JP2013120814A - Heat radiation structure - Google Patents

Heat radiation structure Download PDF

Info

Publication number
JP2013120814A
JP2013120814A JP2011267523A JP2011267523A JP2013120814A JP 2013120814 A JP2013120814 A JP 2013120814A JP 2011267523 A JP2011267523 A JP 2011267523A JP 2011267523 A JP2011267523 A JP 2011267523A JP 2013120814 A JP2013120814 A JP 2013120814A
Authority
JP
Japan
Prior art keywords
heat
resin layer
heat dissipation
conductive filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011267523A
Other languages
Japanese (ja)
Inventor
Masaji Furukawa
正司 古川
Ritsuko Mitsunaga
律子 満永
Miyoko Hiramine
美代子 平峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATSUMA SOKEN KK
Iwatani Electronics Corp
Original Assignee
SATSUMA SOKEN KK
Iwatani Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATSUMA SOKEN KK, Iwatani Electronics Corp filed Critical SATSUMA SOKEN KK
Priority to JP2011267523A priority Critical patent/JP2013120814A/en
Publication of JP2013120814A publication Critical patent/JP2013120814A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems of a conventional joining method that gaps occur due to irregularities of a heating element and warpage of a radiator, resulting in difficulty in heat transmission and extra labor in second processing.SOLUTION: In a heat radiation structure, a high heat conduction flexible resin is applied to an attachment surface between a heating unit and a radiator to form a heat radiation resin layer and the heat radiation resin layer is hardened. The heat radiation resin layer is hardened to the extent that the layer is compressed by a load applied by a compression member to reduce the thickness and quickly transmits heat from the heating unit to the radiator. Further, disposing an insulation spacer on the high heat conduction flexible resin, which requires insulation properties, allows the high heat conduction soft resin to maintain the insulation properties.

Description

本発明は、電子機器の発熱体の速やかな伝熱による冷却に用いられる放熱構造体に関するものである。   The present invention relates to a heat dissipating structure used for cooling a heat generating element of an electronic device by rapid heat transfer.

近年、電子機器、特にLEDやコンピューターの性能向上は目覚ましい一方、その軽量小型化による高密度実装製品の発熱量の増大に対して、放熱対策が重要となっている。特にLEDの高輝度化は目覚ましいが、消費電力の80%が熱になるため、局部熱によりLEDの寿命の低下と最悪の場合火災の懸念もあることから、LED基板からの速やかな伝熱による冷却が重要な問題とされている。この解決策として、電子機器の発熱部(以後発熱体と表記する)から放熱体を用いて素早く発熱部の熱を外部に放出させたり、直接筺体を通して熱を外部に放出させたりすることが一般的である。放熱体とは、ヒートシンクに代表される表面積を広げた、熱伝導率が高い金属で構成されるものである。   In recent years, while the performance of electronic devices, particularly LEDs and computers, has been remarkably improved, heat dissipation measures have become important against the increase in the amount of heat generated by high-density mounting products due to the reduction in weight and size. Although the increase in brightness of LEDs is particularly remarkable, 80% of the power consumption becomes heat, so there is a concern that local heat will reduce the life of the LEDs and in the worst case there will be a fire. Cooling is an important issue. As a solution to this, it is common to quickly release the heat of the heat generating part to the outside from the heat generating part (hereinafter referred to as a heat generating element) of the electronic device or to directly release the heat to the outside directly through the housing. Is. The heat radiator is made of a metal having a high heat conductivity and a wide surface area represented by a heat sink.

発熱体と放熱体を接合する方法については圧縮部材による接合と、接着剤による接合が一般的である。圧縮部材による接合の場合、発熱体の凹凸や放熱体の反りにより空隙部が生じて伝熱が十分でないことから、空隙部にサーマルグリスや放熱シートを挟み込んで空隙部を埋めることが一般的である。接合に用いられる接着剤については、エポキシ樹脂系やシリコーン樹脂系が多く使用されている。   As a method for joining the heat generating body and the heat radiating body, joining by a compression member and joining by an adhesive are generally used. In the case of joining with a compression member, since gaps are generated due to unevenness of the heating elements and warping of the radiator, heat transfer is not sufficient, so it is common to fill the gaps by sandwiching thermal grease or a heat dissipation sheet in the gaps. is there. As the adhesive used for joining, an epoxy resin type or a silicone resin type is often used.

特開2006−190004号公報JP 2006-190004 A

しかしながら、従来の接合方式では以下に示す課題がある。圧縮部材のみでの接合では、前述通り空隙部が生じて伝熱が十分でない。一方、空隙部を埋めるためのサーマルグリスや放熱シートの挟み込みについては追加作業が多く、以下の課題がある。まず、サーマルグリスにおいては、その出来栄えによる品質バラツキと、長期使用におけるサーマルグリス自体の劣化及び部分的移動による伝熱の低下である。放熱シートにおいては、切断や穴あけの工程と空隙部が生じない様に貼り合わせる良好な作業性が必要であり。その貼り合わせ時の作業性(シワ等を防止する)のためにシートが厚くなり、熱抵抗が大きくなる。熱伝導率も1W/m・Kから5W/m・Kとそれ程高くない。よって、伝熱が十分ではなく、むしろ絶縁破壊抵抗を上げることが主な目的となっている。   However, the conventional bonding method has the following problems. In the joining with only the compression member, a void portion is generated as described above, and heat transfer is not sufficient. On the other hand, there are many additional operations for sandwiching the thermal grease and the heat radiation sheet for filling the gap, and there are the following problems. First, in the thermal grease, there are quality variations due to its quality, deterioration of the thermal grease itself in long-term use, and reduction in heat transfer due to partial movement. In the heat-dissipating sheet, it is necessary to have good workability for bonding so as not to cause a gap and a cutting and drilling process. The sheet becomes thick for workability (to prevent wrinkles and the like) at the time of bonding, and the thermal resistance increases. The thermal conductivity is not so high as 1 W / m · K to 5 W / m · K. Therefore, heat transfer is not sufficient, but rather the main purpose is to increase the dielectric breakdown resistance.

