JP2013111529A - Porous body with separation membrane - Google Patents

Porous body with separation membrane Download PDF

Info

Publication number
JP2013111529A
JP2013111529A JP2011260282A JP2011260282A JP2013111529A JP 2013111529 A JP2013111529 A JP 2013111529A JP 2011260282 A JP2011260282 A JP 2011260282A JP 2011260282 A JP2011260282 A JP 2011260282A JP 2013111529 A JP2013111529 A JP 2013111529A
Authority
JP
Japan
Prior art keywords
porous body
tubular passage
separation membrane
cross
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011260282A
Other languages
Japanese (ja)
Inventor
Masaaki Obata
正明 小畑
Yoji Seki
洋二 積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011260282A priority Critical patent/JP2013111529A/en
Publication of JP2013111529A publication Critical patent/JP2013111529A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous body with a separation membrane, which has a high permeability rate as a whole porous body with the separation membrane even when having a plurality of tubular passages.SOLUTION: A porous body with a separation membrane 1 includes a plurality of tubular passages 11 where the separation membrane having a separation function is formed at an inner wall of a through-hole provided at the porous body 12. At a cross section which is perpendicular to the longitudinal direction of the tubular passage, by making the cross section of the tubular passage located at the vicinity of the center of porous body smaller than the cross section of the tubular passage located at the vicinity of the outer circumferential porous body, a high permeability rate can be obtained as the whole porous body with the separation membrane.

Description

本発明は、分離膜付き多孔質体に関し、特に、含水アルコールの脱水濃縮、天然ガス分離、石油プラントにおける異性体分離等の技術において有用な分離膜付き多孔質体に関するものである。   The present invention relates to a porous body with a separation membrane, and more particularly to a porous body with a separation membrane useful in techniques such as dehydration concentration of hydrous alcohol, natural gas separation, and isomer separation in a petroleum plant.

従来より、各種ガスを含有する混合気体中から特定ガスを分離するフィルタや、含水アルコールから水分を除去するフィルタ、触媒を担持したメンブレンリアクター等が用いられているが、安全かつ簡便なことからその適用範囲が拡がり、今やこれらの分離濃縮技術は各種燃焼機関をはじめ、食品工業や医療用機器、化学プラントや石油精製プラントの蒸留の一部代替、更には溶剤の回収処理、廃棄物処理等の分野でも注目されている。   Conventionally, a filter for separating a specific gas from a mixed gas containing various gases, a filter for removing water from hydrous alcohol, a membrane reactor carrying a catalyst, etc. have been used. The scope of application has expanded, and now these separation and concentration technologies include various combustion engines, food industry, medical equipment, partial replacement for distillation in chemical plants and oil refining plants, as well as solvent recovery and waste disposal. It is also attracting attention in the field.

例えば、水素ガスを分離するフィルタとしては、石油精製プラントにおいて発生するオフガスや、アンモニア合成プラントにおいて発生するパージガスからの水素ガスの回収などに、また二酸化炭素を分離するフィルタとしては、燃費の向上およびパイプラインの腐食防止を目的に天然ガスに含まれる二酸化炭素の除去への応用が研究されている。さらに、酸素を分離するフィルタとしては、医療機器、スポーツ機器、各種燃焼機関用として応用されている。   For example, a filter for separating hydrogen gas can be used for recovering hydrogen gas from off-gas generated in an oil refining plant, purge gas generated in an ammonia synthesis plant, etc. The application to the removal of carbon dioxide contained in natural gas has been studied for the purpose of preventing corrosion of pipelines. Furthermore, as a filter for separating oxygen, it is applied to medical equipment, sports equipment, and various combustion engines.

従来のフィルタでは、例えばセラミックス製の多孔質体に非分離流体を通す貫通孔を設け、この貫通孔の内壁に分離機能を有する例えば炭素膜等が成膜された分離膜付き多孔質体を用いるものがあり、分離膜付き多孔質体としては、円筒状の多孔質体の内側に一つの管状通路を有するチューブラー型や、円柱状の多孔質体の内部に、その円柱の長さ方向に平行な複数の管状通路を有するモノリス型等が知られている(特許文献1を参照)。特にモノリス型はチューブラー型と比較して被分離流体を多量に流すことができ、フィルタに配置する分離膜付き多孔質体の数を低減できるため、分離膜付き多孔質体の交換、取り付け作業による装置の稼働率の低下や作業中の破損、シール不良の問題を防ぐことができる。   In a conventional filter, for example, a porous body with a separation membrane in which a through-hole for passing a non-separating fluid is provided in a porous body made of ceramics and a carbon membrane or the like having a separation function is formed on the inner wall of the through-hole is used. As a porous body with a separation membrane, there is a tubular type having a single tubular passage inside a cylindrical porous body, or inside a cylindrical porous body in the longitudinal direction of the cylinder. A monolith type having a plurality of parallel tubular passages is known (see Patent Document 1). In particular, the monolith type can flow a larger amount of fluid to be separated than the tubular type, and the number of porous bodies with separation membranes placed on the filter can be reduced. It is possible to prevent a reduction in the operating rate of the apparatus, damage during work, and problems of poor sealing.

