JP2013124378A - Plasma spraying device and method of controlling the same - Google Patents

Plasma spraying device and method of controlling the same Download PDF

Info

Publication number
JP2013124378A
JP2013124378A JP2011272560A JP2011272560A JP2013124378A JP 2013124378 A JP2013124378 A JP 2013124378A JP 2011272560 A JP2011272560 A JP 2011272560A JP 2011272560 A JP2011272560 A JP 2011272560A JP 2013124378 A JP2013124378 A JP 2013124378A
Authority
JP
Japan
Prior art keywords
plasma
powder material
temperature distribution
thermal spray
spray powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011272560A
Other languages
Japanese (ja)
Other versions
JP5496992B2 (en
Inventor
Hideo Ishimaru
秀雄 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011272560A priority Critical patent/JP5496992B2/en
Publication of JP2013124378A publication Critical patent/JP2013124378A/en
Application granted granted Critical
Publication of JP5496992B2 publication Critical patent/JP5496992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma spraying device capable of efficiently forming a coating of a thermal spray powder material on a substrate surface, and to provide a method of controlling the same.SOLUTION: The plasma spraying device that forms the coating of the thermal spray powder material on the substrate surface by spraying the thermal spray powder material melt by being injected into a plasma arc or a plasma jet includes: a thermal spray powder material injection tube for injecting the thermal spray powder material into the plasma arc or the plasma jet; a temperature distribution measurement means for measuring temperature distribution of the plasma arc or the plasma jet; and a control means for moving an injection port of the thermal spray powder material injection tube to a region of the highest temperature based on the temperature distribution.

Description

本発明は、基材表面に溶射粉末材料の皮膜を効率的に形成することができるプラズマ溶射装置及びその制御方法に関する。   The present invention relates to a plasma spraying apparatus capable of efficiently forming a coating of a thermal spray powder material on a surface of a substrate and a control method thereof.

基材表面に皮膜を形成させる装置として、従来、プラズマアークに投入された溶射粉末材料(例えば、セラミックスや金属粉末材料など)を溶融して基材表面に吹き付け、皮膜を形成させるプラズマ溶射装置などが用いられている(例えば、特許文献1の図1などを参照)。   Conventionally, as a device for forming a film on the surface of a substrate, a plasma spraying device for forming a film by melting and spraying a sprayed powder material (for example, ceramics or metal powder material) put on a plasma arc on the surface of the substrate. (For example, see FIG. 1 of Patent Document 1).

特開2001−200354号公報JP 2001-200434 A

上述のようなプラズマ溶射装置においては、溶射粉末材料の投入口が電極中心部の出口付近に固定されているが、プラズマの火花の発生位置は一定でないため、溶射粉末材料を効率的な位置で投入することができず、基材表面に対して溶射粉末材料の皮膜の形成を効率的に行うことができないという問題がある。
本発明は、上記課題に鑑みてなされたものであり、基材表面に溶射粉末材料の皮膜を効率的に形成することができるプラズマ溶射装置及びその制御方法を提供することを目的とする。
In the plasma spraying apparatus as described above, the inlet of the thermal spray powder material is fixed near the outlet of the central part of the electrode, but since the generation position of the plasma spark is not constant, There is a problem that the film cannot be charged and the coating of the thermal spray powder material cannot be efficiently formed on the surface of the substrate.
This invention is made | formed in view of the said subject, and it aims at providing the plasma spraying apparatus which can form the membrane | film | coat of a thermal spraying powder material on the base-material surface efficiently, and its control method.

上記課題を解決するために、本発明に係るプラズマ溶射装置は、プラズマアーク中又はプラズマジェット中に投入され、溶融された溶射粉末材料を吹き付けることにより、基材表面に前記溶射粉末材料の皮膜を形成させる装置であって、前記プラズマアーク中又は前記プラズマジェット中に前記溶射粉末材料を投入する溶射粉末材料投入管と、前記プラズマアーク又は前記プラズマジェットの温度分布を計測する温度分布計測手段と、前記温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させる制御手段と、を備える。前記温度分布計測手段は、例えばサーモグラフィカメラなどである。   In order to solve the above-mentioned problems, a plasma spraying apparatus according to the present invention applies a coating of the above-mentioned sprayed powder material to the surface of a base material by spraying the melted sprayed powder material into a plasma arc or a plasma jet. An apparatus for forming a thermal spray powder material injection tube for introducing the thermal spray powder material into the plasma arc or the plasma jet; and a temperature distribution measuring means for measuring a temperature distribution of the plasma arc or the plasma jet; Control means for moving the inlet of the thermal spray powder material inlet tube to the maximum temperature region of the temperature distribution. The temperature distribution measuring means is, for example, a thermography camera.

前記温度分布計測手段がサーモグラフィカメラであって、サーモグラフィカメラを複数備える場合、複数のサーモグラフィカメラは、異なる方向から前記プラズマアーク又は前記プラズマジェットの二次元温度分布をそれぞれ計測できるように設置されており、前記制御手段は、前記複数のサーモグラフィカメラによって計測された前記複数の二次元温度分布から三次元温度分布を作成し、前記三次元温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させるように制御してもよい。また、前記温度分布計測手段がサーモグラフィカメラであって、サーモグラフィカメラを2台備える場合、2台のサーモグラフィカメラは、前記プラズマアーク又は前記プラズマジェットの中心軸に対して真上と真横に設置され、異なる方向から前記プラズマアーク又は前記プラズマジェットの二次元温度分布をそれぞれ計測できるように設置されており、前記制御手段は、前記2台のサーモグラフィカメラによって計測された2つの二次元温度分布データから三次元温度分布データを作成し、前記三次元温度分布データの最高温度領域に前記溶射粉末材料投入管の投入口を移動させるように制御してもよい。   When the temperature distribution measuring means is a thermography camera and includes a plurality of thermography cameras, the plurality of thermography cameras are installed so as to respectively measure the two-dimensional temperature distribution of the plasma arc or the plasma jet from different directions. The control means creates a three-dimensional temperature distribution from the plurality of two-dimensional temperature distributions measured by the plurality of thermographic cameras, and inserts the sprayed powder material input pipe into the highest temperature region of the three-dimensional temperature distribution. You may control to move. Further, when the temperature distribution measuring means is a thermography camera and includes two thermography cameras, the two thermography cameras are installed directly above and next to the central axis of the plasma arc or the plasma jet, The two-dimensional temperature distributions of the plasma arc or the plasma jet can be measured from different directions, respectively, and the control means can obtain a third order from the two two-dimensional temperature distribution data measured by the two thermographic cameras. Original temperature distribution data may be created, and control may be performed so that the inlet of the thermal spray powder material inlet tube is moved to the maximum temperature region of the three-dimensional temperature distribution data.

