistance are parallel.

このため、直流電圧を正極4・負極6間に印加した場合、電極表面の活物質と電解液との間の電気二重層(キャパシタ)の抵抗は、周波数の逆数に比例するため、抵抗が非常に高くなる。即ち、直流の場合、周波数はゼロなので、キャパシタ抵抗は無限大となる。このため、直流電圧を印加すると、キャパシタ側には流れず、電極の充放電抵抗側に電流が流れて、活物質に対してリチウムイオンの出入りが生じる。従って、電解液が活物質の全体領域に含浸する以前の一部領域に含浸した状態で、充放電されると、一部領域への過充電状態を生じ、その一部領域が劣化する恐れがある。   For this reason, when a DC voltage is applied between the positive electrode 4 and the negative electrode 6, the resistance of the electric double layer (capacitor) between the active material on the electrode surface and the electrolytic solution is proportional to the reciprocal of the frequency. To be high. That is, in the case of DC, since the frequency is zero, the capacitor resistance becomes infinite. For this reason, when a DC voltage is applied, current does not flow to the capacitor side but current flows to the charge / discharge resistance side of the electrode, and lithium ions enter and leave the active material. Therefore, if the electrolytic solution is impregnated in a partial region before the entire region of the active material is impregnated and charged / discharged, an overcharged state may occur in the partial region, and the partial region may be deteriorated. is there.

このため、本実施形態においては、上記したように、正極タブ8と負極タブ9との間で、交流電圧を印加する。交流電圧の印加では、電気二重層側の抵抗は周波数に比例して低くなるので、電気二重層側に電流が流れる結果、電極の充放電抵抗側への電流を抑制できる。すると、マイナスイオンとプラスイオンの移動に連れて電解液のみが電極間で往復移動を生じ、活物質への充放電を抑制できる。即ち、交流電圧により電解液のみを往復させて動かすことができ、電解液の攪拌効果により電池要素2への浸透を促進することができる。また、交流電圧の印加により電池要素2にオーム発熱を生じ、電解液と電池要素2との親和性を高め、浸透をより促進する。このため、電解液の含浸時間を短縮化でき、引いては、生産途中の在庫が減り、量産コストを低減できる。   For this reason, in this embodiment, as described above, an alternating voltage is applied between the positive electrode tab 8 and the negative electrode tab 9. When an AC voltage is applied, the resistance on the electric double layer side decreases in proportion to the frequency, and as a result of the current flowing on the electric double layer side, the current to the charge / discharge resistance side of the electrode can be suppressed. Then, with the movement of negative ions and positive ions, only the electrolytic solution reciprocates between the electrodes, and charging / discharging of the active material can be suppressed. That is, only the electrolytic solution can be moved back and forth by the alternating voltage, and the penetration into the battery element 2 can be promoted by the stirring effect of the electrolytic solution. Moreover, ohmic heat is generated in the battery element 2 by the application of the alternating voltage, and the affinity between the electrolytic solution and the battery element 2 is increased and the penetration is further promoted. For this reason, the impregnation time of the electrolytic solution can be shortened, and in turn, the inventory during production can be reduced, and the mass production cost can be reduced.

印加する交流電圧としては、その周波数は10Hz〜10kHzの間で印加することが、活物質を過充電することなく、攪拌効果を増強するために望ましい。即ち、周波数が10Hzより低くなると、電気二重層の抵抗が大きくなり、活物質への充放電電流が大きくなるので、活物質の劣化をもたらす恐れがある。一方、周波数が10kHzより大きくなると、電気二重層の抵抗は無視でき活物質への充放電電流を小さく制限できるが、イオンの動く往復移動範囲が狭くなり、攪拌効果が小さくなる。また、大型の二次電池では、含浸が進んだ後期に、電池要素2のインピダンスがミリオームオーダーになり、高周波数によるリード線損失も大きくなる。   As the alternating voltage to be applied, it is desirable to apply the frequency between 10 Hz to 10 kHz in order to enhance the stirring effect without overcharging the active material. That is, when the frequency is lower than 10 Hz, the resistance of the electric double layer is increased and the charge / discharge current to the active material is increased, which may cause deterioration of the active material. On the other hand, when the frequency is higher than 10 kHz, the resistance of the electric double layer can be ignored and the charge / discharge current to the active material can be limited to a small value, but the reciprocating range in which ions move is narrowed and the stirring effect is reduced. In the case of a large secondary battery, the impedance of the battery element 2 is in the milliohm order in the later stage when the impregnation progresses, and the lead wire loss due to high frequency also increases.

また、印加する交流電圧としては、交流電圧の印加初期には、図5及び図6に示すように、低い周波数を備えた振幅の大きい交流電圧とし、時間の経過に連れて交流電圧の周波数を上昇させつつその振幅を減少させる。これは、注液直後の交流電圧の印加初期には、先ず電極及びセパレータ5の大きな穴内に電解液を移動させる必要があり、このためには低い周波数の方が浸透効果は大きい。また、注液直後の交流電圧の印加初期には、電解液の含浸領域が小さいため、印加する交流電圧の振幅を大きくすることによって、電解液の移動範囲を大きくし、その浸透を促進させる。   In addition, as an alternating voltage to be applied, as shown in FIG. 5 and FIG. 6, an alternating voltage with a low frequency and a large amplitude is provided at the initial stage of application of the alternating voltage, and the frequency of the alternating voltage is increased with time. Decrease the amplitude while increasing. This is because in the initial application of the AC voltage immediately after the injection, it is necessary to first move the electrolytic solution into the large holes of the electrode and the separator 5. For this purpose, the lower frequency has a larger permeation effect. In addition, since the area where the electrolytic solution is impregnated is small at the initial stage of application of the alternating voltage immediately after the injection, increasing the amplitude of the alternating voltage to be applied increases the moving range of the electrolytic solution and promotes its penetration.

しかしながら、電解液の含浸の進行に連れて、電極及びセパレータ5の小さな穴内に電解液を移動させる必要が生じ、このためには高い周波数の方が浸透効果は大きい。また、電解液の含浸の進行に連れて、電解液の移動抵抗が減少するので、それに合わせて、交流電圧の振幅を調整(低減)することによって、充電作用から電池要素2を保護し、電解液の浸透を促進する。   However, as the impregnation of the electrolytic solution proceeds, it is necessary to move the electrolytic solution into the small holes of the electrode and the separator 5, and for this purpose, the penetration effect is greater at higher frequencies. Further, as the electrolytic solution impregnation progresses, the movement resistance of the electrolytic solution decreases, and accordingly, by adjusting (reducing) the amplitude of the alternating voltage, the battery element 2 is protected from the charging action and electrolysis is performed. Promotes liquid penetration.

