JP2013113905A - Liquid crystal display device and manufacturing method for the same - Google Patents

Liquid crystal display device and manufacturing method for the same Download PDF

Info

Publication number
JP2013113905A
JP2013113905A JP2011257647A JP2011257647A JP2013113905A JP 2013113905 A JP2013113905 A JP 2013113905A JP 2011257647 A JP2011257647 A JP 2011257647A JP 2011257647 A JP2011257647 A JP 2011257647A JP 2013113905 A JP2013113905 A JP 2013113905A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
crystal display
micropore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011257647A
Other languages
Japanese (ja)
Inventor
Dong-Uk Cho
動旭 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Priority to JP2011257647A priority Critical patent/JP2013113905A/en
Priority to KR1020120013414A priority patent/KR101992886B1/en
Publication of JP2013113905A publication Critical patent/JP2013113905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133734Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by obliquely evaporated films, e.g. Si or SiO2 films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Abstract

PROBLEM TO BE SOLVED: To achieve high-speed response while improving the contrast and reducing the manufacturing cost due to omission of rubbing.SOLUTION: A liquid crystal display device includes: a first substrate (12) and a second substrate (13) facing each other; liquid crystal (1) sealed between the first substrate (12) and the second substrate (13); and a microhole structure layer (21) in which microholes each serving as a small room are spatially connected to each other to be arranged three-dimensionally to form a large space and which is inserted between the first substrate (12) and the second substrate (13). The liquid crystal is put and sealed in each of the microholes of the microhole structure layer (21).

Description

本発明は、応答速度の改善を図った液晶表示装置および液晶表示装置の製造方法に関する。   The present invention relates to a liquid crystal display device with improved response speed and a method for manufacturing the liquid crystal display device.

従来の液晶表示装置における配向技術は、ラビングという配向処理によって方向性を持たせている。図5は、従来技術であるラビング配向によるIPSモードの液晶表示装置の説明図である。この従来の液晶表示装置は、ネマティック液晶1、水平電極11、画素基板12、対向基板13、配向膜14、およびスペーサ15を備えて構成されている。   The alignment technique in the conventional liquid crystal display device has directionality by an alignment process called rubbing. FIG. 5 is an explanatory diagram of an IPS mode liquid crystal display device by rubbing alignment, which is a conventional technique. This conventional liquid crystal display device includes a nematic liquid crystal 1, a horizontal electrode 11, a pixel substrate 12, a counter substrate 13, an alignment film 14, and a spacer 15.

そして、図5に示す液晶表示装置は、ラビング処理を含む以下の工程で製造される。
工程1:基板(12、13)に配向膜14をコ−ティングする。
工程2:オーブンで焼く。
工程3:レーヨンやセルロース系などの布で一軸方向に擦り(ラビング)、配向膜14に異方性を持たせる。
工程4:洗浄する。
工程5:ラビングした両基板の間に液晶1を注入する。
And the liquid crystal display device shown in FIG. 5 is manufactured by the following processes including a rubbing process.
Step 1: The alignment film 14 is coated on the substrate (12, 13).
Step 2: Bake in the oven.
Step 3: Abrasion (rubbing) in a uniaxial direction with a cloth such as rayon or cellulose, and the alignment film 14 is made anisotropic.
Step 4: Wash.
Step 5: Liquid crystal 1 is injected between both rubbed substrates.

このようなラビング処理を施すことで、強い配向規制力と安定性を持たせることができる。しかしながら、液晶表示装置の高精細化や微細化に伴って、このようなラビング処理による以下のような問題が浮き彫りとなってきた。具体的には、ラビングの削れかすによる異物の問題、配向膜に起因する光劣化の問題、ラビングむらによる表示むらの問題等が挙げられる。   By performing such a rubbing treatment, it is possible to have a strong alignment regulating force and stability. However, with the high definition and miniaturization of liquid crystal display devices, the following problems due to such rubbing treatment have been highlighted. Specifically, there are a foreign matter problem due to rubbing shavings, a light deterioration problem due to the alignment film, a display unevenness problem due to rubbing unevenness, and the like.

