JP2013134904A - Alkaline storage battery and alkaline storage battery system including the same - Google Patents

Alkaline storage battery and alkaline storage battery system including the same Download PDF

Info

Publication number
JP2013134904A
JP2013134904A JP2011284642A JP2011284642A JP2013134904A JP 2013134904 A JP2013134904 A JP 2013134904A JP 2011284642 A JP2011284642 A JP 2011284642A JP 2011284642 A JP2011284642 A JP 2011284642A JP 2013134904 A JP2013134904 A JP 2013134904A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
storage battery
alkaline storage
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011284642A
Other languages
Japanese (ja)
Inventor
Yu Matsui
雄 松井
Atsutoshi Akaho
篤俊 赤穂
Yoshifumi Magari
佳文 曲
Teruhito Nagae
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011284642A priority Critical patent/JP2013134904A/en
Publication of JP2013134904A publication Critical patent/JP2013134904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an alkaline storage battery improved in initial output characteristics, capable of suppressing deterioration in output characteristics after endurance use, and excellent in continuous charge characteristics; and an alkaline storage battery system including the alkaline storage battery.SOLUTION: An alkaline storage battery includes an electrode group together with an alkaline electrolyte in an outer packaging can, the electrode group including: a nickel positive electrode including nickel hydroxide as a main positive electrode active material; a hydrogen absorbing alloy negative electrode including a hydrogen absorbing alloy as a main negative electrode active material; and a separator separating the nickel positive electrode and the hydrogen absorbing alloy negative electrode. The hydrogen absorbing alloy is represented by general formula: LnMgNiAlM(in the formula, Ln represents at least one element selected from Y or the like, M represents at least one element selected from V or the like, and 0.05≤x≤0.30, 0.05≤a≤0.30, 0≤b≤0.50 and 2.8≤y≤3.9 are satisfied), and tungsten (W) is solid-solved in the nickel positive electrode.

Description

本発明は、ハイブリッド自動車(HEV)などの高出力用途に好適なアルカリ蓄電池に係り、特に、水酸化ニッケルを主正極活物質とするニッケル正極と、水素吸蔵合金を主負極活物質とする水素吸蔵合金負極と、これらの水素吸蔵合金負極とニッケル正極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池及びこれを用いたアルカリ蓄電池システムに関する。   The present invention relates to an alkaline storage battery suitable for high output applications such as a hybrid vehicle (HEV), and more particularly, a nickel positive electrode using nickel hydroxide as a main positive electrode active material and a hydrogen storage material using a hydrogen storage alloy as a main negative electrode active material. The present invention relates to an alkaline storage battery having an electrode group composed of an alloy negative electrode and a separator for separating the hydrogen storage alloy negative electrode and the nickel positive electrode together with an alkaline electrolyte in an outer can and an alkaline storage battery system using the same.

近年、二次電池の用途が拡大して、携帯電話、パーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(EV)など広範囲に亘って用いられるようになった。このうち特に、ハイブリッド自動車(HEV)のような高出力用途においてはアルカリ蓄電池が用いられるようになり、高出力化に関する数多くの技術開発がなされるようになった。ここで、アルカリ蓄電池の負極に用いられる水素吸蔵合金については、AB型構造のものが用いられてきたが、このAB型構造の水素吸蔵合金を負極に用いると、十分な初期の出力特性を確保することができず、かつハイレートで充放電を繰返した耐久後には、負極のAB5型構造の水素吸蔵合金に含まれるCo,Mnが溶出し、導電性を有するCo−Mn酸化物となってセパレータ中に介在することでショートを引起すという問題を生じた。 In recent years, the use of secondary batteries has expanded, and has come to be used over a wide range such as mobile phones, personal computers, electric tools, hybrid vehicles (HEV), and electric vehicles (EV). Among these, in particular, alkaline storage batteries have been used in high output applications such as hybrid vehicles (HEV), and many technical developments related to high output have been made. Here, as the hydrogen storage alloy used for the negative electrode of the alkaline storage battery, an AB 5 type structure has been used. However, when this AB 5 type structure hydrogen storage alloy is used for the negative electrode, sufficient initial output characteristics are obtained. can not be secured, and the post-durability was repeatedly charged and discharged at high rate, Co contained in the hydrogen absorbing alloy of AB 5 type structure of the anode, Mn is eluted, and Co-Mn oxide having conductivity As a result, the short circuit is caused by interposing in the separator.

そこで、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表される水素吸蔵合金を用いることで、耐久後のショートが抑制されるようになった。また、一方でHEV用途にて必要となる高出力化のため、高平衡圧化や高量論比化を行うことにより、水素吸蔵合金中のニッケル(Ni)の含有量を向上させて、反応抵抗を低減する手法が、特許文献1(特開2008−300108号公報)や、特許文献2(特開2009−054514号公報)や、特許文献3(特開2009−087631号公報)などにおいて提案されるようになった。 Accordingly, the general formula Ln 1-x Mg x Ni y -a-b Al a M b ( In the formula, Ln is at least one element selected from a rare earth element and Zr and Ti containing Y , M is a hydrogen storage alloy expressed as V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, or B). As a result, short circuiting after durability has been suppressed. On the other hand, in order to increase the output required for HEV applications, by increasing the equilibrium pressure and increasing the stoichiometric ratio, the content of nickel (Ni) in the hydrogen storage alloy is improved and the reaction is performed. Methods for reducing the resistance are proposed in Patent Document 1 (Japanese Patent Laid-Open No. 2008-300108), Patent Document 2 (Japanese Patent Laid-Open No. 2009-054514), Patent Document 3 (Japanese Patent Laid-Open No. 2009-087431), and the like. It came to be.

