JP2013110248A - Electric circuit for solar cell and solar cell module - Google Patents

Electric circuit for solar cell and solar cell module Download PDF

Info

Publication number
JP2013110248A
JP2013110248A JP2011253663A JP2011253663A JP2013110248A JP 2013110248 A JP2013110248 A JP 2013110248A JP 2011253663 A JP2011253663 A JP 2011253663A JP 2011253663 A JP2011253663 A JP 2011253663A JP 2013110248 A JP2013110248 A JP 2013110248A
Authority
JP
Japan
Prior art keywords
solar cell
electric circuit
layer
electric
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253663A
Other languages
Japanese (ja)
Inventor
Michio Araya
方生 荒谷
Koichi Kumai
晃一 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011253663A priority Critical patent/JP2013110248A/en
Publication of JP2013110248A publication Critical patent/JP2013110248A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable solar cell module exhibiting excellent durability and acid resistance under high temperature high humidity, by protecting an electric circuit pattern by a simple method in an electric circuit for solar cell.SOLUTION: In the electric circuit for solar cell where electric wiring and solder resist are formed on an insulating substrate via an adhesive, an antirust film is provided on the electric wiring and the upper surface of the solder resist. The antirust film is composed of a hot-melt adhesive having a softening temperature of 170°C-200°C, and has a thickness in the range of 0.1-2 μm.

Description

本発明は、バックコンタクト式太陽電池モジュールにおいて電気配線を含む絶縁基材と封止材の間に防錆層を備えた太陽電池用電気回路に関する。   The present invention relates to an electric circuit for a solar cell provided with a rust prevention layer between an insulating base material including electric wiring and a sealing material in a back contact type solar cell module.

近年、自然エネルギーを利用する発電システムである太陽光発電の普及が急速に進められている。太陽光発電をするための太陽電池モジュールは、高い発電効率とともに、屋外で使用した場合にも長期間の使用に耐えうる耐久性が求められている。また太陽電池モジュールの中でもバックコンタクト式は製造プロセスが複雑になるものの受光面の裏面に電極を配置することで、太陽光を受光できる面積を増やし、変換効率を向上させられるというメリットがある。   In recent years, solar power generation, which is a power generation system using natural energy, has been rapidly spread. A solar cell module for performing solar power generation is required to have high power generation efficiency and durability to withstand long-term use even when used outdoors. Among the solar cell modules, the back contact type has a merit that although the manufacturing process is complicated, an electrode can be arranged on the back surface of the light receiving surface to increase the area capable of receiving sunlight and to improve the conversion efficiency.

バックコンタクト式太陽電池モジュールは受光側に配置された透光性基板と、裏面側に配置されたバックシートと、透光性基板およびバックシートの間に封止された多数の太陽電池セルとを有している。一般的な太陽電池セルは、エチレン・酢酸ビニル共重合体(EVA)フィルム等の封止用フィルムに挟まれて封止されている。従来、太陽電池セルの封止材(EVA)が吸湿することにより、加水分解で遊離した酢酸が配線を腐食させる問題があった。それを防止する為に、封止材の改良や封止膜の改良として、例えば特許文献1〜3に開示された技術が提案されている。   The back contact type solar cell module includes a translucent substrate disposed on the light receiving side, a back sheet disposed on the back surface side, and a large number of solar cells sealed between the translucent substrate and the back sheet. Have. A general solar battery cell is sandwiched and sealed between sealing films such as an ethylene / vinyl acetate copolymer (EVA) film. Conventionally, there has been a problem that acetic acid liberated by hydrolysis corrodes wiring due to moisture absorption by the sealing material (EVA) of the solar battery cell. In order to prevent this, for example, techniques disclosed in Patent Documents 1 to 3 have been proposed as improvements in sealing materials and sealing films.

特許文献1では、太陽電池の回路を覆う封止材であるEVAの周りに、ポリイソブチレン系樹脂などで形成される水蒸気バリア材料を成膜したものである。これにより封止材側面を通しての水分の侵入による導体テープや裏面電極の腐食を防止して優れた長期信頼性に示し、かつ安価で製造が容易な太陽電池モジュールを提供している。   In Patent Document 1, a water vapor barrier material formed of polyisobutylene resin or the like is formed around EVA, which is a sealing material that covers a circuit of a solar cell. As a result, it is possible to prevent the conductor tape and the back electrode from being corroded due to the intrusion of moisture through the side surface of the sealing material, to provide excellent long-term reliability, and to provide a solar cell module that is inexpensive and easy to manufacture.