特開2008−221177号公報JP 2008-221177 A

図3に示すようなモノリス型の分離膜付き多孔質体では、多孔質体の中心近傍に位置する管状通路における分離成分の分離効率は、外周近傍に位置する管状通路における分離効率よりも低くなり、分離膜付き多孔質体全体の分離効率が低下し、たとえば被分離流体を濃縮して取り出す場合には、取り出された被分離流体が充分に濃縮されずに再分離処理が必要になるという問題があった。これは、分離膜付き多孔質体において管状通路から分離された分離成分は、多孔質体内部を多孔質体外周表面に向け、多孔質体の気孔(細孔)内部と外周表面に接する雰囲気中との分離成分の分圧差を駆動力として移動することにより分離膜から排出されるが、図3に示すようなモノリス型の分離膜付き多孔質体では、円柱の外周近傍に位置する管状通路と比較して、円柱の軸の近傍に位置する管状通路で分離された分離成分は、多孔質体内部における移動距離が長く、排出されにくいためである。   In the porous body with a monolith type separation membrane as shown in FIG. 3, the separation efficiency of the separation component in the tubular passage located near the center of the porous body is lower than the separation efficiency in the tubular passage located near the outer periphery. The separation efficiency of the entire porous body with a separation membrane is reduced. For example, when the separated fluid is concentrated and taken out, the taken-out separated fluid is not sufficiently concentrated and a re-separation process is required. was there. This is because the separation component separated from the tubular passage in the porous body with the separation membrane faces the porous body inside surface toward the outer peripheral surface of the porous body, and is in an atmosphere in contact with the pores (pores) inside and the outer surface of the porous body. 3 is discharged from the separation membrane by moving the difference in partial pressure of the separation component as a driving force. In a monolith type porous body with a separation membrane as shown in FIG. This is because the separation component separated by the tubular passage located in the vicinity of the axis of the cylinder has a long moving distance inside the porous body and is difficult to be discharged.

本発明は上記の課題に鑑みてなされたものであり、複数の管状通路を備えていても分離
膜付き多孔質体全体として分離効率の高い分離膜付き多孔質体を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a porous body with a separation membrane having a high separation efficiency as a whole porous body with a separation membrane even if a plurality of tubular passages are provided. .

本発明の分離膜付き多孔質体は、多孔質体に設けられた貫通孔の内壁に分離機能を有する分離膜を形成した管状通路を複数備える分離膜付き多孔質体であって、前記管状通路の長さ方向に垂直な断面において、前記多孔質体の中心近傍に位置する前記管状通路の断面積が、前記多孔質体の外周近傍に位置する前記管状通路の断面積よりも小さいことを特徴とする。   The porous body with a separation membrane of the present invention is a porous body with a separation membrane comprising a plurality of tubular passages in which a separation membrane having a separation function is formed on the inner wall of a through hole provided in the porous body, The cross-sectional area of the tubular passage located near the center of the porous body is smaller than the cross-sectional area of the tubular passage located near the outer periphery of the porous body in a cross section perpendicular to the longitudinal direction of the porous body. And

本発明の分離膜付き多孔質体では、多孔質体の中心近傍に位置する管状通路の断面積を小さくすることにより、多孔質体の中心近傍に位置する管状通路を流れる被分離流体の流量を低減することにより、分離膜付き多孔質体全体として高い分離効率を得ることができる。   In the porous body with a separation membrane of the present invention, the flow rate of the fluid to be separated flowing through the tubular passage located near the center of the porous body is reduced by reducing the cross-sectional area of the tubular passage located near the center of the porous body. By reducing, high separation efficiency can be obtained as a whole porous body with a separation membrane.

本発明の実施形態の一例であるモノリス型分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of a tubular channel | path of the porous body with a monolith type separation membrane which is an example of embodiment of this invention. 本発明の実施例におけるモノリス型分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of a tubular channel | path of the porous body with a monolith type separation membrane in the Example of this invention. 従来のモノリス型分離膜付き多孔質体の一例を示す斜視図である。It is a perspective view which shows an example of the conventional porous body with a monolith type separation membrane.

図1は、本発明の実施形態の一例であるモノリス型の分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。分離膜付き多孔質体1は、例えば円柱状のセラミックス製の多孔質体12に設けられた円形の断面形状を有する貫通孔の内壁に、分離機能を有する例えば炭素膜等の分離膜12aが形成された、13本の管状通路11が配置されたものである。このような分離膜付き多孔質体1においては、管状通路11の両端における圧力差は、分離膜付き多孔質体1の両端における圧力差に等しく一定に保たれているため、管状通路11を流れる被分離流体の流速はいずれも等しくなる。   FIG. 1 is a cross-sectional view of a monolith-type porous body with a separation membrane, which is an example of an embodiment of the present invention, perpendicular to the length direction of a tubular passage. In the porous body 1 with a separation membrane, for example, a separation membrane 12a such as a carbon membrane having a separation function is formed on the inner wall of a through-hole having a circular cross-sectional shape provided in a cylindrical ceramic porous body 12. The thirteen tubular passages 11 are arranged. In such a porous body with a separation membrane 1, the pressure difference at both ends of the tubular passage 11 is kept constant and equal to the pressure difference at both ends of the separation membrane-containing porous body 1, and thus flows through the tubular passage 11. The flow rates of the fluids to be separated are all equal.