前記温度分布計測手段によって計測された温度分布が、三次元温度分布である場合、前記制御手段は、前記三次元温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させるように制御してもよい。   When the temperature distribution measured by the temperature distribution measuring unit is a three-dimensional temperature distribution, the control unit moves the inlet of the thermal spray powder material inlet pipe to the highest temperature region of the three-dimensional temperature distribution. You may control.

なお、上述のプラズマ溶射装置において、前記温度分布計測手段は、前記温度分布を連続計測し、前記制御手段は、前記温度分布の最高温度領域の変化に基づいて前記溶射粉末材料投入管の投入口を移動させるように制御してもよい。   In the above-described plasma spraying apparatus, the temperature distribution measuring means continuously measures the temperature distribution, and the control means is based on a change in the maximum temperature region of the temperature distribution, and the inlet of the thermal spray powder material charging pipe You may control to move.

また、本発明に係る、溶射粉末材料投入管からプラズマアーク又はプラズマジェットに投入され、溶融された溶射粉末材料を吹き付けることにより、基材表面に前記溶射粉末材料の皮膜を形成させるプラズマ溶射装置の制御方法は、前記プラズマアーク又は前記プラズマジェットの温度分布を計測する工程と、前記温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動する工程と、を含む。   Further, according to the present invention, there is provided a plasma spraying apparatus that forms a coating of the sprayed powder material on the surface of the base material by spraying the melted sprayed powder material charged into a plasma arc or plasma jet from the sprayed powder material charging tube. The control method includes a step of measuring a temperature distribution of the plasma arc or the plasma jet, and a step of moving the inlet of the sprayed powder material input tube to the highest temperature region of the temperature distribution.

本発明によれば、基材表面に溶射粉末材料の皮膜を効率的に形成することができるプラズマ溶射装置及びその制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the plasma spraying apparatus which can form the membrane | film | coat of thermal spraying powder material on the base-material surface efficiently, and its control method can be provided.

本発明の一実施形態において、ツインアノード型プラズマ溶射装置100の概略構成を示す図である。1 is a diagram showing a schematic configuration of a twin anode type plasma spraying apparatus 100 in an embodiment of the present invention. 本発明の一実施形態において、単トーチ型プラズマ溶射装置200の一部の概略構成を示す図である。1 is a diagram showing a schematic configuration of a part of a single torch type plasma spraying apparatus 200 in an embodiment of the present invention. 本発明の一実施形態において、複合トーチ型プラズマ溶射装置300の一部の概略構成を示す図である。1 is a diagram showing a schematic configuration of a part of a combined torch type plasma spraying apparatus 300 in an embodiment of the present invention.

以下、本発明の好ましい実施形態につき、添付図面を参照して詳細に説明する。本発明に係るプラズマ溶射装置は、プラズマの熱エネルギーを利用して、例えばセラミックスや金属粉末材料などの溶射粉末材料を溶融し、基材表面に吹き付け皮膜を形成する装置である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The plasma spraying apparatus according to the present invention is an apparatus that uses thermal energy of plasma to melt a sprayed powder material such as ceramics or a metal powder material, and forms a sprayed film on the surface of the substrate.

図1は、本発明の一実施形態として説明するプラズマ溶射装置100の概略構成を示す図である。図1に示すように、本発明に係るプラズマ溶射装置100は、対向する2つのアノードトーチ111,112と、1つのカソードトーチ120を備えるツインアノード型プラズマ溶射装置である。プラズマ溶射装置100は、主電源101,102、アノードトーチ111,112、アルゴン供給管113,114、カソードトーチ120、アルゴン供給管130、二次ガス供給管140、アクセルノズル150、プラズマトリミング160、溶射粉末材料投入管170などを備える。   FIG. 1 is a diagram showing a schematic configuration of a plasma spraying apparatus 100 described as an embodiment of the present invention. As shown in FIG. 1, a plasma spraying apparatus 100 according to the present invention is a twin anode type plasma spraying apparatus including two anode torches 111 and 112 facing each other and one cathode torch 120. The plasma spraying apparatus 100 includes main power supplies 101 and 102, anode torches 111 and 112, argon supply pipes 113 and 114, cathode torch 120, argon supply pipe 130, secondary gas supply pipe 140, accelerator nozzle 150, plasma trimming 160, thermal spraying. A powder material input tube 170 and the like are provided.

主電源101,102により電極111,112,120に電圧が印加されると、アルゴン供給管130から供給されたアルゴンガスと、二次ガス供給管140から供給された二次ガス(例えば空気、窒素ガス、ヘリウムガス、二酸化炭素ガスなど)によりカソードトーチ120からプラズマアークが生成され、また、アルゴン供給管113,114から供給されたアルゴンガスによりアノードトーチ111,112からプラズマアークが生成される。カソードトーチ120から生成されたプラズマアークは、アクセルノズル150によって加速されてプラズマアーク(PA)が生成され、アノードトーチ111,112から生成されたプラズマアークと合流し、プラズマジェット(PJ)となる。また、アクセルノズル150によって生成されたプラズマアーク(PA)には、溶射粉末材料投入管170から溶射粉末材料が投入され、溶融される。プラズマジェット(PJ)において溶射粉末材料の溶融に利用されない熱は、プラズマトリミング160から供給された空気によりトリミングされる。溶射粉末材料が溶融されたプラズマジェット(PJ)は、基材(M)の表面に吹き付けられ、溶射粉末材料の皮膜(C)が形成される。   When a voltage is applied to the electrodes 111, 112, and 120 by the main power supplies 101 and 102, the argon gas supplied from the argon supply pipe 130 and the secondary gas supplied from the secondary gas supply pipe 140 (for example, air, nitrogen) A plasma arc is generated from the cathode torch 120 by gas, helium gas, carbon dioxide gas, etc., and a plasma arc is generated from the anode torches 111 and 112 by argon gas supplied from the argon supply pipes 113 and 114. The plasma arc generated from the cathode torch 120 is accelerated by the accelerator nozzle 150 to generate a plasma arc (PA), and merges with the plasma arc generated from the anode torches 111 and 112 to form a plasma jet (PJ). In addition, the plasma spray (PA) generated by the accelerator nozzle 150 is charged with a thermal spray powder material from the thermal spray powder material input tube 170 and melted. The heat that is not used for melting the thermal spray powder material in the plasma jet (PJ) is trimmed by the air supplied from the plasma trimming 160. The plasma jet (PJ) in which the thermal spray powder material is melted is sprayed on the surface of the base material (M) to form a coating (C) of the thermal spray powder material.