接着剤による接合は、取り外しが難しくリペアが問題であることと、接着作業性の出来栄えにより品質が安定しない課題を有している。150度を超える高温での硬化が必要とされる場合が多く、室温硬化では硬化までに数日要する場合もある。   Bonding with an adhesive has problems that it is difficult to remove and that repair is a problem, and that quality is not stable due to the workability of bonding work. In many cases, curing at a high temperature exceeding 150 degrees is required, and at room temperature curing, it may take several days to cure.

本発明は上記課題に鑑みてなされたもので、上記の従来手段によることなく速やかに発熱体から放熱体への伝熱を可能にするものである。高熱伝導柔軟樹脂を発熱体と放熱体の接合する部分或いは、放熱体の接触面に、伝熱に必要な最低必要量塗布して硬化することを特徴とする。高熱伝導柔軟樹脂には、導電性、絶縁性があり、用途によって使い分けることとする。(以下省略する)   The present invention has been made in view of the above-described problems, and enables heat transfer from a heating element to a heat dissipation element quickly without using the above-described conventional means. It is characterized in that a high heat conductive flexible resin is applied to a portion where the heat generating body and the heat radiating member are joined or a contact surface of the heat radiating body and applied and cured at a minimum necessary amount necessary for heat transfer. The high thermal conductive flexible resin has conductivity and insulation, and is used properly depending on the application. (Hereafter omitted)

特開2006−190004号公報による提案に関しては、放熱体(ヒートシンク)側の取り付け面に、室温で固化状態(以後、Bステージと表記)のエポキシ樹脂系の熱硬化型熱伝導性接着剤(以後、熱硬化型接着剤と表記)層が予め設けられていることを特徴とする、ヒートシンクと発熱体との取り付け方法である。「熱硬化型接着剤」層は、加熱して溶融させ、圧接し、接合する。この「熱硬化型接着剤」は、下記の課題を有している。ひとつは、接着作業性の出来栄えにより品質が安定しないということ、ひとつは、接着強度が高いというエポキシ樹脂ゆえに、応力緩和ができなくなり、著しく信頼性を損なうこと。さらに、熱硬化による接合なので、取り外しが難くリペアが困難であること、Bステージの「熱硬化型接着剤」は硬化温度が65度から200度の高温処理が必要になるというものである。本発明は、放熱構造体として既に放熱樹脂を取り付けた形態であり、取り付けられた樹脂自体は熱処理を行うことなく、圧縮部材による伝熱部接合するものである。   With regard to the proposal according to Japanese Patent Laid-Open No. 2006-190004, an epoxy resin-based thermosetting heat conductive adhesive (hereinafter referred to as B stage) is solidified at room temperature (hereinafter referred to as B stage) on the mounting surface on the radiator (heat sink) side. This is a method of attaching a heat sink and a heating element, characterized in that a layer is provided in advance. The “thermosetting adhesive” layer is heated and melted, pressed and joined. This “thermosetting adhesive” has the following problems. One is that the quality is not stable due to the workability of the adhesive workability, and the other is that the epoxy resin with high adhesive strength makes stress relaxation impossible and remarkably impairs reliability. Furthermore, since the bonding is performed by thermosetting, it is difficult to remove and repair, and the “thermosetting adhesive” of the B stage requires high-temperature treatment at a curing temperature of 65 to 200 degrees. The present invention is a form in which a heat-dissipating resin is already attached as a heat-dissipating structure, and the attached resin itself is joined to a heat transfer portion by a compression member without performing a heat treatment.

上記課題を解決するために、本発明に係る請求項1記載の発熱体、放熱体或いは放熱体の取り付け面に対して、高熱伝導柔軟樹脂が塗布されて放熱樹脂層が形成され、前記放熱樹脂層は硬化されていることを特徴とする放熱構造体。前記放熱構造体は、荷重を加えることにより圧縮され厚みが薄くなる程度に硬化する。   In order to solve the above-mentioned problem, a heat-dissipating resin layer is formed by applying a high heat-conducting flexible resin to the heating element, the heat-dissipating element or the mounting surface of the heat-dissipating element according to claim 1 according to the present invention. A heat dissipation structure characterized in that the layer is cured. The heat dissipating structure is cured by applying a load so as to be compressed and thinned.

発熱体或いは放熱体の取り付け面に、予めダムを形成して高熱伝導柔軟樹脂を流し込みや、発熱体と放熱体とを接合する部分或いは、放熱体の取り付け面に、伝熱に必要な最低必要量の高熱伝導柔軟樹脂を塗布、例えばスクリーン印刷して、硬化した構造なので、二次加工はそれらを圧縮部材にて機械接合だけでよく、取り付けが簡単である。   Form a dam in advance on the mounting surface of the heating element or radiator and pour high heat conductive flexible resin, or join the heating element and the radiator or the mounting surface of the radiator to the minimum required for heat transfer Since it is a structure in which an amount of a high heat conductive flexible resin is applied, for example, screen-printed and cured, the secondary processing only requires mechanical joining with a compression member, and is easy to install.