このために、この含浸工程S3には、交流電圧の周波数及び振幅を時間の経過に応じて調整する交流調整手段21を設けている。電解液の含浸の進行に応じて、印加する交流電圧の周波数を上昇させるよう調整する、言い換えれば、電解液が含浸する穴のサイズに応じて、周波数を選択することで、電解液の浸透を促進することができる。また、電解液の含浸の進行に応じて、印加する交流電圧の振幅を減少させるよう調整することにより、充電作用による電池要素2の劣化をさせることなく、電解液の浸透を促進することができる。   For this purpose, this impregnation step S3 is provided with AC adjusting means 21 that adjusts the frequency and amplitude of the AC voltage over time. As the impregnation of the electrolytic solution progresses, the frequency of the AC voltage to be applied is adjusted to increase, in other words, by selecting the frequency according to the size of the hole impregnated with the electrolytic solution, the penetration of the electrolytic solution is achieved. Can be promoted. Further, by adjusting so as to reduce the amplitude of the AC voltage to be applied in accordance with the progress of the impregnation of the electrolytic solution, the penetration of the electrolytic solution can be promoted without deteriorating the battery element 2 due to the charging action. .

また、交流電圧の印加により促進される電解液の浸透度合いは、交流電圧と交流電流との振幅の比、即ち交流抵抗である交流インピダンスZにより判定することができる。この交流インピダンスZは、交直両用電源装置16に設置されている電圧センサ17と電流センサ18との検出信号から、制御装置20により常に演算することができる。そして、交流インピダンスZは、図7に示すように、電解液の浸透度合いに応じて低下する。交流インピダンスZの低下が予め設定した所定値に収束した際に、電解液の浸透が完了したと判断する。   Further, the degree of penetration of the electrolyte promoted by the application of the AC voltage can be determined by the ratio of the amplitude of the AC voltage and the AC current, that is, the AC impedance Z that is the AC resistance. The AC impedance Z can always be calculated by the control device 20 from the detection signals of the voltage sensor 17 and the current sensor 18 installed in the AC / DC power supply device 16. Then, the AC impedance Z decreases according to the degree of penetration of the electrolytic solution, as shown in FIG. When the decrease in AC impedance Z converges to a predetermined value set in advance, it is determined that the electrolyte solution has been permeated.

このため、含浸工程S3では、含浸終了判定22により、交流インピダンスZを常時モニターしている。そして、含浸終了判定22により、交流インピダンスZが、予め設定した所定値に低下したか否かを常時判定し、電解液の含浸が完了したか否かを判断している。そして、演算した交流インピダンスZが予め設定した所定値に低下されていない場合には、交流調整手段21により、その経過時間から定まる調整強度の交流電圧により、交流電圧の印加を継続する。また、含浸終了判定22により、交流インピダンスZが予め設定した所定値に低下したと判断される場合には、含浸工程S3が完了したとして、交流電圧の印加を終了させて、次の工程であるSEI生成工程S4へ進む。   For this reason, in the impregnation step S3, the AC impedance Z is constantly monitored by the impregnation end determination 22. Then, the impregnation end determination 22 always determines whether or not the AC impedance Z has decreased to a predetermined value set in advance, and determines whether or not the impregnation of the electrolytic solution has been completed. When the calculated AC impedance Z is not reduced to a predetermined value set in advance, the AC adjustment means 21 continues to apply the AC voltage with an AC voltage having an adjustment strength determined from the elapsed time. If it is determined by the impregnation end determination 22 that the AC impedance Z has decreased to a predetermined value set in advance, it is determined that the impregnation step S3 has been completed, and the application of the AC voltage is terminated, and the next step is performed. Proceed to SEI generation step S4.

なお、含浸工程S3に設けた含浸異常判定手段23は、前記含浸終了判定22により、予め設定した所定値に低下していない場合において、インピダンスZの履歴が異常であるか否かを判定し、履歴が異常である場合にはその電池要素2に対する含浸工程S3を中断させる。インピダンスZの履歴が異常であるか否かの判定は、インピダンスZが、図7の破線で示す上限線より上の領域にあり、時間の経過に連れて正常に低下されない場合と、図7の破線で示す下限線より下の領域にあり、時間の経過に連れて急激に低下される場合とがある。前記上限線及び下限線は、予め、いくつか電池要素2の含浸工程S3で、インピダンスZの値の時間変化を測定し、正常電池要素2の履歴パターンと不良電池要素2の履歴パターンを作成することにより、設定することができる。   The impregnation abnormality determining means 23 provided in the impregnation step S3 determines whether or not the history of the impedance Z is abnormal when the impregnation end determination 22 does not decrease to a predetermined value set in advance. When the history is abnormal, the impregnation step S3 for the battery element 2 is interrupted. The determination as to whether or not the impedance Z history is abnormal is based on whether the impedance Z is in a region above the upper limit line indicated by the broken line in FIG. There is a case where it is in a region below the lower limit line indicated by a broken line and rapidly decreases with the passage of time. The upper limit line and the lower limit line are measured in advance in several impregnation steps S3 of the battery element 2, and the time variation of the value of the impedance Z is measured to create a history pattern of the normal battery element 2 and a history pattern of the defective battery element 2. Can be set.

このように履歴パターンが異常となるのは、異物の混入、組成の偏在、材料ロット間の差などの原因が想定できる。そして、電池要素2の品質と安全性を損なう可能性があるこれらの問題を、含浸異常判定手段23は、早期に発見する有効な手段である。このように、製造の早期の段階で、含浸に対する不良品を精度よく判断して見出し、製造ラインから排除することによって、製造電池の品質向上を図りつつ、製造コストを低減することができる。   Such abnormal history patterns can be assumed to be due to foreign matter contamination, uneven composition, differences between material lots, and the like. And the impregnation abnormality determination means 23 is an effective means for discovering these problems that may impair the quality and safety of the battery element 2 at an early stage. In this way, at an early stage of production, defective products with respect to impregnation can be accurately determined and found, and excluded from the production line, so that the production cost can be reduced while improving the quality of the production battery.