本実施形態では、管状通路11の長さ方向に垂直な断面における多孔質体12の中心近傍に位置する管状通路11aの断面積を、多孔質体12の外周近傍に位置する管状通路11cの断面積よりも小さくすることにより、管状通路11a内を通過する被分離流体の流量が、管状通路11c内を流れる被分離流体の流量よりも少なくなる。したがって、管状通路11aと管状通路11cの分離膜の性能が等しい場合、より分離成分を排出しやすい管状通路11cではより多くの分離成分を分離して多孔質体12の外周表面13から排出するが、より分離成分が排出されにくい管状通路11aでは、分離される分離成分の量が少ないため、多孔質体12の細孔内の移動距離が長くても多孔質体12の外周表面13に比較的排出されやすくなる。結果として、管状通路11aおよび11cを通過する被分離流体の濃縮率の差が低減され、分離膜付き多孔質体全体として高い分離効率が得られる。   In the present embodiment, the cross-sectional area of the tubular passage 11 a located in the vicinity of the center of the porous body 12 in the cross section perpendicular to the length direction of the tubular passage 11 is the same as the section of the tubular passage 11 c located in the vicinity of the outer periphery of the porous body 12. By making it smaller than the area, the flow rate of the fluid to be separated passing through the tubular passage 11a is smaller than the flow rate of the fluid to be separated flowing through the tubular passage 11c. Therefore, when the performances of the separation membranes of the tubular passage 11a and the tubular passage 11c are equal, the tubular passage 11c that easily discharges the separated components separates more separated components and discharges them from the outer peripheral surface 13 of the porous body 12. In the tubular passage 11a in which the separated component is less likely to be discharged, the amount of the separated component to be separated is small, so that the outer peripheral surface 13 of the porous body 12 is relatively relatively long even if the movement distance in the pores of the porous body 12 is long. It becomes easy to be discharged. As a result, the difference in the concentration rate of the fluid to be separated passing through the tubular passages 11a and 11c is reduced, and high separation efficiency is obtained as a whole porous body with a separation membrane.

なお、多孔質体12の外周近傍から中心にかけて、複数の管状通路11が存在する場合は、管状通路11の断面積は、管状通路11の設置位置が、多孔質体12の外周から遠ざかるに従って小さくなっていることが好ましい。すなわち、管状通路11の長さ方向に垂直な方向の断面において、多孔質体12の中心近傍に位置する中央部管状通路11aの断面積をA、多孔質体12の外周近傍に位置する外周部管状通路11cの断面積をA、管状通路11aと11cの間に位置する中間部管状通路11bの断面積をAとした場合、各管状通路11の断面積が、関係式
<A<A ・・・式1
を満たすことが好ましい。
When there are a plurality of tubular passages 11 from the vicinity of the outer periphery of the porous body 12 to the center, the cross-sectional area of the tubular passage 11 becomes smaller as the installation position of the tubular passage 11 is further away from the outer periphery of the porous body 12. It is preferable that That is, in the cross section perpendicular to the length direction of the tubular passage 11, the cross-sectional area of the central tubular passage 11 a located near the center of the porous body 12 is A a , and the outer circumference located near the outer circumference of the porous body 12. Assuming that the cross-sectional area of the tubular passage 11c is A c and the cross-sectional area of the intermediate tubular passage 11b located between the tubular passages 11a and 11c is Ab, the cross-sectional area of each tubular passage 11 is expressed by the relation A a < A b <A c Formula 1
It is preferable to satisfy.

このように、管状通路11の断面積A、すなわち管状通路11を通過する被分離流体の流量を、管状通路11が多孔質体12の外周表面13から遠ざかるに従って低減することにより、各管状通路11管を通過する被分離流体の濃縮率の差をさらに低減することができる。   Thus, the cross-sectional area A of the tubular passage 11, that is, the flow rate of the fluid to be separated that passes through the tubular passage 11 is reduced as the tubular passage 11 moves away from the outer peripheral surface 13 of the porous body 12. The difference in the concentration rate of the fluid to be separated passing through the pipe can be further reduced.

