JP2013120064A - 濁度色度計 - Google Patents

濁度色度計 Download PDF

Info

Publication number
JP2013120064A
JP2013120064A JP2011266633A JP2011266633A JP2013120064A JP 2013120064 A JP2013120064 A JP 2013120064A JP 2011266633 A JP2011266633 A JP 2011266633A JP 2011266633 A JP2011266633 A JP 2011266633A JP 2013120064 A JP2013120064 A JP 2013120064A
Authority
JP
Japan
Prior art keywords
liquid
turbidity
light
led
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011266633A
Other languages
English (en)
Inventor
Katsutoshi Yamada
勝利 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Control Systems Corp
Original Assignee
Hitachi High Tech Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Control Systems Corp filed Critical Hitachi High Tech Control Systems Corp
Priority to JP2011266633A priority Critical patent/JP2013120064A/ja
Publication of JP2013120064A publication Critical patent/JP2013120064A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】保守作業の必要性が低く、分光器が不要で、液体が存在する配管や貯蔵タンクに直接取り付けることができ、コスト低減と測定のリアルタイム性を実現できる濁度色度計を提供することを課題とする。
【解決手段】本発明の濁度色度計は、測定対象の液体に第1の波長の光を照射するLED1aと、前記液体に第2の波長の光を照射するLED1bと、前記LED1aによって照射され前記液体を透過した前記第1の波長の光を受けて電気信号に変換する光センサ3aと、前記LED1bによって照射され前記液体を透過した前記第2の波長の光を受けて電気信号に変換する光センサ3bと、前記LED1aからの電気信号に基づいて前記液体の濁度を算出し、前記LED1bからの電気信号に基づいて前記液体の色度を算出する処理装置30と、を有する。
【選択図】図1