ここで、上述した特許文献1〜3にて提案されるように、Ln1−xMgNiy−a−bAlと表される水素吸蔵合金を用いることで、ある程度は初期段階での出力特性が向上し、かつハイレートで充放電を繰返した耐久後のショートの抑制が可能となった。
しかしながら、Ln1−xMgNiy−a−bAlと表される水素吸蔵合金を用いた場合、マグネシウム(Mg)がニッケル正極へ移動することで充電電圧が上昇して酸素発生が起こり易くなり、高温充電特性が低下するという新たな問題を生じた。また、酸素発生が起こり易くなることで、ハイレートで充放電を繰返した耐久後に水素吸蔵合金が劣化して出力特性が低下するという新たな問題も生じた。
高温充電特性が低下するという問題に対しては、ニッケル正極の主活物質である水酸化ニッケル粒子の細孔内にタングステン(W)を含有させて酸素発生を抑制することにより、高温充電特性の低下を抑制するという技術が、例えば特許文献4(特開2009−045282号公報)において提案されている。
しかしながら、本技術を用いた場合、ニッケル正極の主活物質である水酸化ニッケル粒子の抵抗の増大によってアルカリ蓄電池の回生出力特性および連続充電性能が低下する課題があった。
Here, as proposed in Patent Documents 1 to 3 described above, by using a hydrogen storage alloy represented as Ln 1-x Mg x Ni y -a-b Al a M b, to some extent early stage In addition, the output characteristics of the battery can be improved, and it is possible to suppress short-circuiting after endurance after repeated charge and discharge at a high rate.
However, Ln 1-x Mg x Ni y-a-b Al a case of using a M b as the hydrogen storage alloy represented, magnesium (Mg) rises and charge voltage by moving the positive nickel electrode oxygen generator This has caused a new problem that high-temperature charging characteristics deteriorate. In addition, since oxygen generation is likely to occur, a new problem has arisen in that the hydrogen storage alloy deteriorates after the endurance of repeated charge and discharge at a high rate, resulting in a decrease in output characteristics.
For the problem that the high-temperature charge characteristics are deteriorated, the high-temperature charge characteristics are reduced by containing tungsten (W) in the pores of nickel hydroxide particles, which are the main active material of the nickel positive electrode, to suppress oxygen generation. For example, Patent Document 4 (Japanese Patent Application Laid-Open No. 2009-045282) proposes a technique for suppressing the decrease.
However, when this technology is used, there is a problem that the regenerative output characteristics and the continuous charging performance of the alkaline storage battery are deteriorated due to an increase in resistance of the nickel hydroxide particles which are the main active material of the nickel positive electrode.

特開2008−300108号公報JP 2008-300108 A 特開2009−054514号公報JP 2009-054514 A 特開2009−087631号公報JP 2009-07631 A 特開2009−045282号公報JP 2009-045282 A

そこで、本発明は上記の如き問題を解決するためになされたものであって、初期の出力特性が向上し、かつ耐久後の出力特性の低下を抑制できて、かつ連続充電特性に優れるアルカリ蓄電池及びこれを用いたアルカリ蓄電池システムを提供することを目的としてなされたものである。   Accordingly, the present invention has been made to solve the above-described problems, and is an alkaline storage battery that improves initial output characteristics, can suppress a decrease in output characteristics after durability, and is excellent in continuous charge characteristics. And it was made for the purpose of providing the alkaline storage battery system using the same.

本発明のアルカリ蓄電池は、水酸化ニッケルを主正極活物質とするニッケル正極と、水素吸蔵合金を主負極活物質とする水素吸蔵合金負極と、これらのニッケル正極と水素吸蔵合金負極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、前記水素吸蔵合金負極に用いられる水素吸蔵合金は、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,T
a,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、前記ニッケル正極はタングステン(W)を固溶していることを特徴とする。
The alkaline storage battery of the present invention isolates a nickel positive electrode having nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy negative electrode having a hydrogen storage alloy as a main negative electrode active material, and the nickel positive electrode and the hydrogen storage alloy negative electrode. An alkaline storage battery including an electrode group including a separator in an outer can together with an alkaline electrolyte, and the hydrogen storage alloy used for the hydrogen storage alloy negative electrode has a general formula of Ln 1-x Mg x Ni y-a- b Al a M b (wherein Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb, T
It is at least one element selected from a, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B, and 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9), and the nickel positive electrode is characterized by solid solution of tungsten (W).

上記のように、ニッケル正極の主活物質である水酸化ニッケル粒子の細孔内ではなく、活物質内部にタングステン(W)を固溶させると、水酸化ニッケルの結晶層の間隔が広がるので、水酸化ニッケルの結晶中でのプロトンの拡散速度が上がり、水酸化ニッケルの反応抵抗を大幅に低減できる。これにより、アルカリ蓄電池の大電流での充電、および連続充電性能の大幅向上が可能となる。 As described above, when tungsten (W) is dissolved in the inside of the active material, not in the pores of the nickel hydroxide particles that are the main active material of the nickel positive electrode, the interval between the crystal layers of nickel hydroxide is increased. The diffusion rate of protons in the nickel hydroxide crystal increases, and the reaction resistance of nickel hydroxide can be greatly reduced. As a result, the alkaline storage battery can be charged with a large current and the continuous charging performance can be greatly improved.