本実施の形態において、本発明に係るプラズマ溶射装置100は、制御装置173、サーモグラフィカメラ181,182などをさらに備えている。2台のサーモグラフィカメラ181,182は、アクセルノズル150によって生成されたプラズマアーク(PA)の二次元温度分布を計測するものであり、それらは異なる方向からプラズマアーク(PA)の二次元温度分布を計測できるように設置されている。なお、2台のサーモグラフィカメラ181,182は、プラズマアーク(PA)の中心軸の上下、該中心軸の左右など異なる位置に設置されていればよいが、三次元温度分布を作成できるように、例えば、計測したそれぞれの二次元温度分布の平面がプラズマアーク(PA)の中心軸で垂直に交わるように設置されていることが好ましく、プラズマアーク(PA)の中心軸に対して真上と真横の方向にそれぞれ設置されていることがより好ましい。また、2台のサーモグラフィカメラ181,182は、アクセルノズル150によって生成されたプラズマアーク(PA)の全てを計測するものであってもよいが、プラズマアーク(PA)の発生部付近、すなわちプラズマアーク(PA)の最高温度領域付近、具体的にはアクセルノズル150の出口付近を計測するものであってもよい。   In the present embodiment, the plasma spraying apparatus 100 according to the present invention further includes a control device 173, thermographic cameras 181, 182 and the like. The two thermographic cameras 181 and 182 measure the two-dimensional temperature distribution of the plasma arc (PA) generated by the accelerator nozzle 150, and they measure the two-dimensional temperature distribution of the plasma arc (PA) from different directions. It is installed so that it can be measured. The two thermographic cameras 181 and 182 only need to be installed at different positions such as above and below the central axis of the plasma arc (PA), right and left of the central axis, so that a three-dimensional temperature distribution can be created. For example, it is preferable that the measured two-dimensional temperature distribution planes are arranged so that they intersect perpendicularly with the central axis of the plasma arc (PA). It is more preferable that they are respectively installed in the directions. The two thermographic cameras 181 and 182 may measure all of the plasma arc (PA) generated by the accelerator nozzle 150, but in the vicinity of the plasma arc (PA) generating portion, that is, the plasma arc. The vicinity of the maximum temperature region of (PA), specifically, the vicinity of the outlet of the accelerator nozzle 150 may be measured.

計測されたプラズマアーク(PA)の平面の二次元温度分布のデータは、通信線183を介してサーモグラフィカメラ181,182から制御装置173に送信される。制御装置173は、サーモグラフィカメラ181,182から受信したデータに基づいて、アクセルノズル150によって生成されたプラズマアーク(PA)の三次元温度分布データを作成する。制御装置173は、三次元温度分布データから最高温度領域を特定し、溶射粉末材料投入管170と接続された制御線172を介して溶射粉末材料投入管170の投入口171をXYZ軸方向に移動させ、溶射粉末材料が最高温度領域に投入されるように投入口171を調整する。このように、プラズマアーク(PA)の最高温度領域に溶射粉末材料投入管170の投入口171を移動させることにより、溶射粉末材料を効率よく溶融させることができるようになり、もって基材(M)の表面に溶射粉末材料の皮膜(C)を効率的に形成することができるようになる。   The measured two-dimensional temperature distribution data of the plasma arc (PA) plane is transmitted from the thermographic cameras 181 and 182 to the control device 173 via the communication line 183. The control device 173 creates three-dimensional temperature distribution data of the plasma arc (PA) generated by the accelerator nozzle 150 based on the data received from the thermographic cameras 181 and 182. The control device 173 identifies the maximum temperature region from the three-dimensional temperature distribution data, and moves the inlet 171 of the thermal spray powder material input tube 170 in the XYZ axis direction via the control line 172 connected to the thermal spray powder material input tube 170. The injection port 171 is adjusted so that the thermal spray powder material is introduced into the maximum temperature region. In this way, by moving the inlet 171 of the thermal spray powder material input pipe 170 to the maximum temperature region of the plasma arc (PA), the thermal spray powder material can be efficiently melted, and thus the base material (M ) Can be efficiently formed on the surface of the thermal spray powder material.

なお、上述の、サーモグラフィカメラ181,182における計測、並びに、制御装置173における三次元温度分布データの作成、及びプラズマアーク(PA)の最高温度領域に対する溶射粉末材料投入管170の投入口171の移動は、本発明に係るプラズマ溶射装置100を稼動する際にのみ行うこととしてもよいが、溶射粉末材料をより効率よく溶融させ、基材(M)の表面に溶射粉末材料の皮膜(C)をより効率的に形成できるようにするために、稼動時以降も定期的又は連続的に行うこととしてもよい。この場合、サーモグラフィカメラ181,182は、二次元温度分布を定期的又は連続的に計測し、制御装置173は、定期的又は連続的に作成した三次元温度分布データにおける最高温度領域の変化に基づいて溶射粉末材料投入管170の投入口171を瞬時に移動させる。   Note that the above-described measurement by the thermographic cameras 181 and 182, the creation of three-dimensional temperature distribution data by the control device 173, and the movement of the inlet 171 of the thermal spray powder material inlet pipe 170 with respect to the maximum temperature region of the plasma arc (PA). May be performed only when the plasma spraying apparatus 100 according to the present invention is operated, but the sprayed powder material is more efficiently melted and a coating (C) of the sprayed powder material is applied to the surface of the base material (M). In order to be able to form more efficiently, it is good also as performing periodically or continuously after an operation. In this case, the thermographic cameras 181 and 182 measure the two-dimensional temperature distribution regularly or continuously, and the control device 173 is based on the change in the maximum temperature region in the three-dimensional temperature distribution data created periodically or continuously. Thus, the charging port 171 of the thermal spray powder material charging tube 170 is moved instantaneously.