前述高熱伝導柔軟樹脂は、発熱体、放熱体の取り付け面に例えばスクリーン印刷を行い塗布する。それを硬化させ放熱樹脂層を形成する。   The high heat conductive flexible resin is applied by, for example, screen printing on the mounting surface of the heat generating body and the heat radiating body. It is cured to form a heat dissipation resin layer.

本発明に係る請求項6記載の絶縁スペーサーは、高熱伝導柔軟樹脂(絶縁性)に配合し、要求される絶縁耐圧を保持するために配置されていることを特徴とする。すなわち、使用される絶縁スペーサーは面を形成するために3か所以上に配置され、要求される絶縁耐圧を満たす厚みを保持している。使用する絶縁スペーサーは無機粉末とし、その直径は50μから1,000μとする。前記放熱樹脂層は、要求される絶縁耐圧を保持できる厚みの絶縁スペーサーを予め高熱伝導柔軟樹脂に配置する。一般的に絶縁耐圧50KVに対して絶縁破壊抵抗が1016Ωの絶縁シートにおいては0.5mmから1mm程度の絶縁スペーサーを配置する。 The insulating spacer according to the sixth aspect of the present invention is characterized in that it is blended with a high thermal conductive flexible resin (insulating property) and arranged to maintain a required withstand voltage. That is, the insulating spacers used are arranged at three or more places to form a surface, and have a thickness that satisfies the required withstand voltage. The insulating spacer to be used is an inorganic powder, and its diameter is 50 μ to 1,000 μ. In the heat-dissipating resin layer, an insulating spacer having a thickness capable of maintaining the required withstand voltage is disposed in advance on the high thermal conductive flexible resin. In general, an insulating spacer having a dielectric breakdown resistance of 10 16 Ω with respect to a dielectric breakdown voltage of 50 KV is provided with an insulating spacer of about 0.5 mm to 1 mm.

本発明に係る請求項7記載の高熱伝導柔軟樹脂は、その硬度がアスカーC95以下で、150度以上の耐熱および−25度以下の耐寒性を持つシリコーン樹脂で構成されていることを特徴とする。   The highly heat-conductive flexible resin according to claim 7 according to the present invention is characterized in that it is composed of a silicone resin having a hardness of Asker C95 or less, heat resistance of 150 degrees or more and cold resistance of -25 degrees or less. .

本発明に係る請求項2,3記載の放熱構造体を構成する高熱伝導柔軟樹脂は、シリコーン樹脂100重量部に対して、熱伝導フィラーは、単独或いは複合混合し、高熱伝導柔軟樹脂(導電性)には、熱伝導フィラーの金属微粉末(アルミニウム、銅)は、単体としての熱伝導率が15W/m・K以上の物を配合する。高熱伝導柔軟樹脂(絶縁性)には、熱伝導フィラーの無機微粉末(アルミナ、マグネシア、亜鉛華、シリコンカーバイト)は、単体としての熱伝導率が10W/m・K以上の物を配合する。尚、上記製品粒径は1μから100μのものとする。これら熱伝導フィラーを30重量部から800重量部配合することを特徴とする。また、熱伝導フィラーは熱伝導を高くするために球形、繊維状の形状とし、球形の熱伝導フィラーは、粒径が20μから100μの大粒径熱伝導フィラーと、粒径が100nmから19μの小粒径熱伝導フィラーから構成されていることを特徴とする。繊維状の熱伝導フィラーの直径は1μから50μ、長さは最大500ミクロンまでのものとする。   According to the second and third aspects of the present invention, the highly heat-conductive flexible resin constituting the heat dissipation structure is composed of 100 parts by weight of the silicone resin, and the heat-conductive filler is singly or in combination, and the high heat-conductive flexible resin (conductive ), The metal fine powder (aluminum, copper) of the heat conductive filler is blended with a material having a thermal conductivity of 15 W / m · K or more as a simple substance. The heat conductive filler inorganic fine powder (alumina, magnesia, zinc white, silicon carbide) is blended into the high heat conductive flexible resin (insulating) with a thermal conductivity of 10 W / m · K or more as a simple substance. . The product particle size is 1 μ to 100 μ. These heat conductive fillers are blended in an amount of 30 to 800 parts by weight. In addition, the heat conductive filler has a spherical or fibrous shape in order to increase heat conduction. The spherical heat conductive filler has a large particle size heat conductive filler having a particle size of 20 μm to 100 μm and a particle size of 100 nm to 19 μm. It is comprised from the small particle size heat conductive filler. The fibrous heat conductive filler has a diameter of 1 to 50 μ and a length of up to 500 microns.

本発明に係る請求項2,3記載の放熱構造体を構成する高熱伝導柔軟樹脂は、直径1μ以上でアスペクト比が5から40までの熱伝導フィラー及び1μから50μの前記熱伝導フィラーで構成されていることを特徴とする。   The highly heat-conductive flexible resin constituting the heat dissipation structure according to claims 2 and 3 of the present invention is composed of a heat-conductive filler having a diameter of 1 μm or more and an aspect ratio of 5 to 40 and the heat-conductive filler of 1 μm to 50 μm. It is characterized by.

