JP2013125648A - リチウムイオン電池用正極活物質及びリチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質及びリチウムイオン電池 Download PDF

Info

Publication number
JP2013125648A
JP2013125648A JP2011273776A JP2011273776A JP2013125648A JP 2013125648 A JP2013125648 A JP 2013125648A JP 2011273776 A JP2011273776 A JP 2011273776A JP 2011273776 A JP2011273776 A JP 2011273776A JP 2013125648 A JP2013125648 A JP 2013125648A
Authority
JP
Japan
Prior art keywords
lithium ion
positive electrode
ion battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011273776A
Other languages
English (en)
Other versions
JP5804419B2 (ja
Inventor
Shiho Ishihara
四穂 石原
Hiroki Yamashita
弘樹 山下
Tsutomu Suzuki
務 鈴木
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan Public University Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011273776A priority Critical patent/JP5804419B2/ja
Publication of JP2013125648A publication Critical patent/JP2013125648A/ja
Application granted granted Critical
Publication of JP5804419B2 publication Critical patent/JP5804419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】特定の粒径及び形状を有する一次粒子及び二次粒子からなるオリビン型シリケート化合物を含有し、優れた電池物性を発揮するリチウムイオン電池用正極活物質及びそれから得られるリチウムイオン電池を提供する。
【解決手段】Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物を含有し、
オリビン型シリケート化合物が、平均粒径20〜100nmの球状一次粒子が凝集してなる平均粒径1〜100μmの二次粒子を有することを特徴とする、リチウムイオン電池用正極活物質。
【選択図】図1