SEI生成工程S4では、含浸完了を判断した電池要素2に対して、負極6の電位をSEI生成電位以下まで充電する。含浸完了を判断した電池要素2では、電解質層及び正負活物質層への電解液の均一な濡れが期待できる。このため、このSEI生成工程S4では、電源装置16より二次電池の正極タブ8・負極タブ9間に直流の充電電流を加えて、負極電位を1.5V以下に低下させる。印加する充電電流は、正極4および負極6を組み立てて得られる電極組立物に対して、0.05×C(mA)以下の充電電流とする。負極集電板6aの電位は、参照電極がある場合には、参照電極の電位と比較し、参照電極がない場合には、正極タブ8と負極タブ9との電位差を電圧センサ17により検出して負極集電板6aの電位を推定する。そして、負極集電板6aの電位が1.5V以下の設定値、例えば、1.0Vに達した段階で、充電電流の印加を終了する。   In the SEI generation step S4, the potential of the negative electrode 6 is charged to the SEI generation potential or lower with respect to the battery element 2 that has been determined to be impregnated. In the battery element 2 that has been determined to be impregnated, uniform wetting of the electrolyte solution on the electrolyte layer and the positive and negative active material layers can be expected. For this reason, in this SEI production | generation process S4, direct-current charging current is added between the positive electrode tab 8 and the negative electrode tab 9 of a secondary battery from the power supply device 16, and a negative electrode potential is reduced to 1.5V or less. The charging current to be applied is 0.05 × C (mA) or less with respect to the electrode assembly obtained by assembling the positive electrode 4 and the negative electrode 6. The potential of the negative electrode current collector plate 6a is compared with the potential of the reference electrode when there is a reference electrode. When there is no reference electrode, the potential difference between the positive electrode tab 8 and the negative electrode tab 9 is detected by the voltage sensor 17. Thus, the potential of the negative electrode current collector plate 6a is estimated. Then, when the potential of the negative electrode current collector plate 6a reaches a set value of 1.5 V or less, for example, 1.0 V, the application of the charging current is finished.

このように、負極6の電位をSEI生成電位(1.5V)以下まで充電することにより、グラファイト若しくはハードカーボンからなる負極活物質に対して、より均一なSEI被膜を生成することができる。従って、電池要素2の安全性と耐久性を向上することができる。   Thus, by charging the potential of the negative electrode 6 to an SEI generation potential (1.5 V) or less, a more uniform SEI film can be generated on the negative electrode active material made of graphite or hard carbon. Therefore, the safety and durability of the battery element 2 can be improved.

なお、負極活物質がグラファイト若しくはハードカーボンでない場合には、このSEI生成工程S4は省略することができる。   If the negative electrode active material is not graphite or hard carbon, this SEI generation step S4 can be omitted.

なお、上記実施形態において、電解液の浸透度合いのモニター信号として、電池要素2に通す交流電圧と交流電流の振幅の比であるインピダンスZを利用するものについて説明した。しかし、図示はしないが、電池要素2に通す交流電圧と交流電流の振幅の比であるインピダンスZと交流電圧と交流電流の位相の差を測定し、その値で電解液の浸透状況をモニタリングするようにしてもよい。このように、位相の情報を加えると、電解液の浸透状況の判断の精度をより高くすることができる。   In the above embodiment, the description has been given of using the impedance Z, which is the ratio of the amplitude of the alternating voltage passed through the battery element 2 and the alternating current, as the monitor signal of the degree of penetration of the electrolytic solution. However, although not shown, the impedance Z, which is the ratio of the amplitude of the AC voltage and the AC current passed through the battery element 2, and the phase difference between the AC voltage and the AC current are measured, and the permeation status of the electrolyte is monitored with that value. You may do it. As described above, when the phase information is added, the accuracy of the determination of the state of penetration of the electrolytic solution can be further increased.

また、上記実施形態において、交流電圧の印加及び電解液の浸透状況のモニターの対象として、外装部材3内に収容されている電池要素2の全体に対して実施するものについて説明した。しかし、注液の方向、電池要素2の構造、積層数等によって、単電池7間の電解液の浸透にばらつきが生じることがあり、電池要素2全体への浸透は一番浸透が遅い単電池7に律速される。このような場合には、電池要素2内の単電池7または単電池グループの浸透状況をモニターし、浸透度合いの遅い単電池7または単電池グループに対して優先的に交流電圧を印加するようにしてもよい。   Moreover, in the said embodiment, what was implemented with respect to the whole battery element 2 accommodated in the exterior member 3 was demonstrated as the object of the monitoring of the application state of an alternating voltage and electrolyte solution penetration. However, depending on the direction of injection, the structure of the battery element 2, the number of stacked layers, etc., there may be variations in the penetration of the electrolyte between the single cells 7. The rate is limited to 7. In such a case, the state of penetration of the unit cell 7 or unit group in the battery element 2 is monitored, and an AC voltage is preferentially applied to the unit cell 7 or unit group having a low degree of penetration. May be.

この場合には、図8に示すように、外装部材3内に挿入されている電池要素2の正極4・負極6を電気的に独立させて存在させて形成する。そして、単電池7の正極4・負極6と電源装置16とを選択的に切換え接続する切換え装置25を配置し、電解液の含浸工程S3の途中段階までは、全ての正極4と全ての負極6に同時に交流電圧を印加する。その後において、切換え装置25により各単電池7または単電池グループを選択して、電解液の浸透状況を、各単電池7または単電池グループ毎にモニターする。このようにして、浸透の遅い単電池7または単電池グループを特定する。そして、切換え装置25により浸透の遅い単電池7または単電池グループに切換えて、選択的に交流電圧を印加して電解液の浸透を促進させるようにする。   In this case, as shown in FIG. 8, the positive electrode 4 and the negative electrode 6 of the battery element 2 inserted into the exterior member 3 are made to exist electrically independently. Then, a switching device 25 for selectively switching and connecting the positive electrode 4 / negative electrode 6 of the unit cell 7 and the power supply device 16 is arranged, and until the middle stage of the electrolyte impregnation step S3, all the positive electrodes 4 and all the negative electrodes 6 is simultaneously applied with an AC voltage. Thereafter, each single cell 7 or single cell group is selected by the switching device 25, and the permeation state of the electrolytic solution is monitored for each single cell 7 or single cell group. In this way, the slow-penetrating unit cell 7 or unit cell group is specified. Then, the switching device 25 switches to the slow permeation unit cell 7 or the unit cell group, and the AC voltage is selectively applied to promote the permeation of the electrolytic solution.

なお、電気的に独立させて存在させて形成した電池要素2の正極4・負極6は、電池要素2全体への浸透完了後に、夫々集約して正極タブ8及び負極タブ9へ接続すればよい。このように、浸透の遅い部分を特定し、選択的に促進できるので、注液工程時間を短縮できる。   In addition, the positive electrode 4 and the negative electrode 6 of the battery element 2 formed so as to be electrically independent may be aggregated and connected to the positive electrode tab 8 and the negative electrode tab 9 after the penetration into the entire battery element 2 is completed. . Thus, since the slow-penetrating part can be identified and selectively promoted, the time for the liquid injection process can be shortened.