Description

本発明は、対象の液体の吸光度を測定することでその液体の濁度と色度を算出する(以下、「濁度と色度を測定する」とも称する。)吸光度式の濁度色度計に関する。
従来から、例えば、液体を扱う食品プラント等において、その液体の濁度や色度を測定する必要があるケースが多い。対象の液体としては、例えば、ビール、醤油などが挙げられる。
そして、非特許文献1には、濁度計の方式として、透過光式、透過散乱光式、表面散乱光式、積分球式などが挙げられている。そのうち、透過光式の技術としては、660nm(ナノメートル)の波長の光で濁度を測定する方法が記載されている。また、一般に、透過散乱光式の技術としては、液体に含まれる濁質により散乱する光を検出して透過光との比を測定する方法が知られている。
また、非特許文献1には、色度計の方式に関し、透過光式の技術として、390nmの波長の光の吸光度を色度に換算する方法が記載されている。
さらに、特許文献1には、測定対象水と基準水とを所定周期ごとに交互に測定セルを通過させ、光源からその測定セル内へ所定波長の光を照射させ、その測定セルを通過した光を検出することで、測定対象水の濁度や色度を測定する技術が記載されている。
特許4232361号公報
社団法人日本水道協会、「上水試験方法2011年版」、2011年
しかしながら、前記した従来技術では、次のような問題がある。例えば、光源にタングステンランプが使用されている場合、フィラメントが断線して突然使用できなくなることや、あるいは、長時間の点灯でフィラメントの金属成分が揮発しランプ内面に付着して劣化が生じ、それにより発光強度が低下して測定に影響を与えることがある。そのため、定期的な光源の交換等の保守作業が必要となる。
また、タングステンランプから発せられる光には様々な波長の光が存在するため、ある特定の領域の波長の光を得るための分光器が必要となる。分光器では、光源(白色光)から単色光を選ぶ分散子の種類により、フィルタ式、プリズム式、回折格子式などの分光素子が使用されるが、ガラス製の光学部品が含まれることから振動や衝撃によって壊れる可能性があり、構造も複雑になる傾向があるので長期間の連続測定に使用する上で定期的な調整保守が必要になる。
また、前記した従来技術では、光源や付属の光学部品の大きさや電源等の重量の点から、液体が流れる配管に直接取り付けることが困難である。そのため、例えば、測定用の分岐配管を用いて液体の一部を採取し、その採取場所に設置してある検出器でその液体の濁度や色度を測定することになるが、分岐配管の分、コストがかかるという問題がある。また、分岐配管を用いる場合、液体採取時と測定時の時間差が生じてしまい、測定のリアルタイム性が損なわれるという問題もある。また、採取した液体を廃棄する手間やコストがかかるという問題もある。
そこで、本発明は、このような事情に鑑みてなされたものであり、保守作業の必要性が低く、低コストで、リアルタイム性を実現できる濁度色度計を提供することを課題とする。
前記課題を解決するために、本発明は、測定対象の液体に第1の波長の光を照射する第1の半導体発光素子と、前記液体に第2の波長の光を照射する第2の半導体発光素子と、前記第1の半導体発光素子によって照射され前記液体を透過した前記第1の波長の光を受けて電気信号に変換する第1の光センサと、前記第2の半導体発光素子によって照射され前記液体を透過した前記第2の波長の光を受けて電気信号に変換する第2の光センサと、前記第1の光センサからの電気信号に基づいて前記液体の濁度を算出し、前記第2の光センサからの電気信号に基づいて前記液体の色度を算出する処理部と、を有することを特徴とする濁度色度計である。
その他の手段については後記する。
本発明によれば、保守作業の必要性が低く、低コストで、リアルタイム性を実現できる濁度色度計を提供することができる。
本実施形態の濁度色度計の全体構成図である。 本実施形態の濁度色度計における検出器の構造等の説明図である。 本実施形態の濁度色度計における処理の流れを示すフローチャートである。 本実施形態の濁度色度計における検出器の他の構造例の説明図である。 本実施形態の濁度色度計の他の用途の説明図である。
以下、本発明の濁度色度計を実施するための形態(以下、「実施形態」と称する。)について、図面を参照して説明する。図1に示すように、濁度色度計100は、検出器10、固定器具20、処理装置30(処理部)および変換器50を備えて構成される。
検出器10は、液体が流れる配管40の側壁に予め設けられた貫通穴を介して配管40の中に挿入され、フランジやサニタリクランプ等の着脱可能な固定器具20によって配管40に固定される。
固定器具20は、検出器10を配管40に固定するための器具である。
処理装置30は、検出器10によって得られた情報を処理し、その処理した情報を変換器50に送信する(詳細は後記)。
変換器50は、処理装置30から得た情報を電流値や電圧値に変換し、外部のモニタ(不図示)等にアナログ出力する(詳細は後記)。
次に、図2を参照して、濁度色度計100における検出器10の構造等について説明する。