特許文献2、3の太陽電池モジュールでは、太陽電池の内部などに含まれる金属腐食の抑制性能及び透明性に優れ、これらをより長期間に亘って維持することが可能な封止膜を提供している。特許文献2の封止膜は、エチレン−極性モノマー共重合体とイソシアネート化合物より形成された、少なくとも一個のカルボジイミド基を有するカルボジイミド化合物とを含み、前記カルボジイミド化合物における未反応イソシアネート基の含有量が1.0質量%以下であるものである。また、特許文献3はエチレン−極性モノマー共重合体と、末端にイソシアネート基を有するカルボジイミド化合物よりなる封止膜である。   The solar cell modules of Patent Documents 2 and 3 provide a sealing film that is excellent in metal corrosion suppression performance and transparency contained in the inside of a solar cell and can maintain them for a longer period of time. ing. The sealing film of Patent Document 2 includes a carbodiimide compound having at least one carbodiimide group formed from an ethylene-polar monomer copolymer and an isocyanate compound, and the content of unreacted isocyanate groups in the carbodiimide compound is 1 0.0 mass% or less. Patent Document 3 is a sealing film made of an ethylene-polar monomer copolymer and a carbodiimide compound having an isocyanate group at the terminal.

しかしながら、特許文献1〜3に開示された封止膜は、成膜方法が複雑で樹脂を改良するなどの問題がある。   However, the sealing films disclosed in Patent Documents 1 to 3 have problems that the film forming method is complicated and the resin is improved.

特開2001−148496号公報Japanese Patent Laid-Open No. 2001-148496 特開2008−291222号公報JP 2008-291222 A 特開2011−026562号公報JP 2011-026562 A

本発明は、上記の課題を解決するためになされたものであり、太陽電池用電気回路において、簡便な方法で電気回路パターンを保護し、信頼性の高い太陽電池モジュールを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly reliable solar cell module that protects an electric circuit pattern by a simple method in an electric circuit for a solar cell. To do.

本発明の請求項1に係る発明は、絶縁基材上に接着剤を介して電気配線とソルダーレジストが形成された太陽電池用電気回路であって、前記電気配線とソルダーレジストの上面に防錆層を設けたこと特徴とする太陽電池用電気回路である。   The invention according to claim 1 of the present invention is an electric circuit for a solar cell in which an electric wiring and a solder resist are formed on an insulating substrate via an adhesive, and rust prevention is provided on the upper surfaces of the electric wiring and the solder resist. It is the electric circuit for solar cells characterized by providing the layer.

また、本発明の請求項2に係る発明は、前記防錆層が軟化温度170℃以上200℃以下のホットメルト接着剤からなり、且つ、膜厚が0.1μm以上2μm以下の範囲であることを特徴とする請求項1に記載の太陽電池用電気回路である。   In the invention according to claim 2 of the present invention, the rust preventive layer is made of a hot melt adhesive having a softening temperature of 170 ° C. or more and 200 ° C. or less, and the film thickness is in the range of 0.1 μm or more and 2 μm or less. It is an electric circuit for solar cells of Claim 1 characterized by these.

すなわち、本発明の太陽電池用電気回路は防錆層、電気配線を含む絶縁基材を有し、前記防錆層は、膜厚が0.1μm以上2μm以下で封止材と電気配線パターンの間に塗布されており、前記防錆層は軟化温度が170℃以上200℃以下のホットメルト接着剤である。この接着剤の膜厚の制御により、太陽電池セルとの電気的接続を妨げることなく、太陽電池用電気回路パターンを保護することが可能となる。また接着剤の軟化温度を170℃以上200℃以下とすることで導電ペーストが溶ける200℃付近温度で、電極上の防錆層が除去され、封止材の熱処理温度である150℃付近では固まったままの防錆層を作製することができ、回路パターンを保護することできる。   That is, the electric circuit for solar cell of the present invention has an insulating base material including a rust prevention layer and electric wiring, and the rust prevention layer has a film thickness of 0.1 μm or more and 2 μm or less, and has a sealing material and an electric wiring pattern. The rust preventive layer is a hot melt adhesive having a softening temperature of 170 ° C. or higher and 200 ° C. or lower. By controlling the film thickness of the adhesive, it is possible to protect the electric circuit pattern for solar cells without hindering electrical connection with the solar cells. Also, by setting the softening temperature of the adhesive to 170 ° C. or more and 200 ° C. or less, the rust preventive layer on the electrode is removed at a temperature around 200 ° C. at which the conductive paste is melted, and it is hardened at around 150 ° C. which is the heat treatment temperature of the sealing material A rust-proof layer can be produced as it is, and the circuit pattern can be protected.