また水素吸蔵合金負極から溶出するマグネシウム(Mg)がニッケル正極に到達することで、高温充電特性に悪影響を及ぼす可能性があったが、活物質内部にタングステン(W)を固溶させることで、酸素発生が抑制されて高温充電特性の低下を抑制できる。
この際、前記ニッケル正極中のタングステン(W)量は活物質中のニッケルに対し0.5〜12mass%の範囲となることが望ましい。また前記水素吸蔵合金はCo、Mgを含まないため、耐久後のショートの抑制が可能となり長寿命化できる。
In addition, magnesium (Mg) eluted from the hydrogen storage alloy negative electrode may reach the nickel positive electrode, which may adversely affect the high-temperature charge characteristics. By dissolving tungsten (W) in the active material, Oxygen generation is suppressed, and deterioration of high-temperature charging characteristics can be suppressed.
At this time, the amount of tungsten (W) in the nickel positive electrode is preferably in the range of 0.5 to 12 mass% with respect to nickel in the active material. In addition, since the hydrogen storage alloy does not contain Co and Mg, it is possible to suppress a short circuit after endurance and extend the life.

またHEVのような高出力用途においては、焼結式ニッケル正極を用いることで、低抵抗かつ長寿命の電池を実現できるためより好ましい。
また前記焼結式ニッケル正極は、焼結基板に硝酸ニッケル等のニッケル塩を含浸させた後、アルカリ溶液中に浸漬・処理して作製するが、このアルカリ溶液中にタングステン(W)を含有させる方法で、タングステン(W)を固溶させることが好ましい。この方法だと、タングステン(W)が主活物質である水酸化ニッケルに均一に固溶され、タングステンの特性向上効果が効果的に現れるからである。
また前記水素吸蔵合金の一般式におけるLnは、合金自体の水素吸蔵・放出特性、耐食性を考慮すると、Nd、La、Smを用いることが特に好ましい。
In high power applications such as HEV, it is more preferable to use a sintered nickel positive electrode because a low-resistance and long-life battery can be realized.
The sintered nickel positive electrode is produced by impregnating a sintered substrate with a nickel salt such as nickel nitrate and then immersing and treating it in an alkaline solution. The alkaline solution contains tungsten (W). It is preferable to dissolve tungsten (W) by a method. This is because tungsten (W) is uniformly dissolved in nickel hydroxide, which is the main active material, and the effect of improving the characteristics of tungsten appears effectively.
In addition, it is particularly preferable to use Nd, La, and Sm as Ln in the general formula of the hydrogen storage alloy in consideration of the hydrogen storage / release characteristics and corrosion resistance of the alloy itself.

本発明においては、初期の出力特性が向上し、かつ連続充電特性に優れるアルカリ蓄電池及びこれを用いたアルカリ蓄電池システムを提供することが可能となる。   In the present invention, it is possible to provide an alkaline storage battery with improved initial output characteristics and excellent continuous charging characteristics, and an alkaline storage battery system using the same.

本発明のニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery of this invention. 本発明のアルカリ蓄電池システムの構成を示す概略図である。It is the schematic which shows the structure of the alkaline storage battery system of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.焼結式ニッケル正極
焼結式ニッケル正極11は、基板となるニッケル焼結基板の多孔内に水酸化ニッケルと水酸化コバルトと水酸化亜鉛とが所定の充填量となるように充填されて形成されている。
この場合、ニッケル焼結基板は以下のようにして作製したものを用いている。まず、ニッケル粉末に、増粘剤となるメチルセルロース(MC)と高分子中空微小球体(例えば、孔径が60μmのもの)と水とを混合、混練してニッケルスラリーを作製した。ついで、ニッケルめっき鋼板からなるパンチドメタルの両面にニッケルスラリーを塗着した後、還元性雰囲気中で1000℃で加熱して、増粘剤や高分子中空微小球体を消失させるとともにニッケル粉末同士を焼結することによりニッケル焼結基板を作製した。
なお、作製された基板の多孔度を水銀圧入式ポロシメータ(ファイソンズ インスツルメント製 Pascal 140)で測定したところ、多孔度が85%であることが分かった。
1. Sintered Nickel Positive Electrode Sintered nickel positive electrode 11 is formed by filling nickel hydroxide, cobalt hydroxide, and zinc hydroxide into a predetermined amount of pores in a nickel sintered substrate serving as a substrate. ing.
In this case, a nickel sintered substrate manufactured as follows is used. First, nickel slurry was prepared by mixing and kneading methyl cellulose (MC) as a thickener, polymer hollow microspheres (for example, having a pore size of 60 μm), and water with nickel powder. Next, after applying nickel slurry on both sides of the punched metal made of nickel-plated steel sheet, heating at 1000 ° C. in a reducing atmosphere causes the thickener and polymer hollow microspheres to disappear and the nickel powders to A nickel sintered substrate was produced by sintering.
In addition, when the porosity of the produced substrate was measured with a mercury intrusion porosimeter (Pascal 140 manufactured by Pfisons Instruments), it was found that the porosity was 85%.