以上説明したように、本発明に係る高熱伝導柔軟樹脂を硬化させ放熱樹脂層を形成し、圧縮部材で接合する方法にあっては、発熱体、放熱体の取り付け面に例えばスクリーン印刷等を行い塗布して硬化したものであり、その接合部の取り付けは圧縮部材の簡易的な機械接合だけでよく、取り付けが簡単で、取り付けコストも安い。又、使用環境が−30度から150度でも樹脂劣化が殆ど無く品質安定性に優れる。   As described above, in the method of curing the highly heat-conductive flexible resin according to the present invention to form a heat-dissipating resin layer and joining with a compression member, for example, screen printing or the like is performed on the heating element and the mounting surface of the heat-dissipating element. It is applied and hardened, and the joint can be attached only by simple mechanical joining of the compression member, the attachment is simple, and the attachment cost is low. Further, even if the use environment is from -30 degrees to 150 degrees, there is almost no resin deterioration, and the quality stability is excellent.

本発明に係る高熱伝導柔軟樹脂は、伝熱に必要な最低必要量の厚みで塗布及び硬化されているので、例えば、接着或いはサーマルグリスの様な接合面の塗布等の作業は不要となり、放熱シートの様な追加作業(切断、貼り合わせ)もなくなる。   Since the high thermal conductive flexible resin according to the present invention is applied and cured with the minimum necessary thickness necessary for heat transfer, for example, an operation such as adhesion or application of a joint surface such as thermal grease is not required, and heat dissipation is performed. There is no additional work (cutting, bonding) like a sheet.

本発明に係る高熱伝導柔軟樹脂の塗布量は、接合する表面形状及び反りなどによる空隙部を評価して伝熱について最適化されるため、最低必要量の厚みで接合する。圧縮部材にて機械接合され、その結果熱抵抗は塗布された高熱伝導柔軟樹脂の速やかな伝熱により最少の値を取ることが出来る。   Since the application amount of the high thermal conductive flexible resin according to the present invention is optimized for heat transfer by evaluating the voids due to the surface shape and warpage to be joined, the joining is performed with the minimum required thickness. It is mechanically joined by the compression member, and as a result, the thermal resistance can be minimized by the rapid heat transfer of the applied high heat conductive flexible resin.

本発明に係る絶縁性の高熱伝導柔軟樹脂に絶縁スペーサーを配置することにより、放熱樹脂層は要求される絶縁耐圧を保持することができる。例えば雷サージ等の過大な電圧がかかった場合でも、その絶縁距離を保持することにより、電子回路破壊等を防止することが可能であり、屋外における使用にも対応できる。   By disposing the insulating spacer in the insulating high heat conductive flexible resin according to the present invention, the heat radiation resin layer can maintain the required withstand voltage. For example, even when an excessive voltage such as a lightning surge is applied, by maintaining the insulation distance, it is possible to prevent an electronic circuit from being destroyed and the like and can be used outdoors.

本発明に係る高熱伝導柔軟樹脂は、柔軟で密着性に優れていることから、発熱体、放熱体と樹脂の間に空隙の介在を最少化出来るため、速やかな伝熱が得られる。   Since the highly heat-conductive flexible resin according to the present invention is flexible and excellent in adhesiveness, it is possible to minimize the presence of voids between the heat generating body, the heat radiating body, and the resin, so that quick heat transfer is obtained.

本発明に係る高熱伝導柔軟樹脂は、異なる形状や大きさの熱伝導フィラーを最密充填することで、熱伝導フィラー同士が、面や点で多く接触する様に構成されており、取り付け時点での圧縮部材による圧縮により伝熱経路が増加する。   The high thermal conductive flexible resin according to the present invention is configured so that the thermal conductive fillers are in close contact with each other in terms of surfaces and points by closely packing the thermal conductive fillers of different shapes and sizes. The heat transfer path is increased by the compression by the compression member.

本発明に係る高熱伝導柔軟樹脂は、熱伝導フィラーの一部がアスペクト比の大きい繊維状熱伝導フィラーから構成されており、更にその充填を円滑にする球形熱伝導フィラーから構成されている。このため、圧縮部材の圧縮によりその接触点は厚み(Z)方向により多く発生することから、厚み(Z)方向への伝熱が速やかになる。   In the high thermal conductive flexible resin according to the present invention, a part of the thermal conductive filler is composed of a fibrous thermal conductive filler having a large aspect ratio, and is further composed of a spherical thermal conductive filler that facilitates the filling. For this reason, since more contact points are generated in the thickness (Z) direction due to compression of the compression member, heat transfer in the thickness (Z) direction is accelerated.

本発明の一実施形態を示すもので、発熱体と放熱体を圧縮部材で圧縮して結合させた構造を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating a structure in which a heating element and a heat radiating body are compressed and combined by a compression member, according to an embodiment of the present invention. 発熱体、放熱体に高熱伝導柔軟樹脂を設ける手順を示す図である。It is a figure which shows the procedure which provides high heat conductive flexible resin in a heat generating body and a heat radiator. 本発明の一実施形態を示すもので、粒径の異なる熱伝導フィラーを配合して硬化した放熱樹脂層を圧縮部材で圧縮した場合の、熱伝導フィラーの内部充填状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating an internal filling state of a heat conductive filler when a heat radiating resin layer that is blended and cured with heat conductive fillers having different particle sizes is compressed with a compression member according to an embodiment of the present invention. 本発明の一実施形態を示すもので、アスペクト比の大きい繊維状熱伝導フィラーと球形熱伝導フィラーを配合した放熱樹脂層が、圧縮部材で圧縮された時の内部充填状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an internal filling state when a heat radiating resin layer containing a fibrous heat conductive filler having a large aspect ratio and a spherical heat conductive filler is compressed by a compression member according to an embodiment of the present invention. . 本発明の一実施形態を示すもので、高熱伝導柔軟樹脂に絶縁性が求められる用途について、放熱樹脂層に絶縁スペーサーを配置し、圧縮部材で圧縮した状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating a state in which an insulating spacer is disposed in a heat-dissipating resin layer and compressed by a compression member for an application in which insulation is required for a high thermal conductive flexible resin according to an embodiment of the present invention.