また、本発明の請求項3に係る発明は、請求項1または2に記載の太陽電池用電気回路を具備してなることを特徴とする太陽電池モジュールである。すなわち、本発明の太陽電池用電気回路を具備することにより、封止材であるEVA樹脂から酢酸の気体化による回路パターンの侵食や回路の変色を防止することができ、高寿命の太陽電池モジュールを提供することができる。   An invention according to claim 3 of the present invention is a solar cell module comprising the solar cell electric circuit according to claim 1 or 2. That is, by providing the solar cell electric circuit of the present invention, it is possible to prevent circuit pattern erosion and circuit discoloration due to gasification of acetic acid from the EVA resin as a sealing material, and a long-life solar cell module. Can be provided.

本発明による太陽電池用電気回路によれば、太陽電池回路パターンの侵食や回路の変色を防ぐことができ、高寿命の太陽電池モジュールを提供することができる。   According to the electric circuit for a solar cell according to the present invention, the erosion of the solar cell circuit pattern and the discoloration of the circuit can be prevented, and a long-life solar cell module can be provided.

本発明の一実施形態による太陽電池用電気回路を含む太陽電池モジュールの断面模式図である。It is a cross-sectional schematic diagram of the solar cell module containing the electric circuit for solar cells by one Embodiment of this invention. 本発明の一実施形態による太陽電池用電気回路の断面模式図である。It is a cross-sectional schematic diagram of the electric circuit for solar cells by one Embodiment of this invention.

以下、本発明の一実施形態による太陽電池用電気回路について具体的に説明する。   Hereinafter, a solar cell electric circuit according to an embodiment of the present invention will be described in detail.

図1に示すように、本発明の太陽電池用電気回路を具備する太陽電池モジュールは、絶縁基材9上に接着剤8を介して電気配線6とソルダーレジスト7が形成された太陽電池用電気回路であって、前記電気配線6とソルダーレジスト7の上面に防錆層5を設けたこと特徴とする。前記防錆層の上には封止材2の層があり、電気配線層には太陽電池セル3と電気的接続をとるための電極が存在する。電極上は封止材2に穴を開け、金属、導電性高分子などの導電体が充填される。本発明では、電極上の防錆層5ははんだ、導電ペースト4などの溶融時に軟化し、電気配線層と太陽電池セルとの導電を妨げることはない。電極以外の電気配線層は防錆層5が存在することから封止材2からの酸の侵食に耐えることができる。   As shown in FIG. 1, the solar cell module having the solar cell electric circuit according to the present invention includes an electric wiring 6 and a solder resist 7 formed on an insulating substrate 9 via an adhesive 8. The circuit is characterized in that a rust prevention layer 5 is provided on the upper surfaces of the electric wiring 6 and the solder resist 7. There is a layer of the sealing material 2 on the rust preventive layer, and an electrode for making an electrical connection with the solar battery cell 3 exists in the electric wiring layer. On the electrode, a hole is made in the sealing material 2 and filled with a conductor such as metal or conductive polymer. In the present invention, the rust prevention layer 5 on the electrode is softened when the solder, the conductive paste 4 and the like are melted, and does not hinder the conduction between the electric wiring layer and the solar battery cell. The electrical wiring layer other than the electrodes can withstand the erosion of the acid from the sealing material 2 because the antirust layer 5 exists.