検出器10は、LED(Light Emitting Diode)1a,1b(以下、2つを特に区別しないときは「LED1」と称する。他の構成についても同様)、ガラス窓2a,2b、光センサ3a,3b、ガラス窓8a,8bを備え、全体が略コの字形状となっており、配管40の内部(液体が存在する空間)に対して挿入および固定される。なお、Oリング21は、配管40内の液体が貫通穴から外部に漏洩しないようにするための手段である。
LED1a(第1の半導体発光素子)は、測定対象の液体に第1の波長(例えば660nm)の光を照射する。
LED1b(第2の半導体発光素子)は、測定対象の液体に第2の波長(例えば390nm)の光を照射する。
ガラス窓2a,2bは、それぞれ、LED1a,1bの発光部分の近傍で光の通過経路上の位置に設けられる。ガラス窓2の材料は、例えば石英ガラスである。
光センサ3a(第1の光センサ)は、LED1aに対向する位置に設けられ、LED1aから発せられて液体を透過した第1の波長の光を受けて、その光の強度に応じたアナログの電気信号を生成する。
光センサ3b(第2の光センサ)は、LED1bに対向する位置に設けられ、LED1bから発せられて液体を透過した第2の波長の光を受けて、その光の強度に応じたアナログの電気信号を生成する。また、光センサ3bは、LED1aから発せられて液体で散乱した第1の波長の光を受けて、その光の強度に応じたアナログの電気信号を生成する場合もある。
光センサ3は、例えば、Siフォトダイオード、光電子管、CdS導電セル、CCD(Charge Coupled Device)等によって実現できる。
ガラス窓8a,8bは、それぞれ、光センサ3a,3bの近傍で光の通過経路上の位置に設けられる。ガラス窓8の材料は、例えば石英ガラスである。
なお、LED1から光センサ3までの距離は、測定精度の観点から、例えば、測定対象の液体の吸光度が0.5〜3程度になるようにしておけばよい。
処理装置30は、検出回路31、コントローラ32(処理部)、出力装置33を備えている。
検出回路31は、光センサ3a,3bから電気信号を受け取り、それらの電気信号に対応するデジタル信号を生成してコントローラ32に送る。
コントローラ32は、例えばCPU(Central Processing Unit)およびメモリから構成され、LED1に発光の指示を与えたり、検出回路31から受け取ったデジタル信号に基づいて液体の濁度や色度を算出してその情報を出力装置33に送信したりする。
出力装置33は、コントローラ32から受け取った液体の濁度や色度の情報を変換器50に送る。
次に、濁度色度計100の動作について説明する。まず、コントローラ32は、LED1aとLED1bのそれぞれによる発光のタイミングを制御する。そして、検出回路31では、「LED1a,1b点灯時」、「LED1a点灯、LED1b消灯時」、「LED1a消灯、LED1b点灯時」、「LED1a,1b消灯時」について、光センサ3aと光センサ3bの一方あるいは両方から電気信号を受け取る(詳細は後記)。
検出回路31は、光センサ3から受け取った電気信号を増幅し、デジタル信号に変換する。コントローラ32は、検出回路31から受け取ったデジタル信号をメモリ(不図示)に保存し、不揮発記憶装置(不図示)に予め保存されている演算処理手順により数値計算処理を行い、濁度値および色度値を計算する。出力装置33は、コントローラ32から濁度値および色度値を受け取り、変換器50に送る。変換器50は、その後、例えば、濁度値および色度値を4〜20mAの範囲のアナログの電気信号に変換して受信装置(不図示。モニタ等)に送信する。
次に、図3を参照して、コントローラ32が行う演算処理について説明する。コントローラ32は、予め、基準となる以下の電気信号をデジタル信号に変換し、そのデータを不揮発記憶装置に保存しておく。
・ゼロ点基準液(例えば真水)が流れているときにLED1aが点灯しているときの光センサ3aの電気信号(Z1)(S31)
・ゼロ点基準液が流れているときにLED1bが点灯しているときの光センサ3bの電気信号(Z1’)(S37)
・ゼロ点基準液が流れているときにLED1aが点灯しているときの光センサ3bの電気信号(Z2)(S43)
・何も流れていないときにLED1aとLED1bが消灯しているときの光センサ3aの電気信号(T0)(S36)
・何も流れていないときにLED1aとLED1bが消灯しているときの光センサ3bの電気信号(T0’)(S42)
そして、検出回路31は、以下の電気信号を取得して、デジタル信号に変換してコントローラ32に送り、コントローラ32はそれらのデータを不揮発記憶装置に保存する。
・試料水(測定対象の液体)が流れているときにLED1aが点灯しているときの光センサ3aの電気信号(T1)(S32)
・試料水が流れているときにLED1bが点灯しているときの光センサ3bの電気信号(T1’)(S38)
・試料水が流れているときにLED1aが点灯しているときの光センサ3bの電気信号(T2)(S44)
そして、コントローラ32は、前記した電気信号を変換したデジタル信号に基づいて、液体の濁度値(TB)と色度値(C)とを算出する。