図2は、本発明の他の一実施形態として説明するプラズマ溶射装置200の一部の概略構成を示す図である。図2に示すように、本発明に係るプラズマ溶射装置200は、単トーチ型のプラズマ溶射装置(一般的なプラズマ溶射ガン)である。プラズマ溶射装置200は、陽極210、陰極220、溶射粉末材料投入管230、制御装置233、サーモグラフィカメラ241,242などを備える。   FIG. 2 is a diagram showing a schematic configuration of a part of a plasma spraying apparatus 200 described as another embodiment of the present invention. As shown in FIG. 2, the plasma spraying apparatus 200 according to the present invention is a single torch type plasma spraying apparatus (general plasma spraying gun). The plasma spraying apparatus 200 includes an anode 210, a cathode 220, a spray powder material charging tube 230, a control device 233, thermographic cameras 241, 242 and the like.

陽極210と陰極220との電極間に発生させた直流アーク放電(PD)に、後方から供給された作動ガス(例えばアルゴン、ヘリウムなどのガス)221を吹きつけ、高温高速のプラズマジェット(PJ)を形成させる。このプラズマジェット(PJ)中に溶射粉末材料が溶射粉末材料投入口230から投入されて溶融される。溶融された溶射粉末材料は基材(M)の表面に吹き付けられ、基材(M)の表面に溶射粉末材料の皮膜(C)が形成される。   A working gas (for example, a gas such as argon or helium) 221 supplied from behind is blown into a direct current arc discharge (PD) generated between the electrodes of the anode 210 and the cathode 220, and a high-temperature and high-speed plasma jet (PJ). To form. In this plasma jet (PJ), the thermal spray powder material is introduced from the thermal spray powder material inlet 230 and melted. The molten thermal spray powder material is sprayed onto the surface of the base material (M), and a coating (C) of the thermal spray powder material is formed on the surface of the base material (M).

2台のサーモグラフィカメラ241,242は、形成されたプラズマジェット(PJ)の二次元温度分布を計測するものであり、それらは異なる方向からプラズマジェット(PJ)の二次元温度分布を計測できるように設置されている。なお、2台のサーモグラフィカメラ241,242は、プラズマジェット(PJ)の中心軸の上下、該中心軸の左右など異なる位置に設置されていればよいが、三次元温度分布を作成できるように、例えば、計測したそれぞれの二次元温度分布の平面がプラズマジェット(PJ)の中心軸で垂直に交わるように設置されていることが好ましく、プラズマジェット(PJ)の中心軸に対して真上と真横の方向にそれぞれ設置されていることがより好ましい。また、2台のサーモグラフィカメラ241,242は、形成されたプラズマジェット(PJ)の全てを計測するものであってもよいが、プラズマジェット(PJ)の発生部付近、すなわちプラズマアーク(PA)の最高温度領域付近を計測するものであってもよい。   The two thermographic cameras 241 and 242 measure the two-dimensional temperature distribution of the formed plasma jet (PJ) so that they can measure the two-dimensional temperature distribution of the plasma jet (PJ) from different directions. is set up. The two thermographic cameras 241 and 242 need only be installed at different positions such as the upper and lower sides of the central axis of the plasma jet (PJ) and the left and right sides of the central axis. For example, it is preferable that the measured two-dimensional temperature distribution planes are installed so that they intersect perpendicularly with the central axis of the plasma jet (PJ). It is more preferable that they are respectively installed in the directions. The two thermographic cameras 241 and 242 may measure all of the formed plasma jet (PJ), but in the vicinity of the plasma jet (PJ) generating portion, that is, the plasma arc (PA). It may measure the vicinity of the maximum temperature range.

計測されたプラズマジェット(PJ)の平面の二次元温度分布のデータは、通信線243を介してサーモグラフィカメラ241,242から制御装置233に送信される。制御装置233は、サーモグラフィカメラ241,242から受信したデータに基づいて、形成されたプラズマジェット(PJ)の三次元温度分布データを作成する。制御装置233は、三次元温度分布データから最高温度領域を特定し、溶射粉末材料投入管230と接続された制御線232を介して溶射粉末材料投入管230の投入口231をXYZ軸方向に移動させ、溶射粉末材料が最高温度領域に投入されるように投入口231を調整する。このように、プラズマジェット(PJ)の最高温度領域に溶射粉末材料投入管230の投入口231を移動させることにより、溶射粉末材料を効率よく溶融させることができるようになり、もって基材(M)の表面に溶射粉末材料の皮膜(C)を効率的に形成することができるようになる。   The measured two-dimensional temperature distribution data of the plasma jet (PJ) plane is transmitted from the thermographic cameras 241 and 242 to the control device 233 via the communication line 243. The control device 233 creates three-dimensional temperature distribution data of the formed plasma jet (PJ) based on the data received from the thermographic cameras 241 and 242. The control device 233 identifies the maximum temperature region from the three-dimensional temperature distribution data, and moves the inlet 231 of the thermal spray powder material input tube 230 in the XYZ axis direction via the control line 232 connected to the thermal spray powder material input tube 230. The injection port 231 is adjusted so that the thermal spray powder material is introduced into the maximum temperature region. Thus, by moving the inlet 231 of the thermal spray powder material injection tube 230 to the maximum temperature region of the plasma jet (PJ), the thermal spray powder material can be efficiently melted, and thus the base material (M ) Can be efficiently formed on the surface of the thermal spray powder material.