管状通路11の断面積Aは、具体的には、多孔質体12の直径、気孔率、細孔径、細孔分布等や、管状通路11の設置位置により決定される必要があるが、管状通路11における断面積A、および管状通路11の幾何学的重心位置と多孔質体12の外周表面13との最短距離Lを、任意の二つの管状通路11i、11jについて、より多孔質体12の中心近傍に位置する管状通路11iにおいてはAおよびLとし、より多孔質体12の外周近傍に位置する管状通路11jにおいてはAおよびLとした場合、Aが以下の関係式
(L/L≦(A/A)≦(L/L) ・・・式2
を満たすことが好ましい。上記関係式を満たすことにより、分離成分が多孔質体外周表面から排出されるまでの距離と、多孔質体12の断面における分離成分の拡散面積に応じて、管状通路11内を通過する被分離流体の流量を適度に調節することができる。Aが上記式2の上限よりも大きい場合は、管状通路11iから排出される被分離流体の濃縮率が低くなり、分離膜付き多孔質体全体の分離効率を向上することが難しくなる。一方、Aが上記式2の下限よりも小さい場合は、管状通路11iを通過する被分離流体の濃縮率が管状通路11jより高くなる場合もあるが、分離膜付き多孔質体全体としての被分離流体の流量が少なくなり、処理能力が低下する。
Specifically, the cross-sectional area A of the tubular passage 11 needs to be determined by the diameter, porosity, pore diameter, pore distribution and the like of the porous body 12 and the installation position of the tubular passage 11. 11 and the shortest distance L between the geometric gravity center position of the tubular passage 11 and the outer peripheral surface 13 of the porous body 12 with respect to any two tubular passages 11i and 11j, the center of the porous body 12 If the tubular passage 11i located in the vicinity is A i and L i, and the tubular passage 11j located near the outer periphery of the porous body 12 is A j and L j , then A i is expressed by the following relational expression (L j / L i ) 2 ≦ (A i / A j ) ≦ (L j / L i ) Equation 2
It is preferable to satisfy. By satisfying the above relational expression, the separation component passing through the tubular passage 11 according to the distance until the separation component is discharged from the outer peripheral surface of the porous body and the diffusion area of the separation component in the cross section of the porous body 12 The flow rate of the fluid can be adjusted appropriately. When A i is larger than the upper limit of the above formula 2, the concentration rate of the fluid to be separated discharged from the tubular passage 11i becomes low, and it becomes difficult to improve the separation efficiency of the entire porous body with a separation membrane. On the other hand, when A i is smaller than the lower limit of Equation 2, the concentration rate of the fluid to be separated that passes through the tubular passage 11i may be higher than that of the tubular passage 11j. The flow rate of the separation fluid decreases, and the processing capacity decreases.

例えば、中央部管状通路11a、中間部管状通路11b、外周部管状通路11cの半径をそれぞれR、R、R、各管状通路の中心と多孔質体12の外周表面13との最短距離をそれぞれL、L、Lとした時、
(L/L≦(R/R≦(L/L
(L/L≦(R/R≦(L/L
(L/L≦(R/R≦(L/L
の関係とするのが好ましい。
For example, the radius of each of the central tubular passage 11a, the intermediate tubular passage 11b, and the outer peripheral tubular passage 11c is set to R a , R b , R c , and the shortest distance between the center of each tubular passage and the outer peripheral surface 13 of the porous body 12. Is L a , L b and L c respectively.
(L b / L a ) 2 ≦ (R a / R b ) 2 ≦ (L b / L a )
(L c / L a ) 2 ≦ (R a / R c ) 2 ≦ (L c / L a )
(L c / L b ) 2 ≦ (R b / R c ) 2 ≦ (L c / L b )
It is preferable that

また、例えば多孔質体12の中央近傍に配置される管状通路11aにおいて、外周近傍に配置された管状通路11cの断面積と等しい面積の中に、複数の管状通路11a群を配置することにより、被分離流体の流量を低減するとともに分離膜の面積が増大し、管状通路11a群を通過する被分離流体の濃縮率をより高くすることができる。   Further, for example, in the tubular passage 11a disposed near the center of the porous body 12, by arranging a plurality of tubular passages 11a in an area equal to the cross-sectional area of the tubular passage 11c disposed near the outer periphery, The flow rate of the fluid to be separated can be reduced, the area of the separation membrane can be increased, and the concentration rate of the fluid to be separated passing through the tubular passages 11a can be further increased.

本発明においては、モノリス型の分離膜付き多孔質体1の形状は円柱状に限るものではなく、例えば楕円柱状や、三角柱、四角柱等の多角柱状でもかまわない。多角柱状の場合は所望により多角形の角を丸めることもできる。また、管状通路11の長さ方向に垂直な断面における管状通路11の断面形状も、円形に限るものではなく、例えば楕円形や、三角形、四角形等の多角形としても構わない。なお、管状通路11の断面形状が円形以外の場合、多孔質体12の断面および管状通路11の断面の中心とは、幾何学的な重心をいい、多孔質体12における管状通路11の設置位置は、この幾何学的な重心により規定される。   In the present invention, the shape of the porous body 1 with a monolith type separation membrane is not limited to a cylindrical shape, and may be an elliptical column shape, a polygonal column shape such as a triangular column, a quadrangular column, or the like. In the case of a polygonal column shape, the corners of the polygon can be rounded as desired. Further, the cross-sectional shape of the tubular passage 11 in the cross section perpendicular to the length direction of the tubular passage 11 is not limited to a circle, and may be, for example, an ellipse, a polygon such as a triangle or a quadrangle. When the cross-sectional shape of the tubular passage 11 is other than circular, the cross section of the porous body 12 and the center of the cross section of the tubular passage 11 refer to the geometric center of gravity, and the installation position of the tubular passage 11 in the porous body 12 Is defined by this geometric center of gravity.

本発明の分離膜付き多孔質体の製造方法について、その一例を説明する。   An example of the method for producing a porous body with a separation membrane of the present invention will be described.

まず、所定の貫通孔が設けられた多孔質体12を準備する。多孔質体12の種々の形状
や貫通孔の配置等については、たとえば押出成形で成形するのであれば金型等を適宜設計して所望の成形体を作製してもよいし、成形体や焼成体に加工を施してもよい。
First, the porous body 12 provided with predetermined through holes is prepared. Regarding the various shapes of the porous body 12 and the arrangement of the through-holes, for example, if molding is performed by extrusion molding, a desired molded body may be manufactured by appropriately designing a mold or the like, or the molded body or firing The body may be processed.