具体的には、透過光式の濁度値の算出は、次のように行う。まず、下記の式1によりA1を算出し(S33)、その算出したA1を用いて下記の式2により濁度値(TB)を算出し(S34)、その算出した濁度値(TB)を出力装置33に出力する(S35)。
A1=−log{(T1−T0)/(Z1−T0)} ・・・式(1)
TB=K・A1 ・・・式(2)
なお、式(1)における対数(log)は常用対数(底が「10」の対数)である(以下の他の対数も同様)。
また、式(2)における係数Kは、所定の濁度基準液(濁度が既知の液体)を用いた実験(S32と同様)により予め求めておき、不揮発記憶装置に保存しておくことができる。
また、透過光式の色度値の算出は、次のように行う。まず、下記の式(3)によりA1’を算出し(S39)、その算出したA1’を用いて下記の式(4)により色度値(C)を算出し(S40)、その算出した色度値(C)を出力装置33に出力する(S41)。
A1’=−log{(T1’−T0’)/(Z1’−T0’)} ・・・式(3)
C=K’・A1’−K’’・A1 ・・・式(4)
なお、式(4)における係数K’と係数K’’は、所定の色度基準液(色度が既知の液体)を用いた実験(S38と同様)により予め求めておき、不揮発記憶装置に保存しておくことができる。
また、透過散乱光式の濁度値の算出は、次のように行う。下記の式(5)により色度値(C)を算出し(S45)、その算出した色度値(C)を出力装置33に出力する(S35)。
TB=K’’’・(T2−Z2)/(T1−Z1) ・・・式(5)
なお、式(5)における係数K’’’は、所定の濁度基準液を用いた実験(S44と同様)により予め求めておき、不揮発記憶装置に保存しておくことができる。
また、S46では、S33,S34による濁度の算出と、S45による濁度の算出と、を使用条件等に応じて適宜切り替えることができる。
このように、濁度色度計100によれば、小型、軽量で長寿命の半導体発光素子(LED1)を光源としたことで、保守作業の必要性が低く、分光器が不要で、液体が存在する配管や貯蔵タンクに直接取り付けることができ、コスト低減と測定のリアルタイム性を確保できる濁度色度計を提供することができる。
また、LED1と光センサ3を2つずつ使用し、濁度については透過光式と透過散乱光式を使い分けて算出するようにしたことで、高精度な計算を可能にした。
次に、検出器10の変形例について説明する。図4に示すように、変形例である検出器10a(10)では、LED1と光センサ3とを結ぶラインが、配管40に対する検出器10aの挿入方向と垂直になっている。なお、LED1、ガラス窓2、光センサ3、ガラス窓8は、図2の場合と同様、2つずつあるものとする。
このように、配管40に挿入される検出器10aの深さを短くすることによって、液体中の固形物(異物等)が検出器10aに絡まる可能性を低減することができる。
次に、濁度色度計100の他の用途について説明する。図5に示すように、貯蔵タンク60には、濁度や色度がそれぞれ異なる上層と下層が界面61で分離している液体が貯蔵されている。濁度色度計100a(100)における検出器10、固定器具20、処理装置30が、界面61の側面に取り付けられている。
そして、界面61が検出器10よりも上か下かによって検出器10および処理装置30で測定する濁度や色度が異なるので、検出器10および処理装置30で濁度や色度を測定することで、界面61から排水がされたときなどの場合に、界面61が検出器10よりも上か下かを知ることができる。
以上で本実施形態の説明を終えるが、本発明の態様はこれらに限定されるものではない。
例えば、LED1の波長としては、前記した波長のほかに、測定対象の液体の吸収波長に応じて、紫外線から遠赤外線の領域の光の波長を適宜選択することができる。その場合、LED1を取り替えることで別の波長の光を使うことができる。そして、吸光度に基づいて、濁度や色度以外の濃度を算出することもできる。
また、ガラス窓2やガラス窓8の材質は、石英ガラスに限定されず、LED1の光を一定以上吸収しない、所定の温度や圧力への耐性がある、腐食しにくい、といった条件を満たすものであれば、例えば、サファイアガラスや透明高分子樹脂素材などであってもよい。
また、複数のLED1の代わりに、複数のLED1が1つにパッケージされた装置を使用することにより、濁度色度計100における部品点数を減らすこともできる。
また、濁度色度計100を配管40に設置する方法としては、配管40に穴をあけて設置する方法のほかに、T字管の枝管に設置する方法や、消火栓に設置する方法もある。
その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
1,1a,1b LED
2,2a,2b ガラス窓
3,3a,3b 光センサ
8,8a,8b ガラス窓
10,10a 検出器
20 固定器具
30 処理装置
31 検出回路
32 コントローラ
33 出力装置
40 配管
41 液体
50 変換器
60 貯蔵タンク
61 界面
100,100a 濁度色度計