本発明に係る放熱構造体の実施形態を、図面を参照して説明する。   An embodiment of a heat dissipation structure according to the present invention will be described with reference to the drawings.

図1は発熱体と放熱体を圧縮部材で圧縮して結合させた構造を示す断面図である。   FIG. 1 is a cross-sectional view showing a structure in which a heating element and a heat radiating body are compressed and combined by a compression member.

図1の放熱樹脂層(符号3)は発熱体、放熱体の伝熱部分に50%以上の面積で塗布され伝熱に必要とされる最低必要量の厚みで硬化される。   The heat-dissipating resin layer (reference numeral 3) in FIG. 1 is applied to the heat transfer portion of the heat generating body and the heat dissipating body in an area of 50% or more and cured with the minimum required thickness required for heat transfer.

図1の放熱樹脂層(符号3)は、そのバインダーになる部分が高信頼性樹脂であるシリコーン樹脂からなり、樹脂100重量部に対して熱伝導フィラーを単独或いは数種類の混合品で30重量部から800重量部まで充填する。他に界面活性剤、沈殿防止剤を加えて物性及び作業性を改善する。   The heat-dissipating resin layer (reference numeral 3) in FIG. 1 is made of a silicone resin, which is a highly reliable resin, and the heat-conducting filler alone or several kinds of mixed products is 30 parts by weight with respect to 100 parts by weight of the resin. To 800 parts by weight. In addition, surfactants and suspending agents are added to improve physical properties and workability.

図2は、発熱体、放熱体の接合部分に高熱伝導柔軟樹脂を塗布させ硬化させる手順を示している。
・ まず、上記材料を所定の配合比で混合し、高熱伝導柔軟樹脂を作成する。
・ 次に、高熱伝導柔軟樹脂を、発熱体、放熱体の取り付け面に30μから200μの厚みに塗布加工する。塗布加工には、一般にスクリーン印刷と流し込みがある。発熱体、放熱体の反りにより空隙部が生じると想定される場合や、更に厚みが必要とされた場合、高熱伝導柔軟樹脂を仮乾燥して後、数回塗布加工し、最低必要量で厚みの放熱樹脂層を形成する。また、必要部にダムを形成して高熱伝導柔軟樹脂を流し込むことも可能である。
・ 絶縁厚みが必要な場合、一次塗布加工した後、絶縁スペーサーを配置し、その後、数回塗布加工する。また、必要部にダムを形成して高熱伝導柔軟樹脂を流し込むことも可能である。
・ 最終加工された高熱伝導柔軟樹脂は室温から150度の範囲で熱硬化される。
FIG. 2 shows a procedure in which a high thermal conductive flexible resin is applied to the joining portion of the heat generator and the heat radiator and cured.
First, the above materials are mixed at a predetermined blending ratio to create a high thermal conductive flexible resin.
Next, the high heat conductive flexible resin is applied and processed to a thickness of 30 μm to 200 μm on the mounting surface of the heat generating body and the heat radiating body. Application processing generally includes screen printing and pouring. When it is assumed that voids are generated due to warping of the heating element and heat dissipation body, or when further thickness is required, the high thermal conductive flexible resin is temporarily dried and then applied and processed several times. The heat dissipation resin layer is formed. It is also possible to form a dam in the necessary part and pour the highly heat conductive flexible resin.
-If insulation thickness is required, after applying the primary coating, place an insulating spacer, and then apply the coating several times. It is also possible to form a dam in the necessary part and pour the highly heat conductive flexible resin.
The final processed high thermal conductive flexible resin is thermally cured in the range of room temperature to 150 degrees.

図3は、粒径の異なる熱伝導フィラーを配合して硬化した放熱樹脂層を、圧縮部材で圧縮した構造を示す断面図である。大粒径熱伝導フィラー(符号5)と小粒径熱伝導フィラー(符号6)の様に異なる粒径の熱伝導フィラーを配合することで、放熱樹脂層に占める熱伝導フィラーの充填率は50%から72%まで増加し、伝熱経路も隣接する大粒径と小粒径の熱伝導フィラーを混在させることにより、接触点は2倍から3倍に増加する。同じ粒径の場合、充填率は実情50%が限度となるが、隙間の部分に小粒径の熱伝導フィラーを埋め込むことで充填率が72%となる。   FIG. 3 is a cross-sectional view showing a structure in which a heat-dissipating resin layer cured by blending thermally conductive fillers having different particle sizes is compressed with a compression member. By blending heat conductive fillers having different particle diameters such as large particle size heat conductive filler (symbol 5) and small particle size heat conductive filler (symbol 6), the filling rate of the heat conductive filler in the heat radiation resin layer is 50. % To 72%, and the heat transfer path is increased by 2 to 3 times by mixing the adjacent large and small heat conductive fillers. In the case of the same particle size, the actual filling rate is limited to 50%, but the filling rate becomes 72% by embedding a heat conductive filler having a small particle size in the gap.

図4は、アスペクト比の大きい繊維状熱伝導フィラー(符号7)と滑易さを加味するため球形熱伝導フィラー(符号8)を配合し、硬化させた放熱樹脂層を、圧縮部材で圧縮して接合させた構造を示している。アスペクト比が大きいために、例えば繊維状熱伝導フィラーの場合、無数の隣接点を持ちながら伝熱経路をX,Y,Z方向に形成するが、厚み(Z)方向に無秩序に沈殿する。球形熱伝導フィラーは、アスペクト比の大きい繊維状熱伝導フィラーを均一分散させるために必要とされる。球形熱伝導フィラーの機能は繊維状熱伝導フィラーを滑らせて動かすことによって均一に分散させる「ころ」の様な役割をする。厚み(Z)方向とは、発熱体から放熱体へ向かう方向を指す。X,Y方向は厚み(Z)方向に垂直な面を指す。   FIG. 4 shows a fibrous heat conductive filler having a large aspect ratio (symbol 7) and a spherical heat conductive filler (symbol 8) in order to add slidability, and the cured heat radiation resin layer is compressed by a compression member. This shows the structure joined together. Since the aspect ratio is large, for example, in the case of a fibrous heat conductive filler, heat transfer paths are formed in the X, Y, and Z directions while having innumerable adjacent points, but deposits randomly in the thickness (Z) direction. The spherical heat conductive filler is required for uniformly dispersing the fibrous heat conductive filler having a large aspect ratio. The spherical heat conductive filler functions like a “roller” that uniformly disperses by sliding and moving the fibrous heat conductive filler. The thickness (Z) direction refers to the direction from the heating element toward the heat dissipation element. The X and Y directions indicate a plane perpendicular to the thickness (Z) direction.

図5は、高熱伝導樹脂層に絶縁性が求められる用途について、放熱樹脂層に無機粉末の絶縁スペーサー(符号9)を配置し、圧縮部材で圧縮した構造を示す断面図である。使用される絶縁スペーサー(符号9)は、面を形成するために3か所以上に配置され、要求される絶縁耐圧に耐える最低絶縁厚みを保持することを特徴とする。   FIG. 5 is a cross-sectional view showing a structure in which an insulating spacer (symbol 9) made of inorganic powder is disposed in a heat-dissipating resin layer and compressed with a compression member for applications where insulation is required for the high thermal conductive resin layer. The insulating spacers (reference numeral 9) used are arranged at three or more places to form a surface, and are characterized by maintaining a minimum insulating thickness that can withstand a required withstand voltage.

以上のことから分かるように放熱樹脂層は圧縮部材により圧縮され適度な荷重をかけることによって、厚みが薄くなる程度の硬度を有する物とする。圧縮部材で放熱樹脂層を圧縮することによって熱伝導フィラーの接触点が増加し、伝熱経路が形成され、伝熱が速やかになる。尚、図1では圧縮部材は、放熱樹脂層を圧縮できるものであれば何でもよく、ねじ、クリップでもよい。   As can be seen from the above, the heat-dissipating resin layer is compressed by the compression member and applied with an appropriate load so as to have a hardness that can reduce the thickness. By compressing the heat-dissipating resin layer with the compression member, the contact point of the heat conductive filler increases, a heat transfer path is formed, and heat transfer is accelerated. In FIG. 1, the compression member may be anything as long as it can compress the heat dissipation resin layer, and may be a screw or a clip.

本発明者は、表1(導電性高熱伝導柔軟樹脂)、表2(絶縁性高熱伝導柔軟樹脂)のとおり材料、配合比で調合された熱伝導柔軟樹脂(導電性、絶縁性の2つ)を、金属板に対し、塗布厚み300μで25.4mm角に塗布し、80度、1時間硬化させた。それらの試料で定加速試験の後に、碁盤試験(100等分)を行った。加速試験とは、100度2時間煮沸試験と、150度24時間の耐熱試験及び−30度24時間の低温放置試験のことである。
The inventor of the present invention is a heat conductive flexible resin (two conductive and insulating materials) prepared according to a material and a mixing ratio as shown in Table 1 (conductive high heat conductive flexible resin) and Table 2 (insulating high heat conductive flexible resin). Was applied to a metal plate in a 25.4 mm square with a coating thickness of 300 μm and cured at 80 ° C. for 1 hour. After the constant acceleration test on these samples, a board test (100 equal parts) was performed. The accelerated test is a boiling test at 100 degrees for 2 hours, a heat resistance test at 150 degrees for 24 hours, and a low temperature standing test at -30 degrees for 24 hours.