このような問題に対して、基板面に対して垂直方向に貫通した貫通孔を有する多孔質材を両基板間に配設し、電圧が印加されていないときは、n型液晶が多孔質材の孔方向の向きに配向され、電圧印加時には、基板面に平行な面内においてn型液晶が駆動電界方向および孔方向に対して垂直な方向に配向されるようにした液晶表示装置がある(例えば、特許文献1参照)。   To solve such a problem, when a porous material having a through-hole penetrating in the direction perpendicular to the substrate surface is disposed between the two substrates and no voltage is applied, the n-type liquid crystal becomes a porous material. There is a liquid crystal display device in which the n-type liquid crystal is aligned in a direction perpendicular to the driving electric field direction and the hole direction in a plane parallel to the substrate surface when a voltage is applied. For example, see Patent Document 1).

このような特許文献1に係る液晶表示装置によれば、多孔質材を両基板間に配設するとともに、基板面に対して平行に駆動電界を形成する横電界駆動方式を用いることで、駆動電界領域に従来の配向膜を用いる必要がなく、ラビングレスで液晶を配向させることができる。この結果、表示領域の透過率の向上、高耐光性による長期信頼性の向上、ラビングレスによる歩留まりの向上、プロセスの簡素化、簡易化に伴う低コスト化を実現できる。   According to such a liquid crystal display device according to Patent Document 1, a porous material is disposed between both substrates, and the driving is performed by using a lateral electric field driving method in which a driving electric field is formed in parallel to the substrate surface. There is no need to use a conventional alignment film in the electric field region, and the liquid crystal can be aligned without rubbing. As a result, the transmittance of the display area can be improved, the long-term reliability can be improved due to high light resistance, the yield can be improved without rubbing, the process can be simplified, and the cost can be reduced due to simplification.

特開2005−140978号公報JP 2005-140978 A

しかしながら、従来技術には、以下のような課題がある。
近年の液晶表示装置では、高精細化や微細化とともに、高速応答も品質面での重要な要素となっている。この高速応答に着目すると、従来のラビング処理を施す液晶表示装置においては、電圧を印加することによって、画素内の液晶全体を動かすために、時間がかかっていた。特に、ネマティック液晶モ−ドでは、1ms以下の高速応答は実現できないといった制約があった。
However, the prior art has the following problems.
In recent liquid crystal display devices, high-speed response is an important factor in quality as well as high definition and miniaturization. Focusing on this high-speed response, in the conventional liquid crystal display device that performs the rubbing process, it takes time to move the entire liquid crystal in the pixel by applying a voltage. In particular, the nematic liquid crystal mode has a restriction that a high-speed response of 1 ms or less cannot be realized.

また、ラビングレスの技術を開示している特許文献1に係る液晶表示装置は、基板面に対して垂直方向に貫通した貫通孔を有する多孔質材を用いることで、ラビング処理に起因する上述したような問題を解消するとともに、高精細化や微細化を実現している。しかしながら、高速応答に関しては、何ら言及されていない。   In addition, the liquid crystal display device according to Patent Document 1 that discloses a rubbing-less technique uses the porous material having a through-hole penetrating in the direction perpendicular to the substrate surface, thereby causing the above-described rubbing treatment. In addition to solving such problems, high definition and miniaturization are realized. However, no mention is made regarding the fast response.

本発明は、前記のような課題を解決するためになされたものであり、ラビングレスにより高コントラストと製造コストの低減を図った上で、高速応答を可能とする液晶表示装置および液晶表示装置の製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems. A liquid crystal display device and a liquid crystal display device capable of high-speed response while achieving high contrast and reduction in manufacturing cost by rubbing-less. It aims at obtaining a manufacturing method.