Claims (4)

  1. 測定対象の液体に第1の波長の光を照射する第1の半導体発光素子と、
    前記液体に第2の波長の光を照射する第2の半導体発光素子と、
    前記第1の半導体発光素子によって照射され前記液体を透過した前記第1の波長の光を受けて電気信号に変換する第1の光センサと、
    前記第2の半導体発光素子によって照射され前記液体を透過した前記第2の波長の光を受けて電気信号に変換する第2の光センサと、
    前記第1の光センサからの電気信号に基づいて前記液体の濁度を算出し、前記第2の光センサからの電気信号に基づいて前記液体の色度を算出する処理部と、
    を有することを特徴とする濁度色度計。
  2. 前記第1の半導体発光素子と、前記第2の半導体発光素子とは、LED(Light Emitting Diode)であることを特徴とする請求項1に記載の濁度色度計。
  3. 前記第2の光センサは、前記第1の半導体発光素子によって照射され前記液体を透過した前記第1の波長の光を受けて電気信号に変換し、
    前記処理部は、
    前記第1のセンサからの電気信号、および、
    前記第1の半導体発光素子によって照射され前記液体を透過した前記第1の波長の光を受けた前記第2の光センサからの電気信号、に基づいて前記液体の濁度を算出する
    ことを特徴とする請求項1または請求項2に記載の濁度色時計。
  4. 前記第1の半導体発光素子および前記第2の半導体発光素子と、前記第1の光センサおよび前記第2の光センサと、が対向して構成された検出器は、前記液体が存在する空間に対して挿入および固定されることを特徴とする請求項1から請求項3のいずれか1項に記載の濁度色度計。
JP2011266633A 2011-12-06 2011-12-06 濁度色度計 Pending JP2013120064A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266633A JP2013120064A (ja) 2011-12-06 2011-12-06 濁度色度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266633A JP2013120064A (ja) 2011-12-06 2011-12-06 濁度色度計

Publications (1)

Publication Number Publication Date
JP2013120064A true JP2013120064A (ja) 2013-06-17

Family

ID=48772767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266633A Pending JP2013120064A (ja) 2011-12-06 2011-12-06 濁度色度計

Country Status (1)

Country Link
JP (1) JP2013120064A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203505A (zh) * 2015-10-20 2015-12-30 深圳市清时捷科技有限公司 一种水质在线浊度色度一体检测装置及方法
CN106933213A (zh) * 2017-05-09 2017-07-07 贵州大学 一种基于 stc89c52 单片机智能窗户控制***及其控制方法
JP2020193884A (ja) * 2019-05-29 2020-12-03 株式会社日立ハイテクソリューションズ 濁度計、及び濁度色度計

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203505A (zh) * 2015-10-20 2015-12-30 深圳市清时捷科技有限公司 一种水质在线浊度色度一体检测装置及方法
CN106933213A (zh) * 2017-05-09 2017-07-07 贵州大学 一种基于 stc89c52 单片机智能窗户控制***及其控制方法
JP2020193884A (ja) * 2019-05-29 2020-12-03 株式会社日立ハイテクソリューションズ 濁度計、及び濁度色度計
JP7333199B2 (ja) 2019-05-29 2023-08-24 株式会社日立ハイテクソリューションズ 濁度計、及び濁度色度計

Similar Documents

Publication Publication Date Title
US10048242B2 (en) Inline water contaminant detector
US8704174B2 (en) Refined oil degradation level measuring instrument and refined oil degradation level measuring method
TWI633294B (zh) Concentration measuring device
JP4420849B2 (ja) 水質センサ
JP4418731B2 (ja) フォトルミネッセンス量子収率測定方法およびこれに用いる装置
JP2015031544A (ja) インライン型濃度計及び濃度検出方法
JP2013120064A (ja) 濁度色度計
KR20190015382A (ko) 액체 매질 중의 물질의 농도를 결정하기 위한 방법 및 장치
JP5880164B2 (ja) 蛍光分析装置
EA201100067A1 (ru) Оптическое измерительное устройство и способ проведения отражательных измерений
KR101748367B1 (ko) 수질 모니터링 시스템
JP4660266B2 (ja) 水質検査装置
KR20150014365A (ko) 수질분석장치 및 수질분석방법
JP2015509597A5 (ja)
US20160266032A1 (en) Photometer with led light source
CN108885170B (zh) 一种使用从液体运动收集的能量来检测液体的小型装置
JP2022059278A (ja) 液体試料の濁度または色度を測定する測定装置および測定方法
WO2017149787A1 (ja) 吸光度検出器及びそれを備えたクロマトグラフ
JP2013036807A (ja) 濁度計
JP2011013073A (ja) オパシメータにおける発光素子光度補償装置
JP5370286B2 (ja) 蛍光検出装置
JP2007232520A (ja) 米の品質測定方法及び米の品質測定装置
JP2009276265A (ja) 透過散乱形濁度計
JP4536501B2 (ja) オゾン水中のオゾン濃度の測定方法及び測定装置
GB2571405A (en) Optical corrosion sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140207