多孔質体12の材料としては、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。多孔質体12を構成するセラミック粒子の平均粒径は1〜100μm、好ましくは1〜30μmの範囲であり、平均細孔径は0.1〜30μm、好ましくは0.1〜10μmの範囲であることが好ましい。   As a material of the porous body 12, ceramics such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, silicon nitride can be suitably used. The average particle diameter of the ceramic particles constituting the porous body 12 is 1 to 100 μm, preferably 1 to 30 μm, and the average pore diameter is 0.1 to 30 μm, preferably 0.1 to 10 μm. Is preferred.

管状通路となる多孔質体12の貫通孔の内壁には、分離膜との間に多孔質体12よりも平均粒径が小さいセラミック粒子で構成される中間層を設けてもよい。中間層の材料としては、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。中間層は、たとえば平均粒径0.01〜10μm、好ましくは0.02〜1μmのセラミック粒子からなる原料粉末を適宜秤量し、例えば親水性の分散剤を用いて水に分散させ、例えばディップコート法(浸漬塗布法)などの塗布手段を用いて多孔質体12の貫通孔の内壁に塗布し、乾燥した後、熱処理することで形成できる。このとき、形成された中間層を構成するセラミック粒子はネックにより部分的に結合していればよく、その粒径は原料粉末の粒径にほぼ等しい。中間層の厚さは、例えば浸漬時間や浸漬回数により調整可能であり、例えば5〜1000μmの範囲とすることができる。また、中間層の平均細孔径は0.01〜3μm、好ましくは0.1〜0.5μmの範囲で適宜選択すればよい。中間層の厚さは、多孔質体12の貫通孔の内壁に存在する凹凸を中間層で覆うことができる厚さであればよい。その上に形成される分離膜の内壁にピンホール等の表面欠陥が残留するのを防ぎ、かつ透過速度を大きくするという点から、中間層の厚みは、多孔質体12の貫通孔の内壁を構成するセラミック粒子の平均粒径の1〜50倍が好ましく、更には2〜20倍がより好ましい。なお、中間層の厚さ、多孔質体12および中間層の平均粒径は、多孔質体12および中間層の走査型電子顕微鏡(SEM)による断面写真から求めることができ、平均粒径は、たとえばインターセプト法により算出できる。また、多孔質体12および中間層の平均細孔径は、水銀圧入法で求めることができる。   An intermediate layer made of ceramic particles having an average particle size smaller than that of the porous body 12 may be provided between the inner wall of the through hole of the porous body 12 serving as a tubular passage and the separation membrane. As the material for the intermediate layer, ceramics such as alumina, mullite, cordierite, zirconia, magnesia, silicon carbide, and silicon nitride can be suitably used. For the intermediate layer, for example, a raw material powder composed of ceramic particles having an average particle diameter of 0.01 to 10 μm, preferably 0.02 to 1 μm is appropriately weighed, and dispersed in water using a hydrophilic dispersant, for example, dip coating. It can be formed by applying to the inner wall of the through-hole of the porous body 12 using an application means such as a method (dip coating method), drying, and then heat-treating. At this time, the ceramic particles constituting the formed intermediate layer only need to be partially bonded by the neck, and the particle size thereof is substantially equal to the particle size of the raw material powder. The thickness of the intermediate layer can be adjusted by, for example, the immersion time and the number of immersions, and can be set in the range of, for example, 5 to 1000 μm. The average pore diameter of the intermediate layer may be appropriately selected within the range of 0.01 to 3 μm, preferably 0.1 to 0.5 μm. The thickness of the intermediate layer may be a thickness that can cover the unevenness present on the inner wall of the through hole of the porous body 12 with the intermediate layer. From the standpoint of preventing surface defects such as pinholes from remaining on the inner wall of the separation membrane formed thereon and increasing the permeation speed, the thickness of the intermediate layer is determined by the inner wall of the through hole of the porous body 12. 1 to 50 times the average particle size of the ceramic particles to be formed is preferable, and 2 to 20 times is more preferable. In addition, the thickness of the intermediate layer, the average particle diameter of the porous body 12 and the intermediate layer can be determined from a cross-sectional photograph of the porous body 12 and the intermediate layer by a scanning electron microscope (SEM), For example, it can be calculated by the intercept method. Moreover, the average pore diameter of the porous body 12 and the intermediate layer can be determined by a mercury intrusion method.