Description

本発明は、リチウムイオン電池用正極活物質及びそれから得られるリチウムイオン電池に関する。
リチウムイオン電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。
この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、LiFePO4やLi2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用である。なかでも、LiFePO4等のリン酸リチウム金属系正極材料は、得られる電池物性のさらなる向上を図るべく、形成される粒子の粒径、粒度分布、形状等を制御したものが知られている(特許文献1、2)。
一方、Li2FeSiO4等のケイ酸リチウム金属系正極材料の製造法としては、Li源、鉄(金属)源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成するという固相法が一般的である(特許文献3、4)。しかし、固相法では、不活性ガス雰囲気での焼成と粉砕を行う必要があり、複雑な操作が必要であるとともに、粒径や結晶度を制御することが困難である。
これに対し、非特許文献1には、Li2Mn1-yFeySiO4(y=0〜1)を水熱合成で得られる旨の記載がある。
特許第4190912号公報 特開2006−32241号公報 特開2001−266882号公報 特開2002−198050号公報
GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26
こうしたなか、発明者らによって、ケイ酸リチウム金属系正極材料を構成する一次粒子径を微細化すれば、電池物性がさらに向上することが判明したものの、従来のように、リチウム源、鉄源及びシリケート源の3者を水に混合し、その混合液をそのまま水熱反応に付しても、得られるLi2FeSiO4の粒径を充分に制御することができないことも判明した。そのため、Li2FeSiO4等のケイ酸リチウム金属系正極材料については、電池物性を充分に向上し得る、一次粒子や二次粒子の制御された粒径を有するものは未だ知られていないのが実情である。
したがって、本発明の課題は、特定の粒径及び形状を有する一次粒子及び二次粒子からなるオリビン型シリケート化合物を含有し、優れた電池物性を発揮するリチウムイオン電池用正極活物質及びそれから得られるリチウムイオン電池を提供することにある。
そこで本発明者らは、微細化された球状一次粒子を凝集させて粒径が制御された二次粒子を有するオリビン型シリケート化合物を用いることにより、優れた電池物性を発揮するリチウムイオン電池用正極活物質が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物を含有し、
オリビン型シリケート化合物が、平均粒径20〜100nmの球状一次粒子が凝集してなる平均粒径1〜100μmの二次粒子を有することを特徴とする、リチウムイオン電池用正極活物質を提供するものである。
また、本発明は、上記リチウムイオン電池用正極活物質を含む正極を有するリチウムイオン電池を提供するものである。
本発明のリチウムイオン電池用正極活物質によれば、高容量で充放電特性に優れたリチウムイオン電池が得られる。
実施例1で得られたオリビン型シリケート化合物を構成する球状一次粒子のSEM像を示す。 実施例1で得られたオリビン型シリケート化合物を構成する二次粒子のSEM像を示す。 図2で示す二次粒子の一部のTEM像を示す。 実施例1で得られたリチウムイオン電池用正極活物質を用いた電池の充放電曲線を示す。
以下、本発明について詳細に説明する。
本発明に用いられるオリビン型シリケート化合物は、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表される。当該オリビン型シリケート化合物の具体例としては、Li2FeSiO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2(Fe)m(Mn)1-mSiO4(0<m<1である)等が挙げられる。このうち、原料コストの点からLi2FeSiO4、Li2MnSiO4が好ましく、Li2FeSiO4がより好ましい。
該オリビン型シリケート化合物は、球状一次粒子が凝集してなる二次粒子を有する。該球状一次粒子は、単結晶と見なせる微細な結晶である複数の結晶子によって構成された、球状を呈した粒子である。ここで球状とは、三次元方向へほぼ同等に成長した粒子の形状を意味し、特に真球に限るものではなく、球状に近似したものをも含む。したがって、板状や扁平形状は含まれない。球状一次粒子の平均粒径は、20〜100nmであり、好ましくは30〜70nm、より好ましくは30〜50nmである。
なお、一次粒子の平均粒径とは、SEM観察により求められる値を意味する。具体的には、1100×800nm2視野において、一次粒子をランダムに20個抽出して求めた粒径の値を平均したものを意味する。
このように、球状一次粒子は非常に微細な粒子であるため、オリビン型シリケート化合物結晶内におけるリチウムイオンの吸蔵・放出が容易となり、正極材料として電池容量を高めるのに多いに寄与する。また、正極活物質を得るにあたり、一次粒子を凝集させた二次粒子をカーボン担持して焼成した際、カーボンが一次粒子及び二次粒子の表面に均一なカーボン層を形成して粒子間を適度に接合することで、粒子間の間隙を低減することも可能であるため、導電性を充分に高めることができる。
一次粒子及び二次粒子の表面に形成されるカーボン層の厚みは、好ましくは0.1〜3nmであり、より好ましくは1〜2.5nmである。
球状一次粒子は、単結晶と見なされる微細結晶である複数の結晶子からなり、該結晶子の粒径は、好ましくは20〜50nmであり、より好ましくは20〜30nmである。なお、結晶子の粒径は、X線回折により測定した回折角の半値幅から、デバイ−シェラーの式を用いて求めることができる。
複数の微細な球状一次粒子が凝集してなる二次粒子の平均粒径は、1〜100μmであり、好ましくは5〜50μmであり、より好ましくは5〜20μmである。オリビン型シリケート化合物が該二次粒子を有することにより、優れた塗布性を発揮するため、より平滑で均一な電極層を形成することが可能である。
なお、二次粒子の平均粒径とは、一次粒子と同様にSEM観察により求められる値を意味する。
本発明のリチウムイオン電池用正極活物質の製造方法は、以下のとおりである。
まずLi2MSiO4で表されるオリビン型シリケート化合物を水熱反応に付して、一次粒子を形成する。水熱反応に付すにあたっては、遷移金属(M)源を用い、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を作製するのがよい。
遷移金属(M)源としては、例えば、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩、或いは(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩が挙げられる。
遷移金属硫酸塩MSO4の具体例としては、FeSO4、NiSO4、CoSO4又はMnSO4が挙げられ、これらは1種でも2種以上を混合して用いてもよい。これらのうち、FeSO4、MnSO4がより好ましく、FeSO4がさらに好ましい。遷移金属硫酸塩を用いる場合、副反応を抑制する点から、遷移金属硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を予め調製しておくのが好ましい。この場合、該水分散液と遷移金属硫酸塩とを混合し、水熱反応に付す。遷移金属硫酸塩の添加量は、反応混合液中0.15〜1.50mol/lとなる量が好ましく、さらに0.50〜0.75mol/lとなる量が好ましい。なお、この場合における反応混合液中のSi及びLiの含有量は、Mに対して2モル以上が好ましい。
有機酸遷移金属塩(R)2MのRで示される有機酸としては、炭素数1〜20の有機酸が好ましく、炭素数2〜12の有機酸がより好ましい。より具体的な有機酸としては、シュウ酸、フマル酸等のジカルボン酸、乳酸等のヒドロキシカルボン酸、酢酸等の脂肪酸が挙げられる。有機酸遷移金属塩を用いる場合、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有し、さらに有機酸遷移金属塩を含有する塩基性水分散液を調製するのが好ましい。通常、有機酸塩は固相法に用いられる原料であるが、水熱反応に用いることにより副反応を抑制することができる。なお、この場合における反応混合液中のSi及びLiは、遷移金属に対してモル比で2倍以上用いることが好ましく、Si:Li:Mが1:1:2.5〜1:1:3程度がより好ましい。
リチウム化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。
ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、水分散液が塩基性になるので、より好ましい。水分散液中のケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。
酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が挙げられる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビン型シリケート化合物の生成を抑制してしまうため、遷移金属(M)に対して等モル量以下が好ましく、遷移金属に対してモル比で0.5以下がさらに好ましい。
遷移金属源として遷移金属硫酸塩MSO4(式中、MはFe、Ni、Co又はMnを示す)を用いる場合、副反応を抑制する点から、遷移金属硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を予め調製しておくのが好ましい。この場合、該水分散液と遷移金属硫酸塩とを混合し、水熱反応に付す。該水分散液の調製にあたって、リチウム化合物、ケイ酸化合物及び酸化防止剤の添加順序は特に限定されず、これらの3成分を水に添加してもよい。
該水分散液は、副反応を防止し、ケイ酸化合物を溶解する点から、塩基性とするのがよい。具体的には、該水分散液のpHは、12.0〜13.5であるのが好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが好ましい。
水熱反応は、100℃以上であればよく、130〜180℃が好ましく、さらに140〜160℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合この時の圧力は0.3〜0.9MPaとなり、140〜160℃で反応を行う場合の圧力は0.3〜0.4MPaとなる。水熱反応時間は1〜24時間が好ましく、さらに3〜12時間が好ましい。
当該水熱反応により、Li2MSiO4(Mは前記と同じ)が高収率で得られ、その結晶度も高い。水熱反応後、生成したLiMSiO4をろ過により採取し、洗浄することにより、一次粒子を得るのが好ましい。洗浄は、ケーキ洗浄機能を有した濾過装置を用いて水で行うのが好ましく、次いで乾燥により一次粒子を得る。乾燥手段としては、凍結乾燥又は真空乾燥を用いることができる。
次に、得られた一次粒子を含有するスラリーを作製し、これを造粒することにより二次粒子を得るのが好ましい。粒径が制御された二次粒子を得るために、かかるスラリー中における一次粒子の含有量や、スラリーの粘度及びpHを適宜調整するのがよい。
さらに、該スラリーには、適宜、有機バインダー、無機バインダー、導電性炭素材料を含有させてもよい。
有機バインダーとしては、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等が挙げられる。なかでも、使用量を調整することによって炭素源としても機能し得る点から、グルコース、ポリビニルアルコール、カルボキシメチルセルロースが好ましい。無機バインダーとしては、鱗片状シリカ(二酸化ケイ素)、シリカ−チタニア、ケイ素ガラス、コロイダルシリカ等が挙げられる。
バインダーとして無機バインダーを用いる場合、導電性炭素材料を併用するのが好ましい。導電性炭素材料としては、カーボンブラックが挙げられ、なかでもアセチレンブラック、ケッチェンブラックが好ましい。導電性炭素材料の使用量は、良好な充放電容量及び経済性の点から、上記一次粒子100質量部に対し、0.01〜20質量部が好ましく、0.1〜10質量部が好ましい。
該スラリーには、溶媒として、水又は有機溶媒を用いてもよい。
造粒は、噴霧乾燥によるものであるのが好ましく、スプレードライ法による噴霧乾燥が最適である。得られた二次粒子は、次いで焼成することにより二次電池用正極活物質として用いることができる。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理により、Li2MSiO4表面にカーボンが担持された正極活物質とすることができる。
得られたリチウムイオン電池用正極活物質は、充放電容量の点で優れており、非常に有用な二次電池を得ることができる。本発明の製造方法により得られるリチウムイオン電池用正極活物質を適用できる二次電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。
ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。
電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。
支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。
セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。
以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 6.99g(0.025mol)、Na224 4.35g(0.025mol)に超純水75cm3を加えて混合した(この時のpHは約12.5)。この水分散液にFeSO4・7H2O6.95g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥し、平均粒径50nmの球状一次粒子を得た。かかる球状一次粒子のSEM像を図1に示す。
なお、図1より、結晶子の粒径は26nmであることが確認された。
次いで、得られた一次粒子100gにグルコース(60%水溶液)45g、及び超純水100gを加え、スラリーを調整した。得られたスラリーの一次粒子の含有量は50wt%であった。そして、噴霧乾燥装置(4流体ノズルを備えたマイクロミストドライヤー:藤崎電気(株)製)を用い、得られたスラリーを造粒した後、還元雰囲気下で600℃で1hr焼成して、平均粒径15μmの二次粒子を作製した。かかる二次粒子のSEM像を図2に、二次粒子の一部のTEM像を図3に示す。なお、図3より、一次粒子及び二次粒子の表面に形成されたカーボン層の厚みは、2.5nmであることが確認された。
[充放電試験]
実施例1で得られた二次粒子を用い、リチウムイオン二次電池の正極を作製した。実施例1で得られた二次粒子、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電を4サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。実施例1の正極材で構築した電池の4サイクル目の充放電曲線を図4に示す。
図1〜3より、非常に微細で球状を呈した一次粒子が得られ、これら粒子同士が凝集しながら担持されたカーボンにより接合されて、1〜100μmの範囲内にある平均粒径を有する二次粒子を形成していることがわかる。また、図4より、実施例1で得られた正極活物質を用いたリチウムイオン電池は、優れた電池物性を有することがわかる。

Claims (4)

  1. Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物を含有し、
    オリビン型シリケート化合物が、平均粒径20〜100nmの球状一次粒子が凝集してなる平均粒径1〜100μmの二次粒子を有することを特徴とする、リチウムイオン電池用正極活物質。
  2. 球状一次粒子及び二次粒子の表面に、1〜3nm厚のカーボン層が形成されてなる請求項1に記載のリチウムイオン電池用正極活物質。
  3. Li2MSiO4が、Li2FeSiO4である請求項1又は2に記載のリチウムイオン電池用正極活物質。
  4. 請求項3に記載のリチウムイオン電池用正極活物質を含む正極を有するリチウムイオン電池。
JP2011273776A 2011-12-14 2011-12-14 リチウムイオン電池用正極活物質及びリチウムイオン電池 Active JP5804419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273776A JP5804419B2 (ja) 2011-12-14 2011-12-14 リチウムイオン電池用正極活物質及びリチウムイオン電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273776A JP5804419B2 (ja) 2011-12-14 2011-12-14 リチウムイオン電池用正極活物質及びリチウムイオン電池

Publications (2)

Publication Number Publication Date
JP2013125648A true JP2013125648A (ja) 2013-06-24
JP5804419B2 JP5804419B2 (ja) 2015-11-04

Family

ID=48776783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273776A Active JP5804419B2 (ja) 2011-12-14 2011-12-14 リチウムイオン電池用正極活物質及びリチウムイオン電池

Country Status (1)

Country Link
JP (1) JP5804419B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926265A (zh) * 2014-04-01 2014-07-16 广西师范大学 一种原位同步观测和分析锂离子电池电极反应的方法
CN103943835A (zh) * 2014-05-12 2014-07-23 兰州理工大学 纳米Fe2SiO4/C锂离子电池负极材料及制备方法
JP2015170438A (ja) * 2014-03-06 2015-09-28 株式会社豊田自動織機 電極活物質材料及びその製造方法
CN105514380A (zh) * 2015-12-21 2016-04-20 宁波高新区锦众信息科技有限公司 一种锂离子电池用硅酸亚铁锂复合材料的制备方法
WO2019107033A1 (ja) * 2017-11-29 2019-06-06 パナソニックIpマネジメント株式会社 リチウムイオン電池
WO2019130787A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
CN112408489A (zh) * 2020-11-26 2021-02-26 中北大学 一种细化锂离子电池正极材料的方法
CN115571889A (zh) * 2022-11-10 2023-01-06 宜宾锂宝新材料有限公司 一种硅酸铁锂正极材料、其制备方法及锂离子电池
WO2023124737A1 (zh) * 2021-12-31 2023-07-06 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155123A1 (en) * 2019-12-19 2023-05-18 Lg Energy Solution, Ltd. Positive Electrode Optimized for Improving High-Temperature Life Characteristics and Secondary Battery Comprising the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181331A (ja) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The 正極活物質材料、正極、2次電池及びこれらの製造方法
WO2012086631A1 (ja) * 2010-12-24 2012-06-28 昭栄化学工業株式会社 複酸化物の製造方法及び製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181331A (ja) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The 正極活物質材料、正極、2次電池及びこれらの製造方法
WO2012086631A1 (ja) * 2010-12-24 2012-06-28 昭栄化学工業株式会社 複酸化物の製造方法及び製造装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170438A (ja) * 2014-03-06 2015-09-28 株式会社豊田自動織機 電極活物質材料及びその製造方法
CN103926265A (zh) * 2014-04-01 2014-07-16 广西师范大学 一种原位同步观测和分析锂离子电池电极反应的方法
CN103926265B (zh) * 2014-04-01 2017-03-29 广西师范大学 一种原位同步观测和分析锂离子电池电极反应的方法
CN103943835A (zh) * 2014-05-12 2014-07-23 兰州理工大学 纳米Fe2SiO4/C锂离子电池负极材料及制备方法
CN105514380A (zh) * 2015-12-21 2016-04-20 宁波高新区锦众信息科技有限公司 一种锂离子电池用硅酸亚铁锂复合材料的制备方法
JP7209265B2 (ja) 2017-11-29 2023-01-20 パナソニックIpマネジメント株式会社 リチウムイオン電池
WO2019107033A1 (ja) * 2017-11-29 2019-06-06 パナソニックIpマネジメント株式会社 リチウムイオン電池
CN111357135A (zh) * 2017-11-29 2020-06-30 松下知识产权经营株式会社 锂离子电池
US11984604B2 (en) 2017-11-29 2024-05-14 Panasonic Intellectual Property Management Co., Ltd. Lithium ion battery
JPWO2019107033A1 (ja) * 2017-11-29 2020-11-19 パナソニックIpマネジメント株式会社 リチウムイオン電池
CN111357135B (zh) * 2017-11-29 2023-10-13 松下知识产权经营株式会社 锂离子电池
JP7209266B2 (ja) 2017-12-28 2023-01-20 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
EP3734723A4 (en) * 2017-12-28 2021-03-03 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERIES WITH ANHYDROUS ELECTROLYTE
WO2019130787A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
JPWO2019130787A1 (ja) * 2017-12-28 2021-01-21 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
CN111357140B (zh) * 2017-12-28 2023-11-14 松下知识产权经营株式会社 非水电解质二次电池用负极活性物质
CN111357140A (zh) * 2017-12-28 2020-06-30 松下知识产权经营株式会社 非水电解质二次电池用负极活性物质
US11990606B2 (en) 2017-12-28 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries
CN112408489A (zh) * 2020-11-26 2021-02-26 中北大学 一种细化锂离子电池正极材料的方法
CN112408489B (zh) * 2020-11-26 2023-01-31 中北大学 一种细化锂离子电池正极材料的方法
WO2023124737A1 (zh) * 2021-12-31 2023-07-06 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池
CN115571889A (zh) * 2022-11-10 2023-01-06 宜宾锂宝新材料有限公司 一种硅酸铁锂正极材料、其制备方法及锂离子电池
CN115571889B (zh) * 2022-11-10 2023-03-24 宜宾锂宝新材料有限公司 一种硅酸铁锂正极材料、其制备方法及锂离子电池