本発明に係る液晶表示装置は、互いに対向する第1基板および第2基板と、第1基板と第2基板との間に封止される液晶とを備えた液晶表示装置であって、1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、第1基板と第2基板との間に挿入される微細孔構造層をさらに備え、液晶は、微細孔構造層に設けられた微細孔のそれぞれに分かれて封止されるものである。   A liquid crystal display device according to the present invention is a liquid crystal display device including a first substrate and a second substrate facing each other, and a liquid crystal sealed between the first substrate and the second substrate. Micropores as one small chamber are three-dimensionally arranged while being spatially connected to each other to form one large space, and are inserted between the first substrate and the second substrate. Further, the liquid crystal is sealed by being divided into each of the micropores provided in the micropore structure layer.

また、本発明に係る液晶表示装置の製造方法は、1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、第1基板と第2基板との間に挿入される微細孔構造層の一方の面に第1基板を貼り付け、一方の面と反対側の他方の面に第2基板を貼り付けるステップと、第1基板と第2基板との間に挟まれた微細孔構造層に設けられた微細孔のそれぞれに液晶を封止するステップとを備えるものである。   In the method for manufacturing a liquid crystal display device according to the present invention, the micro holes as the small chambers are arranged three-dimensionally while being spatially connected to each other to form one large space. Attaching the first substrate to one surface of the microporous structure layer inserted between the substrate and the second substrate, and attaching the second substrate to the other surface opposite to the one surface; Sealing a liquid crystal in each of the micropores provided in the micropore structure layer sandwiched between the substrate and the second substrate.

本発明によれば、微細孔が形成された構造層を用い、この構造層の隙間にブルー相液晶を充填することで、ラビングレスにより高コントラストと製造コストの低減を図った上で、高速応答を可能とする液晶表示装置および液晶表示装置の製造方法を得ることができる。   According to the present invention, by using a structural layer in which fine holes are formed and filling a gap between the structural layers with a blue phase liquid crystal, high contrast and a reduction in manufacturing cost are achieved without rubbing, and a high-speed response is achieved. It is possible to obtain a liquid crystal display device and a method for manufacturing the liquid crystal display device that enable the above.

本発明の実施の形態1における液晶表示装置のパネル断面を示す図である。It is a figure which shows the panel cross section of the liquid crystal display device in Embodiment 1 of this invention. 本発明の実施の形態1における微細孔構造フィルムの模式図である。It is a schematic diagram of the microporous structure film in Embodiment 1 of this invention. 本発明の実施の形態1における液晶表示装置の製造方法および性能検証実験に関する一連処理を示したフローチャートである。It is the flowchart which showed the serial processing regarding the manufacturing method and performance verification experiment of the liquid crystal display device in Embodiment 1 of this invention. 本発明の実施の形態1における液晶表示装置の性能検証試験の結果をまとめたものである。The result of the performance verification test of the liquid crystal display device in Embodiment 1 of this invention is put together. 従来技術であるラビング配向によるIPSモードの液晶表示装置の説明図である。It is explanatory drawing of the liquid crystal display device of the IPS mode by the rubbing orientation which is a prior art.

以下、本発明の液晶表示素子および液晶表示装置の製造方法の好適な実施の形態につき図面を用いて説明する。本発明は、ラビング配向によるIPSモ−ドの問題を改善するために、微細孔が形成されたフィルム(微細孔構造フィルム)を用いて、液晶を狭い空間に分けて配向させることで、ラビングなどの配向処理を不要とした上で、高速応答が可能になるモ−ドを実現できることを技術的特徴としている。   Hereinafter, preferred embodiments of a liquid crystal display element and a method for producing a liquid crystal display device of the present invention will be described with reference to the drawings. In order to improve the problem of the IPS mode due to rubbing alignment, the present invention uses a film (micropore structure film) in which micropores are formed, and aligns the liquid crystal in a narrow space, thereby rubbing, etc. The technical feature is that it is possible to realize a mode in which high-speed response is possible while eliminating the need for the above alignment processing.