表3は以下の試験の結果を表わすものである。25.4mm角の金属板に高熱伝導柔軟樹脂(導電性、絶縁性)をそれぞれ塗布し硬化した物を、鋭利な刃物で樹脂の部分のみを100個に均等に金属板に届くまで切断した試料につき以下の試験を行い、その後スコッチテープで樹脂表面を粘着させてから剥離した時に、金属板から剥離しなかった数を示すものである。加速試験の後に、碁盤試験(100等分)を行った。加速試験としては100度2時間煮沸試験と、150度24時間耐熱試験と、−30度24時間低温放置試験のことである。表3からわかるように、各種加速試験を行っても、塗膜としての信頼性は非常に高いことが確認出来た。又、表1の熱伝導率については9W/m・K、表2の製品の熱伝導率については、3W/m・Kと非常に高く、従来の一般の放熱シートの熱伝導率が1W/m・Kから2W/m・K、に対して1.5倍から4.5倍に改善出来た。更にその硬度については表1の組成品についてはアスカーCで15、表2の組成品についてはアスカーCで25と非常に低い硬度が実現でき、柔軟で密着性に優れていることから、発熱体、放熱体と樹脂の間に空隙の介在が最少化出来るため、接合される相手面との密着が可能となり、速やかな伝熱が得られる。更に圧縮部材で圧縮されることにより伝熱が30%改善出来た。   Table 3 represents the results of the following tests. A sample obtained by applying and curing a high thermal conductive flexible resin (conductive and insulating) to a metal plate of 25.4 mm square and cutting it with a sharp blade until only the resin part reaches the metal plate evenly. The following test is performed, and when the resin surface is adhered with a scotch tape and then peeled off, the number that does not peel off from the metal plate is shown. A board test (100 equal parts) was performed after the acceleration test. The acceleration test includes a boiling test at 100 ° C. for 2 hours, a heat resistance test at 150 ° C. for 24 hours, and a low temperature standing test at −30 ° C. for 24 hours. As can be seen from Table 3, even when various acceleration tests were performed, it was confirmed that the reliability as a coating film was very high. Further, the thermal conductivity of Table 1 is 9 W / m · K, and the thermal conductivity of the products of Table 2 is 3 W / m · K, which is very high. From m · K to 2 W / m · K, it was improved from 1.5 times to 4.5 times. Furthermore, the hardness of the composition in Table 1 is 15 for Asker C, and the composition of Table 2 is 25 for Asker C, which is flexible and excellent in adhesion. In addition, since the interposition of voids between the heat radiating body and the resin can be minimized, it is possible to make close contact with the mating mating surface and to obtain quick heat transfer. Furthermore, the heat transfer was improved by 30% by being compressed by the compression member.

本発明に係る高熱伝導柔軟樹脂の接合方法については、放熱樹脂層が圧縮部材により圧縮されることにより、伝熱が速やかになる。放熱樹脂層の加工においては、高熱伝導柔軟樹脂の塗布量を、接合する表面形状及び反りなどによる空隙部を評価して最低必要量の厚みで最適化することで、最低必要量にすることで、材料費が抑えられ、二次加工がわずかですむ。すなわち、発熱体から放熱体への伝熱が向上するとともに、費用と時間が抑えられ、放熱部材として多種多様な利用が可能である。   About the joining method of the high heat conductive flexible resin which concerns on this invention, heat transfer becomes quick because a thermal radiation resin layer is compressed by a compression member. In processing the heat dissipation resin layer, the amount of application of the high thermal conductive flexible resin can be optimized to the minimum required amount by evaluating the gap due to the surface shape and warpage to be joined. Material costs are reduced and secondary processing is minimal. That is, heat transfer from the heating element to the heat radiating body is improved, cost and time are reduced, and a wide variety of uses as a heat radiating member is possible.

1 放熱体
2 圧縮部材
3 放熱樹脂層
4 発熱体
5 20μm以上100μm以下の大粒径熱伝導フィラー
6 100nm以上20μm未満の小粒径熱伝導フィラー
7 アスペクト比5以上40以下の繊維状熱伝導フィラー
8 球形熱伝導フィラー
9 絶縁スペーサー
DESCRIPTION OF SYMBOLS 1 Heat radiation body 2 Compression member 3 Heat radiation resin layer 4 Heat generating body 5 Large particle size heat conductive filler of 20 μm or more and 100 μm or less 6 Small particle size heat conductive filler of 100 nm or more and less than 20 μm 7 Fibrous heat conductive filler having an aspect ratio of 5 or more and 40 or less 8 Spherical heat conductive filler 9 Insulating spacer

Claims (7)

発熱体と放熱体との取り付け面に対して、高熱伝導柔軟樹脂が塗布されて放熱樹脂層が形成され、前記放熱樹脂層は、荷重を加えることにより圧縮されて厚みが薄くなる程度に硬化されていることを特徴とする放熱構造体。   High heat conductive flexible resin is applied to the mounting surface of the heat generating body and the heat radiating body to form a heat radiating resin layer, and the heat radiating resin layer is cured to a thickness that is compressed and thinned by applying a load. A heat dissipation structure characterized by that. 前記放熱樹脂層には、前記発熱体から前記放熱体への伝熱を速やかにするための熱伝導フィラーが含まれており、前記熱伝導フィラーは、粒径が20μm以上100μm以下の大粒径熱伝導フィラーと、粒径が100nm以上20μm未満の小粒径熱伝導フィラーとから構成されていることを特徴とする請求項1記載の放熱構造体。   The heat radiating resin layer includes a heat conductive filler for quickly transferring heat from the heat generating body to the heat radiating body, and the heat conductive filler has a large particle diameter of 20 μm to 100 μm. 2. The heat dissipation structure according to claim 1, wherein the heat dissipation filler is composed of a heat conductive filler and a small particle size heat conductive filler having a particle size of 100 nm or more and less than 20 μm. 前記放熱樹脂層には、前記発熱体から前記放熱体への伝熱を速やかにするための熱伝導フィラーが含まれており、前記熱伝導フィラーは、アスペクト比5以上40以下の繊維状熱伝導フィラーと、球形熱伝導フィラーとから構成されていることを特徴とする請求項1記載の放熱構造体。   The heat radiating resin layer includes a heat conductive filler for quickly transferring heat from the heating element to the heat radiating body, and the heat conductive filler has a fibrous heat conduction having an aspect ratio of 5 to 40. The heat dissipating structure according to claim 1, comprising a filler and a spherical heat conductive filler. 前記発熱体と前記放熱樹脂層と前記放熱体とを結合し、前記放熱樹脂層を圧縮する圧縮部材が設けられることを特徴とする請求項1から3のいずれかに記載の放熱構造体。   The heat dissipation structure according to any one of claims 1 to 3, further comprising a compression member that couples the heat generating body, the heat dissipation resin layer, and the heat dissipation body and compresses the heat dissipation resin layer. 前記放熱樹脂層の厚みは、接合対象の表面形状及び反りを吸収するために最低必要とされる厚みを保持することを特徴とする請求項1から4のいずれかに記載の放熱構造体。   5. The heat dissipation structure according to claim 1, wherein the thickness of the heat dissipation resin layer is the minimum required to absorb the surface shape and warpage of the objects to be joined. 前記放熱樹脂層に対して絶縁性が求められる用途の場合、要求される絶縁耐圧を保持するために絶縁スペーサーが予め高熱伝導柔軟樹脂に配置されていることを特徴とする請求項1から5のいずれかに記載の放熱構造体。   The use of an insulating spacer is preliminarily disposed in the high thermal conductive flexible resin in order to maintain a required withstand voltage when the insulating property is required for the heat radiating resin layer. The heat dissipation structure according to any one of the above. 前記放熱樹脂層は、その硬度がアスカーC95以下で、150度以上の耐熱性及び−25度以下の耐寒性を持つ高熱伝導柔軟樹脂で構成されることを特徴とする請求項1から6のいずれかに記載の放熱構造体。   7. The heat dissipation resin layer is composed of a highly heat-conductive flexible resin having a hardness of Asker C95 or less, a heat resistance of 150 degrees or more, and a cold resistance of -25 degrees or less. The heat dissipation structure according to crab.
JP2011267523A 2011-12-07 2011-12-07 Heat radiation structure Pending JP2013120814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267523A JP2013120814A (en) 2011-12-07 2011-12-07 Heat radiation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267523A JP2013120814A (en) 2011-12-07 2011-12-07 Heat radiation structure

Publications (1)

Publication Number Publication Date
JP2013120814A true JP2013120814A (en) 2013-06-17

Family

ID=48773332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267523A Pending JP2013120814A (en) 2011-12-07 2011-12-07 Heat radiation structure

Country Status (1)

Country Link
JP (1) JP2013120814A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016221A1 (en) * 2013-07-31 2015-02-05 住友理工株式会社 Elastomer molded article and method for producing same
JP2020534189A (en) * 2017-09-22 2020-11-26 エルジー・ケム・リミテッド Composite material
CN113395875A (en) * 2021-05-25 2021-09-14 深圳市卓汉材料技术有限公司 Heat conducting component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016221A1 (en) * 2013-07-31 2015-02-05 住友理工株式会社 Elastomer molded article and method for producing same
JP2015030735A (en) * 2013-07-31 2015-02-16 住友理工株式会社 Elastomer molding, and manufacturing method thereof
JP2020534189A (en) * 2017-09-22 2020-11-26 エルジー・ケム・リミテッド Composite material
JP7086442B2 (en) 2017-09-22 2022-06-20 エルジー・ケム・リミテッド Composite material
US11603481B2 (en) 2017-09-22 2023-03-14 Lg Chem, Ltd. Composite material
CN113395875A (en) * 2021-05-25 2021-09-14 深圳市卓汉材料技术有限公司 Heat conducting component
CN113395875B (en) * 2021-05-25 2022-07-26 深圳市卓汉材料技术有限公司 Heat conducting component

Similar Documents

Publication Publication Date Title
US10964617B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
JP5322894B2 (en) Insulating heat conductive sheet manufacturing method, insulating heat conductive sheet and heat radiation member
WO2017000559A1 (en) Heat-conducting sheet and electronic device
JP6723610B2 (en) Thermal conductive sheet
JP4546086B2 (en) Dry heat interface material
US20160315030A1 (en) Reusable thermoplastic thermal interface materials and methods for establishing thermal joints between heat sources and heat dissipating/removal structures
TW201520329A (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP4916764B2 (en) Anisotropic heat conduction laminated heat dissipation member
Raza et al. Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications
JPWO2020039560A1 (en) Semiconductor device manufacturing method, heat conductive sheet, and heat conductive sheet manufacturing method
CA2896928C (en) Electronic device assembly
JP2014187233A (en) Heat radiation sheet and heat radiation structure using the same
JP2013120814A (en) Heat radiation structure
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JPWO2020039561A1 (en) Semiconductor device manufacturing method and heat conductive sheet
TWM540741U (en) Multi-layer composite heat conduction structure
JP2007300114A (en) Semiconductor device member and semiconductor device
JP2011222862A (en) Composite heat dissipation sheet and method for producing the same
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
WO2014061266A1 (en) Heat-dissipating member and method for manufacturing heat-dissipating member
Kumar Thermal management of RF and digital electronic assemblies using optimized materials and PCB designs
WO2023211414A2 (en) A high thermal conductor nano hybrid composite material for thermal interface applications and a production method thereof
JP2022093705A (en) Manufacturing method for semiconductor device, heat conductive sheet, and manufacturing method for heat conductive sheet
JP6825411B2 (en) Insulation circuit board, manufacturing method of insulation circuit board
JP6647139B2 (en) Heat dissipation sheet and semiconductor device