また、上記実施形態において、注液工程S1、負極電位調整工程S2及び含浸工程S3として、大気圧状態において実施するものについて説明した。しかし、図示しないが、これらの工程を減圧した真空槽内で実施するようにしてもよい。このように、減圧してから注液する、または、減圧と加圧を繰り返す注液方法と併用することにより、減圧状態での電解液・電池要素2内からの気泡が抜けることにより、電解液の浸透速度をさらに一層促進することができる。   Moreover, in the said embodiment, what was implemented in an atmospheric pressure state was demonstrated as liquid injection process S1, negative electrode potential adjustment process S2, and impregnation process S3. However, although not shown, these steps may be performed in a vacuum chamber with reduced pressure. Thus, by injecting after reducing pressure, or by using in combination with an injecting method that repeats depressurization and pressurization, bubbles from the inside of the electrolyte / battery element 2 in a reduced pressure state can be removed. It is possible to further accelerate the permeation rate.

また、上記実施形態において、含浸工程S3として、常温状態において実施するものについて説明した。しかし、図示しないが、電池要素2の加熱手段と温度コントロール手段を設け、例えば、30〜50℃の間で加熱しながら、上記した含浸工程S3と併用するようにしてもよい。注液された電解液の温度が上がり、電解質層と正負活物質層への親和性を高め、浸透を促進でき、電解液の浸透速度をさらに一層促進することができる。   Moreover, in the said embodiment, what was implemented in a normal temperature state was demonstrated as impregnation process S3. However, although not shown, a heating means and a temperature control means for the battery element 2 may be provided and used together with the above-described impregnation step S3 while being heated at, for example, 30 to 50 ° C. The temperature of the injected electrolyte increases, the affinity between the electrolyte layer and the positive and negative active material layers can be increased, penetration can be promoted, and the penetration rate of the electrolyte can be further promoted.

さらに、上記実施形態において、外装部材3は静止状態で保持されるものについて説明した。しかし、図示しないが、電池要素2に対して積層方向に押圧力を間歇的に付与するものであってもよい。このためには、電池要素2の積層方向両端から外装部材3を介して保持している保持具、若しくは、電池要素2の積層途中に、圧電材料を介在させ、この圧電材料にも交流電圧を印加する。圧電材料としては、水晶,セラミック,アルカリ金属塩,有機ポリマ等がある。また、電池要素2の積層途中に配置する場合には、例えば、セパレータ5、電解質層、電極、集電板等に上記圧電材料を含ませることで実現できる。交流電圧を印加された圧電材料は間歇的に厚みが伸縮変形し、機械的な振動を外装部材3外若しくは外装部材3内から電解液に付与する。このため、電解液の攪拌作用をもたらし、電解液の浸透速度をさらに促進することができる。   Furthermore, in the said embodiment, the exterior member 3 demonstrated what was hold | maintained in a stationary state. However, although not shown, a pressing force may be intermittently applied to the battery element 2 in the stacking direction. For this purpose, a piezoelectric material is interposed in the middle of the stacking of the battery element 2 or a holder that is held from both ends in the stacking direction of the battery element 2 or the battery element 2, and an alternating voltage is also applied to the piezoelectric material. Apply. Examples of the piezoelectric material include crystal, ceramic, alkali metal salt, and organic polymer. Moreover, when arrange | positioning in the middle of lamination | stacking of the battery element 2, it can implement | achieve by including the said piezoelectric material in the separator 5, an electrolyte layer, an electrode, a current collector plate etc., for example. The piezoelectric material to which the AC voltage is applied is stretched and deformed intermittently, and mechanical vibration is applied to the electrolyte from outside or outside the exterior member 3. For this reason, the stirring action of electrolyte solution is brought about and the penetration rate of electrolyte solution can further be accelerated | stimulated.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)外装部材3内に収容した、セパレータ5を介して積層された正極4と負極6とからなる電池要素2に、注液された電解液を含浸させる電解液含浸方法である。そして、前記電池要素2の正極4・負極6間に交流電圧または交流電流を印加するため、電解液の電極間移動が促進され、電解液の撹拌作用が発生する。このため、電解液の毛細管作用に加えて前記電解液の撹拌作用により、セパレータ5および電極活物質中への電解液の浸透が促進され、電解液の含浸性を向上させることができる。また、交流電圧または交流電流の印加により電池要素2にオーム発熱を生じ、電解液と電池要素2との親和性を高め、電解液の浸透をより促進することができる。   (A) An electrolytic solution impregnation method in which the injected electrolytic solution is impregnated into the battery element 2 composed of the positive electrode 4 and the negative electrode 6 stacked via the separator 5 housed in the exterior member 3. And since an alternating voltage or an alternating current is applied between the positive electrode 4 and the negative electrode 6 of the said battery element 2, the movement between electrodes of electrolyte solution is accelerated | stimulated and the stirring action of electrolyte solution generate | occur | produces. For this reason, the penetration of the electrolytic solution into the separator 5 and the electrode active material is promoted by the stirring action of the electrolytic solution in addition to the capillary action of the electrolytic solution, and the impregnation property of the electrolytic solution can be improved. Moreover, ohmic heat is generated in the battery element 2 by application of alternating voltage or alternating current, the affinity between the electrolytic solution and the battery element 2 can be increased, and the penetration of the electrolytic solution can be further promoted.

(イ)交流電圧または交流電流の周波数は、注液後の時間経過に連れて低い周波数から高い周波数へと調整される。このため、注液後の初期においての低い周波数による電解液の大きい移動により、電解液の電極とセパレータ5の比較的大きな穴内への浸透効果を促進する。そして、時間の経過に連れて周波数を上昇させて電解液の移動を小さくすることにより、徐々に電極とセパレータ5の小さな穴内への電解液の浸透を促進させることができる。   (A) The frequency of the alternating voltage or alternating current is adjusted from a low frequency to a high frequency as time passes after the injection. For this reason, the penetration | transfer effect to the inside of the comparatively large hole of the electrode of the electrolyte solution and the separator 5 is accelerated | stimulated by the large movement of the electrolyte solution by the low frequency in the initial stage after injection. Then, the penetration of the electrolyte into the small holes of the electrode and the separator 5 can be gradually promoted by increasing the frequency with time to reduce the movement of the electrolyte.

(ウ)交流電圧または交流電流の振幅は、注液後の時間経過に連れて高い振幅から低い振幅へと調整される。このため、注液後の時間の経過に連れて電極とセパレータ5への電解液の浸透度が上昇してその移動抵抗が減少するので、それに合わせて、交流電圧または交流電流の振幅を減少させることによって、電池要素2への充電による劣化から保護しつつ、電解液の浸透を促進することができる。   (C) The amplitude of the alternating voltage or alternating current is adjusted from a high amplitude to a low amplitude as time passes after the injection. For this reason, with the passage of time after the injection, the degree of penetration of the electrolyte into the electrode and the separator 5 increases and the movement resistance decreases, and accordingly, the amplitude of the AC voltage or AC current is reduced. Thus, it is possible to promote the penetration of the electrolytic solution while protecting the battery element 2 from being deteriorated by charging.