なお、上述の、サーモグラフィカメラ241,242における計測、並びに、制御装置233における三次元温度分布データの作成、及びプラズマジェット(PJ)の最高温度領域に対する溶射粉末材料投入管230の投入口231の移動は、本発明に係るプラズマ溶射装置200を稼動する際にのみ行うこととしてもよいが、溶射粉末材料をより効率よく溶融させ、基材(M)の表面に溶射粉末材料の皮膜(C)をより効率的に形成できるようにするために、稼動時以降も定期的又は連続的に行うこととしてもよい。この場合、サーモグラフィカメラ241,242は、二次元温度分布を定期的又は連続的に計測し、制御装置233は、定期的又は連続的に作成した三次元温度分布データにおける最高温度領域の変化に基づいて溶射粉末材料投入管230の投入口231を瞬時に移動させる。   It should be noted that the above-described measurement by the thermographic cameras 241 and 242, the creation of three-dimensional temperature distribution data by the control device 233, and the movement of the inlet 231 of the thermal spray powder material inlet tube 230 with respect to the maximum temperature region of the plasma jet (PJ). May be performed only when the plasma spraying apparatus 200 according to the present invention is operated, but the sprayed powder material is more efficiently melted and the coating (C) of the sprayed powder material is applied to the surface of the base material (M). In order to be able to form more efficiently, it is good also as performing periodically or continuously after an operation. In this case, the thermographic cameras 241 and 242 regularly or continuously measure the two-dimensional temperature distribution, and the control device 233 is based on the change in the maximum temperature region in the three-dimensional temperature distribution data created periodically or continuously. The inlet 231 of the thermal spray powder material inlet tube 230 is moved instantaneously.

図3は、本発明の他の一実施形態として説明するプラズマ溶射装置300の一部の概略構成を示す図である。図3に示すように、本発明に係るプラズマ溶射装置300は、アノードトーチ(陽極)及びカソードトーチ(陰極)の1組のプラズマトーチからなる複合トーチ型プラズマ溶射装置である。プラズマ溶射装置300は、アノードトーチ310、カソードトーチ320、溶射粉末材料投入管330、制御装置333、サーモグラフィカメラ341,342などを備える。   FIG. 3 is a diagram showing a schematic configuration of a part of a plasma spraying apparatus 300 described as another embodiment of the present invention. As shown in FIG. 3, a plasma spraying apparatus 300 according to the present invention is a composite torch type plasma spraying apparatus including a pair of plasma torches of an anode torch (anode) and a cathode torch (cathode). The plasma spraying apparatus 300 includes an anode torch 310, a cathode torch 320, a spray powder material charging tube 330, a control device 333, thermographic cameras 341 and 342, and the like.

アノードトーチ310とカソードトーチ320は、それぞれの中心軸の延長が交差するように配置されており、これらのトーチ310,320間でアーク放電(PD)が発生する。このアーク放電(PD)に、カソードトーチ320から供給される作動ガスが吹き付けられることにより、プラズマアーク(PA)が形成される。形成されたプラズマアーク(PA)には、溶射粉末材料投入管330から溶射粉末材料が投入され、溶融される。溶射粉末材料が溶融されたプラズマアーク(PA)は、高温高速化されて基材(M)の表面に吹き付けられ、溶射粉末材料の皮膜(C)が形成される。   The anode torch 310 and the cathode torch 320 are arranged so that the extensions of the respective central axes intersect with each other, and arc discharge (PD) is generated between these torches 310 and 320. A plasma arc (PA) is formed by blowing the working gas supplied from the cathode torch 320 to the arc discharge (PD). The formed plasma arc (PA) is supplied with the thermal spray powder material from the thermal spray powder material input tube 330 and melted. The plasma arc (PA) in which the thermal spray powder material is melted is sprayed onto the surface of the base material (M) at a high temperature and a high speed to form a coating (C) of the thermal spray powder material.

2台のサーモグラフィカメラ341,342は、形成されたプラズマアーク(PA)の二次元温度分布を計測するものであり、それらは異なる方向からプラズマアーク(PA)の二次元温度分布を計測できるように設置されている。なお、2台のサーモグラフィカメラ341,342は、プラズマアーク(PA)の中心軸の上下、該中心軸の左右など異なる位置に設置されていればよいが、三次元温度分布を作成できるように、例えば、計測したそれぞれの二次元温度分布の平面がプラズマアーク(PA)の中心軸で垂直に交わるように設置されていることが好ましく、プラズマアーク(PA)の中心軸に対して真上と真横の方向にそれぞれ設置されていることがより好ましい。また、2台のサーモグラフィカメラ341,342は、形成されたプラズマアーク(PA)の全てを計測するものであってもよいが、プラズマアーク(PA)の発生部付近、すなわちプラズマアーク(PA)の最高温度領域付近を計測するものであってもよい。   The two thermographic cameras 341 and 342 measure the two-dimensional temperature distribution of the formed plasma arc (PA) so that they can measure the two-dimensional temperature distribution of the plasma arc (PA) from different directions. is set up. The two thermographic cameras 341 and 342 need only be installed at different positions such as the upper and lower sides of the central axis of the plasma arc (PA) and the left and right sides of the central axis. For example, it is preferable that the measured two-dimensional temperature distribution planes are arranged so that they intersect perpendicularly with the central axis of the plasma arc (PA). It is more preferable that they are respectively installed in the directions. The two thermographic cameras 341 and 342 may measure all of the formed plasma arc (PA), but the vicinity of the generation portion of the plasma arc (PA), that is, the plasma arc (PA). It may measure the vicinity of the maximum temperature range.

計測されたプラズマアーク(PA)の平面の二次元温度分布のデータは、通信線343を介してサーモグラフィカメラ341,342から制御装置333に送信される。制御装置333は、サーモグラフィカメラ341,342から受信したデータに基づいて、形成されたプラズマアーク(PA)の三次元温度分布データを作成する。制御装置333は、三次元温度分布データから最高温度領域を特定し、溶射粉末材料投入管330と接続された制御線332を介して溶射粉末材料投入管330の投入口331をXYZ軸方向に移動させ、溶射粉末材料が最高温度領域に投入されるように投入口331を調整する。このように、プラズマアーク(PA)の最高温度領域に溶射粉末材料投入管330の投入口331を移動させることにより、溶射粉末材料を効率よく溶融させることができるようになり、もって基材(M)の表面に溶射粉末材料の皮膜(C)を効率的に形成することができるようになる。   The measured two-dimensional temperature distribution data of the plasma arc (PA) plane is transmitted from the thermographic cameras 341 and 342 to the control device 333 via the communication line 343. The control device 333 creates three-dimensional temperature distribution data of the formed plasma arc (PA) based on the data received from the thermographic cameras 341 and 342. The control device 333 identifies the maximum temperature region from the three-dimensional temperature distribution data, and moves the inlet 331 of the thermal spray powder material input tube 330 in the XYZ axis direction via the control line 332 connected to the thermal spray powder material input tube 330. The injection port 331 is adjusted so that the thermal spray powder material is introduced into the maximum temperature region. In this way, by moving the inlet 331 of the thermal spray powder material input tube 330 to the maximum temperature region of the plasma arc (PA), the thermal spray powder material can be efficiently melted, and thus the base material (M ) Can be efficiently formed on the surface of the thermal spray powder material.