Also Published As

Publication number Publication date
JP5804419B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5804419B2 (ja) リチウムイオン電池用正極活物質及びリチウムイオン電池
US10714742B2 (en) Cathode active material including lithium transition metal phosphate particles, preparation method thereof, and lithium secondary battery including the same
JP5901019B2 (ja) リチウムイオン電池用正極活物質の製造法
JP5531298B2 (ja) リチウムイオン電池用正極活物質の製造法
JP2012193088A (ja) リチウムイオン電池用正極活物質の製造法
JP5804422B2 (ja) 二次電池正極活物質の製造方法
JP5709134B2 (ja) リチウムイオン電池用正極活物質の製造法
JP5842792B2 (ja) 二次電池正極活物質前駆体の製造方法
JP2014096345A (ja) 二次電池用正極材活物質の製造方法
JP5927449B2 (ja) 二次電池用正極及びそれを用いた二次電池
JP5509423B2 (ja) ジルコニウム含有オリビン型シリケート化合物の製造方法、及び二次電池用正極活物質の製造方法
JP2014191873A (ja) 二次電池用正極材料の製造方法
JP5611167B2 (ja) リチウムイオン電池用正極活物質及びその製造方法
JP5765810B2 (ja) リチウムイオン電池用正極活物質及びその製造法
JP5649068B2 (ja) リチウムイオン電池用正極活物質及びその製造法
JP5836254B2 (ja) 導電性複合粒子、正極活物質及びそれを用いた二次電池
JP5557220B2 (ja) 二次電池用正極材料の製造方法
JP5754808B2 (ja) 二次電池用正極活物質及びその製造方法
JP5649067B2 (ja) リチウムイオン電池用正極活物質及びその製造法
JP2014118321A (ja) 二次電池正極活物質の製造方法
JP5759968B2 (ja) オリビン型シリケート化合物の製造法、及び二次電池正極活物質の製造法
JP5822197B2 (ja) リチウムイオン電池用正極活物質の製造方法
JP5649069B2 (ja) リチウムイオン電池用正極活物質及びその製造法
JP5825573B2 (ja) リチウムイオン電池用正極活物質及びその製造法
JP5665788B2 (ja) 二次電池用正極活物質前駆体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140820

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5804419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250