(エ)交流電圧または交流電流の印加は、交流電圧と交流電流とに基づくインピダンスZが予め設定した所定値に低下した場合には、電解液の含浸が完了したと判断して、終了させる。このように、電解液の浸透度を反映するインピダンスZの低下に基づいて電解液の含浸を停止させるため、電池要素2への電解液の含浸バラツキを抑制でき、電池要素2の品質を向上させることができる。   (D) When the impedance Z based on the AC voltage and the AC current is reduced to a predetermined value set in advance, it is determined that the impregnation with the electrolytic solution is completed, and the application of the AC voltage or AC current is terminated. Thus, since the impregnation of the electrolytic solution is stopped based on the decrease in the impedance Z that reflects the degree of penetration of the electrolytic solution, variations in the impregnation of the electrolytic solution into the battery element 2 can be suppressed, and the quality of the battery element 2 is improved. be able to.

(オ)また、交流電圧または交流電流の印加は、交流電圧と交流電流とに基づくインピダンスZの変化履歴が予め設定した上限履歴及び下限履歴を超えて変化する場合には、中止される。このように、製造の早期の段階で、含浸に対する不良品を精度よく判断して見出し、製造ラインから排除することによって、製造電池の品質向上を図りつつ、製造コストを低減することができる。   (E) The application of the AC voltage or AC current is stopped when the change history of the impedance Z based on the AC voltage and the AC current changes beyond the preset upper limit history and lower limit history. In this way, at an early stage of production, defective products with respect to impregnation can be accurately determined and found, and excluded from the production line, so that the production cost can be reduced while improving the quality of the production battery.

(カ)電池要素2の負極集電板6aが銅であり且つ負極活物質がグラファイト若しくはハードカーボンである場合には、交流電圧または交流電流の印加前に、負極電位を負極集電板6aの溶出電位とSEI生成電位との間の電位となるよう予備充電する。この予備充電により、引続き実行される交流電圧または交流電流の印加時に、負極集電板6aの溶出が抑制でき、不均一なSEI皮膜の生成を防止でき、電池要素2の安全性、耐久性を向上することができる。また、負極電位を負極集電板6aの溶出電位とSEI生成電位との中間の電位となるよう予備充電すると、交流電圧または交流電流の振幅を最も大きく印加することができ、電池要素2の劣化を防ぐと同時に、電解液の浸透をより一層促進できる。   (F) When the negative electrode current collector plate 6a of the battery element 2 is copper and the negative electrode active material is graphite or hard carbon, the negative electrode potential of the negative electrode current collector plate 6a is adjusted before application of an alternating voltage or alternating current. Pre-charge to a potential between the elution potential and the SEI generation potential. By this preliminary charging, the elution of the negative electrode current collector plate 6a can be suppressed during the subsequent application of an alternating voltage or alternating current, and the formation of a non-uniform SEI film can be prevented, and the safety and durability of the battery element 2 can be improved. Can be improved. Further, when the negative electrode potential is precharged so as to be an intermediate potential between the elution potential of the negative electrode current collector plate 6a and the SEI generation potential, the AC voltage or the AC current amplitude can be applied to the maximum, and the battery element 2 is degraded. In addition, the penetration of the electrolyte can be further promoted.

(キ)電池要素2の負極活物質がグラファイト若しくはハードカーボンである場合には、交流電圧または交流電流の印加による含浸終了後に、負極6の電位をSEI生成電位以下の電位となるよう充電する。含浸完了を判断した電池要素2では、電解質層及び正負活物質層への電解液の均一な濡れが期待できる。このため、この時点では、グラファイト若しくはハードカーボンからなる負極活物質に対して、より均一なSEI被膜を生成することができる。従って、電池要素2の安全性と耐久性を向上することができる。   (G) When the negative electrode active material of the battery element 2 is graphite or hard carbon, after completion of impregnation by application of an alternating voltage or alternating current, the negative electrode 6 is charged such that the potential of the negative electrode 6 becomes a potential equal to or lower than the SEI generation potential. In the battery element 2 that has been determined to be impregnated, uniform wetting of the electrolyte solution on the electrolyte layer and the positive and negative active material layers can be expected. For this reason, at this time, a more uniform SEI film can be generated for the negative electrode active material made of graphite or hard carbon. Therefore, the safety and durability of the battery element 2 can be improved.

(ク)交流電圧または交流電流は、10Hz〜10kHzの間の周波数に設定される。このため、低周波数側での活物質への充放電電流の上昇を抑制して、活物質の劣化を抑制できる一方、高周波数側でのイオンの動く往復移動範囲が狭くなり攪拌効果が小さくなる影響を抑制できる。   (H) The alternating voltage or alternating current is set to a frequency between 10 Hz and 10 kHz. For this reason, while suppressing an increase in the charge / discharge current to the active material on the low frequency side, the deterioration of the active material can be suppressed, while the reciprocating range in which ions move on the high frequency side is narrowed and the stirring effect is reduced. The influence can be suppressed.

(第2実施形態)
図9〜図10は、本発明を適用した電池の電解液含浸方法及び電解液含浸装置の第2実施形態を示し、図9は含浸工程における交流調整手段による交流周波数調整の特性図、図10は同じく含浸工程における交流調整手段による交流振幅調整の特性図である。本実施形態においては、含浸工程における交流調整手段による交流周波数調整及び交流振幅調整を検出したインピダンスに応じて実施する構成を第1実施形態に追加したものである。なお、第1実施形態と同一装置には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
9 to 10 show a second embodiment of an electrolytic solution impregnation method and an electrolytic solution impregnation device for a battery to which the present invention is applied. FIG. 9 is a characteristic diagram of AC frequency adjustment by an AC adjustment means in the impregnation step. FIG. 6 is a characteristic diagram of AC amplitude adjustment by AC adjustment means in the impregnation step. In this embodiment, the structure implemented according to the impedance which detected the alternating current frequency adjustment and alternating current amplitude adjustment by the alternating current adjustment means in an impregnation process is added to 1st Embodiment. The same devices as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.