なお、上述の、サーモグラフィカメラ341,342における計測、並びに、制御装置333における三次元温度分布データの作成、及びプラズマアーク(PA)の最高温度領域に対する溶射粉末材料投入管330の投入口331の移動は、本発明に係るプラズマ溶射装置300を稼動する際にのみ行うこととしてもよいが、溶射粉末材料をより効率よく溶融させ、基材(M)の表面に溶射粉末材料の皮膜(C)をより効率的に形成できるようにするために、稼動時以降も定期的又は連続的に行うこととしてもよい。この場合、サーモグラフィカメラ341,342は、二次元温度分布を定期的又は連続的に計測し、制御装置333は、定期的又は連続的に作成した三次元温度分布データにおける最高温度領域の変化に基づいて溶射粉末材料投入管330の投入口331を瞬時に移動させる。   Note that the above-described measurement by the thermographic cameras 341 and 342, the creation of three-dimensional temperature distribution data by the control device 333, and the movement of the inlet 331 of the thermal spray powder material inlet pipe 330 with respect to the maximum temperature region of the plasma arc (PA). May be performed only when the plasma spraying apparatus 300 according to the present invention is operated, but the sprayed powder material is more efficiently melted and the coating (C) of the sprayed powder material is applied to the surface of the base material (M). In order to be able to form more efficiently, it is good also as performing periodically or continuously after an operation. In this case, the thermographic cameras 341 and 342 periodically or continuously measure the two-dimensional temperature distribution, and the control device 333 is based on the change in the maximum temperature region in the three-dimensional temperature distribution data created periodically or continuously. Thus, the charging port 331 of the thermal spray powder material charging pipe 330 is instantaneously moved.

本実施の形態において、本発明に係るプラズマ溶射装置100,200,300は、2台のサーモグラフィカメラ(181及び182,241及び242,341及び342)を備えることとしているが、1台又は3台以上のサーモグラフィカメラを備えていてもよいし、赤外線カメラ、光ファイバを温度センサとして用いた温度分布測定装置、分光法を用いた温度分布計測装置、プラズマアーク(PA)やプラズマジェット(PJ)から放射されるマイクロ波により温度分布を計測する装置などの、既存の二次元又は三次元の温度分布計測装置を1又は複数台備えていてもよい。なお、本発明に係るプラズマ溶射装置が、サーモグラフィカメラのように、プラズマアーク(PA)やプラズマジェット(PJ)の二次元温度分布しか計測できない温度分布計測装置を1台しか備えていない場合には、プラズマアーク(PA)の二次元温度分布の平面が、溶射粉末材料投入管の投入口を可動可能な平面と一致するように、サーモグラフィカメラなどの温度分布計測装置と、制御装置によって移動可能な溶射粉末材料投入管を設置することが好ましい。   In the present embodiment, the plasma spraying apparatus 100, 200, 300 according to the present invention includes two thermographic cameras (181 and 182, 241, 242, 341, and 342). The above-described thermographic camera may be provided, or from an infrared camera, a temperature distribution measuring device using an optical fiber as a temperature sensor, a temperature distribution measuring device using spectroscopy, a plasma arc (PA) or a plasma jet (PJ) One or a plurality of existing two-dimensional or three-dimensional temperature distribution measuring devices such as a device for measuring a temperature distribution by radiated microwaves may be provided. In the case where the plasma spraying apparatus according to the present invention includes only one temperature distribution measuring apparatus that can measure only the two-dimensional temperature distribution of a plasma arc (PA) or a plasma jet (PJ) like a thermographic camera. The plasma arc (PA) two-dimensional temperature distribution plane can be moved by a temperature distribution measuring device such as a thermography camera and a control unit so that the inlet of the spray powder material inlet tube can be moved. It is preferable to install a spraying powder material charging tube.

また、本発明に係るプラズマ溶射装置100,200,300に最高温度領域予測装置をさらに備え、プラズマ溶射装置100,200,300の稼動時あるいは運転中に、蓄積された最高温度領域のデータに基づいて最高温度領域を予測し、その領域に溶射粉末材料が投入されるように溶射粉末材料投入管170,230,330の投入口171,231,331を予め移動させることとしてもよい。これにより、基材(M)の表面に溶射粉末材料の皮膜(C)をより効率的に形成することが可能となる。   Further, the plasma spraying apparatus 100, 200, 300 according to the present invention further includes a maximum temperature region predicting device, and is based on data stored in the maximum temperature region during operation or during operation of the plasma spraying device 100, 200, 300. It is also possible to predict the maximum temperature region and move the inlets 171, 231 and 331 of the thermal spray powder material supply pipes 170, 230, and 330 in advance so that the thermal spray powder material is input into that region. Thereby, it becomes possible to more efficiently form the coating (C) of the thermal spray powder material on the surface of the base material (M).