そして、得られたニッケル焼結基板を以下のような含浸液に含浸する含浸処理と、アルカリ処理液によるアルカリ処理とを所定回数繰り返すことにより正極活物質が充填された焼結式ニッケル正極11を作製した。 まず、前記ニッケル焼結基板を、硝酸ニッケル、硝酸コバルト、硝酸亜鉛からなる含浸液に浸漬した後、タングステン酸ナトリウムを含むアルカリ溶液(例えば水酸化ナトリウム水溶液)中に浸漬・反応させ、細孔内で水酸化ニッケル・水酸化コバルト・水酸化亜鉛に転換させると同時に、タングステン(W)を活物質である水酸化ニッケルの結晶内部に取り込ませ、その後水洗・乾燥した。本サイクルを6回繰り返して、規定量の水酸化ニッケルを主体とする活物質を基板内に充填した焼結式ニッケル正極11を得た。
ここで、前記含浸液は、硝酸ニッケル・硝酸コバルト・硝酸亜鉛がモル比で100:5:15となる含浸液(比重1.8g/cc)を使用した。
また、タングステン(W)の添加量の影響を調べるため、アルカリ溶液(比重1.3g/cc)中に添加するタングステン酸ナトリウム量を調整することで、固溶タングステン(W)量の異なる焼結式ニッケル正極a(W0mass%(無添加))、b(W0.5mass%)、c(W12mass%)、d(W15mass%)をそれぞれ得た。
Then, the sintered nickel positive electrode 11 filled with the positive electrode active material is obtained by repeating the impregnation treatment for impregnating the obtained nickel sintered substrate in the following impregnation liquid and the alkali treatment with the alkali treatment liquid a predetermined number of times. Produced. First, the nickel sintered substrate is immersed in an impregnating solution composed of nickel nitrate, cobalt nitrate, and zinc nitrate, and then immersed and reacted in an alkaline solution containing sodium tungstate (for example, an aqueous sodium hydroxide solution) At the same time, it was converted into nickel hydroxide, cobalt hydroxide, and zinc hydroxide, and at the same time, tungsten (W) was taken into the crystal of nickel hydroxide as an active material, and then washed and dried. This cycle was repeated 6 times to obtain a sintered nickel positive electrode 11 in which an active material mainly composed of a prescribed amount of nickel hydroxide was filled in the substrate.
Here, as the impregnating solution, an impregnating solution (specific gravity 1.8 g / cc) in which nickel nitrate, cobalt nitrate, and zinc nitrate are in a molar ratio of 100: 5: 15 was used.
In addition, in order to investigate the influence of the added amount of tungsten (W), by adjusting the amount of sodium tungstate added to the alkaline solution (specific gravity 1.3 g / cc), sintering with different amounts of solid solution tungsten (W) is performed. Formula nickel positive electrode a (W0 mass% (no addition)), b (W0.5 mass%), c (W12 mass%), and d (W15 mass%) were obtained, respectively.

2.水素吸蔵合金負極
Lnで表される元素(Yを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、今回はネオジム〔Nd〕)と、マグネシウム(Mg)と、ニッケル(Ni)と、アルミニウム(Al)とを所定のモル比の割合で混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを溶融急冷してNd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金のインゴットを作製した。
ついで、得られた水素吸蔵合金のインゴットについて、アルゴン雰囲気中において、熱処理を行い、A型構造と同定される水素吸蔵合金を得た。ついで、この水素吸蔵合金を不活性雰囲気中で機械的に粉砕することにより、Nd0.9Mg0.1Ni3.3Al0.2となる水素吸蔵合金粉末を得た。なお、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定すると、質量積分50%にあたる平均粒径は25μmであった。この後
、得られた水素吸蔵合金粒子100質量部に対し、非水溶性高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてのCMC(カルボキシメチルセルロース)0.03質量部と、添加剤としてのカーボンブラック0.5質量部と、適量の水(あるいは純水)を加えて混練し、水素吸蔵合金スラリーを調製した。
得られた水素吸蔵合金スラリーをパンチドメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、100℃で乾燥させ、所定の充填密度になるように圧延した。この後、所定の寸法に裁断することにより、水素吸蔵合金活物質が充填された水素吸蔵合金負極12を作製した。
2. Elements represented by the hydrogen storage alloy negative electrode Ln (at least one element selected from rare earth elements including Y, Zr and Ti, this time neodymium [Nd]), magnesium (Mg), nickel ( Ni) and aluminum (Al) are mixed at a predetermined molar ratio, the mixture is dissolved in an argon gas atmosphere, and this is melted and rapidly cooled to obtain Nd 0.9 Mg 0.1 Ni 3.3 Al. An ingot of a hydrogen storage alloy expressed as 0.2 was produced.
Subsequently, the obtained hydrogen storage alloy ingot was heat-treated in an argon atmosphere to obtain a hydrogen storage alloy identified as an A 2 B 7 type structure. Next, this hydrogen storage alloy was mechanically pulverized in an inert atmosphere to obtain a hydrogen storage alloy powder of Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 . When the particle size distribution was measured with a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% of the mass integral was 25 μm. Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and CMC (carboxymethyl cellulose) as a thickener are added to 100 parts by mass of the obtained hydrogen storage alloy particles. 0.03 part by mass, 0.5 part by mass of carbon black as an additive, and an appropriate amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.
The obtained hydrogen storage alloy slurry was applied to both sides of a negative electrode core made of punched metal (made of nickel-plated steel plate), dried at 100 ° C., and rolled to a predetermined packing density. Then, the hydrogen storage alloy negative electrode 12 filled with the hydrogen storage alloy active material was produced by cutting into a predetermined dimension.

3.ニッケル−水素蓄電池
ついで、上述のようにして作製した焼結式ニッケル正極11(a〜d)と水素吸蔵合金負極12とを用い、これらの間に、ポリオレフィン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の上部にはニッケル正極11の芯体露出部11aが露出しており、その下部には水素吸蔵合金電極12の芯体露出部12aが露出している。ついで、得られた渦巻状電極群の上端面に露出するニッケル電極11の芯体露出部11aの上に正極集電体14を溶接するとともに、渦巻状電極群の下端面に露出する芯体露出部12aに負極集電体15を溶接して、電極体とした。
3. Nickel-hydrogen storage battery Next, a sintered nickel positive electrode 11 (ad) and a hydrogen storage alloy negative electrode 12 produced as described above were used, and a separator 13 made of a polyolefin nonwoven fabric was interposed between them. A spiral electrode group was prepared by spirally winding. The core exposed portion 11a of the nickel positive electrode 11 is exposed at the upper portion of the spiral electrode group thus produced, and the core exposed portion 12a of the hydrogen storage alloy electrode 12 is exposed at the lower portion thereof. ing. Next, the positive electrode current collector 14 is welded onto the core exposed portion 11a of the nickel electrode 11 exposed at the upper end surface of the obtained spiral electrode group, and the core body exposed at the lower end surface of the spiral electrode group. The negative electrode current collector 15 was welded to the part 12a to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体15を外装缶16の内底面に溶接した。一方、正極集電体14より延出する集電リード部14aを正極端子を兼ねるとともに外周部に絶縁ガスケット18が装着された封口体17の底部に溶接した。なお、封口体17には正極キャップ17aが設けられていて、この正極キャップ17a内に所定の圧力になると変形する弁体17bとスプリング17cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body is accommodated in a bottomed cylindrical outer can 16 in which nickel is plated on iron (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 15 is attached to the outer can 16. Welded to the inner bottom. On the other hand, the current collecting lead portion 14a extending from the positive electrode current collector 14 was welded to the bottom portion of the sealing body 17 which also served as the positive electrode terminal and was fitted with the insulating gasket 18 on the outer peripheral portion. The sealing body 17 is provided with a positive electrode cap 17a, and a pressure valve (not shown) including a valve body 17b and a spring 17c which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17a.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、アルカリ電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口体17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめることにより、公称容量が6Ahのニッケル−水素蓄電池10を作製した。この場合、アルカリ電解液としては、水酸化ナトリウム(NaOH)と水酸化カリウム(KOH)と水酸化リチウム(LiOH)との混合水溶液とし、濃度が7.0モル/リットルとなるように調製されものを用いた。ここで、焼結式ニッケル正極aを使用したものを電池A(比較例)、焼結式ニッケル正極bを使用したものを電池B(実施例1)、焼結式ニッケル正極cを使用したものを電池C(実施例2)、焼結式ニッケル正極dを使用したものを電池D(実施例3)とした。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, an alkaline electrolyte is injected, and the outer peripheral portion of the sealing body 17 is mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. Then, the nickel-hydrogen storage battery 10 having a nominal capacity of 6 Ah was produced by caulking the opening edge 16 b of the outer can 16. In this case, the alkaline electrolyte is prepared as a mixed aqueous solution of sodium hydroxide (NaOH), potassium hydroxide (KOH) and lithium hydroxide (LiOH) so that the concentration is 7.0 mol / liter. Was used. Here, the battery A (comparative example) using the sintered nickel positive electrode a, the battery B (Example 1) using the sintered nickel positive electrode b, and the battery using the sintered nickel positive electrode c Is a battery C (Example 2), and a battery using a sintered nickel positive electrode d is a battery D (Example 3).

4.電池試験
(1)高温充電特性試験
65℃の温度雰囲気で電池容量に対して0.5Itの充電電流で電池容量の80%まで充電し、直後に1Itの放電電流で終止電圧が0.9Vになるまで放電させて1.0V時点での放電容量を求めた。この時の充電容量に対する放電容量の割合を充電効率(%)として算出し、比較例の充電効率を100としたときの実施例1〜3の比率を求めると表1の通りとなった。
4). Battery test (1) High-temperature charging characteristics test Charging up to 80% of the battery capacity with a charging current of 0.5 It with respect to the battery capacity in a temperature atmosphere of 65 ° C, and immediately after that the final voltage is 0.9 V with a discharging current of 1 It The discharge capacity at the time of 1.0 V was determined by discharging until The ratio of the discharge capacity to the charge capacity at this time was calculated as the charge efficiency (%), and the ratio of Examples 1 to 3 when the charge efficiency of the comparative example was set to 100 was as shown in Table 1.

(2)回生特性試験
25℃の温度雰囲気で、1Itの充電電流でSOC50%まで充電した。この後、20A充電→40A放電→40A充電→80A放電→60A充電→120A放電→80A充電→160A放電→100A充電→200A放電の順で充放電電流を増加させた。このとき、
各ステップの間に30分間の休止期間を設け、20秒間の充電→30分間休止→10秒間放電→30分間休止の順で充放電を行った。そして、この充電が10秒経過した時点における電池電圧を充電電流に対してプロットし、最小二乗法にて求めた直線が1.6Vに達したときの電流値を求め、充電10秒後の電池電圧から求めた電流値を充電可能最大電流値とし、電流容量で割った値を充電可能最大レート(It)とすると表1の通りとなった。
(2) Regenerative characteristic test It charged to SOC50% with the charging current of 1 It in the temperature atmosphere of 25 degreeC. Thereafter, the charge / discharge current was increased in the order of 20A charge → 40A discharge → 40A charge → 80A discharge → 60A charge → 120A discharge → 80A charge → 160A discharge → 100A charge → 200A discharge. At this time,
A 30-minute rest period was provided between each step, and charging / discharging was performed in the order of charging for 20 seconds → pause for 30 minutes → discharge for 10 seconds → pause for 30 minutes. Then, the battery voltage at the time when this charging has elapsed for 10 seconds is plotted against the charging current, and the current value when the straight line obtained by the least square method reaches 1.6 V is obtained. Table 1 shows the current value obtained from the voltage as the maximum chargeable current value and the value divided by the current capacity as the maximum chargeable rate (It).

5.試験結果 5. Test results

・ 比較例
負極活物質として、Nd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金を用い、ニッケル正極にタングステン(W)を固溶させていない電池Aでは、負極合金中のMgが正極へ移動することで、充電電圧が上昇して酸素発生が起こり易くなり高温充電
特性は十分でなく、加えて回生性能も改善が必要であった。
In the battery A in which a hydrogen storage alloy represented by Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 is used as the negative electrode active material and no tungsten (W) is dissolved in the nickel positive electrode When Mg in the negative electrode alloy moves to the positive electrode, the charging voltage is increased and oxygen is easily generated, so that the high temperature charging characteristics are not sufficient, and in addition, the regeneration performance needs to be improved.

・ 実施例1
ニッケル正極にタングステン(W)を0.5mass%固溶した電池Bでは、比較例に対し高温充電特性が大幅に向上している。これは焼結式ニッケル正極に固溶したタングステン(W)が負極合金中Mgの正極への移動を抑制していることによるものと考えられる。また、比較例に対し回生性能がやや向上している。
Example 1
In the battery B in which tungsten (W) is solid-dissolved in a mass of 0.5 mass% on the nickel positive electrode, the high temperature charge characteristics are greatly improved as compared with the comparative example. This is probably because tungsten (W) dissolved in the sintered nickel positive electrode suppresses the migration of Mg in the negative electrode alloy to the positive electrode. Moreover, the regeneration performance is slightly improved compared to the comparative example.

・ 実施例2
ニッケル正極にタングステン(W)を12mass%固溶した電池Cでは、比較例に対し高温充電効率が大幅に向上し、かつ回生性能の大幅な向上が確認できる。これはニッケル正極内部にタングステン(W)を十分な量固溶させることで、結晶層間を拡げ、プロトンの拡散速度が上がるため、反応抵抗を大幅に低減できるためと考えられる。
Example 2
In the battery C in which 12 mass% of tungsten (W) is solid-dissolved in the nickel positive electrode, the high-temperature charging efficiency can be significantly improved and the regenerative performance can be greatly improved as compared with the comparative example. This is presumably because the reaction resistance can be greatly reduced by dissolving a sufficient amount of tungsten (W) in the nickel positive electrode to expand the crystal layer and increase the proton diffusion rate.

・ 実施例3
ニッケル正極にタングステン(W)を15mass%固溶した電池Dでは、実施例1および実施例2に示した効果で比較例に対し高温充電特性および回生性能が大幅に向上する。上記の結果より、最大でタングステン(W)固溶量15mass%まで高温充電特性および回生特性向上効果を確認できたが、タングステン(W)固溶量12mass%以上の領域では性能向上効果は飽和しており、固溶量が増えすぎるとコストUPを招くため、タングステン(W)固溶量は0.5〜12mass%の範囲が好ましい。
Example 3
In the battery D in which tungsten (W) is solid-dissolved in 15 mass% on a nickel positive electrode, the high temperature charging characteristics and the regenerative performance are significantly improved with respect to the comparative example due to the effects shown in the first and second embodiments. From the above results, we were able to confirm the effect of improving high-temperature charging characteristics and regeneration characteristics up to a tungsten (W) solid solution amount of 15 mass%, but the performance improvement effect is saturated in the region where the tungsten (W) solid solution amount is 12 mass% or more. If the amount of the solid solution increases too much, the cost increases, so the tungsten (W) solid solution amount is preferably in the range of 0.5 to 12 mass%.

上記の結果は、非焼結式・焼結式ニッケル正極共に発現するものであるが、HEVのような高出力用途においては低抵抗な焼結式ニッケル正極を用いることが好ましい。
以上より本発明では、ニッケル正極にタングステン(W)を固溶することで、酸素発生を抑制して高温充電効率の向上が可能となり、加えて反応抵抗を抑えることで大電流での充電が可能なアルカリ蓄電池及びアルカリ蓄電池システムを提供できる。
Although the above results are manifested in both non-sintered and sintered nickel positive electrodes, it is preferable to use a low resistance sintered nickel positive electrode for high power applications such as HEV.
As described above, in the present invention, by dissolving tungsten (W) in the nickel positive electrode, it is possible to suppress the generation of oxygen and improve the high-temperature charging efficiency, and in addition, charging with a large current is possible by suppressing the reaction resistance. Can provide an alkaline storage battery and an alkaline storage battery system.

6.アルカリ蓄電池システム
ついで、上述のようにして作製したニッケル−水素蓄電池10を複数個組み合わせて構成されるアルカリ蓄電池システム100を、図2に基づいて以下に説明する。ここで、図2に示すように、本発明のアルカリ蓄電池システム100は、電源101と、上述したニッケル−水素蓄電池10からなる単電池が8個直列接続された電池モジュールを30個直列接続して形成された組電池102とを備えている。
6). Alkaline Storage Battery System Next, an alkaline storage battery system 100 configured by combining a plurality of nickel-hydrogen storage batteries 10 produced as described above will be described below with reference to FIG. Here, as shown in FIG. 2, the alkaline storage battery system 100 of the present invention has a power supply 101 and 30 battery modules in which 8 unit cells made of the nickel-hydrogen storage battery 10 are connected in series. The assembled battery 102 is formed.

電源101と組電池102との間には、この電源101からの電流および電圧を所定の定電流および定電圧に変換して組電池102に供給する充電制御部103と、組電池102に流れる電流を検出する電流検出回路104と、組電池102の電池電圧を検出する電圧検出回路105と、組電池102の強制放電を制御する放電制御部106と、電流検出回路104および電圧検出回路105からの検出値に基づいて、充電制御部103および放電制御部106の動作を制御するCPUなどからなるマイクロコンピュータ107とが接続されている。なお、放電制御部106には組電池102を放電するための放電抵抗が接続されており、マイクロコンピュータ107には所定の時間を計測するタイマー108が接続されている。マイクロコンピュータ107は、部分充放電制御回路を含んでおり、ニッケル−水素蓄電池10が部分充放電されるように制御される。   Between the power source 101 and the assembled battery 102, a current and voltage from the power source 101 are converted into a predetermined constant current and constant voltage and supplied to the assembled battery 102, and a current flowing through the assembled battery 102 From the current detection circuit 104 for detecting the battery voltage, the voltage detection circuit 105 for detecting the battery voltage of the assembled battery 102, the discharge control unit 106 for controlling the forced discharge of the assembled battery 102, the current detection circuit 104 and the voltage detection circuit 105. A microcomputer 107 composed of a CPU or the like that controls the operation of the charge control unit 103 and the discharge control unit 106 is connected based on the detected value. The discharge controller 106 is connected to a discharge resistor for discharging the assembled battery 102, and the microcomputer 107 is connected to a timer 108 for measuring a predetermined time. The microcomputer 107 includes a partial charge / discharge control circuit, and is controlled such that the nickel-hydrogen storage battery 10 is partially charged / discharged.

また、上記構成のアルカリ蓄電池システム100における部分充放電制御は、アルカリ蓄電池が、SOCが20〜80%の範囲でのみ、充放電がされるようになされているので
、ニッケル−水素蓄電池10が低SOC又は高SOC状態となるのを効果的に防止できニッケル−水素蓄電池10の耐久性が向上するというメリットがある。さらに上記構成のアルカリ蓄電池システム100に本発明のアルカリ蓄電池を使用した場合では、充電効率が高いために充放電サイクル後での電圧変化が生じにくく部分充放電制御が容易となる。さらに反応抵抗が低いため充放電に伴う電池の発熱を抑え長寿命化を可能にする。このため本発明のアルカリ蓄電池は、上記構成のアルカリ蓄電池システムに好適であるといえる。
Further, the partial charge / discharge control in the alkaline storage battery system 100 having the above-described configuration is such that the alkaline storage battery is charged / discharged only when the SOC is in the range of 20 to 80%, so that the nickel-hydrogen storage battery 10 is low. There is a merit that the SOC or high SOC state can be effectively prevented and the durability of the nickel-hydrogen storage battery 10 is improved. Furthermore, when the alkaline storage battery of the present invention is used in the alkaline storage battery system 100 having the above configuration, the charge efficiency is high, so that the voltage change after the charge / discharge cycle hardly occurs and the partial charge / discharge control becomes easy. Furthermore, since the reaction resistance is low, heat generation of the battery due to charging / discharging is suppressed and a long life can be achieved. For this reason, it can be said that the alkaline storage battery of this invention is suitable for the alkaline storage battery system of the said structure.

なお、上述した実施形態においては、Nd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金を用いる例について説明したが、水素吸蔵合金としては、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表され、かつ、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす水素吸蔵合金であれば、どのようなものを用いてもよい。 In the above-described embodiment, the example using the hydrogen storage alloy represented by Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 has been described. However, as the hydrogen storage alloy, the general formula is Ln. 1-x Mg x Ni y-a-b Al a M b (where Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb , Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, B) and 0.05 ≦ x ≦ 0.30, Any hydrogen storage alloy that satisfies the conditions of 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, and 2.8 ≦ y ≦ 3.9 may be used.

10…ニッケル−水素蓄電池、11…ニッケル電極、11a…芯体露出部、12…水素吸蔵合金電極、12a…芯体露出部、13…セパレータ、14…正極集電体、14a…集電リード部、15…負極集電体、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口体、17a…正極キャップ、17b…弁板、17c…スプリング、18…絶縁ガスケット、100…アルカリ蓄電池システム、101…電源、102…組電池、103…充電制御部、104…電流検出部、105…電圧検出部、106…放電制御部、107…マイクロコンピュータ、108…タイマー

DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Nickel electrode, 11a ... Core body exposed part, 12 ... Hydrogen storage alloy electrode, 12a ... Core body exposed part, 13 ... Separator, 14 ... Positive electrode collector, 14a ... Current collection lead part 15 ... negative electrode current collector, 16 ... exterior can, 16a ... annular groove, 16b ... opening edge, 17 ... sealing body, 17a ... positive electrode cap, 17b ... valve plate, 17c ... spring, 18 ... insulating gasket, 100 ... Alkaline battery system, 101 ... Power source, 102 ... Battery, 103 ... Charge controller, 104 ... Current detector, 105 ... Voltage detector, 106 ... Discharge controller, 107 ... Microcomputer, 108 ... Timer

Claims (4)

水酸化ニッケルを主正極活物質とするニッケル正極と、水素吸蔵合金を主負極活物質とする水素吸蔵合金負極と、これらのニッケル正極と水素吸蔵合金負極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、前記水素吸蔵合金負極に用いられる水素吸蔵合金は、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、前記ニッケル正極はタングステン(W)を固溶していることを特徴とするアルカリ蓄電池。 An electrode group consisting of a nickel positive electrode using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a main negative electrode active material, and a separator separating these nickel positive electrode and hydrogen storage alloy negative electrode. an alkaline storage battery provided in the outer can together with an alkaline electrolyte, the hydrogen storage alloy used in the hydrogen storage alloy negative electrode is represented by the general formula is Ln 1-x Mg x Ni y -a-b Al a M b ( provided that In the formula, Ln is at least one element selected from rare earth elements including Y and Zr and Ti, and M is V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, It is at least one element selected from Cu, Si, P, and B, and 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9) and An alkaline storage battery, wherein the nickel positive electrode contains tungsten (W) as a solid solution. 前記ニッケル正極に固溶しているタングステン(W)は、主正極活物質中のニッケル元素に対して0.5〜12mass%含むことを特徴とする請求項1に記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein tungsten (W) dissolved in the nickel positive electrode is contained in an amount of 0.5 to 12 mass% with respect to the nickel element in the main positive electrode active material. 前記ニッケル正極は焼結式正極であることを特徴とする請求項1〜2のいずれかに記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1, wherein the nickel positive electrode is a sintered positive electrode. 前記請求項1〜3に記載のアルカリ蓄電池を使用したアルカリ蓄電池システム。


An alkaline storage battery system using the alkaline storage battery according to claim 1.


JP2011284642A 2011-12-27 2011-12-27 Alkaline storage battery and alkaline storage battery system including the same Pending JP2013134904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284642A JP2013134904A (en) 2011-12-27 2011-12-27 Alkaline storage battery and alkaline storage battery system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284642A JP2013134904A (en) 2011-12-27 2011-12-27 Alkaline storage battery and alkaline storage battery system including the same

Publications (1)

Publication Number Publication Date
JP2013134904A true JP2013134904A (en) 2013-07-08

Family

ID=48911463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284642A Pending JP2013134904A (en) 2011-12-27 2011-12-27 Alkaline storage battery and alkaline storage battery system including the same

Country Status (1)

Country Link
JP (1) JP2013134904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196991A (en) * 2012-03-22 2013-09-30 Sanyo Electric Co Ltd Alkali storage battery
CN112913057A (en) * 2018-11-15 2021-06-04 日本重化学工业株式会社 Hydrogen-absorbing alloy for alkaline storage battery and alkaline storage battery using the same
CN112913057B (en) * 2018-11-15 2024-05-31 日本重化学工业株式会社 Hydrogen absorbing alloy for alkaline storage battery and alkaline storage battery using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179056A (en) * 1990-11-09 1992-06-25 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH10149821A (en) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd Positive electrode for alkaline storage battery
JP2004179064A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179056A (en) * 1990-11-09 1992-06-25 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH10149821A (en) * 1996-09-20 1998-06-02 Matsushita Electric Ind Co Ltd Positive electrode for alkaline storage battery
JP2004179064A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196991A (en) * 2012-03-22 2013-09-30 Sanyo Electric Co Ltd Alkali storage battery
CN112913057A (en) * 2018-11-15 2021-06-04 日本重化学工业株式会社 Hydrogen-absorbing alloy for alkaline storage battery and alkaline storage battery using the same
CN112913057B (en) * 2018-11-15 2024-05-31 日本重化学工业株式会社 Hydrogen absorbing alloy for alkaline storage battery and alkaline storage battery using the same

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009087632A (en) Alkaline storage battery system
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
CN106463786B (en) Nickel-hydrogen secondary battery
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP5252920B2 (en) Alkaline storage battery
JP5853799B2 (en) Alkaline storage battery
JP6225116B2 (en) Battery system
JP5105766B2 (en) Alkaline storage battery, method for manufacturing the same, and assembled battery device
JP2012238565A (en) Alkaline storage battery
US20100081053A1 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery
JP2009228096A (en) Hydrogen storage alloy
JP2013134904A (en) Alkaline storage battery and alkaline storage battery system including the same
WO2014068866A1 (en) Vehicle having storage battery module mounted therein
JP3802703B2 (en) Nickel metal hydride battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JP5334498B2 (en) Alkaline storage battery
JPWO2014050075A1 (en) Storage battery system.
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP5060667B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
US10950848B2 (en) Positive electrode and alkaline secondary battery including the same
JP4573609B2 (en) Alkaline storage battery
JP6200897B2 (en) Storage battery module and storage battery system
WO2014068868A1 (en) Nickel metal hydride storage battery and storage battery system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405