本実施形態における電解液含浸装置10及び電解液含浸方法は、交流調整手段21による交流電圧または交流電流の調整を、含浸時間の経過により調整することに代えて、交流電圧と交流電流との振幅の比、即ち交流抵抗である交流インピダンスZに応じて調整するようにしたものである。その他の構成は、第1実施形態と同様であり、説明を省略する。   The electrolytic solution impregnation apparatus 10 and the electrolytic solution impregnation method according to the present embodiment replace the adjustment of the alternating voltage or alternating current by the alternating current adjusting means 21 with the passage of the impregnation time, and instead of adjusting the amplitude of the alternating voltage and the alternating current. The ratio is adjusted according to the AC impedance Z which is the AC resistance. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

本実施形態の電解液含浸装置10及び電解液含浸方法においては、図9に示すように、印加する交流電圧または交流電流の周波数は、演算された交流インピダンスZの低下に応じて増加される。このため、含浸初期においては、交流インピダンスZが大きいため、低い周波数の交流電圧または交流電流が選択され、電解液の含浸が進行するに連れて交流インピダンスZも低下するため、選択される交流電圧または交流電流の周波数が増加される。従って、電解液浸透度合いの指標である交流インピダンスZに応じて、交流電圧または交流電流の周波数を調整するため、電解液の浸透度合いに応じて高精度に交流電圧または交流電流の周波数を調整させることができる。   In the electrolytic solution impregnation apparatus 10 and the electrolytic solution impregnation method of the present embodiment, as shown in FIG. 9, the frequency of the applied alternating voltage or alternating current is increased according to the decrease in the calculated alternating current impedance Z. For this reason, in the initial stage of impregnation, since the AC impedance Z is large, a low frequency AC voltage or AC current is selected, and the AC impedance Z decreases as the impregnation of the electrolytic solution proceeds. Or the frequency of the alternating current is increased. Therefore, in order to adjust the frequency of the alternating voltage or the alternating current according to the alternating current impedance Z that is an index of the electrolyte penetration degree, the frequency of the alternating voltage or the alternating current is adjusted with high accuracy according to the penetration degree of the electrolyte. be able to.

また、図10に示すように、印加する交流電圧または交流電流の振幅は、演算された交流インピダンスZの低下に応じて低下される。このため、含浸初期においては、交流インピダンスZが大きいため、大きい振幅の交流電圧または交流電流が選択され、電解液の含浸が進行するに連れて交流インピダンスZも低下するため、選択される交流電圧または交流電流の振幅が低下される。従って、電解液浸透度合いの指標である交流インピダンスZに応じて、交流電圧または交流電流の振幅を調整するため、電解液の浸透度合いに応じて高精度に交流電圧または交流電流の振幅を調整させることができる。   Further, as shown in FIG. 10, the amplitude of the applied AC voltage or AC current is reduced in accordance with the decrease in the calculated AC impedance Z. For this reason, in the initial stage of impregnation, since the AC impedance Z is large, an AC voltage or AC current having a large amplitude is selected, and the AC impedance Z also decreases as the impregnation of the electrolytic solution proceeds. Or the amplitude of the alternating current is reduced. Therefore, in order to adjust the amplitude of the AC voltage or the AC current according to the AC impedance Z that is an index of the electrolyte penetration degree, the amplitude of the AC voltage or the AC current is adjusted with high accuracy according to the penetration degree of the electrolyte. be able to.

本実施形態においては、第1実施形態における効果(ア)、(エ)〜(ク)に加えて以下に記載した効果を奏することができる。   In the present embodiment, in addition to the effects (a) and (e) to (ku) in the first embodiment, the following effects can be achieved.

(ケ)交流電圧または交流電流の周波数は、交流電圧と交流電流とに基づくインピダンスZの低下に連れて低い周波数から高い周波数へと調整される。このため、電解液の浸透度を反映するインピダンスZが高い注液後の初期における浸透度の低い状態においては、低い周波数による電解液の大きい移動により、電解液の電極とセパレータ5の比較的大きな穴内への浸透効果を促進する。そして、インピダンスZが低下して電解液の浸透度が高まるに連れて周波数を上昇させて電解液の移動を小さくすることにより、徐々に電極とセパレータ5の小さな穴内への電解液の浸透を促進させることができる。また、電解液浸透度合いの指標としてのインピダンスZに基づいて、交流電圧の周波数を調整するため、周波数の調整精度を高くできる。   (G) The frequency of the alternating voltage or alternating current is adjusted from a low frequency to a high frequency as the impedance Z based on the alternating voltage and alternating current decreases. For this reason, in the state of low permeability at the initial stage after the injection, which has a high impedance Z reflecting the permeability of the electrolyte, the electrolyte electrode and the separator 5 are relatively large due to the large movement of the electrolyte due to the low frequency. Promotes penetration into the hole. As the impedance Z decreases and the electrolyte penetration increases, the frequency is increased to reduce the movement of the electrolyte, thereby gradually promoting the penetration of the electrolyte into the small holes of the electrode and the separator 5. Can be made. Further, since the frequency of the AC voltage is adjusted based on the impedance Z as an index of the degree of electrolyte penetration, the frequency adjustment accuracy can be increased.

(コ)交流電圧または交流電流の振幅は、交流電圧と交流電流とに基づくインピダンスZの低下に連れて高い振幅から低い振幅へと調整される。このため、電解液の浸透度を反映するインピダンスZが低下され電解液の浸透度が上昇するに応じて、電解液の移動抵抗が減少するので、それに合わせて、交流電圧または交流電流の振幅を減少させることによって、電池要素2への充電による劣化から保護しつつ、電解液の浸透を促進することができる。また、電解液浸透度合いの指標としてのインピダンスZに基づいて、交流電圧または交流電流の振幅を調整するため、振幅の調整精度を高くできる。   (Ko) The amplitude of the alternating voltage or alternating current is adjusted from a high amplitude to a low amplitude as the impedance Z based on the alternating voltage and the alternating current decreases. For this reason, as the impedance Z reflecting the electrolyte penetration decreases and the electrolyte penetration increases, the electrolyte transfer resistance decreases. Accordingly, the amplitude of the AC voltage or AC current is adjusted accordingly. By reducing, the penetration of the electrolytic solution can be promoted while protecting the battery element 2 from deterioration due to charging. In addition, since the amplitude of the AC voltage or AC current is adjusted based on the impedance Z as an index of the degree of electrolyte penetration, the amplitude adjustment accuracy can be increased.

1 二次電池、リチウムイオン二次電池
2 電池要素
3 外装部材
4 正極
5 セパレータ
6 負極
7 単電池
8 正極タブ
9 負極タブ
10 電解液含浸装置
11 電解液供給ライン
12 電解液供給装置
13 注液ノズル
14 レベルセンサ
15 交直両用電源装置
16 電源装置
17 電圧センサ
18 電流センサ
20 制御装置
21 交流調整手段
DESCRIPTION OF SYMBOLS 1 Secondary battery, lithium ion secondary battery 2 Battery element 3 Exterior member 4 Positive electrode 5 Separator 6 Negative electrode 7 Single battery 8 Positive electrode tab 9 Negative electrode tab 10 Electrolyte impregnation apparatus 11 Electrolyte supply line 12 Electrolyte supply apparatus 13 Injection nozzle 14 level sensor 15 AC / DC power supply device 16 power supply device 17 voltage sensor 18 current sensor 20 control device 21 AC adjustment means

Claims (13)

外装部材内に収容した、セパレータを介して積層された正極と負極とからなる電池要素に、注液された電解液を含浸させる電解液含浸方法であって、
前記電池要素の正極・負極間に交流電圧または交流電流を印加することにより、電解液を含浸させることを特徴とする電解液含浸方法。
An electrolytic solution impregnation method for impregnating a poured electrolytic solution into a battery element composed of a positive electrode and a negative electrode, which are housed in an exterior member and stacked via a separator,
An electrolytic solution impregnation method comprising impregnating an electrolytic solution by applying an alternating voltage or an alternating current between a positive electrode and a negative electrode of the battery element.
前記交流電圧または交流電流の周波数は、注液後の時間経過に連れて低い周波数から高い周波数へと調整されることを特徴とする請求項1に記載の電解液含浸方法。   2. The electrolytic solution impregnation method according to claim 1, wherein the frequency of the alternating voltage or alternating current is adjusted from a low frequency to a high frequency as time passes after the injection. 前記交流電圧または交流電流の振幅は、注液後の時間経過に連れて高い振幅から低い振幅へと調整されることを特徴とする請求項1または請求項2に記載の電解液含浸方法。   3. The electrolytic solution impregnation method according to claim 1, wherein the amplitude of the alternating voltage or alternating current is adjusted from a high amplitude to a low amplitude as time passes after the injection. 前記交流電圧または交流電流の周波数は、交流電圧と交流電流とに基づくインピダンスの低下に連れて低い周波数から高い周波数へと調整されることを特徴とする請求項1に記載の電解液含浸方法。   2. The electrolytic solution impregnation method according to claim 1, wherein the frequency of the alternating voltage or alternating current is adjusted from a low frequency to a high frequency as impedance decreases based on the alternating voltage and alternating current. 前記交流電圧または交流電流の振幅は、交流電圧と交流電流とに基づくインピダンスの低下に連れて高い振幅から低い振幅へと調整されることを特徴とする請求項1または請求項4に記載の電解液含浸方法。   5. The electrolysis according to claim 1, wherein the amplitude of the AC voltage or the AC current is adjusted from a high amplitude to a low amplitude with a decrease in impedance based on the AC voltage and the AC current. Liquid impregnation method. 前記交流電圧または交流電流の印加は、交流電圧と交流電流とに基づくインピダンスが予め設定した所定値に低下した場合には、電解液の含浸が完了したと判断して、終了させることを特徴とする請求項1から請求項5のいずれか一つに記載の電解液含浸方法。   The application of the AC voltage or the AC current is terminated when it is determined that the impregnation with the electrolytic solution is completed when the impedance based on the AC voltage and the AC current decreases to a predetermined value set in advance. The electrolytic solution impregnation method according to any one of claims 1 to 5. 前記交流電圧または交流電流の印加は、交流電圧と交流電流とに基づくインピダンスの変化履歴が予め設定した上限履歴及び下限履歴を超えて変化する場合には、中止されることを特徴とする請求項1から請求項6のいずれか一つに記載の電解液含浸方法。   The application of the AC voltage or the AC current is stopped when an impedance change history based on the AC voltage and the AC current changes beyond a preset upper limit history and a lower limit history. The electrolytic solution impregnation method according to any one of claims 1 to 6. 前記電池要素の負極集電板が銅であり且つ負極活物質がグラファイト若しくはハードカーボンである場合には、交流電圧または交流電流の印加前に、負極電位を負極集電板の溶出電位とSEI生成電位との間の電位となるよう予備充電することを特徴とする請求項1から請求項7のいずれか一つに記載の電解液含浸方法。   When the negative electrode current collector plate of the battery element is copper and the negative electrode active material is graphite or hard carbon, the negative electrode potential and the elution potential of the negative electrode current collector plate and the SEI generation are applied before application of AC voltage or AC current. The electrolytic solution impregnation method according to any one of claims 1 to 7, wherein preliminary charging is performed so as to be a potential between the first and second potentials. 前記電池要素の負極活物質がグラファイト若しくはハードカーボンである場合には、交流電圧または交流電流の印加による含浸終了後に、負極の電位をSEI生成電位以下の電位となるよう充電することを特徴とする請求項1から請求項8のいずれか一つに記載の電解液含浸方法。   When the negative active material of the battery element is graphite or hard carbon, after the impregnation by application of alternating voltage or alternating current, the negative electrode is charged so that the potential of the negative electrode is equal to or lower than the SEI generation potential. The electrolytic solution impregnation method according to any one of claims 1 to 8. 前記交流電圧または交流電流は、10Hz〜10kHzの間の周波数に設定されることを特徴とする請求項1から請求項9のいずれか一つに記載の電解液含浸方法。   10. The electrolytic solution impregnation method according to claim 1, wherein the alternating voltage or alternating current is set to a frequency between 10 Hz and 10 kHz. 外装部材内に収容した、セパレータを介して積層された正極と負極とからなる電池要素に、注液された電解液を含浸させる電解液含浸装置であって、
前記電池要素の正極・負極間に、その周波数または振幅を変化させて交流電圧または交流電流を印加する電源装置を備えることを特徴とする電解液含浸装置。
An electrolytic solution impregnation apparatus for impregnating a poured electrolytic solution into a battery element composed of a positive electrode and a negative electrode, which are housed in an exterior member and stacked via a separator,
An electrolytic solution impregnation apparatus comprising: a power supply device that applies an alternating voltage or an alternating current by changing a frequency or an amplitude between a positive electrode and a negative electrode of the battery element.
前記電源装置で発生させる交流電圧または交流電流の周波数または振幅を、経過時間若しくは交流電圧と交流電流とに基づくインピダンスに応じて変化させる交流調整手段を備えることを特徴とする請求項11に記載の電解液含浸装置。   The AC adjustment means for changing the frequency or amplitude of the AC voltage or AC current generated by the power supply device according to an elapsed time or an impedance based on the AC voltage and the AC current is provided. Electrolyte impregnation equipment. 前記交流電圧または交流電流の印加を、前記インピダンスが予め設定した所定値に低下した場合に終了させる含浸判定手段を備えることを特徴とする請求項12に記載の電解液含浸装置。   13. The electrolytic solution impregnation apparatus according to claim 12, further comprising impregnation determination means for ending application of the alternating voltage or alternating current when the impedance drops to a predetermined value set in advance.
JP2010168982A 2010-07-28 2010-07-28 Electrolytic solution impregnation method and electrolytic solution impregnation apparatus Expired - Fee Related JP5552941B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010168982A JP5552941B2 (en) 2010-07-28 2010-07-28 Electrolytic solution impregnation method and electrolytic solution impregnation apparatus
KR1020110074339A KR101347416B1 (en) 2010-07-28 2011-07-27 Electrolyte impregnation method and electrolyte impregnation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168982A JP5552941B2 (en) 2010-07-28 2010-07-28 Electrolytic solution impregnation method and electrolytic solution impregnation apparatus