多孔質体12の貫通孔の内壁もしくはそこに形成された中間層上に、炭素膜等の分離膜を形成することで、分離膜付き多孔質体1を得ることができる。分離膜の形成方法は、たとえば炭素膜を分離膜として形成する場合であれば、炭素膜の前駆体として芳香族ポリイミド、ポリプロピレン、ポリフリルアルコール、ポリ塩化ビニリデン、フェノール樹脂等を溶媒に溶かして炭素膜の前駆体溶液(単に前駆体溶液という場合もある)を作製し、ディップコート等により多孔質体12の貫通孔の内壁もしくはそこに形成された中間層上に炭素膜前駆体被膜を形成し、乾燥した後、窒素雰囲気等の非酸化性雰囲気または真空下で、550〜1000℃の温度で熱処理することで、炭素膜が形成される。なお、炭素膜前駆体被膜を形成する際、多孔質体12の細孔内への前駆体溶液の侵入を防止するため、多孔質体12の細孔内に1kPa程度の圧力でヘリウムガスを供給して細孔内を加圧しながら行ってもよい。また、炭素膜前駆体被膜の形成と乾燥とを複数回繰り返した後、熱処理をおこなっても構わない。   By forming a separation membrane such as a carbon membrane on the inner wall of the through hole of the porous body 12 or an intermediate layer formed there, the porous body 1 with a separation membrane can be obtained. For example, in the case of forming a carbon membrane as a separation membrane, the separation membrane is formed by dissolving aromatic polyimide, polypropylene, polyfuryl alcohol, polyvinylidene chloride, phenol resin, etc. as a carbon membrane precursor in a solvent. A film precursor solution (sometimes simply referred to as a precursor solution) is prepared, and a carbon film precursor film is formed on the inner wall of the through hole of the porous body 12 or an intermediate layer formed there by dip coating or the like. After drying, a carbon film is formed by heat treatment at a temperature of 550 to 1000 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere or in a vacuum. When forming the carbon film precursor coating, helium gas is supplied into the pores of the porous body 12 at a pressure of about 1 kPa in order to prevent the precursor solution from entering the pores of the porous body 12. And you may carry out, pressurizing the inside of a pore. Moreover, after repeating the formation and drying of the carbon film precursor coating a plurality of times, heat treatment may be performed.

分離膜の厚さは、ピンホール等の欠陥発生を抑制し、透過速度を大きくするという点から、0.01〜5μmが好ましく、特には0.1〜3μmが好ましい。   The thickness of the separation membrane is preferably from 0.01 to 5 μm, particularly preferably from 0.1 to 3 μm, from the viewpoint of suppressing the occurrence of defects such as pinholes and increasing the permeation rate.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

まず、図2に示すような9本の貫通孔を有する、長さ200mm、平均粒径3.0μm、平均細孔径1.1μmのアルミナ製の多孔質体を準備した。   First, an alumina porous body having a length of 200 mm, an average particle diameter of 3.0 μm, and an average pore diameter of 1.1 μm having nine through-holes as shown in FIG. 2 was prepared.

次に、アルミナ粉末(平均粒径0.02〜0.9μm)を水とポリビニルアルコール(PVA)に分散させ、アルミナスラリーを作製し、アルミナ製の多孔質体をこのアルミナスラ
リーに浸漬して一定速度で引き上げ、多孔質体表面および貫通孔の内壁に中間層となる被膜を形成し、乾燥した。その後、多孔質体全体を1100℃で熱処理し、貫通孔の内壁に平均粒径0.2μm、平均細孔径0.05μmのアルミナ粒子からなる厚さ30μmの中間層を形成した。なお、中間層の厚さ、アルミナ多孔質体および中間層の平均粒径は、アルミナ多孔質体および中間層の走査型電子顕微鏡(SEM)による断面写真から求め、平均細孔径は水銀圧入法により求めた。
Next, alumina powder (average particle diameter of 0.02 to 0.9 μm) is dispersed in water and polyvinyl alcohol (PVA) to prepare an alumina slurry, and the porous body made of alumina is immersed in the alumina slurry and fixed. The film was pulled up at a speed to form a coating film as an intermediate layer on the surface of the porous body and the inner wall of the through hole, and dried. Thereafter, the entire porous body was heat-treated at 1100 ° C. to form an intermediate layer having a thickness of 30 μm made of alumina particles having an average particle diameter of 0.2 μm and an average pore diameter of 0.05 μm on the inner wall of the through hole. The thickness of the intermediate layer and the average particle diameter of the alumina porous body and the intermediate layer are obtained from cross-sectional photographs of the alumina porous body and the intermediate layer obtained by a scanning electron microscope (SEM). The average pore diameter is determined by a mercury intrusion method. Asked.

一方で、炭素膜の前駆体溶液として、フェノール樹脂をテトラヒドロフラン(THF)に溶解した濃度35%のフェノール樹脂溶液(以下、単に前駆体溶液ともいう)を作製した。貫通孔の内壁に中間層を形成した多孔質体は、貫通孔の開口部の一方を密閉し、他方の開口部から前駆体溶液を注入して1分間保持した後、前駆体溶液を排出し、中間層上にフェノール樹脂の被膜を形成して、130℃で10分間乾燥させた。その後、密閉した貫通孔の開口部を開放し、多孔質体全体を窒素雰囲気中850℃で10分間熱処理し、厚さ2μmの炭素膜が形成された、長さ200mmの分離膜付き多孔質体を得た。分離膜付き多孔質体の中央部、中間部および外周部の管状通路の半径をそれぞれR1、R2およびR3、管状通路の中心と多孔質体の外周表面との最短距離をそれぞれL1、L2およびL3として表1に示す。   On the other hand, a 35% concentration phenol resin solution (hereinafter also simply referred to as a precursor solution) in which a phenol resin was dissolved in tetrahydrofuran (THF) was prepared as a carbon film precursor solution. In the porous body in which the intermediate layer is formed on the inner wall of the through hole, one of the openings of the through hole is sealed, the precursor solution is injected from the other opening and held for 1 minute, and then the precursor solution is discharged. A phenolic resin film was formed on the intermediate layer and dried at 130 ° C. for 10 minutes. Thereafter, the opening of the sealed through-hole is opened, and the entire porous body is heat-treated at 850 ° C. for 10 minutes in a nitrogen atmosphere to form a 2 μm-thick carbon membrane with a separation membrane having a length of 200 mm. Got. The radius of the tubular passages in the central portion, the intermediate portion and the outer peripheral portion of the porous body with the separation membrane are R1, R2 and R3, respectively, and the shortest distance between the center of the tubular passage and the outer peripheral surface of the porous body is L1, L2 and L3, respectively. As shown in Table 1.

Figure 2013111529
Figure 2013111529

作製した分離膜付き多孔質体について、温度75℃、水/エタノール(EtOH)の質量比10/90の混合溶液を管状通路内に通し、供給側である管状通路の内側を大気圧とし、透過側である分離膜付き多孔質体の外周面側を真空として、圧力差を駆動力として混合溶液中の水の浸透気化分離を行った。   For the produced porous body with a separation membrane, a mixed solution having a temperature of 75 ° C. and a mass ratio of water / ethanol (EtOH) of 10/90 is passed through the tubular passage, the inside of the tubular passage on the supply side is set to atmospheric pressure, and permeated. The outer peripheral surface side of the porous body with a separation membrane, which is the side, was subjected to pervaporation separation of water in the mixed solution using a pressure difference as a driving force under vacuum.

管状通路から排出された濃縮混合溶液の水/エタノール(EtOH)の質量比を、ガスクロマトグラフGC-2014(島津製作所)を用いて測定し、表2に示した。また、分
離膜付き多孔質体の管状通路の長さ方向に垂直な断面における、中央部、中間部および外周部の管状通路の断面積をそれぞれA1、A2およびA3とし、式1および式2で示される関係式をいずれも満足する場合は◎、式1のみを満足する場合は○、いずれの関係式も満足しない場合は×として表2に示した。
The mass ratio of water / ethanol (EtOH) of the concentrated mixed solution discharged from the tubular passage was measured using a gas chromatograph GC-2014 (Shimadzu Corporation) and is shown in Table 2. Moreover, the cross-sectional areas of the tubular passages in the central portion, the intermediate portion, and the outer peripheral portion in the cross section perpendicular to the length direction of the tubular passage of the porous body with the separation membrane are respectively A1, A2, and A3. Table 2 shows ◎ when all the relational expressions shown are satisfied, ◯ when only one of the relational expressions 1 is satisfied, and x when neither relational expression is satisfied.

Figure 2013111529
Figure 2013111529

管状通路の断面積が、設置位置が多孔質体の中心近傍に近づくに従って小さくなる試料No.1〜5の分離膜付き多孔質体では、管状通路の断面積がすべて等しい試料No.6や、配置位置が多孔質体の中心近傍に近づくに従って大きくなる試料No.7の分離膜付き多孔質体よりも、管状通路から排出された混合溶液のエタノール濃度が高く、より高い分離効率が得られた。   The cross-sectional area of the tubular passage becomes smaller as the installation position gets closer to the vicinity of the center of the porous body. In the porous bodies with separation membranes 1 to 5, the sample Nos. 6 or Sample No. which increases as the arrangement position approaches the vicinity of the center of the porous body. The mixed solution discharged from the tubular passage had a higher ethanol concentration than the porous membrane with the separation membrane of No. 7, and higher separation efficiency was obtained.

1 : 分離膜付き多孔質体
11 : 管状通路
11a : 中央部管状通路
11b : 中間部管状通路
11c : 外周部管状通路
12 : 多孔質体
13 : 多孔質体の外周表面
、R1: 中央部管状通路の半径
、R2: 中間部管状通路の半径
、R3: 外周部管状通路の半径
、L1: 中央部管状通路の中心と多孔質体の外周表面との距離
、L2: 中間部管状通路の中心と多孔質体の外周表面との距離
、L3: 外周部管状通路の中心と多孔質体の外周表面との距離
1: separation membrane with a porous body 11: tubular passage 11a: central tubular passageway 11b: middle section tubular passage 11c: outer periphery tubular passageway 12 Porous body 13: outer peripheral surface of the porous body R a, R1: a central portion radius R b of the tubular passage, R2: the radius R c of the intermediate section tubular passageway, R3: the radius L a of the outer peripheral portion the tubular passage, L1: distance between the center and the outer periphery surface of the porous body of the central portion the tubular passage L b, L2: distance L c between the center of the intermediate tubular passage and the outer peripheral surface of the porous body, L3: distance between the center of the outer tubular passage and the outer peripheral surface of the porous body

Claims (3)