PA プラズマアーク、PD アーク放電、PJ プラズマジェット、M 基材、C 皮膜、100,200,300 プラズマ溶射装置、101,102 主電源、111,112,310 アノードトーチ、113,114 アルゴン供給管、120,320 カソードトーチ、130 アルゴン供給管、140 二次ガス供給管、150 アクセルノズル、160 プラズマトリミング、170,230,330 溶射粉末材料投入管、171,231,331 投入口、172,232,332 制御線、173,233,333 制御装置、181,182,241,242,341,342 サーモグラフィカメラ、183,243,343 通信線、210 陽極、220 陰極、221 作動ガス PA plasma arc, PD arc discharge, PJ plasma jet, M substrate, C coating, 100, 200, 300 plasma spraying apparatus, 101, 102 main power source, 111, 112, 310 anode torch, 113, 114 argon supply pipe, 120 , 320 Cathode torch, 130 Argon supply pipe, 140 Secondary gas supply pipe, 150 Accelerator nozzle, 160 Plasma trimming, 170, 230, 330 Thermal spray powder material input pipe, 171, 231, 331 Input port, 172, 232, 332 Control Wire, 173, 233, 333 control device, 181, 182, 241, 242, 341, 342 thermography camera, 183, 243, 343 communication line, 210 anode, 220 cathode, 221 working gas

Claims (7)

プラズマアーク中又はプラズマジェット中に投入され、溶融された溶射粉末材料を吹き付けることにより、基材表面に前記溶射粉末材料の皮膜を形成させるプラズマ溶射装置であって、
前記プラズマアーク中又は前記プラズマジェット中に前記溶射粉末材料を投入する溶射粉末材料投入管と、
前記プラズマアーク又は前記プラズマジェットの温度分布を計測する温度分布計測手段と、
前記温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させる制御手段と、
を備えるプラズマ溶射装置。
A plasma spraying apparatus that forms a coating of the thermal spraying powder material on the surface of the substrate by spraying the melted thermal spraying powder material into a plasma arc or a plasma jet,
A thermal spray powder material charging tube for charging the thermal spray powder material into the plasma arc or the plasma jet;
Temperature distribution measuring means for measuring the temperature distribution of the plasma arc or the plasma jet;
Control means for moving the inlet of the thermal spray powder material inlet tube to the highest temperature region of the temperature distribution;
A plasma spraying apparatus comprising:
前記温度分布計測手段が、サーモグラフィカメラであることを特徴とする請求項1に記載のプラズマ溶射装置。   The plasma spraying apparatus according to claim 1, wherein the temperature distribution measuring means is a thermography camera. 前記サーモグラフィカメラを複数備え、
前記複数のサーモグラフィカメラは、異なる方向から前記プラズマアーク又は前記プラズマジェットの二次元温度分布をそれぞれ計測できるように設置されており、
前記制御手段は、前記複数のサーモグラフィカメラによって計測された前記複数の二次元温度分布から三次元温度分布を作成し、前記三次元温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させることを特徴とする請求項2に記載のプラズマ溶射装置。
A plurality of the thermographic cameras;
The plurality of thermographic cameras are installed so as to be able to measure the two-dimensional temperature distribution of the plasma arc or the plasma jet from different directions, respectively.
The control means creates a three-dimensional temperature distribution from the plurality of two-dimensional temperature distributions measured by the plurality of thermographic cameras, and sets the inlet of the thermal spray powder material inlet tube in the highest temperature region of the three-dimensional temperature distribution. The plasma spraying apparatus according to claim 2, wherein the plasma spraying apparatus is moved.
前記サーモグラフィカメラを2台備え、
前記2台のサーモグラフィカメラは、前記プラズマアーク又は前記プラズマジェットの中心軸に対して真上と真横に設置され、異なる方向から前記プラズマアーク又は前記プラズマジェットの二次元温度分布をそれぞれ計測できるように設置されており、
前記制御手段は、前記2台のサーモグラフィカメラによって計測された2つの二次元温度分布データから三次元温度分布データを作成し、前記三次元温度分布データの最高温度領域に前記溶射粉末材料投入管の投入口を移動させることを特徴とする請求項2に記載のプラズマ溶射装置。
Two thermographic cameras,
The two thermographic cameras are installed directly above and next to the central axis of the plasma arc or the plasma jet so that two-dimensional temperature distributions of the plasma arc or the plasma jet can be measured from different directions, respectively. Installed,
The control means creates three-dimensional temperature distribution data from the two two-dimensional temperature distribution data measured by the two thermographic cameras, and the spray powder material injection tube is placed in the highest temperature region of the three-dimensional temperature distribution data. The plasma spraying apparatus according to claim 2, wherein the inlet is moved.
前記温度分布は、三次元温度分布であり、
前記制御手段は、前記三次元温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動させることを特徴とする請求項1に記載のプラズマ溶射装置。
The temperature distribution is a three-dimensional temperature distribution;
2. The plasma spraying apparatus according to claim 1, wherein the control unit moves an inlet of the sprayed powder material input tube to a maximum temperature region of the three-dimensional temperature distribution.
前記温度分布計測手段は、前記温度分布を連続計測し、
前記制御手段は、前記温度分布の最高温度領域の変化に基づいて前記溶射粉末材料投入管の投入口を移動させることを特徴とする請求項1〜5のいずれかに記載のプラズマ溶射装置。
The temperature distribution measuring means continuously measures the temperature distribution,
The plasma spraying apparatus according to any one of claims 1 to 5, wherein the control means moves an inlet of the thermal spray powder material inlet pipe based on a change in a maximum temperature region of the temperature distribution.
溶射粉末材料投入管からプラズマアーク又はプラズマジェットに投入され、溶融された溶射粉末材料を吹き付けることにより、基材表面に前記溶射粉末材料の皮膜を形成させるプラズマ溶射装置の制御方法であって、
前記プラズマアーク又は前記プラズマジェットの温度分布を計測する工程と、
前記温度分布の最高温度領域に前記溶射粉末材料投入管の投入口を移動する工程と、
を含むことを特徴とするプラズマ溶射装置の制御方法。
A method for controlling a plasma spraying apparatus in which a coating of the sprayed powder material is formed on the surface of a substrate by spraying the melted sprayed powder material, which is charged into a plasma arc or a plasma jet from a sprayed powder material charging tube,
Measuring a temperature distribution of the plasma arc or the plasma jet;
Moving the inlet of the thermal spray powder material inlet tube to the highest temperature region of the temperature distribution;
A method for controlling a plasma spraying apparatus, comprising:
JP2011272560A 2011-12-13 2011-12-13 Plasma spraying apparatus and control method thereof Expired - Fee Related JP5496992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272560A JP5496992B2 (en) 2011-12-13 2011-12-13 Plasma spraying apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011272560A JP5496992B2 (en) 2011-12-13 2011-12-13 Plasma spraying apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2013124378A true JP2013124378A (en) 2013-06-24
JP5496992B2 JP5496992B2 (en) 2014-05-21