実施の形態1.
上述したように、特許文献1では、基板面に対して垂直方向に貫通した貫通孔を有する多孔質材を用いることでラビングレスを実現していた。これに対して、本発明は、1つ1つの小部屋としての微細孔が、空間的に互いに連結、かつ空間的に連続しながら3次元的に配列された微細孔構造フィルムを用いることで、ラビングレスにより高コントラストと製造コストの低減を図った上で、高速応答を可能とする。
Embodiment 1 FIG.
As described above, in Patent Document 1, rubbing-less is realized by using a porous material having a through hole penetrating in a direction perpendicular to the substrate surface. On the other hand, the present invention uses a microporous structure film in which micropores as individual small chambers are spatially connected to each other and spatially continuous and arranged three-dimensionally, High-speed response is possible with high contrast and reduction of manufacturing cost by rubbing-less.

図1は、本発明の実施の形態1における液晶表示装置のパネル断面を示す図である。この図1に示す本実施の形態1に係る液晶表示装置は、液晶1、水平電極11、画素基板12、対向基板13、および微細孔構造フィルム21を備えて構成されている。   FIG. 1 is a diagram showing a panel cross section of a liquid crystal display device according to Embodiment 1 of the present invention. The liquid crystal display device according to the first embodiment shown in FIG. 1 includes a liquid crystal 1, a horizontal electrode 11, a pixel substrate 12, a counter substrate 13, and a microporous structure film 21.

一方の面に水平電極11が設けられた画素基板12と、水平電極11と向かい合うように画素基板12に対向する対向基板13との間には、微細孔構造フィルム21(微細孔構造層に相当)が挟み込まれている。   A fine pore structure film 21 (corresponding to a fine pore structure layer) is provided between the pixel substrate 12 provided with the horizontal electrode 11 on one surface and the counter substrate 13 facing the pixel substrate 12 so as to face the horizontal electrode 11. ) Is sandwiched.

ここで、微細孔構造フィルム21としては、例えば、住友3M社製の多孔質フィルムプロポアファブリックを用いることができる(Microporous Film ProporeFabric http://www.mmm.co.jp/pcrp/microp/index.html参照)。   Here, as the microporous structure film 21, for example, a porous film Propore fabric manufactured by Sumitomo 3M can be used (Microporous Film ProporeFabric http://www.mmm.co.jp/pcrp/microp/index). see .html).

この微細孔構造フィルム21は、1つ1つの小部屋としての微細孔が、空間的に互いに連結、かつ空間的に連続しながら3次元的に配列されて、構成されている。すなわち、各微細孔は、隣接する微細孔と空間的につながれているとともに、小部屋を形成するためのフィルムにより、互いに連結されて3次元的に配列され、結果的に、連続した1つの大空間を有している。   The microporous structure film 21 is configured such that micropores as individual small chambers are spatially connected to each other and arranged three-dimensionally while being spatially continuous. That is, each micropore is spatially connected to adjacent micropores, and is connected to each other and arranged three-dimensionally by a film for forming a small chamber, resulting in one continuous large pore. Has a space.

より具体的には、一例として、画素基板12と対向基板13との間隔は、5μm程度であり、その間に挟み込まれ、同等の5μm程度の厚みを有する微細孔構造フィルム21は、1μm以下の直径を有する略球形で構成された微細孔が3次元的に配列され、連続した1つの大空間を形成している。   More specifically, as an example, the distance between the pixel substrate 12 and the counter substrate 13 is about 5 μm, and the microporous structure film 21 sandwiched between them and having an equivalent thickness of about 5 μm has a diameter of 1 μm or less. The micropores having a substantially spherical shape having three are arranged three-dimensionally to form one continuous large space.

そして、微細孔構造フィルム21のある1箇所から、液晶1を充填することで、1つの大空間内に液晶1を注入でき、その結果、各微細孔における小部屋に対して、液晶1が封止されることとなる。   Then, the liquid crystal 1 can be injected into one large space by filling the liquid crystal 1 from one place where the microporous structure film 21 exists. As a result, the liquid crystal 1 is sealed in the small chambers in each micropore. It will be stopped.

図2は、本発明の実施の形態1における微細孔構造フィルムの模式図であり、小部屋に分かれている様子をパネル断面図として模式的に示したものである。より具体的には、図2(a)は、微細孔構造フィルム21を用いずにラビング処理を施した従来技術を示しており、図2(b)は、微細孔構造フィルム21を用いてラビングレスとした本願発明を示している。   FIG. 2 is a schematic diagram of the microporous structure film according to Embodiment 1 of the present invention, and schematically shows a state of being divided into small rooms as a panel cross-sectional view. More specifically, FIG. 2A shows a conventional technique in which a rubbing process is performed without using the microporous structure film 21, and FIG. 2B shows a rubbing process using the microporous structure film 21. The present invention is shown as being less.

図2(a)に示した従来技術においては、電圧を印加することによって、両基板間の液晶全体を動かすため、その応答速度が遅く、高速応答を実現することが難しかった。これに対して、図2(b)に示した本願発明においては、微細孔構造フィルム21に設けられたそれぞれの小部屋ごとに、液晶1が封止され、電圧制御されることで、所望の画像表示を実現することとなる。   In the prior art shown in FIG. 2 (a), since the entire liquid crystal between both substrates is moved by applying a voltage, the response speed is slow and it is difficult to realize a high-speed response. On the other hand, in the present invention shown in FIG. 2 (b), the liquid crystal 1 is sealed and voltage controlled for each small chamber provided in the microporous structure film 21, so that a desired value can be obtained. Image display will be realized.

このように、微細孔構造フィルム21を用いることで、狭い空間に閉じ込められた液晶は、光学的に等方相(ランダム)であるが、ランダム配向から電圧をかけると、異方性(一軸方向)の方向に変わる。そして、液晶1を狭い空間で分けているため、液晶分子の相互作用が少なく、電圧の印加による動きが早くなり、応答速度が改善されることとなる。このように、液晶を小空間に分けることで、両基板間の液晶全体を動かす従来方法と比較して、応答速度の改善を図ることが可能となる。   As described above, the liquid crystal confined in a narrow space by using the microporous structure film 21 is optically isotropic (random). However, when voltage is applied from random orientation, anisotropy (uniaxial direction) is applied. ) Direction. Since the liquid crystal 1 is divided in a narrow space, the interaction between liquid crystal molecules is small, the movement due to the application of voltage is accelerated, and the response speed is improved. Thus, by dividing the liquid crystal into small spaces, the response speed can be improved as compared with the conventional method of moving the entire liquid crystal between both substrates.

また、微細孔構造を用いることで、長時間駆動させた場合にも、微細孔構造が壊れるおそれがなく、配向が安定で、高コントラストを維持できる液晶表示装置を実現できる。   In addition, by using the microporous structure, a liquid crystal display device that can maintain a high contrast with stable orientation without a possibility of breaking the microporous structure even when driven for a long time can be realized.

さらに、画素基板12と対向基板13との間のセル厚も、微細孔構造フィルム21の厚みを管理することで、容易に所望の厚みとすることができる。この結果、セル厚を制御するために用いるスペーサの形成が不要となり、パネルの大型化も可能となる。   Furthermore, the cell thickness between the pixel substrate 12 and the counter substrate 13 can be easily set to a desired thickness by managing the thickness of the microporous film 21. As a result, it is not necessary to form a spacer used for controlling the cell thickness, and the panel can be enlarged.

次に、本実施の形態1における液晶表示装置の製造方法、および性能検証実験について、フローチャートを用いて説明する。図3は、本発明の実施の形態1における液晶表示装置の製造方法および性能検証実験に関する一連処理を示したフローチャートである。まず始めに、ステップS301において、水平電極11が設けられた画素基板12と対向基板13を、微細孔構造フィルム21を挟んだ状態で貼り合わせる。   Next, a method for manufacturing a liquid crystal display device and a performance verification experiment in the first embodiment will be described with reference to flowcharts. FIG. 3 is a flowchart showing a series of processes relating to the manufacturing method and performance verification experiment of the liquid crystal display device according to the first embodiment of the present invention. First, in step S301, the pixel substrate 12 provided with the horizontal electrode 11 and the counter substrate 13 are bonded together with the microporous film 21 interposed therebetween.

次に、ステップS302において、両基板の貼り合わせが完了した微細孔構造フィルム21の1つの大空間内に液晶1を注入することで、各微細孔に液晶1を充填する。次に、ステップS303において、ステップS301、S302を経て製造されたパネルに、偏光板を貼り付ける。   Next, in step S302, the liquid crystal 1 is injected into one large space of the microporous structure film 21 in which the bonding of both substrates is completed, so that the liquid crystal 1 is filled in each micropore. Next, in Step S303, a polarizing plate is attached to the panel manufactured through Steps S301 and S302.

そして、ステップS304において、電圧を印加する前の状態(黒画像表示状態)と、電圧を印加した後の状態(白画像表示状態)とに基づいて、コントラストの測定を行う。また、応答速度の検証も合わせて行う。なお、ここでの応答速度とは、電圧を印加した後に所定以上の明るさの白画像表示が得られるまでにかかる時間である。   In step S304, the contrast is measured based on a state before the voltage is applied (black image display state) and a state after the voltage is applied (white image display state). The response speed is also verified. Here, the response speed is the time taken to obtain a white image display with a predetermined brightness or higher after applying a voltage.

図4は、本発明の実施の形態1における液晶表示装置の性能検証試験の結果をまとめたものである。なお、このデータを収集するに当たっては、微細孔の直径が、0.3μm、1μm、2μmの3種の微細孔構造フィルム21を用いている。また、従来の高分子構造を用いた場合との比較も行っている。   FIG. 4 summarizes the results of the performance verification test of the liquid crystal display device according to Embodiment 1 of the present invention. In collecting this data, three kinds of fine pore structure films 21 having a fine pore diameter of 0.3 μm, 1 μm, and 2 μm are used. In addition, a comparison with a conventional polymer structure is also performed.

まず、コントラストに関しては、微細孔の直径が2μmの場合には、従来の約半分のコントラストとなってしまったが、微細孔の直径が1μmの場合には従来と同等のコントラストが得られ、微細孔の直径が0.3μmの場合には約2倍のコントラストが得られることがわかった。これは、狭い空間に閉じ込められた液晶の初期状態が等方相であるため、黒輝度が低いことによる。   First, regarding the contrast, when the diameter of the micropores is 2 μm, the contrast is about half that of the conventional one. However, when the diameter of the micropores is 1 μm, the same contrast as the conventional one can be obtained. It was found that when the hole diameter was 0.3 μm, about twice the contrast was obtained. This is because the initial state of the liquid crystal confined in a narrow space is an isotropic phase, so that the black luminance is low.

さらに、応答速度に関しては、微細孔の直径がいずれの場合にも、従来より、少なくとも2倍以上速い応答速度が得られた。これは、液晶が狭い空間で分けられているため、液晶分子の相互作用が少ないことによる。   Furthermore, with regard to the response speed, a response speed that is at least twice as fast as before was obtained in any case of the diameter of the micropores. This is because the liquid crystal molecules are divided in a narrow space, so that the interaction of liquid crystal molecules is small.

また、図4には示していないが、微細孔構造フィルム21のうち、各微細孔で形成される空間部分の占める割合を微細孔存在率と定義すると、微細孔の直径がいずれの場合にも、この微細孔存在率が95%以上であれば、白輝度として良好な輝度が得られることが実証できた。   Although not shown in FIG. 4, if the proportion of the space portion formed by each micropore in the micropore structure film 21 is defined as the micropore existence ratio, the diameter of the micropore is in any case. It was proved that when the micropore existence ratio was 95% or more, good luminance was obtained as white luminance.

以上のように、実施の形態1によれば、微細孔構造層を適用してラビングレスとすることにより、高コントラストと製造コストの低減を図った上で、高速応答を可能とする液晶表示装置および液晶表示装置の製造方法を実現することができる。   As described above, according to the first embodiment, a liquid crystal display device capable of high-speed response while achieving high contrast and reduction in manufacturing cost by applying a microporous structure layer to be rubbed-less. In addition, a method for manufacturing a liquid crystal display device can be realized.

また、検証試験により、コントラストおよび応答速度の観点からは、微細孔構造フィルムに設けられる微細孔は、その直径に関しては1μm以下が好ましく、微細孔存在率に関しては95%以上が好ましいことが実証された。   In addition, from the viewpoint of contrast and response speed, the verification test demonstrates that the micropores provided in the microporous structure film are preferably 1 μm or less in terms of diameter and 95% or more in terms of micropore existence rate. It was.

なお、上述した本発明の液晶表示装置は、TNやVAモ−ドでもよく、また、水平電極として、IPS(In Plane Switching)電極を用いることもできる。   The above-described liquid crystal display device of the present invention may be in TN or VA mode, and an IPS (In Plane Switching) electrode may be used as the horizontal electrode.

1 液晶、11 水平電極、12 画素基板、13 対向基板、21 微細孔構造フィルム(微細孔構造層)。   DESCRIPTION OF SYMBOLS 1 Liquid crystal, 11 Horizontal electrode, 12 Pixel substrate, 13 Opposite substrate, 21 Micropore structure film (micropore structure layer).

Claims (5)

互いに対向する第1基板および第2基板と、
前記第1基板と前記第2基板との間に封止される液晶と
を備えた液晶表示装置であって、
1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、前記第1基板と前記第2基板との間に挿入される微細孔構造層をさらに備え、
前記液晶は、前記微細孔構造層に設けられた前記微細孔のそれぞれに分かれて封止される
ことを特徴とする液晶表示装置。
A first substrate and a second substrate facing each other;
A liquid crystal display device comprising: a liquid crystal sealed between the first substrate and the second substrate,
The micro holes as the small chambers are arranged three-dimensionally while being spatially connected to each other to form one large space, and are inserted between the first substrate and the second substrate. Further comprising a microporous structure layer,
The liquid crystal is sealed by being divided into each of the micropores provided in the micropore structure layer.
請求項1に記載の液晶表示装置において、
前記微細孔構造層に設けられた前記微細孔のそれぞれは、直径が1μm以下で構成されている
ことを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1.
Each of the said micropore provided in the said micropore structure layer is comprised by the diameter of 1 micrometer or less. The liquid crystal display device characterized by the above-mentioned.
請求項1または2に記載の液晶表示装置において、
前記微細孔構造層は、各微細孔で形成される空間部分が前記微細孔構造層に対して占める割合を微細孔存在率と定義した際に、前記微細孔存在率が95%以上である
ことを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1 or 2,
The micropore structure layer has a micropore existence ratio of 95% or more when the ratio of the space portion formed by each micropore to the micropore structure layer is defined as the micropore existence ratio. A liquid crystal display device.
請求項1ないし3のいずれか1項に記載の液晶表示装置において、
前記第2基板にIPS電極を用いる
ことを特徴とする液晶表示装置。
The liquid crystal display device according to any one of claims 1 to 3,
An IPS electrode is used for the second substrate. A liquid crystal display device.
1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、前記第1基板と前記第2基板との間に挿入される微細孔構造層の一方の面に第1基板を貼り付け、前記一方の面と反対側の他方の面に第2基板を貼り付けるステップと、
前記第1基板と前記第2基板との間に挟まれた前記微細孔構造層に設けられた前記微細孔のそれぞれに液晶を封止するステップと
を備えたことを特徴とする液晶表示装置の製造方法。
The micro holes as the small chambers are arranged three-dimensionally while being spatially connected to each other to form one large space, and are inserted between the first substrate and the second substrate. Affixing a first substrate on one surface of the microporous structure layer and affixing a second substrate on the other surface opposite to the one surface;
A step of sealing liquid crystal in each of the micropores provided in the micropore structure layer sandwiched between the first substrate and the second substrate. Production method.
JP2011257647A 2011-11-25 2011-11-25 Liquid crystal display device and manufacturing method for the same Pending JP2013113905A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011257647A JP2013113905A (en) 2011-11-25 2011-11-25 Liquid crystal display device and manufacturing method for the same
KR1020120013414A KR101992886B1 (en) 2011-11-25 2012-02-09 Liquid crystal display and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257647A JP2013113905A (en) 2011-11-25 2011-11-25 Liquid crystal display device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2013113905A true JP2013113905A (en) 2013-06-10

Family

ID=48709534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257647A Pending JP2013113905A (en) 2011-11-25 2011-11-25 Liquid crystal display device and manufacturing method for the same

Country Status (2)

Country Link
JP (1) JP2013113905A (en)
KR (1) KR101992886B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504159B2 (en) * 1997-10-16 2004-03-08 株式会社東芝 Liquid crystal optical switch element
JP4220816B2 (en) * 2003-03-25 2009-02-04 日本放送協会 Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP4260752B2 (en) 2004-01-15 2009-04-30 シャープ株式会社 Display element and display device
WO2006025234A1 (en) 2004-08-31 2006-03-09 Sharp Kabushiki Kaisha Display element and display unit
JP2006267562A (en) * 2005-03-24 2006-10-05 Nippon Hoso Kyokai <Nhk> Method for manufacturing liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display device
JP2008203574A (en) * 2007-02-20 2008-09-04 Binit:Kk Liquid crystal optical element and method for manufacturing the same

Also Published As

Publication number Publication date
KR101992886B1 (en) 2019-06-25
KR20130058578A (en) 2013-06-04

Similar Documents

Publication Publication Date Title
JP7435667B2 (en) Light control film and laminated glass
JP6128270B1 (en) Light control film
TWI531838B (en) Horizontal electric-field type liquid crystal display device, liquid crystal retard panel emitted after changing polarization axis of incident light and manufacturing method therefor
WO2013177902A1 (en) Liquid crystal display viewing angle control method, liquid crystal display panel, and liquid crystal display
CN102809843B (en) Liquid crystal panel and transflective liquid crystal display
WO2015109751A1 (en) Liquid crystal display device
CN101609178A (en) Polarizer, LCD MODULE and LCD stereoscopic display
JP2006133619A (en) Liquid crystal display device and method for manufacturing the same
CN102749767B (en) Blue-phase LCD (Liquid Crystal Display) panel and blue-phase LCD device
KR102490632B1 (en) Liquid crystal display device having polarizing plate and method for fabricating the same
TWI382380B (en) 2d image and 3d image switchable display devices
JP2007279146A (en) Viewing angle control filter and display device
JP6109472B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
WO2015027642A1 (en) Liquid crystal panel, manufacturing method therefor, and display
JP2013113905A (en) Liquid crystal display device and manufacturing method for the same
JP2017062362A (en) Lighting control film
JP2006195112A (en) Liquid crystal element, and dimmer element and liquid crystal display device using the same
TW202024683A (en) Polarizer module and operation method thereof
JP2019101384A (en) Dimming film and dimming member
JP4864405B2 (en) Ferroelectric liquid crystal display device
JP2017223809A (en) Production method of light control film and light control film
KR101896546B1 (en) 3 dimensional stereography image display device and method of fabricating the same
CN103513485A (en) Displayer using ferroelectric liquid crystals
JP2011081256A (en) Liquid crystal display device, and method for manufacturing the same
JP6825274B2 (en) How to drive the dimming system, vehicle, and dimming film