Publications (2)

Publication Number Publication Date
JP2012028290A true JP2012028290A (en) 2012-02-09
JP5552941B2 JP5552941B2 (en) 2014-07-16

Family

ID=45780956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168982A Expired - Fee Related JP5552941B2 (en) 2010-07-28 2010-07-28 Electrolytic solution impregnation method and electrolytic solution impregnation apparatus

Country Status (2)

Country Link
JP (1) JP5552941B2 (en)
KR (1) KR101347416B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220109A (en) * 2013-05-08 2014-11-20 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
WO2015008585A1 (en) * 2013-07-18 2015-01-22 オートモーティブエナジーサプライ株式会社 Method for producing cell
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
JP2021511625A (en) * 2018-01-12 2021-05-06 イオントラ リミテッド ライアビリティ カンパニー Equipment, systems and methods for dendrite and unevenness control in electrochemical structures
CN112952305A (en) * 2021-01-27 2021-06-11 东莞市创明电池技术有限公司 Liquid injection equipment and method for battery cell
WO2024078316A1 (en) * 2022-10-10 2024-04-18 清华大学 Battery infiltration method and apparatus, and system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111362A (en) * 2003-07-18 2004-04-08 Ngk Insulators Ltd Lithium secondary cell
JP2004296179A (en) * 2003-03-26 2004-10-21 Mitsubishi Chemicals Corp Manufacturing method of lithium secondary battery
JP2007042486A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2010165591A (en) * 2009-01-16 2010-07-29 Panasonic Corp Method of manufacturing battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147871A (en) * 1995-11-29 1997-06-06 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead-acid battery
JP4390226B2 (en) 1998-07-10 2009-12-24 アオイ電子株式会社 Manufacturing method of multilayer secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296179A (en) * 2003-03-26 2004-10-21 Mitsubishi Chemicals Corp Manufacturing method of lithium secondary battery
JP2004111362A (en) * 2003-07-18 2004-04-08 Ngk Insulators Ltd Lithium secondary cell
JP2007042486A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2010165591A (en) * 2009-01-16 2010-07-29 Panasonic Corp Method of manufacturing battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220109A (en) * 2013-05-08 2014-11-20 トヨタ自動車株式会社 Method of manufacturing nonaqueous electrolyte secondary battery
WO2015008585A1 (en) * 2013-07-18 2015-01-22 オートモーティブエナジーサプライ株式会社 Method for producing cell
JP2015022861A (en) * 2013-07-18 2015-02-02 オートモーティブエナジーサプライ株式会社 Method for manufacturing battery
CN105409046A (en) * 2013-07-18 2016-03-16 汽车能源供应公司 Method for producing cell
US10079409B2 (en) 2013-07-18 2018-09-18 Automotive Energy Supply Corporation Method for producing cell including electrolyte impregnation inspection and pressurization
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
JP2021511625A (en) * 2018-01-12 2021-05-06 イオントラ リミテッド ライアビリティ カンパニー Equipment, systems and methods for dendrite and unevenness control in electrochemical structures
JP7460525B2 (en) 2018-01-12 2024-04-02 イオントラ インコーポレイテッド Apparatus, system and method for dendrite and roughness suppression in electrochemical structures
CN112952305A (en) * 2021-01-27 2021-06-11 东莞市创明电池技术有限公司 Liquid injection equipment and method for battery cell
CN112952305B (en) * 2021-01-27 2022-07-15 东莞市创明电池技术有限公司 Liquid injection equipment and method for battery cell
WO2024078316A1 (en) * 2022-10-10 2024-04-18 清华大学 Battery infiltration method and apparatus, and system and storage medium

Also Published As

Publication number Publication date
KR101347416B1 (en) 2014-01-02
JP5552941B2 (en) 2014-07-16
KR20120011819A (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5552941B2 (en) Electrolytic solution impregnation method and electrolytic solution impregnation apparatus
JP5786043B2 (en) Method and apparatus for manufacturing film-covered electrical device
KR101128585B1 (en) Pre-doping System of electrode and pre-doping method of electrode using the same
KR101978557B1 (en) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
CN101836323B (en) Manufacturing method of bipolar cell and bipolar cell
Brissot et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells
JP6163739B2 (en) Method and apparatus for manufacturing film-covered electrical device
KR101259442B1 (en) Method for packaging thin film cells and apparatus for packaging thin film cells
JP6163740B2 (en) Method and apparatus for manufacturing film-covered electrical device
US7807295B2 (en) Bipolar battery and method of manufacturing same
KR101822063B1 (en) Secondary battery pressing device and electrolyte injection device comprising the same
JP6168159B2 (en) Battery manufacturing method and manufacturing apparatus
JP2015179566A (en) Solid battery and manufacturing method thereof, and battery pack and manufacturing method thereof
CN110729516A (en) Micro-short circuit test method of lithium ion battery
US9825275B2 (en) Bi-cell for secondary battery having improved stability and method of preparing the same
KR101395497B1 (en) Manufacturing method and manufacturing apparatus for electrical device with film covering
JP2017010644A (en) Manufacturing method of electrode for secondary battery, manufacturing device, and manufacturing method of secondary battery
KR101395438B1 (en) Manufacturing method and manufacturing apparatus for electrical device with film covering
KR100824869B1 (en) Lithium polymer battery of method for manufacturing and lithium polymer battery
KR101637064B1 (en) Method for injecting electrolyte
KR102264674B1 (en) Electrolyte Injection Method Using Vacuum
JP2014112467A (en) Nonaqueous electrolyte battery
CN109148989A (en) Novel lithium ion battery production and application method
KR101514280B1 (en) Manufacturing method of single electrode integrated ion gel electrolyte
CN107230776B (en) Production method, the structure of lead carbon electrode piece and the structure of lead carbon battery of lead carbon engagement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

LAPS Cancellation because of no payment of annual fees