多孔質体に設けられた貫通孔の内壁に分離機能を有する分離膜を形成した管状通路を複数備える分離膜付き多孔質体であって、
前記管状通路の長さ方向に垂直な断面において、前記多孔質体の中心近傍に位置する前記管状通路の断面積が、前記多孔質体の外周近傍に位置する前記管状通路の断面積よりも小さいことを特徴とする分離膜付き多孔質体。
A porous body with a separation membrane comprising a plurality of tubular passages in which a separation membrane having a separation function is formed on the inner wall of a through hole provided in the porous body,
In a cross section perpendicular to the longitudinal direction of the tubular passage, the cross-sectional area of the tubular passage located near the center of the porous body is smaller than the cross-sectional area of the tubular passage located near the outer periphery of the porous body. A porous body with a separation membrane.
前記管状通路の長さ方向に垂直な断面において、前記管状通路の断面積は、前記管状通路の設置位置が、前記多孔質体の外周から遠ざかるに従って小さくなることを特徴とする請求項1に記載の分離膜付き多孔質体。   2. The cross-sectional area of the tubular passage in a cross section perpendicular to the length direction of the tubular passage becomes smaller as the installation position of the tubular passage becomes farther from the outer periphery of the porous body. A porous body with a separation membrane. 前記多孔質体に設けられた任意の二つの前記管状通路において、前記管状通路の長さ方向に垂直な断面における、より前記多孔質体の中心近傍に位置する方の前記管状通路の断面積をA、幾何学的重心と前記多孔質体の前記外周との最短距離をLとし、より前記多孔質体の外周近傍に位置する方の前記管状通路の断面積をA,幾何学的重心と前記多孔質体の前記外周との最短距離をLとしたときに、前記Aが以下の関係式
(L/L≦(A/A)≦(L/L
を満たすことを特徴とする請求項1または2に記載の分離膜付き多孔質体。
In any two of the tubular passages provided in the porous body, the cross-sectional area of the tubular passage located closer to the center of the porous body in a cross section perpendicular to the longitudinal direction of the tubular passage A i , L i is the shortest distance between the geometric center of gravity and the outer periphery of the porous body, and the cross-sectional area of the tubular passage located closer to the outer periphery of the porous body is A j , geometric When the shortest distance between the center of gravity and the outer periphery of the porous body is L j , the A i is expressed by the following relational expression (L j / L i ) 2 ≦ (A i / A j ) ≦ (L j / Li )
The porous body with a separation membrane according to claim 1 or 2, wherein:
JP2011260282A 2011-11-29 2011-11-29 Porous body with separation membrane Pending JP2013111529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260282A JP2013111529A (en) 2011-11-29 2011-11-29 Porous body with separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260282A JP2013111529A (en) 2011-11-29 2011-11-29 Porous body with separation membrane

Publications (1)

Publication Number Publication Date
JP2013111529A true JP2013111529A (en) 2013-06-10

Family

ID=48707658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260282A Pending JP2013111529A (en) 2011-11-29 2011-11-29 Porous body with separation membrane

Country Status (1)

Country Link
JP (1) JP2013111529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000981A (en) * 2015-06-12 2017-01-05 日本特殊陶業株式会社 Separation membrane support, separation membrane structure and separation membrane structure module
JP2022020740A (en) * 2017-03-28 2022-02-01 京セラ株式会社 Fuel tank with separation film
WO2023157861A1 (en) * 2022-02-21 2023-08-24 日本碍子株式会社 Reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000981A (en) * 2015-06-12 2017-01-05 日本特殊陶業株式会社 Separation membrane support, separation membrane structure and separation membrane structure module
JP2022020740A (en) * 2017-03-28 2022-02-01 京セラ株式会社 Fuel tank with separation film
JP7257485B2 (en) 2017-03-28 2023-04-13 京セラ株式会社 Fuel tank with separation membrane
WO2023157861A1 (en) * 2022-02-21 2023-08-24 日本碍子株式会社 Reactor

Similar Documents

Publication Publication Date Title
US20080105613A1 (en) Ceramic filter
JP7220087B2 (en) Zeolite membrane composite, method for producing zeolite membrane composite, and separation method
WO2012147534A1 (en) Method for washing ceramic filter
JPWO2009001970A1 (en) Separation membrane complex and method for producing separation membrane complex
JP2023026609A (en) Gas separation method and gas separation device
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
JP2013111529A (en) Porous body with separation membrane
JP6490665B2 (en) Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and dehydration method
JP2013031830A (en) Porous body with separation membrane
CN115715227A (en) Separation membrane complex and separation method
JP7230176B2 (en) Zeolite membrane composite, method for producing zeolite membrane composite, and separation method
WO2019187640A1 (en) Zeolite membrane composite body, method for producing zeolite membrane composite body, and separation method
JP2009220039A (en) Porous film complex structure and manufacturing method of micropore in porous body
WO2021240917A1 (en) Separation membrane composite body, separation membrane composite body production method, and separation method
JP6767876B2 (en) Separation film structure and its manufacturing method
JP2016175063A (en) Regeneration method of membrane
JP6702884B2 (en) Gas separation method
JPWO2016104048A1 (en) Gas separation method
JP2007229564A (en) Manufacturing method of ceramic filter
WO2020066298A1 (en) Support body, zeolite film complex, manufacturing method for zeolite film complex, and separation method
US20230330603A1 (en) Separation membrane complex and method of producing separation membrane complex
JP6417355B2 (en) Monolith type separation membrane structure
WO2023153172A1 (en) Separation membrane composite, mixed gas separation apparatus, and method for producing separation membrane composite
US20240181399A1 (en) Processing method of separation membrane complex and processing apparatus for separation membrane complex
JP2013128904A (en) Porous body having separation membrane and fluid separation module