図2は本発明の一実施形態による太陽電池用電気回路の断面模式図を示している。本発明に係る太陽電池用電気回路は、絶縁基材9上に設けた回路層(電気配線6課ら構成される回路の総称)が前記太陽電池セルに電気的に接続される層である。この回路層は積層配
列される多数の太陽電池セルを電気的に直列に接続するパターンを有している。前記回路層を構成する電気配線6の材料としては、電気抵抗が低い材料、例えば銅、アルミニウム、鉄−ニッケル合金などが使用される。また、導電性高分子を使用することもできる。前記回路層の表面は、防錆層5との密着性を向上させるために、ギ酸、硫酸、硝酸などの腐食性薬液によって粗面化処理が施されていることが好ましい。
FIG. 2 shows a schematic cross-sectional view of a solar cell electric circuit according to an embodiment of the present invention. The electric circuit for a solar cell according to the present invention is a layer in which a circuit layer (a general term for a circuit configured by the electric wiring 6 section) provided on the insulating base 9 is electrically connected to the solar cell. This circuit layer has a pattern in which a large number of stacked solar cells are electrically connected in series. As a material of the electric wiring 6 constituting the circuit layer, a material having a low electric resistance, for example, copper, aluminum, iron-nickel alloy or the like is used. Moreover, a conductive polymer can also be used. The surface of the circuit layer is preferably roughened with a corrosive chemical such as formic acid, sulfuric acid, or nitric acid in order to improve the adhesion with the anticorrosive layer 5.

以下、本発明の太陽電池用電気回路に係る構成部材について説明する。   Hereinafter, the structural member which concerns on the electric circuit for solar cells of this invention is demonstrated.

本発明に係る前記防錆層には、電気配線パターンとの優れた密着性、高い軟化点及び優れた電気絶縁性が要求される。このような要求特性から、前記防錆層に用いられる材料としては、高分子材料によるホットメルト接着剤が好ましい。ホットメルト接着剤は主成分がEVA(エチレン酢酸ビニル共重合物)タイプ、PP(ポリオレフィン共重合物)タイプ、PA(ポリアミド)タイプ等が一般に知られている。特にPPタイプのホットメルト接着剤は難燃性に優れ、ポリエチレン、ポリプロピレンに接着できるため電気・電子部品の固定によく使われている。また均一な膜を得ることが可能であり、金属との密着性も良く、耐酸性、電気絶縁性に優れているため防錆層の材料としてより好ましい。   The rust preventive layer according to the present invention is required to have excellent adhesion to an electric wiring pattern, a high softening point, and excellent electrical insulation. From such required characteristics, a hot melt adhesive made of a polymer material is preferable as the material used for the antirust layer. Hot melt adhesives are generally known whose main components are EVA (ethylene vinyl acetate copolymer) type, PP (polyolefin copolymer) type, PA (polyamide) type, and the like. In particular, PP type hot melt adhesives are excellent in flame retardancy and can be bonded to polyethylene and polypropylene, and are therefore often used for fixing electrical and electronic parts. In addition, it is possible to obtain a uniform film, good adhesion to metal, and excellent acid resistance and electrical insulation, which is more preferable as a material for the rust prevention layer.

また、防錆層の厚みは0.1μm以上2μm以下であることが好ましく、この範囲であれば、封止材の分解によって出る酸の侵食から電気配線を守ることができ、導電性ペースト実装時の温度で電極上の防錆層を溶かすことができる。一方、防錆層の膜厚が0.1μm未満であると酸の侵食に耐えられなくなり、また製造工程におけるハンドリング性が落ちて扱いにくくなる。また、2μmを超えるとはんだ実装時の温度で防錆層が溶けきらず、残ってしまう問題がある。そのため、防錆層の膜厚は、0.1μm〜2μmの範囲であることが好ましい。   Moreover, the thickness of the rust prevention layer is preferably 0.1 μm or more and 2 μm or less, and within this range, the electrical wiring can be protected from acid erosion caused by the decomposition of the sealing material, and when the conductive paste is mounted The rust preventive layer on the electrode can be dissolved at a temperature of On the other hand, when the film thickness of the rust preventive layer is less than 0.1 μm, it becomes impossible to withstand acid erosion, and handling in the manufacturing process is lowered and it becomes difficult to handle. Moreover, when it exceeds 2 micrometers, there exists a problem that a rust prevention layer does not melt | dissolve at the temperature at the time of solder mounting, but remains. Therefore, it is preferable that the film thickness of a rust prevention layer is the range of 0.1 micrometer-2 micrometers.

前記防錆層に用いられるホットメルト接着剤の軟化温度は170℃以上200℃以下であることが好ましい。この範囲であれば、導電ペーストが溶ける200℃付近温度で軟化し、封止材の熱処理温度である150℃付近では固まったまま軟化しない防錆層を作製することができ、太陽電池用電気回路パターンを保護できる。   The softening temperature of the hot melt adhesive used for the rust-preventing layer is preferably 170 ° C. or higher and 200 ° C. or lower. Within this range, it is possible to produce an anticorrosive layer that softens at a temperature near 200 ° C. at which the conductive paste melts and does not soften at around 150 ° C., which is the heat treatment temperature of the sealing material. The pattern can be protected.

防錆層の形成方法としては、ホットメルト接着剤を加熱溶融して膜厚を容易に制御であれば塗布方法であれば特に限定するものではない。例えば、加熱によりホットメルト接着剤を溶解して太陽電池用電気回路パターンに塗布し、その後常温に戻して接着剤を固めて形成するダイコート法が利用できる。また、加熱溶解したホットメルト接着剤に太陽電池用電気回路形成後の基板を浸けて、一定速度で基板を引き上げ、基板を常温に戻して接着剤を固めて形成するディップ法が利用できる。中でも特に、発明者等が開発した毛細管現象を利用するキャップコーターが膜厚精度において好ましい。キャップコーターであれば0.1〜2μmの膜を均一(塗布精度±2%以内)で効率のよい防錆膜の塗布が可能である。   The method for forming the rust preventive layer is not particularly limited as long as it is a coating method as long as the hot melt adhesive is heated and melted to easily control the film thickness. For example, a die coating method can be used in which a hot melt adhesive is dissolved by heating and applied to an electric circuit pattern for a solar cell, and then the temperature is returned to room temperature to harden the adhesive. Further, a dipping method can be used in which the substrate after the electric circuit for the solar cell is formed in a hot-melt adhesive that has been melted by heating, the substrate is pulled up at a constant speed, the substrate is returned to room temperature and the adhesive is solidified. Among these, a cap coater that utilizes the capillary phenomenon developed by the inventors is particularly preferable in terms of film thickness accuracy. In the case of a cap coater, a 0.1 to 2 μm film can be applied uniformly (with an application accuracy within ± 2%) and an efficient rust preventive film can be applied.

次に前記導電ペースト4について説明する。前記導電ペースト4は、回路層と太陽電池セルとの電気的接続を補助する部材であり、太陽電池セルの電極に対応して配設されている。本発明の一実施形態である図1では、導電ペースト4が球状であるが特に限定するものではない。導電ペースト4の材料としては、電気抵抗が低い材料が使用できる。中でも回路層との電気抵抗が低くなることから、銀、銅、錫、鉛、ニッケル、金よりなる群から選ばれる1種以上の金属を含有することが好ましい。特に、粘度が高く容易に所望の形状に形成するために、銀、銅、錫、半田(銅と鉛が主成分である。)よりなる群から選ばれる1種以上の金属を含有する導電性ペーストにより形成されていることが好ましい。   Next, the conductive paste 4 will be described. The conductive paste 4 is a member for assisting electrical connection between the circuit layer and the solar battery cell, and is disposed corresponding to the electrode of the solar battery cell. In FIG. 1 which is one embodiment of the present invention, the conductive paste 4 is spherical, but is not particularly limited. As a material of the conductive paste 4, a material having a low electric resistance can be used. Among them, it is preferable to contain one or more metals selected from the group consisting of silver, copper, tin, lead, nickel, and gold because electric resistance with the circuit layer is lowered. In particular, a conductive material containing one or more metals selected from the group consisting of silver, copper, tin, and solder (copper and lead are the main components) in order to easily form a desired shape with high viscosity. It is preferably formed of a paste.

また、導電性ペースト4は、170℃〜230℃で溶融するものが好ましい。これは導
電性ペースト4が溶融する温度で防錆層5が軟化する必要があり、防錆層5の軟化温度が170℃〜200℃であるためである。この溶融温度範囲の導電性ペーストとしては、ポリマーと導電性フィラーを含有し、ポリマーの硬化による導電性フィラーの物理的接触によって導電性を発現するもの、有機物に銀もしくは銅を配位、還元させたナノ粒子を含有し、低温焼結(170〜200℃)させることにより導電性を発現するものが挙げられる。電気抵抗がより低くなる点では、後者の材料が好ましい。
The conductive paste 4 is preferably one that melts at 170 ° C to 230 ° C. This is because the rust preventive layer 5 needs to be softened at a temperature at which the conductive paste 4 melts, and the softening temperature of the rust preventive layer 5 is 170 ° C to 200 ° C. The conductive paste in this melting temperature range contains a polymer and a conductive filler, and develops conductivity by physical contact of the conductive filler by curing of the polymer. Coordinates and reduces silver or copper to organic matter. In addition, a material that exhibits electrical conductivity by low-temperature sintering (170 to 200 ° C.) is included. The latter material is preferable in that the electric resistance becomes lower.

本発明に係る前記絶縁基材としては、PETフィルム、PENフィルムなどの高分子フィルムが好ましい。PETフィルムはコストパフォーマンスに優れており、PENフィルムはPETフィルムより価格が高いものの、耐熱性、ガスバリヤ性、耐化学薬品性、機械的強度などの点で優れている。   The insulating substrate according to the present invention is preferably a polymer film such as a PET film or a PEN film. A PET film is excellent in cost performance, and a PEN film is superior in terms of heat resistance, gas barrier property, chemical resistance, mechanical strength, etc., though it is more expensive than a PET film.

また、本発明に係る封止層は封止用フィルムにより形成される。封止用フィルムとして、例えばEVAフィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリフッ化ビニリデン等のフッ素樹脂フィルムなどが使用される。通常、封止用フィルムは、太陽電池セルを挟み込むように2枚以上で使用される。   The sealing layer according to the present invention is formed by a sealing film. As the sealing film, for example, an EVA film, an ethylene / (meth) acrylic acid ester copolymer film, a fluororesin film such as polyvinylidene fluoride, or the like is used. Usually, two or more sealing films are used so as to sandwich solar cells.

以下に、本発明の太陽電池用電気回路及び太陽電池モジュールについて、実施例により詳細な説明をする。   Hereinafter, the electric circuit for solar cell and the solar cell module of the present invention will be described in detail with reference to examples.

支持体を兼ねる絶縁基材としてPETフィルムを用い、その一方の面に絶縁性をより向上させる目的でガラスエポキシ樹脂を塗工した。次に、前記絶縁基材のガラスエポキシ樹脂面に、回路層形成用としてCu箔を積層して積層体を得た。   A PET film was used as an insulating base material also serving as a support, and a glass epoxy resin was coated on one surface for the purpose of further improving the insulating properties. Next, Cu foil was laminated for forming a circuit layer on the glass epoxy resin surface of the insulating substrate to obtain a laminate.

次に、前記積層体のCu箔面上にエッチングレジストを塗布し、露光、現像により太陽電池用回路パターンを形成した。なお、エッチング、レジスト剥離後のCuパターンは厚さ35μm、線幅20mm、線間1mmであった。   Next, the etching resist was apply | coated on the Cu foil surface of the said laminated body, and the circuit pattern for solar cells was formed by exposure and image development. The Cu pattern after etching and resist stripping was 35 μm thick, line width 20 mm, and line spacing 1 mm.

次に、太陽電池用回路パターンを形成した積層体の全面にスプレーコート装置を用いてソルダーレジストを塗布し、露光、現像により回路パターン部上のソルダーレジストを除去した。   Next, a solder resist was applied to the entire surface of the laminate on which the circuit pattern for solar cells was formed using a spray coater, and the solder resist on the circuit pattern portion was removed by exposure and development.

次に、200℃で溶かしたホットメルト接着剤を前記回路パターン側の全面にキャップコーターを用いて塗布し、防錆層を設けて太陽電池用電気回路を作製した。このときの防錆層の厚さは1.0〜1.5μmであった。   Next, a hot melt adhesive melted at 200 ° C. was applied to the entire surface of the circuit pattern using a cap coater, and a rust preventive layer was provided to produce an electric circuit for a solar cell. The thickness of the antirust layer at this time was 1.0 to 1.5 μm.

次に前記太陽電池用電気回路のソルダーレジスト開口部に銀ナノ粒子を含む導電ペーストを充填させ、太陽電池セルを介して上下からEVAフィルムをはさみ、150℃15分で熱処理して封止層と積層し、さらに上下からガラスパネル、太陽電池バックシートを挟みこみ太陽電池モジュールを完成させた。   Next, a conductive paste containing silver nanoparticles is filled in the opening of the solder resist of the electric circuit for the solar cell, the EVA film is sandwiched from above and below through the solar cell, and heat-treated at 150 ° C. for 15 minutes to form a sealing layer The solar cell module was completed by stacking and sandwiching a glass panel and a solar cell back sheet from above and below.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜の構成や材料等の変更が可能であり、これらも本発明に含まれる。また、上述の実施形態等では、ソルダーレジスト層があるが、これの作製は任意である。   Note that the present invention is not limited to the above-described embodiments, and appropriate configurations and materials can be changed without departing from the gist of the present invention, and these are also included in the present invention. Moreover, in the above-mentioned embodiment etc., although there exists a soldering resist layer, preparation of this is arbitrary.

<評価結果>
実施例で得られた本発明品を用いて、図1の導電ペースト4と電気配線層6との電気的導通試験を実施した結果、良好な結果が得られた。
なお、前記電気的導通試験はデジタルマルチメータを用いて、図1に示す太陽電池用電
気回路の一部である封止材2、防錆層5、ソルダーレジスト7に、レーザで10mm程度の穴を開け、電気配線6を露出させた箇所と導電ペースト4間の導通を確認した。また、この際に防錆層5を剥がし、回路に変色がないことも確認した。これらの結果から、防錆層により実装時の酢酸の滲み出しが防げ、且つ、防錆層が電気的接続を阻害しないことが確認できた。
<Evaluation results>
As a result of conducting an electrical continuity test between the conductive paste 4 and the electric wiring layer 6 of FIG. 1 using the product of the present invention obtained in the examples, good results were obtained.
In the electrical continuity test, a digital multimeter was used, and a hole of about 10 mm was formed in the sealing material 2, the rust prevention layer 5, and the solder resist 7, which are part of the solar cell electric circuit shown in FIG. Was opened, and conduction between the portion where the electrical wiring 6 was exposed and the conductive paste 4 was confirmed. At this time, the rust preventive layer 5 was peeled off, and it was also confirmed that there was no discoloration in the circuit. From these results, it was confirmed that the rust preventive layer prevented the acetic acid from seeping out during mounting, and that the rust preventive layer did not hinder the electrical connection.

本発明の太陽電池用電気回路は保護膜に耐酸性、水蒸気バリア性、耐候性に優れたホットメルト接着剤を用いており、高寿命の太陽電池モジュールの一部材として有用である。   The electric circuit for solar cell of the present invention uses a hot melt adhesive excellent in acid resistance, water vapor barrier property and weather resistance for the protective film, and is useful as a member of a long-life solar cell module.

1 ガラスパネル
2 封止材
3 太陽電池セル
4 導電ペースト
5 防錆層
6 電気配線
7 ソルダーレジスト
8 接着剤
9 絶縁基材
10 太陽電池バックシート
DESCRIPTION OF SYMBOLS 1 Glass panel 2 Sealing material 3 Solar cell 4 Conductive paste 5 Anticorrosive layer 6 Electrical wiring 7 Solder resist 8 Adhesive 9 Insulating base material 10 Solar cell back sheet

Claims (3)

絶縁基板上に接着剤を介して電気配線とソルダーレジストが形成された太陽電池用電気回路であって、前記電気配線とソルダーレジストの上面に防錆膜を設けたこと特徴とする太陽電池用電気回路。   An electric circuit for a solar cell in which an electric wiring and a solder resist are formed on an insulating substrate via an adhesive, and a rust preventive film is provided on the upper surface of the electric wiring and the solder resist. circuit. 前記防錆膜が軟化温度170℃以上200℃以下のホットメルト接着剤からなり、且つ、膜厚が0.1μm以上2μm以下の範囲であることを特徴とする請求項1に記載の太陽電池用電気回路。   2. The solar cell according to claim 1, wherein the rust preventive film is made of a hot melt adhesive having a softening temperature of 170 ° C. or higher and 200 ° C. or lower, and has a thickness in a range of 0.1 μm or more and 2 μm or less. electric circuit. 請求項1または2に記載の太陽電池用電気回路を具備してなることを特徴とする太陽電池モジュール。   A solar cell module comprising the solar cell electric circuit according to claim 1.
JP2011253663A 2011-11-21 2011-11-21 Electric circuit for solar cell and solar cell module Pending JP2013110248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253663A JP2013110248A (en) 2011-11-21 2011-11-21 Electric circuit for solar cell and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253663A JP2013110248A (en) 2011-11-21 2011-11-21 Electric circuit for solar cell and solar cell module

Publications (1)

Publication Number Publication Date
JP2013110248A true JP2013110248A (en) 2013-06-06

Family

ID=48706731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253663A Pending JP2013110248A (en) 2011-11-21 2011-11-21 Electric circuit for solar cell and solar cell module

Country Status (1)

Country Link
JP (1) JP2013110248A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110886A (en) * 1983-11-17 1985-06-17 Kubokou Paint Kk Method for preventing rusting of lapped faces to be spot welded
JPS61106685A (en) * 1984-10-30 1986-05-24 Sumitomo Electric Ind Ltd Hot-melt adhesive
JPH0598473A (en) * 1991-05-29 1993-04-20 Sony Corp Rust preventive protective composition
JPH10154500A (en) * 1996-11-21 1998-06-09 Mitsui Chem Inc Separator for lead-acid battery and manufacture
JP2008270743A (en) * 2007-03-29 2008-11-06 Kyocera Corp Solar cell module
JP2011199020A (en) * 2010-03-19 2011-10-06 Toppan Printing Co Ltd Solar cell rear surface circuit sheet and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110886A (en) * 1983-11-17 1985-06-17 Kubokou Paint Kk Method for preventing rusting of lapped faces to be spot welded
JPS61106685A (en) * 1984-10-30 1986-05-24 Sumitomo Electric Ind Ltd Hot-melt adhesive
JPH0598473A (en) * 1991-05-29 1993-04-20 Sony Corp Rust preventive protective composition
JPH10154500A (en) * 1996-11-21 1998-06-09 Mitsui Chem Inc Separator for lead-acid battery and manufacture
JP2008270743A (en) * 2007-03-29 2008-11-06 Kyocera Corp Solar cell module
JP2011199020A (en) * 2010-03-19 2011-10-06 Toppan Printing Co Ltd Solar cell rear surface circuit sheet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5252472B2 (en) Solar cell, method for manufacturing solar cell, method for manufacturing solar cell module, and solar cell module
KR101465924B1 (en) Production method for solar cell module, and solar cell module
JP5159725B2 (en) Solar cell string and solar cell module using the same
WO2014128899A1 (en) Resin-sealed electronic control device
JP2001210843A (en) Photovoltaic power generating panel and method of manufacturing it
KR101435312B1 (en) Solar cell module, and production method for solar cell module
US20130048336A1 (en) Polymeric coated busbar tape for photovoltaic systems
KR101395486B1 (en) Solar cell module and method for producing solar cell module
CN103443934A (en) Solar cell module, manufacturing method for solar cell module, and reel-wound body with tab wire wound therearound
KR20130036326A (en) Solar cell module and method for manufacturing solar cell module
CN103314453B (en) The manufacture method of solar module and solar module
US20120055545A1 (en) Conductive adhesive member and solar cell module
JP2001352014A (en) Semiconductor device and solar cell module
TWI575760B (en) Wiring member, solar cell module, and method of manufacturing solar cell module
JP2012099565A (en) Backside contact solar battery cell having wiring board, solar cell module, and manufacturing method of backside contact solar battery cell having wiring board
JP2013197343A (en) Solar cell module and method for manufacturing the same
TWI568005B (en) A solar cell module manufacturing method, a solar cell module manufacturing method, a solar cell module
JP2000216421A (en) Semiconductor device and photoelectromotive force element module using the same, solar battery module, and building material
KR101144935B1 (en) Pcb type of bus bar for solar cell
JP2013110248A (en) Electric circuit for solar cell and solar cell module
JP2014192481A (en) Metal foil lamination body for solar cell, solar cell module, and manufacturing method of metal foil lamination body for solar cell
WO2011099228A1 (en) Solar cell module and production method therefor
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP5576957B2 (en) Solar cell module
JP5499729B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209