Family

ID=48775833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272560A Expired - Fee Related JP5496992B2 (en) 2011-12-13 2011-12-13 Plasma spraying apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5496992B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015042196A1 (en) * 2013-09-18 2015-03-26 Applied Materials, Inc. Plasma spray coating enhancement using plasma flame heat treatment
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US9343289B2 (en) 2012-07-27 2016-05-17 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US10501843B2 (en) 2013-06-20 2019-12-10 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
KR20200135610A (en) 2019-05-22 2020-12-03 주식회사 에스유케이 Injection apparatus for external plasma spray gun
KR20200135611A (en) 2019-05-22 2020-12-03 주식회사 에스유케이 Injection apparatus for internal plasma spray gun
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118232A (en) * 1977-03-25 1978-10-16 Sumitomo Chem Co Ltd Plasma-jet flame coating method
JPH07268596A (en) * 1994-03-30 1995-10-17 Matsushita Electric Ind Co Ltd Thermal spraying device and thermal spraying method
JPH08127857A (en) * 1994-11-01 1996-05-21 Matsushita Electric Ind Co Ltd Thermal spraying torch and thermal spraying method
JPH10152766A (en) * 1996-11-26 1998-06-09 Mitsubishi Heavy Ind Ltd Plasma spraying torch
JP2003534457A (en) * 2000-05-23 2003-11-18 ヨーマ・ケミカル・アー・エス Materials for forming corrosion-resistant and wear-resistant layers by thermal spraying and methods of forming the same
JP2005194599A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Plasma spraying apparatus and method for detecting temperature of spray particle in the apparatus
JP2007231346A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Thermal spraying method
JP2009161848A (en) * 2007-12-10 2009-07-23 Densho Engineering Co Ltd Method for manufacturing inner member of plasma treatment vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118232A (en) * 1977-03-25 1978-10-16 Sumitomo Chem Co Ltd Plasma-jet flame coating method
JPH07268596A (en) * 1994-03-30 1995-10-17 Matsushita Electric Ind Co Ltd Thermal spraying device and thermal spraying method
JPH08127857A (en) * 1994-11-01 1996-05-21 Matsushita Electric Ind Co Ltd Thermal spraying torch and thermal spraying method
JPH10152766A (en) * 1996-11-26 1998-06-09 Mitsubishi Heavy Ind Ltd Plasma spraying torch
JP2003534457A (en) * 2000-05-23 2003-11-18 ヨーマ・ケミカル・アー・エス Materials for forming corrosion-resistant and wear-resistant layers by thermal spraying and methods of forming the same
JP2005194599A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Plasma spraying apparatus and method for detecting temperature of spray particle in the apparatus
JP2007231346A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Thermal spraying method
JP2009161848A (en) * 2007-12-10 2009-07-23 Densho Engineering Co Ltd Method for manufacturing inner member of plasma treatment vessel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US11279661B2 (en) 2012-02-22 2022-03-22 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US9343289B2 (en) 2012-07-27 2016-05-17 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US10734202B2 (en) 2013-06-05 2020-08-04 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US11053581B2 (en) 2013-06-20 2021-07-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US11680308B2 (en) 2013-06-20 2023-06-20 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10501843B2 (en) 2013-06-20 2019-12-10 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10468235B2 (en) 2013-09-18 2019-11-05 Applied Materials, Inc. Plasma spray coating enhancement using plasma flame heat treatment
WO2015042196A1 (en) * 2013-09-18 2015-03-26 Applied Materials, Inc. Plasma spray coating enhancement using plasma flame heat treatment
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
KR20200135611A (en) 2019-05-22 2020-12-03 주식회사 에스유케이 Injection apparatus for internal plasma spray gun
KR20200135610A (en) 2019-05-22 2020-12-03 주식회사 에스유케이 Injection apparatus for external plasma spray gun

Also Published As

Publication number Publication date
JP5496992B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5496992B2 (en) Plasma spraying apparatus and control method thereof
CN106061716B (en) Nozzle, stacking styling apparatus and the manufacturing method that moulder is laminated
CN104651832B (en) Surface remediation process for large-size metallic component
JP5597652B2 (en) Plasma torch with side injector
WO2019000523A1 (en) Method and device for rapidly forming component using combined arc fused deposition and laser impact forging
JP5690891B2 (en) Axial feed type plasma spraying equipment
CN113352012B (en) Bypass plasma arc twin-wire composite additive manufacturing device and method
US20130236652A1 (en) Plasma Systems and Methods Including High Enthalpy And High Stability Plasmas
JP2014199821A (en) Hybrid plasma-cold spray method and apparatus
CN104493166A (en) Method for quickly forming metal component through laminar direct-current plasma torch
CN110394536A (en) A kind of induction fusing wire intelligent robot increasing material manufacturing method
Miao et al. Experimental study on the characteristics of a miniature laminar plasma torch with different gas flow patterns
US7842898B2 (en) Variable orifice torch
CN104889570A (en) Quick forming device and method based on femtosecond laser and ion beam composite technology
Li et al. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode
CN112792456B (en) Electric arc additive manufacturing method and system based on laser stabilized molten pool size
TWI684741B (en) Active dissipating heat uniformly system
Mauer et al. Preliminary study on the TriplexPro™-200 gun for atmospheric plasma spraying of yttria-stabilized zirconia
CN108746623A (en) It is a kind of to produce cylindrical or tubular bimetallic parts methods and apparatus
Boselli et al. Time-dependent modeling of droplet detachment in GMAW including metal vapor diffusion
US20210178507A1 (en) Volumetric plasma gas flow measurement and control system for metal-based wire-plasma arc additive manufacturing applications
KR101491498B1 (en) Arc spray apparatus
JP2005194599A (en) Plasma spraying apparatus and method for detecting temperature of spray particle in the apparatus
JP2016143533A (en) Plasma spray apparatus
CN107636175A (en) For being heat-treated the system and method based on laser in column of continuous product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees