JP2013096899A - Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material - Google Patents

Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material Download PDF

Info

Publication number
JP2013096899A
JP2013096899A JP2011241241A JP2011241241A JP2013096899A JP 2013096899 A JP2013096899 A JP 2013096899A JP 2011241241 A JP2011241241 A JP 2011241241A JP 2011241241 A JP2011241241 A JP 2011241241A JP 2013096899 A JP2013096899 A JP 2013096899A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
fiber preform
light
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011241241A
Other languages
Japanese (ja)
Inventor
Tadashi Enomoto
正 榎本
Manabu Shiozaki
学 塩崎
Kazuyasu Yonezawa
和泰 米沢
Sumio Hoshino
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011241241A priority Critical patent/JP2013096899A/en
Publication of JP2013096899A publication Critical patent/JP2013096899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refractive index distribution measurement method and a refractive index distribution measurement instrument for an optical fiber base material, which easily measure a refractive index distribution of an optical fiber base material having striae, with high accuracy.SOLUTION: A refractive index distribution measurement instrument 10 for an optical fiber base material 20 includes: first and second lasers 11 and 12 which emit two monochromatic beams having different wavelengths λand λ; a CCD array 21 being a photodetector which measures a light intensity distribution of transmitted light transmitted through the optical fiber base material 20; and a calculation device 22 which obtains a transmission deflection angle Φ from the light intensity distribution detected by the photodetector to calculate a refractive index distribution n(r). Light intensity distributions of transmitted light at wavelengths λand λwhich is transmitted through one cross-section of the optical fiber base material 20 are measured, and the light intensity distributions of two monochromatic beams are compared with each other to measure the transmission deflection angle Φ, and the refractive index distribution n(r) of the optical fiber base material 20 is obtained from a group of transmission deflection angles Φ.

Description

本発明は、VAD法(気相軸付け法)やOVD法(外付け法)などにより製造した光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置に関する。   The present invention relates to a refractive index distribution measuring method and a refractive index distribution measuring apparatus for an optical fiber preform manufactured by a VAD method (vapor phase axial method), an OVD method (external method), or the like.

光ファイバ母材の屈折率分布を測定する方法として、光ファイバ母材にレーザ光を透過させ、その透過したレーザ光の屈折角を測定することにより屈折率分布を求める方法が知られている。このような方法で屈折率分布を求める装置は、プリフォームアナライザとも呼ばれる。   As a method for measuring the refractive index distribution of an optical fiber preform, a method is known in which a laser beam is transmitted through an optical fiber preform and a refractive angle distribution is obtained by measuring a refraction angle of the transmitted laser beam. An apparatus for obtaining the refractive index distribution by such a method is also called a preform analyzer.

しかしながら、VAD法やOVD法で製造した光ファイバ母材には、製造時の周期的な回転やトラバースにより、主成分のシリカガラスにドーパントとして添加するゲルマニウムの添加濃度などに、周期的な変動が生じる。このような濃度不均一により生じる屈折率の不均一性は脈理と呼ばれる。このような脈理があると、プリフォームアナライザによる光学的な屈折率分布の測定時に、レーザ光の透過光を光ファイバ母材の径方向や軸方向に回折、散乱させることになり、正確な屈折率分布が得られない、と言う問題がある。   However, the optical fiber preform manufactured by the VAD method or the OVD method has periodic fluctuations in the concentration of germanium added as a dopant to the main component silica glass due to periodic rotation and traverse during the manufacturing. Arise. Such refractive index non-uniformity caused by non-uniform density is called striae. With such striae, when measuring the optical refractive index distribution with a preform analyzer, the transmitted light of the laser beam is diffracted and scattered in the radial direction and axial direction of the optical fiber preform. There is a problem that a refractive index distribution cannot be obtained.

このような脈理を有する光ファイバ母材の屈折率分布測定方法として、例えば、主の一次元センサの両サイドに副の一次元センサを配置して、透過光強度に応じて透過光の検知方法を適宜選択することで、脈理を有する光ファイバ母材の屈折率分布を高分解能で迅速に測定できる屈折率分布測定方法が知られている(特許文献1参照)。   As a method for measuring the refractive index distribution of an optical fiber preform having such a striae, for example, a sub one-dimensional sensor is arranged on both sides of a main one-dimensional sensor, and transmitted light is detected according to transmitted light intensity. There is known a refractive index distribution measurement method capable of quickly measuring the refractive index distribution of an optical fiber preform having striae with high resolution by appropriately selecting the method (see Patent Document 1).

また、その他の脈理を有する光ファイバ母材の屈折率分布測定方法としては、細長いスリットを配置して高次回折光を遮断するもの(特許文献2参照)、脈理によって生じる回折効果を実質的に除去するように、モニター光の波長を脈理間隔よりも大きくなるように選定するもの(特許文献3参照)、スクリーン投影された母材透過光の強度分布データに基づいて母材透過屈折後の光位置を決定して屈折率分布を算出する方法(特許文献4参照)、光ファイバ母材の背景に置いた背景画像を光ファイバ母材に透かして撮影する方法(特許文献5参照)などが知られている。   Another method for measuring the refractive index distribution of an optical fiber preform having striae is to dispose high-order diffracted light by disposing a long and narrow slit (see Patent Document 2), and to substantially prevent diffraction effects caused by striae. The wavelength of the monitor light is selected so as to be larger than the striae interval (see Patent Document 3), and after the base material transmission refraction based on the intensity distribution data of the base material transmission light projected on the screen A method of calculating the refractive index distribution by determining the optical position of the optical fiber (see Patent Document 4), a method of taking a background image placed on the background of the optical fiber preform through the optical fiber preform (see Patent Document 5), etc. It has been known.

特開平5−60653号公報Japanese Patent Laid-Open No. 5-60653 特開平6−347372号公報JP-A-6-347372 特許第2802362号公報Japanese Patent No. 2802362 特開2002−62221号公報JP 2002-62221 A 特許第3712662号公報Japanese Patent No. 3712661

ところで、光ファイバ母材の脈理には、大きく分けて2種類ある。すなわち、OVD法やMCVD法などで作製される光ファイバ母材の軸方向に沿って直線状に整列するタイプと、VAD法などで作製される光ファイバ母材の軸方向に砲弾状に並ぶタイプである。いずれの脈理も、光ファイバ母材の軸方向に対して直角方向から母材内に入った入射光を回折、散乱させる。   By the way, there are roughly two types of striae of the optical fiber preform. That is, a type that aligns linearly along the axial direction of an optical fiber preform manufactured by the OVD method or MCVD method, and a type that aligns in a bullet shape in the axial direction of an optical fiber preform manufactured by the VAD method or the like It is. Both striae diffract and scatter incident light that has entered the preform from a direction perpendicular to the axial direction of the optical fiber preform.

このような様々な脈理の存在を考えた場合、例えば特許文献1の光ファイバ母材の屈折率分布測定方法では、光ファイバ母材軸に沿って直線状に形成された脈理を有する光ファイバ母材の回折光を両サイドに設けた副センサでは検知できないため、屈折率分布の測定精度が低下する、と言う問題が生じる。
また、特許文献2の光ファイバ母材の屈折率分布測定方法では、光ファイバ母材軸に対して砲弾状に形成された脈理を有する光ファイバ母材の場合、細長スリットで高次回折光を遮断できないため、特許文献1同様に、有効な屈折率分布の測定ができない。
Considering the existence of such various striae, for example, in the method for measuring the refractive index distribution of an optical fiber preform in Patent Document 1, light having striae formed linearly along the optical fiber preform axis is used. Since the sub-sensor provided on both sides cannot detect the diffracted light of the fiber preform, there arises a problem that the measurement accuracy of the refractive index distribution is lowered.
Further, in the method of measuring the refractive index distribution of an optical fiber preform in Patent Document 2, in the case of an optical fiber preform having a striation formed in a cannonball shape with respect to the optical fiber preform axis, high-order diffracted light is emitted by an elongated slit. Since it cannot block | block, like patent document 1, the effective refractive index distribution cannot be measured.

また、特許文献3の光ファイバ母材の屈折率分布測定方法では、特殊光を使用しているため、光ファイバ母材の外径が大径化すると透過光量が低下して、有意な屈折率分布の測定ができないと考えられる。
また、特許文献4の光ファイバ母材の屈折率分布測定方法では、断面が円形の光ファイバ母材の場合、透過光量の重心が必ずしも正確な透過光の中心位置とならないと考えられる。
更に、特許文献5の光ファイバ母材の屈折率分布測定方法では、画像合成等の画像処理が膨大となり、屈折率分布の算出に時間が掛かるものと考えられる。
In addition, in the method for measuring the refractive index distribution of the optical fiber preform in Patent Document 3, since special light is used, the amount of transmitted light decreases as the outer diameter of the optical fiber preform increases, and a significant refractive index is obtained. It is thought that distribution cannot be measured.
Further, in the method for measuring the refractive index distribution of the optical fiber preform in Patent Document 4, it is considered that the center of the transmitted light amount is not necessarily the exact center position of the transmitted light when the optical fiber preform has a circular cross section.
Furthermore, in the method for measuring the refractive index distribution of the optical fiber preform of Patent Document 5, it is considered that image processing such as image synthesis becomes enormous and calculation of the refractive index distribution takes time.

本発明の目的は、脈理を有する光ファイバ母材に対して簡便な測定で精度の高い屈折率分布を求めることができる光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置を提供することにある。   An object of the present invention is to provide a refractive index distribution measuring method and a refractive index distribution measuring apparatus for an optical fiber preform capable of obtaining a highly accurate refractive index distribution by simple measurement for an optical fiber preform having striae. There is to do.

上記課題を解決することができる本発明に係る光ファイバ母材の屈折率分布測定方法は、光ファイバ母材の側面から単色光を走査し、該単色光の透過光を測定することにより光ファイバ母材の屈折率分布を求める光ファイバ母材の屈折率分布測定方法であって、異なる2波長以上の複数波長の単色光を使用し、前記光ファイバ母材の一横断面を透過する各波長毎の透過光の光強度分布から透過偏向角を計測して、該透過偏向角の一群から前記光ファイバ母材の屈折率分布を求めることを特徴としている。   The method for measuring the refractive index distribution of an optical fiber preform according to the present invention that can solve the above-mentioned problems is achieved by scanning monochromatic light from the side of the optical fiber preform and measuring the transmitted light of the monochromatic light. A method for measuring a refractive index distribution of an optical fiber preform for obtaining a refractive index distribution of the preform, wherein each wavelength is transmitted through one transverse section of the optical fiber preform using a plurality of different monochromatic lights having two or more wavelengths. The transmission deflection angle is measured from the light intensity distribution of each transmitted light, and the refractive index distribution of the optical fiber preform is obtained from a group of the transmission deflection angles.

また、本発明に係る光ファイバ母材の屈折率分布測定方法は、前記単色光が、互いに波長間隔の離れた2つ以上の単一波長の光であり、各波長毎に計測される該透過光の強度ピークを比較して、異なる波長間におけるピークポジションの位置ずれが最も小さい強度ピークの偏向角を、前記透過偏向角として採用することを特徴としている。   Further, in the refractive index distribution measuring method for an optical fiber preform according to the present invention, the monochromatic light is two or more single-wavelength lights separated from each other by a wavelength interval, and the transmission measured for each wavelength. The light intensity peaks are compared, and the deflection angle of the intensity peak with the smallest positional shift of the peak position between different wavelengths is adopted as the transmission deflection angle.

また、本発明に係る光ファイバ母材の屈折率分布測定方法は、前記異なる2波長以上の複数波長の間の関係が、各波長をλ、λとしたとき、 1.90λ≧λ≧1.05λ を満たすことを特徴としている。
また、本発明に係る光ファイバ母材の屈折率分布測定方法は、前記単色光が、レーザ光であることを特徴としている。
Further, in the refractive index distribution measuring method for an optical fiber preform according to the present invention, when the relationship between the two or more different wavelengths is λ 1 and λ 2 , 1.90λ 2 ≧ λ It is characterized by satisfying 11.05λ 2.
In the optical fiber preform refractive index distribution measuring method according to the present invention, the monochromatic light is laser light.

また、上記課題を解決することができる本発明に係る光ファイバ母材の屈折率分布測定装置は、異なる2波長以上の複数波長の単色光源を有し、複数波長の内の1波長の単色光を選択して光ファイバ母材へ向けて出射する単色光照射装置と、前記光ファイバ母材を透過した透過光の光強度分布を計測する光検出器と、該光検出器により検出された光強度分布から透過偏向角を求め、屈折率分布を算出する計算装置と、を備え、前記光ファイバ母材の一横断面を透過した各波長毎の透過光の光強度分布を測定し、該光強度分布の比較から透過偏向角を計測して、該透過偏向角の一群から前記光ファイバ母材の屈折率分布を求めることを特徴としている。   An optical fiber preform refractive index distribution measuring apparatus according to the present invention that can solve the above-described problem has a monochromatic light source having a plurality of different wavelengths of two or more wavelengths, and one monochromatic light of a plurality of wavelengths. A monochromatic light irradiation device that emits light toward an optical fiber preform, a photodetector that measures the light intensity distribution of transmitted light that has passed through the optical fiber preform, and light detected by the photodetector A calculation device for obtaining a transmission deflection angle from the intensity distribution and calculating a refractive index distribution, and measuring the light intensity distribution of the transmitted light for each wavelength transmitted through one transverse section of the optical fiber preform, A transmission deflection angle is measured from a comparison of intensity distributions, and a refractive index distribution of the optical fiber preform is obtained from a group of the transmission deflection angles.

本発明に係る光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置によれば、異なる2波長以上の複数波長の単色光を使用して、前記光ファイバ母材の一横断面を透過する各波長毎の透過光の光強度分布から、脈理を有する光ファイバ母材であっても、その透過偏向角を簡便に計測することができる。また、この計測結果から、脈理を有する光ファイバ母材の精度の高い屈折率分布を求めることができる。   According to the refractive index distribution measuring method and refractive index distribution measuring apparatus for an optical fiber preform according to the present invention, a single cross-section of two or more different wavelengths is used and transmitted through one transverse section of the optical fiber preform. Even if the optical fiber preform has striae, the transmission deflection angle can be simply measured from the light intensity distribution of the transmitted light for each wavelength. Further, from this measurement result, a highly accurate refractive index distribution of the optical fiber preform having the striae can be obtained.

本発明に係る光ファイバ母材の屈折率分布測定装置の概略構成図である。It is a schematic block diagram of the refractive index distribution measuring apparatus of the optical fiber preform which concerns on this invention. 図1の光ファイバ母材を透過したレーザ光の偏向角を示す模式図である。It is a schematic diagram which shows the deflection angle of the laser beam which permeate | transmitted the optical fiber preform | base_material of FIG. 図1の測定装置を用いて測定された、2波長の透過光(回折光)の一例を示す光強度分布図である。It is a light intensity distribution figure which shows an example of the transmitted light (diffracted light) of 2 wavelengths measured using the measuring apparatus of FIG. 本発明に係る光ファイバ母材の屈折率分布測定方法により測定した一実施例を示すグラフであり、(a)は透過偏向角分布を示し、(b)は透過偏向角分布から算出した比屈折率差を示す。It is a graph which shows one Example measured with the refractive index distribution measuring method of the optical fiber preform | base_material based on this invention, (a) shows transmission deflection angle distribution, (b) is the relative refraction calculated from transmission deflection angle distribution. Indicates the rate difference. 従来の光ファイバ母材の屈折率分布測定方法の一つであるピーク位置測定方式により測定した一例を示すグラフであり、(a)は透過偏向角分布を示し、(b)は透過偏向角分布から算出した比屈折率差を示す。It is a graph which shows an example measured by the peak position measuring system which is one of the refractive index distribution measuring methods of the conventional optical fiber preform, (a) shows transmission deflection angle distribution, (b) shows transmission deflection angle distribution. The relative refractive index difference calculated from 従来の光ファイバ母材の屈折率分布測定方法の一つである重心検出方式により測定した一例を示すグラフであり、(a)は透過偏向角分布を示し、(b)は透過偏向角分布から算出した比屈折率差を示す。It is a graph which shows an example measured by the gravity center detection method which is one of the refractive index distribution measuring methods of the conventional optical fiber preform, (a) shows transmission deflection angle distribution, (b) shows from transmission deflection angle distribution. The calculated relative refractive index difference is shown.

以下、本発明の一実施形態である光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置について図面を参照して説明する。なお、上記したように脈理には、OVD法やMCVD法などで作製される光ファイバ母材の軸方向に沿って直線状に整列するタイプと、VAD法などで作製される光ファイバ母材の軸方向に砲弾状に並ぶタイプがあるが、本発明はこれら脈理のタイプに限定されず、いずれの製造方法により作製された光ファイバ母材に対しても適用できる。   Hereinafter, an optical fiber preform refractive index distribution measuring method and refractive index distribution measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. As described above, the striae includes a type that is linearly aligned along the axial direction of an optical fiber preform manufactured by the OVD method or the MCVD method, and an optical fiber preform manufactured by the VAD method or the like. However, the present invention is not limited to these striae types, and can be applied to an optical fiber preform manufactured by any manufacturing method.

本実施形態の光ファイバ母材の屈折率分布測定装置10は、すす付け法により反応容器内で出発ガラスロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製し、そのガラス微粒子堆積体を脱水・焼結して透明化させた光ファイバ母材、若しくはその他の方法で作製した光ファイバ母材の屈折率分布を測定するプリフォームアナライザである。   The optical fiber preform refractive index distribution measuring apparatus 10 according to the present embodiment deposits glass fine particles on a starting glass rod in a reaction vessel by a sooting method to produce a glass fine particle deposit, and dehydrates the glass fine particle deposit. A preform analyzer that measures the refractive index distribution of an optical fiber preform that has been sintered and made transparent, or an optical fiber preform that has been produced by other methods.

図1に示すように、本実施形態の屈折率分布測定装置10は、単色光の一つであるレーザ光源を用い、第1レーザ11及び第2レーザ12の2つのレーザ光源を備えている。加えて、第1レーザ11及び第2レーザ12の前方に、レーザ光を遮断又は通過させるシャッタ13が配置されている。また、第1レーザ11側のシャッタ13前方には、レーザ光を反射させるミラー15が配置されている。   As shown in FIG. 1, the refractive index distribution measuring apparatus 10 of the present embodiment uses a laser light source that is one of monochromatic light and includes two laser light sources, a first laser 11 and a second laser 12. In addition, a shutter 13 for blocking or passing the laser beam is disposed in front of the first laser 11 and the second laser 12. In addition, a mirror 15 that reflects laser light is disposed in front of the shutter 13 on the first laser 11 side.

また、屈折率分布測定装置10は、第2レーザ12側のシャッタ13前方に、レーザ光を所定方向に反射又は通過させる合波器14が配置されている。第1レーザ11からの単色光による測定時には、第2レーザ12のレーザ光をシャッタ13で遮断させ、第1レーザ11のレーザ光をミラー15により水平方向に配置された合波器14へ反射させると共に、合波器14で第2レーザ12のレーザ光軸と一致する出射方向に反射させる。第2レーザ12からの単色光による測定時には、第1レーザ11のレーザ光をシャッタ13で遮断させると共に、第2レーザ12のレーザ光を合波器14で通過させる。なお、第1レーザ11、第2レーザ12、シャッタ13、合波器14、ミラー15を総称して単色光照射装置とする。   In the refractive index distribution measuring apparatus 10, a multiplexer 14 that reflects or passes laser light in a predetermined direction is disposed in front of the shutter 13 on the second laser 12 side. At the time of measurement with monochromatic light from the first laser 11, the laser light of the second laser 12 is blocked by the shutter 13, and the laser light of the first laser 11 is reflected by the mirror 15 to the multiplexer 14 arranged in the horizontal direction. At the same time, the light is reflected by the multiplexer 14 in the emission direction that coincides with the laser optical axis of the second laser 12. At the time of measurement with monochromatic light from the second laser 12, the laser light of the first laser 11 is blocked by the shutter 13 and the laser light of the second laser 12 is passed by the multiplexer 14. The first laser 11, the second laser 12, the shutter 13, the multiplexer 14, and the mirror 15 are collectively referred to as a monochromatic light irradiation device.

また、屈折率分布測定装置10は、第1レーザ11又は第2レーザ12からのレーザ光を集光させる第1集光レンズ16と、被検体を透過したレーザ光を集光させる第2集光レンズ17が配置されている。加えて、透過光を集光する集光レンズ17の焦点距離だけ離れた前方に、被検体を透過したレーザ光の偏向角を検知する光検出器であるCCDアレイ21が配置されている。また、CCDアレイ21により検出された光強度分布を計算処理する計算装置22が配置されている。   Further, the refractive index distribution measuring apparatus 10 includes a first condenser lens 16 that condenses the laser light from the first laser 11 or the second laser 12, and a second condenser that condenses the laser light transmitted through the subject. A lens 17 is arranged. In addition, a CCD array 21, which is a photodetector that detects the deflection angle of the laser light that has passed through the subject, is disposed in front of the condensing lens 17 that collects the transmitted light. A calculation device 22 for calculating the light intensity distribution detected by the CCD array 21 is arranged.

更に、屈折率分布測定装置10は、被検体である光ファイバ母材20が2つの集光レンズ16,17の間に配置される。光ファイバ母材20は、中心軸上にコア部と、その外周にクラッド部とを有している。この光ファイバ母材20は、クラッド部と同じ屈折率を有するマッチングオイル18が充填されたマッチングセル19内に保持されている。マッチングセル19は、レーザ光に対して直交するX軸方向に、不図示の駆動装置を介して移動可能であり、光ファイバ母材20の一横断面上をレーザ光により走査させることができる。   Further, in the refractive index distribution measuring apparatus 10, an optical fiber preform 20 that is a subject is disposed between two condenser lenses 16 and 17. The optical fiber preform 20 has a core part on the central axis and a clad part on the outer periphery thereof. This optical fiber preform 20 is held in a matching cell 19 filled with a matching oil 18 having the same refractive index as that of the cladding. The matching cell 19 is movable in the X-axis direction orthogonal to the laser light via a driving device (not shown), and can scan one cross section of the optical fiber preform 20 with the laser light.

光ファイバ母材20を透過した透過光は、集光レンズ17で集光されてCCDアレイ21に入射する。CCDアレイ21は集光レンズ17から焦点距離だけ離れて配置されており、透過光の偏向角Φ(図2参照)はCCDアレイ21上の透過光のX軸方向の位置情報と等価となる。この位置情報は計算装置22に取り込まれ、計算装置22は、取り込まれた透過光の位置情報と、駆動装置からの光ファイバ母材20の位置情報とを用いて屈折率分布n(r)を算出する。   The transmitted light that has passed through the optical fiber preform 20 is collected by the condenser lens 17 and enters the CCD array 21. The CCD array 21 is disposed away from the condenser lens 17 by the focal length, and the deflection angle Φ (see FIG. 2) of the transmitted light is equivalent to the positional information of the transmitted light on the CCD array 21 in the X-axis direction. This position information is taken into the calculation device 22, and the calculation device 22 calculates the refractive index distribution n (r) using the taken position information of the transmitted light and the position information of the optical fiber preform 20 from the driving device. calculate.

光ファイバ母材20の屈折率分布n(r)は、図2に示すように、光ファイバ母材の半径r、レーザ光のX軸方向へのオフセット量x、測定範囲の最も外側の点a、透過光の偏向角分布Φ(x)とすると、一般的に次式に示すアーベル変換式から求めることができる。なお、図2では、マッチングセル19とCCDアレイ21との間にある集光レンズは省略している。   As shown in FIG. 2, the refractive index distribution n (r) of the optical fiber preform 20 includes the radius r of the optical fiber preform, the offset amount x of the laser beam in the X-axis direction, and the outermost point a in the measurement range. Assuming that the deflection angle distribution Φ (x) of the transmitted light is generally obtained from the Abel transformation equation shown below. In FIG. 2, a condensing lens between the matching cell 19 and the CCD array 21 is omitted.



クラッド部との比屈折率差Δn(r)は、このn(r)より
Δn(r)≒(n(r)−n(a))/n(a)
から求めることができる。


The relative refractive index difference Δn (r) with the clad portion is calculated from this n (r): Δn (r) ≈ (n (r) −n (a)) / n (a)
Can be obtained from

図3に示すように、光ファイバ母材20を透過した透過光は、上述したように光ファイバ母材20中の脈理の影響を受けて複数の回折光を発生させる。通常は0次光(非回折光)の強度が大きくなるが、条件によっては回折光の強度の方が大きくなる場合もあり、その場合、最大ピークポジションの位置を採るピーク位置測定方式では、正しい透過偏向角Φを得ることができないことになる。また、複数のピークポジションの平均光強度の位置を採る重心検出方式では、回折光がプラス側、マイナス側で対称に生じれば問題ないが、非対称の場合は同様に、正しい透過偏向角Φを得ることができないことになる。   As shown in FIG. 3, the transmitted light that has passed through the optical fiber preform 20 generates a plurality of diffracted lights under the influence of striae in the optical fiber preform 20 as described above. Usually, the intensity of the zero-order light (non-diffracted light) is increased, but depending on the conditions, the intensity of the diffracted light may be larger. The transmission deflection angle Φ cannot be obtained. In the center of gravity detection method that takes the position of the average light intensity at a plurality of peak positions, there is no problem if the diffracted light is generated symmetrically on the plus side and the minus side. You can't get it.

本願発明者らは、異なる2つの波長λ、λのレーザ光を用いることにより上記のような問題を解決し、精度の高い屈折率分布n(r)の測定を簡便に行えることを見出した。 The inventors of the present application have found that the above problems can be solved by using laser beams having two different wavelengths λ 1 and λ 2 , and the refractive index distribution n (r) can be easily measured with high accuracy. It was.

すなわち、本願発明では、回折光に関しては異なる波長の光に対して各々偏向角Φが異なるが、非回折光(0次光)に関しては異なる波長の光であっても偏向角Φは同じになることを利用している。
図3に示すように、例えば透過光の最大強度を有するのが1次回折光である場合、透過光Pの最大強度を有するプラス1次回折光のピーク位置(+P)と、透過光Qの最大強度を有するプラス1次回折光のピーク位置(+Q)は明らかにずれている。また、図中左側に存在する透過光Pのマイナス1次回折光のピーク位置(−P)と、透過光Qのマイナス1次回折光のピーク位置(−Q)も明らかにずれている。2次以降の回折光も、同様にピーク位置はずれている。
That is, in the present invention, the deflection angle Φ is different for light of different wavelengths with respect to diffracted light, but the deflection angle Φ is the same for light of different wavelengths with respect to non-diffracted light (0th order light). I use that.
As shown in FIG. 3, for example, when the first-order diffracted light has the maximum intensity of the transmitted light, the peak position (+ P 1 ) of the plus first-order diffracted light having the maximum intensity of the transmitted light P and the maximum of the transmitted light Q The peak position (+ Q 1 ) of the plus first-order diffracted light having intensity is clearly shifted. Further, the peak position (−P 1 ) of the minus first-order diffracted light of the transmitted light P existing on the left side in the figure is clearly shifted from the peak position (−Q 1 ) of the minus first-order diffracted light of the transmitted light Q. Similarly, the peak positions of the second and subsequent diffracted lights are also shifted.

これに対して、図中中央の透過光Pの0次光のピーク位置(±P)と透過光Qの0次光のピーク位置(±Q)は一致している(図中矢印)。このピーク位置(±P、±Q)が脈理の影響を受けない、非回折の透過光の偏向角である。このように、2波長のレーザ光を用い、ピークが一致する位置を求めることにより、正しい透過偏向角(0次光の偏向角)を求めることができる。 On the other hand, the peak position (± P 0 ) of the 0th-order light of the transmitted light P in the center in the figure coincides with the peak position (± Q 0 ) of the 0th-order light of the transmitted light Q (arrow in the figure). . This peak position (± P 0 , ± Q 0 ) is a deflection angle of non-diffracted transmitted light that is not affected by striae. Thus, the correct transmission deflection angle (deflection angle of the 0th-order light) can be obtained by obtaining the position where the peaks coincide with each other using two wavelengths of laser light.

このような判別方法によって、光ファイバ母材に脈理があっても、非回折光の偏向角である正確な透過偏向角分布Φ(x)を求めることができる。この透過偏向角分布Φ(x)を上記一般式に従って変換することにより、脈理の影響を受けずに光ファイバ母材の屈折率分布n(r)を算出することができる。   By such a discrimination method, an accurate transmission deflection angle distribution Φ (x) that is a deflection angle of non-diffracted light can be obtained even if the optical fiber preform has striae. By converting this transmission deflection angle distribution Φ (x) according to the above general formula, the refractive index distribution n (r) of the optical fiber preform can be calculated without being affected by striae.

次に、レーザ光の波長として、どのような波長を用いれば良いかについて説明する。
本実施形態における一方のレーザ光の波長λと他方のレーザ光の波長λとの波長間隔は、ピーク位置を明確に区別できるように概ね30nm以上離れている方が好ましい。
Next, what wavelength should be used as the wavelength of the laser light will be described.
In this embodiment, the wavelength interval between the wavelength λ 1 of one laser beam and the wavelength λ 2 of the other laser beam is preferably about 30 nm or more apart so that the peak position can be clearly distinguished.

これは、次のように説明できる。
上述した透過光Pの1次回折光のピーク位置(+P)と透過光Qの1次回折光のピーク位置(+Q)との差をΔΦ、透過光Pの0次光のピーク位置(±P)と1次回折光のピーク位置(+P)との差Φと、透過光Qの0次光のピーク位置(±Q)と1次回折光のピーク位置(+Q)との差Φとの平均をΦAVEとすると、明確に2波長のピーク位置を区別するためには、下記条件式を満たす必要がある。
ΔΦ/ΦAVE≧0.05
This can be explained as follows.
The difference between the peak position (+ P 1 ) of the first-order diffracted light of the transmitted light P and the peak position (+ Q 1 ) of the first-order diffracted light of the transmitted light Q is ΔΦ, and the peak position of the 0th-order light of the transmitted light P (± P difference 0) 1 and the difference [Phi P between next peak position of diffraction light (+ P 1), the peak position of the zero-order light of the transmitted light Q (± Q 0) and first peak position of the diffracted light (+ Q 1) [Phi When the average with Q is Φ AVE , the following conditional expression must be satisfied in order to clearly distinguish the peak positions of two wavelengths.
ΔΦ / Φ AVE ≧ 0.05

一方、光ファイバ母材20の脈理の周期をΛとすると、脈理の影響を受けた波長λ、λの光の1次偏向角Φ、Φの回折条件は、次式で表される。
ΛsinΦ=λ、ΛsinΦ=λ
On the other hand, assuming that the striae period of the optical fiber preform 20 is Λ, the diffraction conditions of the primary deflection angles Φ 1 and Φ 2 of the light of the wavelengths λ 1 and λ 2 affected by the striae are as follows: expressed.
ΛsinΦ 1 = λ 1 , ΛsinΦ 2 = λ 2

前記条件式にこの回折条件の式を入れて計算すると、
{sin−1(λ/Λ)−sin−1(λ/Λ)}/{sin−1(λ/Λ)+sin−1(λ/Λ)}/2≧0.05
この式を整理して近似すると、
sin−1(λ/Λ)≧1.05sin−1(λ/Λ)
λ≫Λλ≫Λとして
λ/Λ≧1.05λ/Λより
λ≧1.05λ
When calculating by putting the equation of the diffraction condition in the conditional expression,
{Sin −11 / Λ) −sin −12 / Λ)} / {sin −11 / Λ) + sin −12 /Λ)}/2≧0.05
If this formula is rearranged and approximated,
sin -1 (λ 1 /Λ)≧1.05sin -1 ( λ 2 / Λ)
From λ 1 /Λ≧1.05λ 2 / Λ as λ 1 >> Λ and λ 2 >> Λ λ 1 ≧ 1.05λ 2

この式を満たすような波長λと波長λを選択することにより、各々波長の1次回折光のピーク位置を明確に区別することができる。例えば、一方の単色光の波長を633nmとすると、他方の波長は602nmより短波長又は664nmより長波長とすれば良く、上記したように波長間隔は、概ね30nm以上離れていれば良いことになる。 By selecting the wavelength λ 1 and the wavelength λ 2 that satisfy this equation, the peak positions of the first-order diffracted light of each wavelength can be clearly distinguished. For example, if the wavelength of one monochromatic light is 633 nm, the other wavelength may be shorter than 602 nm or longer than 664 nm, and the wavelength interval should be approximately 30 nm or more as described above. .

ただし、波長λと波長λの1次回折光のピーク位置が離れ過ぎても、一方の波長の2次回折光のピーク位置と近づいてしまうため、判別し難くなってしまう。つまり、透過光Pの1次回折光(+P)に対して、透過光Q側を1次回折光(+Q)ではなく、2次回折光(+Q)の方が近くなってしまう可能性がある。そのため、透過光Pの1次回折光(+P)と透過光Qの2次回折光(+Q)との関係を上記条件式に適用して同様に計算することができる。 However, even if the peak positions of the first-order diffracted light having the wavelengths λ 1 and λ 2 are too far apart, the peak position of the second-order diffracted light having one wavelength is too close, so that it is difficult to distinguish. That is, there is a possibility that the second-order diffracted light (+ Q 2 ) is closer to the transmitted light Q than the first-order diffracted light (+ Q 1 ) than the first-order diffracted light (+ P 1 ) of the transmitted light P. . Therefore, the relationship between the first-order diffracted light (+ P 1 ) of the transmitted light P and the second-order diffracted light (+ Q 2 ) of the transmitted light Q can be calculated in the same manner by applying the above conditional expression.

波長λの光の1次偏向角Φと、波長λの光の2次偏向角Φの回折条件は、次式で表される。
ΛsinΦ=λ、ΛsinΦ=2λ
A primary deflection angles [Phi 1 of light of wavelength lambda 1, 2-order deflection angle [Phi 3 of the diffracted light conditions of wavelength lambda 2 is expressed by the following equation.
ΛsinΦ 1 = λ 1 , ΛsinΦ 3 = 2λ 2

前記条件式に上記同様回折条件の式を入れて計算すると、
{sin−1(2λ/Λ)−sin−1(λ/Λ)}/{sin−1(2λ/Λ)+sin−1(λ/Λ)}/2≧0.05
この式を整理して近似すると、
sin−1(2λ/Λ)≧1.05sin−1(λ/Λ)
λ≫Λλ≫Λとして
2λ/Λ≧1.05λ/Λより
1.90λ≧λ
よって、上式と合わせて、2波長は下記関係式を満たす関係にあれば良いことになる。
1.90λ≧λ≧1.05λ
When calculating by putting the same diffraction condition formula into the conditional formula,
{Sin −1 (2λ 2 / Λ) −sin −11 / Λ)} / {sin −1 (2λ 2 / Λ) + sin −11 /Λ)}/2≧0.05
If this formula is rearranged and approximated,
sin -1 (2λ 2 /Λ)≧1.05sin -1 ( λ 1 / Λ)
From λ 1 >> Λ and λ 2 >> Λ, 2λ 2 /Λ≧1.05 From λ 1 / Λ 1.90λ 2 ≧ λ 1
Therefore, in combination with the above equation, the two wavelengths need only satisfy the following relationship.
1.90λ 2 ≧ λ 1 ≧ 1.05λ 2

上述したように本実施形態の光ファイバ母材の屈折率分布測定方法は、異なる2波長λ、λの単色光を使用して、光ファイバ母材20の中心軸に対して直角な一横断面を透過するように単色光を走査し、光ファイバ母材20を透過した単色光の各波長毎の光強度分布を測定する。そして、測定した光強度分布から非回折光の透過偏向角Φを計測し、該透過偏向角Φの一群から光ファイバ母材20の屈折率分布n(r)を算出する。 As described above, the method for measuring the refractive index distribution of the optical fiber preform according to the present embodiment uses monochromatic light having two different wavelengths λ 1 and λ 2 , and is one perpendicular to the central axis of the optical fiber preform 20. The monochromatic light is scanned so as to pass through the cross section, and the light intensity distribution for each wavelength of the monochromatic light transmitted through the optical fiber preform 20 is measured. Then, the transmission deflection angle Φ of the non-diffracted light is measured from the measured light intensity distribution, and the refractive index distribution n (r) of the optical fiber preform 20 is calculated from a group of the transmission deflection angles Φ.

このように光ファイバ母材20の屈折率分布n(r)の測定を行う際に、所定の波長間隔を有する2波長λ、λの単色光を用いることで、単一波長で測定した透過光のみではできなかった複数の回折光と非回折光(0次光)との区別が可能となり、透過偏向角Φを正確に求めることができ、脈理を有する光ファイバ母材20に対して簡便な測定で精度の高い屈折率分布n(r)を求めることができる。 Thus, when measuring the refractive index distribution n (r) of the optical fiber preform 20, the measurement was performed at a single wavelength by using monochromatic light of two wavelengths λ 1 and λ 2 having a predetermined wavelength interval. It becomes possible to distinguish between a plurality of diffracted light and non-diffracted light (0th order light) that could not be obtained only with transmitted light, and a transmission deflection angle Φ can be accurately obtained. The refractive index distribution n (r) with high accuracy can be obtained by simple and simple measurement.

また、単色光として互いに波長間隔の離れた2つの単一波長λ、λを用い、光ファイバ母材20を透過する透過光の光強度分布を測定し、各波長毎に計測される該透過光の強度ピークを比較して、異なる波長間におけるピークポジションの位置ずれが最も小さい強度ピークの偏向角を透過偏向角Φとして採用する。このように2波長λ、λの透過光のピーク位置を比較することで、正しい偏向角位置である、非回折光(0次光)の透過偏向角の位置を容易に割り出すことができる。 Further, using two single wavelengths λ 1 and λ 2 that are spaced apart from each other as monochromatic light, the light intensity distribution of the transmitted light that passes through the optical fiber preform 20 is measured, and the light intensity is measured for each wavelength. By comparing the intensity peaks of the transmitted light, the deflection angle of the intensity peak with the smallest positional shift of the peak position between different wavelengths is adopted as the transmission deflection angle Φ. Thus, by comparing the peak positions of the transmitted light of the two wavelengths λ 1 and λ 2 , it is possible to easily determine the position of the transmission deflection angle of the non-diffracted light (0th order light), which is the correct deflection angle position. .

また、本実施形態の光ファイバ母材の屈折率分布測定装置10は、異なる2波長λ、λの単色光源を有し、これらの波長の内の1波長の単色光を光ファイバ母材20へ向けて出射する第1、第2レーザ11、12と、光ファイバ母材20を透過した透過光の光強度分布を計測する光検出器であるCCDアレイ21と、光検出器により検出された光強度分布から透過偏向角を求め、屈折率分布を算出する計算装置22と、を備えている。そして、光ファイバ母材20の中心軸に対して直角な一横断面を透過するように単色光を走査し、光ファイバ母材20の一横断面を透過した各波長毎の透過光の光強度分布を測定する。そして、複数の単色光の光強度分布の比較から非回折光の透過偏向角Φを算出して、この透過偏向角Φの一群から光ファイバ母材20の屈折率分布n(r)を求める。 In addition, the optical fiber preform refractive index distribution measuring apparatus 10 according to the present embodiment includes monochromatic light sources having two different wavelengths λ 1 and λ 2 , and monochromatic light of one of these wavelengths is used as the optical fiber preform. The first and second lasers 11 and 12 emitted toward 20, the CCD array 21 that is a photodetector for measuring the light intensity distribution of the transmitted light that has passed through the optical fiber preform 20, and the photodetector And a calculation device 22 that calculates a transmission deflection angle from the obtained light intensity distribution and calculates a refractive index distribution. Then, the monochromatic light is scanned so as to pass through one transverse section perpendicular to the central axis of the optical fiber preform 20, and the light intensity of the transmitted light for each wavelength transmitted through one transverse section of the optical fiber preform 20. Measure the distribution. Then, the transmission deflection angle Φ of the non-diffracted light is calculated from the comparison of the light intensity distributions of the plurality of monochromatic lights, and the refractive index distribution n (r) of the optical fiber preform 20 is obtained from a group of the transmission deflection angles Φ.

次に、本発明の光ファイバ母材の屈折率分布測定方法により測定した一実施例について説明する。実施例、比較例とも、下記光ファイバ母材を使用して透過偏向角Φを計測し、その透過偏向角Φから屈折率分布n(r)を算出して、透過偏向角Φ及び屈折率分布n(r)の基準値と比較して検証する。なお、比較例1では、最大ピークポジションの位置を採るピーク位置測定方式、比較例2では、複数のピークポジションの平均光強度の位置を採る重心検出方式を用いて透過偏向角を計測し、屈折率分布n(r)を算出する。   Next, an embodiment measured by the optical fiber preform refractive index distribution measuring method of the present invention will be described. In both the examples and the comparative examples, the transmission deflection angle Φ is measured using the following optical fiber preform, the refractive index distribution n (r) is calculated from the transmission deflection angle Φ, and the transmission deflection angle Φ and the refractive index distribution are calculated. It verifies by comparing with the reference value of n (r). In Comparative Example 1, the transmission deflection angle is measured by using a peak position measurement method that takes the position of the maximum peak position, and in Comparative Example 2 using a center of gravity detection method that takes the position of the average light intensity at a plurality of peak positions. A rate distribution n (r) is calculated.

<被検体>
光ファイバ母材
<実施例>
第1レーザ;波長(λ)500nmのレーザ(単色光)、第2レーザ;波長(λ)630nmのレーザ(単色光)
<比較例1>
ピーク位置測定方式、単一レーザ;波長(λ)630nmのレーザ(単色光)
<比較例2>
重心検出方式、単一レーザ;波長(λ)630nmのレーザ(単色光)
<Subject>
Optical fiber preform <Example>
First laser; laser with wavelength (λ 1 ) 500 nm (monochromatic light), second laser; laser with wavelength (λ 2 ) 630 nm (monochromatic light)
<Comparative Example 1>
Peak position measurement method, single laser; wavelength (λ 1 ) 630 nm laser (monochromatic light)
<Comparative example 2>
Center of gravity detection method, single laser; wavelength (λ 1 ) 630 nm laser (monochromatic light)

具体的には、実施例では、図1〜図3に示したように、光ファイバ母材20を保持したマッチングセル19をレーザ光に対して直角なX軸方向に段階的にオフセット移動させ、各オフセット位置xで異なる2波長λ、λのレーザ光を出射させる。そして、光ファイバ母材20の一横断面を透過する各透過光をCCDアレイ21に回折光分布(光強度分布)として形成する。この2波長の回折光分布を比較して、0次光のピークポジションを確定して透過偏向角分布Φ(x)を計測する。この透過偏向角分布Φ(x)を上記アーベル変換式に代入して光ファイバ母材20の屈折率分布n(r)を求める。 Specifically, in the embodiment, as shown in FIGS. 1 to 3, the matching cell 19 holding the optical fiber preform 20 is offset and moved stepwise in the X-axis direction perpendicular to the laser beam, Laser beams having different wavelengths λ 1 and λ 2 are emitted at each offset position x. Then, each transmitted light passing through one cross section of the optical fiber preform 20 is formed as a diffracted light distribution (light intensity distribution) in the CCD array 21. The two-wavelength diffracted light distributions are compared to determine the zero-order light peak position, and the transmission deflection angle distribution Φ (x) is measured. The refractive index distribution n (r) of the optical fiber preform 20 is obtained by substituting this transmission deflection angle distribution Φ (x) into the above-mentioned Abel transformation equation.

比較例1のピーク位置測定方式は、最大強度となるピークポジションの位置から透過偏向角Φを決めて、光ファイバ母材20の屈折率分布n(r)を求める。比較例2の重心検出方式は、複数あるピークポジションの平均光強度となる位置から透過偏向角Φを求めて、光ファイバ母材20の屈折率分布n(r)を求める。その結果、図4〜図6に示すような結果を得る。なお、図4〜図6の横軸は正規化しており、“0”は母材の軸中心、“1”は母材外径の位置を表している。また、図4〜図6の(b)の縦軸は、比屈折率差Δn(r)としている。   The peak position measurement method of Comparative Example 1 determines the refractive index distribution n (r) of the optical fiber preform 20 by determining the transmission deflection angle Φ from the position of the peak position having the maximum intensity. In the center-of-gravity detection method of Comparative Example 2, the transmission deflection angle Φ is obtained from the position where the average light intensity at a plurality of peak positions is obtained, and the refractive index distribution n (r) of the optical fiber preform 20 is obtained. As a result, results as shown in FIGS. 4 to 6 are obtained. 4 to 6 are normalized, “0” represents the axis center of the base material, and “1” represents the position of the outer diameter of the base material. Moreover, the vertical axis | shaft of (b) of FIGS. 4-6 is made into relative refractive index difference (DELTA) n (r).

図4に示す実施例では、(a)に示すようにレーザ光のオフセット量(走査量)に対して正しい透過偏向角分布Φ(x)が計測されており、計測値に基づいて(b)に示すように良好な屈折率分布(比屈折率差Δn(r))が算出されていることが分かる。   In the embodiment shown in FIG. 4, the correct transmission deflection angle distribution Φ (x) is measured with respect to the offset amount (scanning amount) of the laser beam as shown in (a), and (b) based on the measured value. It can be seen that a favorable refractive index distribution (relative refractive index difference Δn (r)) is calculated as shown in FIG.

これに対して、図5に示す比較例1のピーク位置測定方式では、(a)に示すようにピークポジションとなる偏向角Φが正しい(0次光)の透過偏向角Φからずれる位置が出てくるため、(b)に示すように全体的に正常値(点線)よりも小さく屈折率分布(比屈折率差Δn(r))が算出されていることが分かる。   On the other hand, in the peak position measurement method of Comparative Example 1 shown in FIG. 5, the position at which the deflection angle Φ serving as the peak position deviates from the correct (zero-order light) transmission deflection angle Φ as shown in FIG. Therefore, it can be seen that the refractive index distribution (relative refractive index difference Δn (r)) is calculated to be smaller than the normal value (dotted line) as a whole as shown in FIG.

また、図6に示す比較例2の重心検出方式では、(a)に示すようにピークポジションとなる透過偏向角Φが全体的に正しい値に比べて小さくなるため、(b)に示すように母材中心ほど正常値(点線)よりも小さく屈折率分布(比屈折率差Δn(r))が算出されていることが分かる。   Further, in the center-of-gravity detection method of the comparative example 2 shown in FIG. 6, as shown in FIG. 6A, the transmission deflection angle Φ that becomes the peak position is generally smaller than the correct value. It can be seen that the refractive index distribution (relative refractive index difference Δn (r)) is calculated smaller than the normal value (dotted line) toward the center of the base material.

上記結果から、光ファイバ母材20の屈折率分布n(r)の測定において、ピーク位置測定方式や重心検出方式による比較例では脈理の影響により正しい屈折率分布n(r)が測定できていないのに比べて、実施例では、脈理の有無に関わらず、簡便な方法で精度の高い屈折率分布測定を行えることが分かる。   From the above results, in the measurement of the refractive index distribution n (r) of the optical fiber preform 20, the correct refractive index distribution n (r) can be measured due to the influence of striae in the comparative example using the peak position measurement method and the center of gravity detection method. It can be seen that the refractive index distribution measurement can be performed with high accuracy by a simple method regardless of the presence or absence of striae in the embodiment.

なお、本発明の光ファイバ母材の屈折率分布測定方法及び屈折率分布測定装置は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。例えば、本実施形態では、2つの単色光源であるレーザを切り替えて透過偏向角Φを計測する屈折率分布測定装置を一例に説明したが、1つのレーザで2種類以上の波長を発振できる複数波長発振タイプの単色光照射装置を使用することも可能である。この場合、2つの波長の切り替えは、バンドパスフィルタの切り替え等により行うことができる。   Note that the optical fiber preform refractive index distribution measuring method and refractive index distribution measuring apparatus of the present invention are not limited to the above-described embodiments, and can be appropriately modified and improved. For example, in the present embodiment, the refractive index distribution measuring apparatus that switches the lasers that are two monochromatic light sources and measures the transmission deflection angle Φ has been described as an example. However, a plurality of wavelengths that can oscillate two or more wavelengths with one laser. It is also possible to use an oscillation type monochromatic light irradiation device. In this case, the two wavelengths can be switched by switching a bandpass filter or the like.

また、本実施形態では切替え装置として合波器を一例に説明したが、合波器の代わりに、別のミラーを単色光の光軸上に挿入及び引出す等によって単色光の切り替えを行うことも可能である。
また、本実施形態では光ファイバ母材を移動させる走査方法を一例に説明したが、光ファイバ母材を固定してレーザを移動させる走査方法も可能である。
In the present embodiment, the multiplexer is described as an example of the switching device. However, instead of the multiplexer, the monochromatic light may be switched by inserting and extracting another mirror on the optical axis of the monochromatic light. Is possible.
In this embodiment, the scanning method for moving the optical fiber preform is described as an example, but a scanning method for moving the laser while fixing the optical fiber preform is also possible.

その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

10…屈折率分布測定装置、11…第1レーザ、12…第2レーザ、13…シャッタ、14…合波器、15…ミラー、16…第1集光レンズ、17…第2集光レンズ、18…マッチングオイル、19…マッチングセル、20…光ファイバ母材、21…CCDアレイ(光検出器)、22…計算装置   DESCRIPTION OF SYMBOLS 10 ... Refractive index distribution measuring apparatus, 11 ... 1st laser, 12 ... 2nd laser, 13 ... Shutter, 14 ... Multiplexer, 15 ... Mirror, 16 ... 1st condensing lens, 17 ... 2nd condensing lens, DESCRIPTION OF SYMBOLS 18 ... Matching oil, 19 ... Matching cell, 20 ... Optical fiber preform, 21 ... CCD array (light detector), 22 ... Calculation apparatus

Claims (5)

光ファイバ母材の側面から単色光を走査し、該単色光の透過光を測定することにより光ファイバ母材の屈折率分布を求める光ファイバ母材の屈折率分布測定方法であって、
異なる2波長以上の複数波長の単色光を使用し、前記光ファイバ母材の一横断面を透過する各波長毎の透過光の光強度分布から透過偏向角を計測して、該透過偏向角の一群から前記光ファイバ母材の屈折率分布を求めることを特徴とする光ファイバ母材の屈折率分布測定方法。
A method for measuring a refractive index distribution of an optical fiber preform by scanning monochromatic light from a side surface of the optical fiber preform and determining a refractive index distribution of the optical fiber preform by measuring transmitted light of the monochromatic light,
Using monochromatic light of a plurality of different wavelengths of two or more different wavelengths, the transmission deflection angle is measured from the light intensity distribution of the transmitted light for each wavelength passing through one transverse section of the optical fiber preform, and the transmission deflection angle A method for measuring a refractive index distribution of an optical fiber preform, wherein a refractive index distribution of the optical fiber preform is obtained from a group.
請求項1に記載の光ファイバ母材の屈折率分布測定方法において、
前記単色光は、互いに波長間隔の離れた2つ以上の単一波長の光であり、各波長毎に計測される該透過光の強度ピークを比較して、異なる波長間におけるピークポジションの位置ずれが最も小さい強度ピークの偏向角を、前記透過偏向角として採用することを特徴とする光ファイバ母材の屈折率分布測定方法。
In the refractive index distribution measuring method of the optical fiber preform according to claim 1,
The monochromatic light is light of two or more single wavelengths that are separated from each other by a wavelength interval, and the peak positions are shifted between different wavelengths by comparing the intensity peaks of the transmitted light measured for each wavelength. A method of measuring a refractive index distribution of an optical fiber preform, wherein a deflection angle of an intensity peak having the smallest intensity is adopted as the transmission deflection angle.
請求項1又は2に記載の光ファイバ母材の屈折率分布測定方法において、
前記異なる2波長以上の複数波長の間の関係が、各波長をλ、λとしたとき、
1.90λ≧λ≧1.05λ
を満たすことを特徴とする光ファイバ母材の屈折率分布測定方法。
In the optical fiber preform refractive index distribution measurement method according to claim 1 or 2,
When the relationship between the two or more different wavelengths is λ 1 and λ 2 ,
1.90λ 2 ≧ λ 1 ≧ 1.05λ 2
A refractive index distribution measuring method for an optical fiber preform characterized by satisfying:
請求項1から3の何れか一項に記載の光ファイバ母材の屈折率分布測定方法において、
前記単色光は、レーザ光であることを特徴とする光ファイバ母材の屈折率分布測定方法。
In the refractive index distribution measuring method of the optical fiber preform according to any one of claims 1 to 3,
The method for measuring a refractive index distribution of an optical fiber preform, wherein the monochromatic light is laser light.
異なる2波長以上の複数波長の単色光源を有し、複数波長の内の1波長の単色光を選択して光ファイバ母材へ向けて出射する単色光照射装置と、
前記光ファイバ母材を透過した透過光の光強度分布を計測する光検出器と、
該光検出器により検出された光強度分布から透過偏向角を求め、屈折率分布を算出する計算装置と、を備え、
前記光ファイバ母材の一横断面を透過した各波長毎の透過光の光強度分布を測定し、該光強度分布の比較から透過偏向角を計測して、該透過偏向角の一群から前記光ファイバ母材の屈折率分布を求めることを特徴とする光ファイバ母材の屈折率分布測定装置。
A monochromatic light irradiation device having a monochromatic light source of two or more different wavelengths and selecting monochromatic light of one wavelength among the plural wavelengths and emitting it to the optical fiber preform;
A photodetector for measuring the light intensity distribution of the transmitted light transmitted through the optical fiber preform;
A calculation device for obtaining a transmission deflection angle from a light intensity distribution detected by the photodetector and calculating a refractive index distribution;
The light intensity distribution of the transmitted light for each wavelength transmitted through one transverse section of the optical fiber preform is measured, the transmission deflection angle is measured from the comparison of the light intensity distribution, and the light from the group of the transmission deflection angles is measured. An apparatus for measuring a refractive index distribution of an optical fiber preform, wherein the refractive index distribution of the fiber preform is obtained.
JP2011241241A 2011-11-02 2011-11-02 Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material Pending JP2013096899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241241A JP2013096899A (en) 2011-11-02 2011-11-02 Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241241A JP2013096899A (en) 2011-11-02 2011-11-02 Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material

Publications (1)

Publication Number Publication Date
JP2013096899A true JP2013096899A (en) 2013-05-20

Family

ID=48618970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241241A Pending JP2013096899A (en) 2011-11-02 2011-11-02 Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material

Country Status (1)

Country Link
JP (1) JP2013096899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161278A (en) * 2016-03-08 2017-09-14 株式会社溝尻光学工業所 Method and apparatus for measuring refractive-index distribution of cylindrical optical waveguide
JP2018500542A (en) * 2014-10-31 2018-01-11 コーニング インコーポレイテッド High-precision measurement of the refractive index profile of cylindrical glass bodies
US11378737B2 (en) 2017-10-06 2022-07-05 Sumitomo Electric Industries, Ltd. Optical fiber preform, method for manufacturing optical fiber preform, and method for setting striae pitch of optical fiber preform
JP2023521000A (en) * 2020-03-30 2023-05-23 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Method for Determining Refractive Index Profiles of Cylindrical Optical Objects

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500542A (en) * 2014-10-31 2018-01-11 コーニング インコーポレイテッド High-precision measurement of the refractive index profile of cylindrical glass bodies
JP7049111B2 (en) 2014-10-31 2022-04-06 コーニング インコーポレイテッド High-precision measurement method for the refractive index profile of a cylindrical glass body
JP2017161278A (en) * 2016-03-08 2017-09-14 株式会社溝尻光学工業所 Method and apparatus for measuring refractive-index distribution of cylindrical optical waveguide
US11378737B2 (en) 2017-10-06 2022-07-05 Sumitomo Electric Industries, Ltd. Optical fiber preform, method for manufacturing optical fiber preform, and method for setting striae pitch of optical fiber preform
JP2023521000A (en) * 2020-03-30 2023-05-23 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Method for Determining Refractive Index Profiles of Cylindrical Optical Objects
JP7458502B2 (en) 2020-03-30 2024-03-29 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for determining the refractive index profile of a cylindrical optical object - Patents.com

Similar Documents

Publication Publication Date Title
JP6044315B2 (en) Displacement measuring method and displacement measuring apparatus
JP5881052B2 (en) Spectral characteristic measuring device
KR101534912B1 (en) Confocal measurement apparatus
US20190017938A1 (en) Diffractive biosensor
JP7049111B2 (en) High-precision measurement method for the refractive index profile of a cylindrical glass body
JP5558720B2 (en) Laser light beam focusing apparatus and method
JP5715610B2 (en) Optical system and method for inspecting patterned samples
JP2013096899A (en) Refractive index distribution measurement method and refractive index measurement instrument for optical fiber base material
JP2009300486A (en) Optical equipment and optical apparatus
KR101233941B1 (en) Shape measuring apparatus and method thereof
JP5356804B2 (en) Raman scattered light measurement system
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
JP2010096570A (en) Profilometer
JP2019178923A (en) Distance measuring unit and light irradiation device
JP2012173125A (en) Shape measuring apparatus and shape measuring method
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
US8108942B2 (en) Probe microscope
JP2009222672A (en) Optical displacement measuring apparatus and multifunctional optical displacement measuring apparatus
RU2460988C1 (en) Method of measuring particle size distribution in wide range of concentrations and apparatus for realising said method (versions)
JP2006308403A (en) Spectroscopy unit
TW201711779A (en) Laser processing apparatus
JP2814260B2 (en) How to measure the refractive index distribution
JP2005043383A (en) Distance measuring method and distance sensor
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution