JP2013092112A - Gas turbine facility and method for controlling cooling air of the same - Google Patents

Gas turbine facility and method for controlling cooling air of the same Download PDF

Info

Publication number
JP2013092112A
JP2013092112A JP2011234823A JP2011234823A JP2013092112A JP 2013092112 A JP2013092112 A JP 2013092112A JP 2011234823 A JP2011234823 A JP 2011234823A JP 2011234823 A JP2011234823 A JP 2011234823A JP 2013092112 A JP2013092112 A JP 2013092112A
Authority
JP
Japan
Prior art keywords
drive amount
coolers
cooler
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234823A
Other languages
Japanese (ja)
Other versions
JP5901225B2 (en
Inventor
Masayuki Murakami
雅幸 村上
Tomoko Fujii
智子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011234823A priority Critical patent/JP5901225B2/en
Publication of JP2013092112A publication Critical patent/JP2013092112A/en
Application granted granted Critical
Publication of JP5901225B2 publication Critical patent/JP5901225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a portion of compressed air from making liquid droplets and flowing into a turbine when the compressed air extracted from a middle of a compressor is cooled and is supplied to the turbine as the cooling air.SOLUTION: A cooling controller 30 has the first driving quantity calculating section 41 obtaining the driving quantity of one cooler when the number of operating machines of the coolers 20 is three, the second driving quantity calculating section 45 obtaining the driving quantity of the one cooler when the number of operating machines of the coolers is two, an operation set section 31 determining whether the operating machine number is two or three according to whether of not outside air temperature is ≥25°C, and a switching section 35 outputting the driving quantity obtained in the first driving quantity calculating section 41 to the three operating coolers when the outside air temperature is ≥25°C and the number of operating machines of the coolers is determined to be three and outputting the driving quantity obtained in the second driving quantity calculating section 45 to the two operating coolers when the outside air temperature is lower than 25°C and the number of operating machines of the coolers is determined to be two.

Description

本発明は、圧縮機、燃焼器及びタービンを備えているガスタービン設備、及びその冷却空気制御方法に関する。   The present invention relates to a gas turbine equipment including a compressor, a combustor, and a turbine, and a cooling air control method thereof.

ガスタービン設備では、燃焼器からの高温の燃焼ガスから、タービン内の動翼や静翼、さらにケーシング等を保護するために、圧縮機の途中から圧縮空気の一部を抽気し、これを冷却し、冷却空気としてタービン内に供給している。   In gas turbine equipment, a portion of compressed air is extracted from the middle of the compressor and cooled to protect the turbine blades, stationary blades, and casings from the high-temperature combustion gas from the combustor. The cooling air is supplied into the turbine.

例えば、以下の特許文献1に記載のガスタービン設備では、圧縮機の途中から圧縮空気の一部を抽気し、これをタービンの運転状況に応じて空気冷却器で冷却し、冷却空気としてタービン内に供給している。   For example, in the gas turbine equipment described in Patent Document 1 below, a part of the compressed air is extracted from the middle of the compressor, and is cooled by an air cooler according to the operation state of the turbine. To supply.

特開平7−54669号公報Japanese Patent Laid-Open No. 7-54669

近年、タービンの高効率化に伴いタービン内に供給する冷却空気の温度を下げることが検討されている。しかしながら、特許文献1に記載の技術を利用して、圧縮機の途中から抽気した圧縮空気を安易に冷却すると、場合によって、圧縮空気中の水分が結露し、一部が液滴としてタービン内に流れ込むことで、タービン内を損傷させるおそれがある、という問題点がある。   In recent years, it has been studied to lower the temperature of cooling air supplied into the turbine as the efficiency of the turbine increases. However, when the compressed air extracted from the middle of the compressor is easily cooled using the technique described in Patent Document 1, moisture in the compressed air may condense in some cases, and some of the water is droplets in the turbine. There is a problem that the inside of the turbine may be damaged by flowing in.

そこで、本発明では、圧縮機からの圧縮空気を冷却空気として利用する場合、この圧縮空気中の水分の一部が液滴化して、タービン内に流れ込むことを防ぐことができるガスタービン設備、及びその冷却空気制御方法を提供することを目的とする。   Therefore, in the present invention, when the compressed air from the compressor is used as cooling air, gas turbine equipment that can prevent a part of moisture in the compressed air from forming droplets and flowing into the turbine, and An object of the present invention is to provide a cooling air control method.

上記問題点を解決するための発明に係るガスタービン設備は、
燃焼用空気を吸入して圧縮空気を生成する圧縮機と、前記圧縮機からの圧縮空気中に燃料を混合して燃焼させ、燃焼ガスを生成する燃焼器と、前記燃焼器からの前記燃焼ガスにより駆動するタービンと、前記圧縮機の途中から抽気した一部の前記圧縮空気を前記タービンの高温部に導く冷却空気導入系統と、前記冷却空気導入系統中の前記圧縮空気を冷却する冷却手段と、外気温度を検知する外気温度計と、前記冷却空気導入系統の出口での空気が結露しないよう、前記外気温度計で検知された前記外気温度に応じて、前記冷却手段の冷却能力を抑制制御する冷却制御器と、を備えていることを特徴とする。
The gas turbine equipment according to the invention for solving the above problems is as follows:
A compressor that sucks combustion air to generate compressed air; a combustor that mixes and burns fuel in the compressed air from the compressor to generate combustion gas; and the combustion gas from the combustor A cooling air introduction system for guiding a part of the compressed air extracted from the middle of the compressor to a high temperature part of the turbine, and a cooling means for cooling the compressed air in the cooling air introduction system The cooling capacity of the cooling means is suppressed and controlled according to the outside air temperature detected by the outside air thermometer so that the air at the outlet of the outside air thermometer that detects the outside air temperature and the cooling air introduction system is not condensed. And a cooling controller.

当該ガスタービン設備では、冷却空気導入系統の出口での空気が結露しないよう、外気温度に応じて、冷却手段の冷却能力が抑制制御されるので、圧縮空気中の水分の一部が結露し、液滴化して、タービン内に流れ込むことを防ぐことができる。   In the gas turbine equipment, since the cooling capacity of the cooling means is suppressed and controlled according to the outside air temperature so that the air at the outlet of the cooling air introduction system is not condensed, a part of the moisture in the compressed air is condensed, It is possible to prevent droplets from flowing into the turbine.

ここで、前記ガスタービン設備において、前記冷却手段は複数の冷却機を有し、前記冷却制御器は、前記外気温度が予め定めた設定温度以上であるか否かに応じて、前記冷却機の運転台数を定める運転設定部を有することが好ましい。この場合、前記運転設定部は、複数の前記冷却機の運転台数を、前記外気温度が前記設定温度以上のときには予め定めた第一台数とし、該外気温度が該設定温度未満のときには該第一台数よりも少ない予め定めた第二台数としてもよい。   Here, in the gas turbine equipment, the cooling means includes a plurality of coolers, and the cooling controller determines whether the outside air temperature is equal to or higher than a predetermined set temperature. It is preferable to have an operation setting unit that determines the number of operations. In this case, the operation setting unit sets the operation number of the plurality of the coolers as a first predetermined number when the outside air temperature is equal to or higher than the set temperature, and sets the first number when the outside air temperature is lower than the set temperature. A predetermined second number smaller than the number may be used.

当該ガスタービン設備では、検知された外気温度が設定温度未満のときには、設定温度以上のときの第一台数よりも少ない第二台数の冷却機が運転されるので、圧縮空気の過冷却による結露を防ぐことができる。   In the gas turbine equipment, when the detected outside air temperature is lower than the set temperature, a second number of coolers that are less than the first number when the temperature is equal to or higher than the set temperature are operated. Can be prevented.

また、前記ガスタービン設備において、前記冷却制御器は、前記冷却機の駆動量を求める駆動量演算部を有し、前記駆動量演算部は、前記外気温度と前記第一台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第一駆動量演算部と、前記外気温度と前記第二台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第二駆動量演算部と、を有し、前記冷却制御器は、前記運転設定部が複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算部で求められた前記駆動量に応じた量を出力し、前記運転設定部が複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算部で求められた前記駆動量に応じた量を出力する切替部を有し、前記第一駆動量演算部及び前記第二駆動量演算部が用いる前記温度相関関係は、前記外気温度の増加に伴って前記駆動量を増加させる関係であって、前記圧縮機が前記外気温度での飽和空気を吸入しても、複数の前記冷却機のうちで運転する冷却機が該関係で定められる前記駆動量に応じた量で駆動した場合に、前記冷却空気導入系統の出口での空気が結露しない関係であってもよい。   Further, in the gas turbine equipment, the cooling controller includes a drive amount calculation unit for obtaining a drive amount of the cooler, and the drive amount calculation unit is configured to perform the cooling at the time of the outside air temperature and the first number. A first drive amount calculation unit that obtains a drive amount of the cooler corresponding to the detected outside air temperature using a predetermined temperature correlation that relates a drive amount of one unit, the outside air temperature, and the first A second drive amount calculation unit that obtains the drive amount of the cooler corresponding to the detected outside air temperature using a predetermined temperature correlation that relates the drive amount of one of the coolers in the case of two units; The cooling controller, when the operation setting unit sets the operating number of a plurality of the coolers as the first number, the cooler that operates among the plurality of coolers, An amount corresponding to the drive amount obtained by the first drive amount calculation unit is output. When the operation setting unit sets the operation number of a plurality of the coolers as the second number, the second drive amount calculation unit obtains the cooler that operates among the plurality of the coolers. A switching unit that outputs an amount corresponding to the drive amount, and the temperature correlation used by the first drive amount calculation unit and the second drive amount calculation unit is the drive amount as the outside air temperature increases. The amount of the cooler that is operated among the plurality of coolers even if the compressor sucks saturated air at the outside air temperature according to the drive amount determined by the relationship In the case where the air is driven, the air at the outlet of the cooling air introduction system may not be condensed.

当該ガスタービン設備では、外気温度に応じて、冷却機の運転台数のみならず、冷却機の駆動量も制御されるので、圧縮空気の過冷却による結露を防ぐことができると共に、適正な温度の冷却空気をタービンに送ることができる。   In the gas turbine facility, not only the number of operating cooling units but also the driving amount of the cooling units are controlled according to the outside air temperature, so that condensation due to overcooling of compressed air can be prevented and an appropriate temperature can be maintained. Cooling air can be sent to the turbine.

また、前記ガスタービン設備において、前記第一駆動量演算部は、前記温度相関関係と、前記タービンの出力と前記第一台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求め、前記第二駆動量演算部は、前記温度相関関係と、前記タービンの出力と前記第二台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求めてもよい。なお、前記圧縮機が、前記タービンの出力に応じて前記燃焼用空気の吸込流量を調節する空気吸込量調節手段を有している場合、前記第一駆動量演算部及び前記第二駆動量演算部は、前記タービンの出力の代わりに、前記空気吸込量調節手段の駆動量を用いてもよい。   Further, in the gas turbine facility, the first drive amount calculation unit may determine a predetermined output correlation between the temperature correlation and the output of the turbine and the drive amount of the single cooler in the case of the first number. And the second driving amount calculation unit calculates the driving amount of the cooler corresponding to the detected outside air temperature and the detected output of the turbine, and the second driving amount calculation unit calculates the temperature correlation and the output of the turbine. And a drive output of the cooler corresponding to the detected outside air temperature and the detected output of the turbine using a predetermined output correlation between the drive amount of the cooler in the second number The amount may be determined. When the compressor has air suction amount adjusting means for adjusting the suction flow rate of the combustion air according to the output of the turbine, the first drive amount calculation unit and the second drive amount calculation The unit may use a driving amount of the air suction amount adjusting means instead of the output of the turbine.

当該ガスタービン設備では、タービン出力又は空気吸込量調節手段の駆動量に応じて圧縮機の空気圧縮率が変化し、圧縮機から抽気した圧縮空気の温度が変化しても、適正な温度の冷却空気をタービンに送ることができる。   In the gas turbine equipment, even if the air compression rate of the compressor changes according to the turbine output or the drive amount of the air suction amount adjusting means, and the temperature of the compressed air extracted from the compressor changes, the proper cooling of the temperature is achieved. Air can be sent to the turbine.

また、前記ガスタービン設備において、前記冷却空気導入系統の出口における前記圧縮空気の温度を検知する冷却空気温度計を備え、前記駆動量演算部は、前記冷却空気温度計で検知された前記圧縮空気の温度と予め定めた目標温度との偏差に応じて、前記第一駆動量演算部が求めた前記駆動量及び前記第二駆動量演算部が求めた前記駆動量を補正するフィードバック制御部を有し、前記切替部は、前記運転設定部が複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算部で求められた前記駆動量について前記フィードバック制御部で補正された量を出力し、前記運転設定部が複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算部で求められた前記駆動量について前記フィードバック制御部で補正された量を出力してもよい。   The gas turbine equipment further includes a cooling air thermometer that detects a temperature of the compressed air at an outlet of the cooling air introduction system, and the driving amount calculation unit is configured to detect the compressed air detected by the cooling air thermometer. A feedback control unit that corrects the driving amount obtained by the first driving amount computing unit and the driving amount obtained by the second driving amount computing unit according to a deviation between the temperature of the first driving amount and a predetermined target temperature. And when the operation setting unit sets the operation number of the plurality of coolers as the first number, the first drive for the cooler that operates among the plurality of coolers. Output the amount corrected by the feedback control unit with respect to the drive amount obtained by the amount calculation unit, and when the operation setting unit sets the operation number of the plurality of coolers as the second number, Luck in the cooler With respect to the cooling machine for, for the drive amount obtained by said second driving amount calculation unit may output the amount that has been corrected by the feedback control unit.

当該ガスタービン設備では、冷却空気の温度を正確に目標温度にすることができる。   In the gas turbine facility, the temperature of the cooling air can be accurately set to the target temperature.

また、前記ガスタービン設備において、複数の前記冷却機のそれぞれについての故障を検知する故障検知器を備え、前記運転設定部は、前記故障検知器により、複数の前記冷却機のうちのいずれかの冷却機の故障が検知されると、該故障が検知された故障冷却機を除く冷却機の台数が自身で定めた運転台数に足りるか否か判断し、冷却機の台数が自身で定めた運転台数に足りると判断すると、該故障冷却機を除く冷却機のうちから運転台数分の冷却機を定め、前記切替部は、前記運転設定部により、前記故障冷却機を除く冷却機の台数が自身が定めた運転台数に足りると判断され、且つ前記故障冷却機を除く冷却機のうちで運転すると定められた前記冷却機に対して、前記第一駆動量演算部と前記第二駆動量演算部とのうちで該運転台数に対応する駆動量を求める駆動量演算部で求められた前記駆動量に応じた量を出力してもよい。   Further, the gas turbine equipment includes a failure detector that detects a failure of each of the plurality of coolers, and the operation setting unit is any one of the plurality of coolers by the failure detector. When a failure of the cooler is detected, it is determined whether the number of coolers excluding the failed cooler in which the failure is detected is sufficient for the number of operations set by the operator, and the operation of the number of coolers is determined by itself. When it is determined that the number is sufficient, the number of cooling units to be operated is determined from among the cooling units excluding the failed cooling unit, and the switching unit determines the number of cooling units excluding the failed cooling unit by the operation setting unit. The first drive amount calculation unit and the second drive amount calculation unit for the cooler determined to be operated among the coolers excluding the failed cooler and determined to be sufficient for the set number of operating units. Vs. the number of operating units An amount corresponding to the driving amount obtained in the driving amount calculation unit for obtaining a drive amount for may output.

当該ガスタービン設備では、複数の冷却機のうちのいずれかが故障した場合でも、故障冷却機を除く冷却機の台数が運転設定部自身が定めた運転台数に足りる場合には、故障冷却機を除く冷却機のうちから運転台数分の冷却機が運転されるので、冷却機が故障しても、複数の冷却機全体での冷却能力の低下を防ぐことができる。   In the gas turbine facility, even if one of the multiple coolers fails, if the number of coolers excluding the failed cooler is sufficient for the number of operations set by the operation setting section itself, Since the coolers for the number of operating units are operated from among the excluding coolers, even if the coolers break down, it is possible to prevent a decrease in the cooling capacity of the plurality of coolers as a whole.

また、ガスタービン設備において、複数の前記冷却機のそれぞれについての故障を検知する故障検知器を備え、前記運転設定部は、前記外気温度が前記設定温度以上のときに、前記故障検知器により、複数の前記冷却機のうちのいずれかの冷却機の故障が検知されると、該故障が検知された故障冷却機を除く冷却機のうちから前記第二台数分の冷却機を定め、前記切替部は、前記運転設定部により、前記故障冷却機を除く冷却機のうちで運転すると定められた前記第二台数分の前記冷却機に対して、前記第二駆動量演算部で求められた前記駆動量に応じた量を出力してもよい。   Further, in the gas turbine equipment, a failure detector that detects a failure for each of the plurality of coolers, the operation setting unit, when the outside air temperature is equal to or higher than the set temperature, by the failure detector, When a failure of any one of the plurality of the coolers is detected, the second number of coolers are determined from the coolers excluding the failed cooler in which the failure is detected, and the switching is performed. The unit is determined by the second drive amount calculation unit for the second number of the coolers determined to be operated among the coolers excluding the failed cooler by the operation setting unit. An amount corresponding to the driving amount may be output.

当該ガスタービン設備では、外気温度が設定温度以上で、冷却機の運転台数を第一台数にしようとしている際に、複数の冷却機のうちのいずれかが故障しても、故障冷却機を除く冷却機のうちから第二台数分の冷却機が定められ、運転すると定められた冷却機には、第二駆動量演算部で求められた駆動量に応じた量、つまり第二台数で運転する際の駆動量に応じた量が出力される。よって、当該ガスタービン設備では、冷却機が故障しても、複数の冷却機全体での冷却能力の低下を防ぐことができる。   In the gas turbine equipment, when the outside air temperature is higher than the set temperature and the number of operating coolers is going to be the first, even if one of the coolers fails, the failed cooler is excluded. A second number of coolers are determined from among the coolers, and the coolers determined to be operated are operated by an amount corresponding to the drive amount obtained by the second drive amount calculation unit, that is, the second number. An amount corresponding to the driving amount is output. Therefore, in the gas turbine facility, even if the cooler breaks down, it is possible to prevent a decrease in the cooling capacity of the plurality of coolers as a whole.

また、前記ガスタービン設備において、前記冷却機は、ファンと、該ファンを回転させるモータと、該モータに供給する電力を変化させて該モータの回転数を変えるインバータと、を有し、前記冷却制御器は、前記冷却機の前記インバータを制御することで、前記モータの駆動量を制御してもよい。   Further, in the gas turbine equipment, the cooler includes a fan, a motor that rotates the fan, and an inverter that changes a power supplied to the motor to change a rotation speed of the motor, and the cooling The controller may control the drive amount of the motor by controlling the inverter of the cooler.

当該ガスタービン設備では、比較的簡易で且つ低コストな設備で冷却機の駆動量を正確に制御することができる。   In the gas turbine facility, the driving amount of the cooler can be accurately controlled with a relatively simple and low-cost facility.

上記問題点を解決するための発明に係るガスタービン設備の冷却空気制御方法は、
燃焼用空気を吸入して圧縮空気を生成する圧縮機と、該圧縮機からの圧縮空気中に燃料を混合して燃焼させ、燃焼ガスを生成する燃焼器と、該燃焼器からの該燃焼ガスにより駆動するタービンと、該圧縮機の途中から抽気した一部の該圧縮空気を該タービンの高温部に導く冷却空気導入系統と、該冷却空気導入系統中の該圧縮空気を冷却して冷却空気を生成する冷却手段と、を備えているガスタービン設備の冷却空気制御方法において、前記冷却空気導入系統の出口での空気が結露しないよう、外気温度に応じて、前記冷却手段の冷却能力を抑制制御する、ことを特徴とする。
A cooling air control method for gas turbine equipment according to an invention for solving the above-described problems is as follows.
A compressor that sucks combustion air to generate compressed air, a combustor that mixes and burns fuel in the compressed air from the compressor to generate combustion gas, and the combustion gas from the combustor A turbine driven by the above, a cooling air introduction system for guiding a part of the compressed air extracted from the middle of the compressor to a high temperature portion of the turbine, and cooling air by cooling the compressed air in the cooling air introduction system In the cooling air control method of the gas turbine equipment, the cooling capacity of the cooling means is controlled according to the outside air temperature so that the air at the outlet of the cooling air introduction system is not condensed. It is characterized by controlling.

当該冷却空気制御方法では、冷却空気導入系統の出口での空気が結露しないよう、外気温度に応じて、冷却手段の冷却能力が抑制制御されるので、圧縮空気中の水分の一部が結露し、液滴化して、タービン内に流れ込むことを防ぐことができる。   In the cooling air control method, the cooling capacity of the cooling means is suppressed and controlled according to the outside air temperature so that the air at the outlet of the cooling air introduction system does not condense, so that a part of the moisture in the compressed air is condensed. , Droplets can be prevented from flowing into the turbine.

ここで、前記ガスタービン設備の冷却空気制御方法において、前記冷却手段は複数の冷却機を有しており、前記外気温度が予め定めた設定温度以上のときには、複数の前記冷却機のうちの運転台数を予め定めた第一台数とし、該外気温度が該設定温度未満のときには、該運転台数を該第一台数よりも少ない予め定めた第二台数とする運転設定工程を、実行することが好ましい。   Here, in the cooling air control method for the gas turbine equipment, the cooling means includes a plurality of coolers, and when the outside air temperature is equal to or higher than a predetermined set temperature, an operation of the plurality of coolers is performed. It is preferable to execute an operation setting step in which the number of units is a predetermined first number, and when the outside air temperature is lower than the set temperature, the operation number is set to a predetermined second number less than the first number. .

当該冷却空気制御方法では、検知された外気温度が設定温度未満のときには、設定温度以上のときの第一台数よりも少ない第二台数の冷却機が運転されるので、圧縮空気の過冷却による結露を防ぐことができる。   In the cooling air control method, when the detected outside air temperature is lower than the set temperature, the second number of coolers that are less than the first number when the temperature is equal to or higher than the set temperature are operated. Can be prevented.

また、前記ガスタービン設備の冷却空気制御方法において、前記外気温度と前記第一台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第一駆動量演算工程と、前記外気温度と前記第二台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第二駆動量演算工程と、前記運転設定工程で複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算工程で求められた前記駆動量に応じた量を出力し、前記運転設定工程で複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算工程で求められた前記駆動量に応じた量を出力する出力工程と、を実行し、前記第一駆動量演算工程及び前記第二駆動量演算工程で用いる前記温度相関関係は、前記外気温度の増加に伴って前記駆動量を増加させる関係であって、前記圧縮機が前記外気温度での飽和空気を吸入しても、複数の前記冷却機のうちで運転する冷却機が該関係で定められる前記駆動量に応じた量で駆動した場合に、前記冷却空気導入系統の出口での空気が結露しない関係であってもよい。   Further, in the cooling air control method for the gas turbine equipment, the detected outside air may be detected using a predetermined temperature correlation that relates the outside air temperature and the driving amount of the single cooler when the first number is used. A first driving amount calculation step for obtaining a driving amount of the cooler corresponding to the temperature, and a predetermined temperature correlation that relates the outside air temperature and the driving amount of the single cooling device in the second number of units. Using the second drive amount calculation step for obtaining the drive amount of the cooler corresponding to the detected outside air temperature, and when the operation number of the plurality of coolers in the operation setting step is the first number, An amount corresponding to the drive amount obtained in the first drive amount calculation step is output to a cooler that is operated among the plurality of coolers, and the plurality of cooler operations are performed in the operation setting step. When the number is the second number, a plurality of the cooling An output step of outputting an amount corresponding to the drive amount obtained in the second drive amount calculation step for the cooler operating in the machine, the first drive amount calculation step and the The temperature correlation used in the second drive amount calculation step is a relationship that increases the drive amount as the outside air temperature increases, and even if the compressor sucks saturated air at the outside air temperature, When a cooler that is operated among the plurality of coolers is driven by an amount corresponding to the drive amount determined by the relationship, air at the outlet of the cooling air introduction system may not be condensed. .

当該冷却空気制御方法では、外気温度に応じて、冷却機の運転台数のみならず、冷却機の駆動量も制御されるので、圧縮空気の過冷却による結露を防ぐことができると共に、適正な温度の冷却空気をタービンに送ることができる。   In the cooling air control method, not only the number of operating cooling units but also the driving amount of the cooling unit is controlled according to the outside air temperature, so that condensation due to overcooling of compressed air can be prevented and an appropriate temperature can be set. Cooling air can be sent to the turbine.

また、前記ガスタービン設備の冷却空気制御方法において、前記第一駆動量演算工程では、前記温度相関関係と、前記タービンの出力と前記第一台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求め、前記第二駆動量演算工程では、前記温度相関関係と、前記タービンの出力と前記第二台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求めてもよい。   Further, in the cooling air control method for the gas turbine equipment, in the first drive amount calculation step, the temperature correlation, the output of the turbine, and the drive amount of the single cooler at the time of the first number A predetermined output correlation is used to obtain a detected drive temperature of the cooler corresponding to the detected outside air temperature and the detected output of the turbine. In the second drive amount calculation step, the temperature correlation , Using a predetermined output correlation between the output of the turbine and the driving amount of one of the coolers when the second number is used, corresponding to the detected outside air temperature and the detected output of the turbine You may obtain | require the drive amount of this cooler.

当該冷却空気制御方法では、タービン出力に応じて圧縮機の空気圧縮率が変化して、圧縮機から抽気した圧縮空気の温度が変化しても、適正な温度の冷却空気をタービンに送ることができる。   In the cooling air control method, even if the air compression rate of the compressor changes according to the turbine output and the temperature of the compressed air extracted from the compressor changes, the cooling air having an appropriate temperature can be sent to the turbine. it can.

本発明では、圧縮機からの圧縮空気を冷却空気として利用する場合、この圧縮空気中の水分の一部が結露し、液滴化して、タービン内に流れ込むことを防ぐことができる。   In the present invention, when the compressed air from the compressor is used as cooling air, it is possible to prevent a part of the moisture in the compressed air from condensing into droplets and flowing into the turbine.

本発明に係る一実施形態におけるガスタービン設備の系統図である。It is a distribution diagram of gas turbine equipment in one embodiment concerning the present invention. 本発明に係る一実施形態における冷却制御器の機能ブロック図である。It is a functional block diagram of the cooling controller in one embodiment concerning the present invention. 本発明に係る一実施形態における第一駆動量演算部が用いる基本駆動量関数を示すグラフである。It is a graph which shows the basic drive amount function which the 1st drive amount calculating part in one embodiment concerning the present invention uses. 本発明に係る一実施形態における第二駆動量演算部が用いる基本駆動量関数を示すグラフである。It is a graph which shows the basic drive amount function which the 2nd drive amount calculating part in one embodiment concerning the present invention uses. 本発明に係る一実施形態における第一駆動量演算部が用いる補正係数関数を示すグラフである。It is a graph which shows the correction coefficient function which the 1st drive amount calculating part in one embodiment concerning the present invention uses. 本発明に係る一実施形態における第二駆動量演算部が用いる補正係数関数を示すグラフである。It is a graph which shows the correction coefficient function which the 2nd drive amount calculating part in one Embodiment concerning this invention uses. 本発明に係る一実施形態におけるタービンの運転状況と、各冷却機の運転状況との関係を示す説明図である。It is explanatory drawing which shows the relationship between the operating condition of the turbine in one Embodiment which concerns on this invention, and the operating condition of each cooler.

以下、本発明に係るガスタービン設備の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a gas turbine facility according to the present invention will be described in detail with reference to the drawings.

本実施形態のガスタービン設備は、図1に示すように、圧縮空気を生成する圧縮機1と、燃料供給源からの燃料を圧縮空気に混合して燃焼させ燃焼ガスを生成する燃焼器2と、燃焼ガスにより駆動するタービン3と、このタービン3の駆動により発電する発電機4と、タービン出力を制御するタービン出力制御器6と、圧縮機1の途中から抽気した一部の圧縮空気をタービン3の高温部に導く冷却空気導入系統10と、この冷却空気導入系統10中の圧縮空気を冷却する複数の冷却機20(冷却手段)と、複数の冷却機20を駆動制御する冷却制御器30と、を備えている。   As shown in FIG. 1, the gas turbine equipment of the present embodiment includes a compressor 1 that generates compressed air, a combustor 2 that mixes fuel from a fuel supply source with the compressed air, and burns it to generate combustion gas. A turbine 3 driven by combustion gas, a generator 4 that generates electric power by driving the turbine 3, a turbine output controller 6 that controls turbine output, and a portion of compressed air extracted from the middle of the compressor 1 3, a cooling air introduction system 10 that leads to a high temperature section 3, a plurality of coolers 20 (cooling means) that cool the compressed air in the cooling air introduction system 10, and a cooling controller 30 that drives and controls the plurality of coolers 20. And.

燃焼器2と燃料供給源との間は、燃料配管2bにより接続されている。この燃料配管2bには、ここを通る燃料の流量を調節する燃料流量調節弁2aが設けられている。   The combustor 2 and the fuel supply source are connected by a fuel pipe 2b. The fuel pipe 2b is provided with a fuel flow rate adjusting valve 2a for adjusting the flow rate of fuel passing therethrough.

圧縮機1の外気取入口には、ここから燃焼用空気として取り入れる外気の流量を調節する入口案内翼(IGV:Inlet Guide Vane)1aが設けられている。さらに、この外気取入口には、ここから取り入れる外気の温度を検知する外気温度計11が設けられている。   An inlet guide vane (IGV: Inlet Guide Vane) 1 a that adjusts the flow rate of the outside air taken in as combustion air from here is provided at the outside air inlet of the compressor 1. Furthermore, the outside air inlet 11 is provided with an outside air thermometer 11 for detecting the temperature of the outside air taken in from the outside air inlet.

タービン出力制御器6は、タービン出力計12で検知されたタービン出力に応じて、燃料流量調節弁2aの弁開度及び入口案内翼1aの開度等を制御する。   The turbine output controller 6 controls the valve opening degree of the fuel flow rate adjusting valve 2a, the opening degree of the inlet guide blade 1a, and the like according to the turbine output detected by the turbine output meter 12.

本実施形態のガスタービン設備は、例えば、3台の冷却機20を備えている。各冷却機20は、いずれも、冷却空気導入系統10内の圧縮空気を冷却するためのファン21と、このファン21を回転させるモータ22と、このモータ22に供給する交流電力の周波数を変えることでモータ22の回転数を変えるインバータ23と、を有している。また、各冷却機20には、冷却機20の故障を検知する故障検知器14が設けられている。この故障検知器14は、例えば、インバータ23からモータ22に供給される電流量等を検知する電流計等を有している。   The gas turbine equipment of the present embodiment includes, for example, three coolers 20. Each of the coolers 20 changes the frequency of the fan 21 for cooling the compressed air in the cooling air introduction system 10, the motor 22 for rotating the fan 21, and the AC power supplied to the motor 22. And an inverter 23 for changing the rotational speed of the motor 22. Each cooler 20 is provided with a failure detector 14 that detects a failure of the cooler 20. The failure detector 14 includes, for example, an ammeter that detects the amount of current supplied from the inverter 23 to the motor 22.

冷却空気導入系統10の出口、言い換えると、タービン3の冷却空気入口には、ここを通る冷却空気としての圧縮空気の温度を検知する冷却空気温度計13が設けられている。   A cooling air thermometer 13 is provided at the outlet of the cooling air introduction system 10, in other words, at the cooling air inlet of the turbine 3 to detect the temperature of the compressed air as cooling air passing therethrough.

冷却制御器30は、タービン出力、外気温度及び冷却空気温度に応じて、複数の冷却機20による圧縮空気の冷却能力を制御する。より具体的に、冷却制御器30は、タービン出力、外気温度及び冷却空気温度に応じて、複数の冷却機20のうちの運転台数、及び運転する冷却機20におけるモータ22の回転数を制御する。   The cooling controller 30 controls the cooling capacity of the compressed air by the plurality of coolers 20 according to the turbine output, the outside air temperature, and the cooling air temperature. More specifically, the cooling controller 30 controls the number of operating units among the plurality of cooling units 20 and the number of rotations of the motor 22 in the operating cooling unit 20 according to the turbine output, the outside air temperature, and the cooling air temperature. .

冷却制御器30は、図2に示すように、外気温度及び各冷却機20の故障状況に応じて運転する冷却機20を定める運転設定部31と、複数の冷却機20毎の駆動量を求める駆動量演算部40と、駆動量演算部40で求められた冷却機20毎の各種駆動量に関してインバータ23への出力を切り替える切替部35と、を有している。なお、本実施形態において、駆動量演算部40が求める駆動量は、ファン21の回転数(=モータ22回転数)に対応した周波数である。   As shown in FIG. 2, the cooling controller 30 obtains an operation setting unit 31 that determines the cooler 20 to be operated according to the outside air temperature and the failure state of each cooler 20, and the driving amount for each of the plurality of coolers 20. The driving amount calculation unit 40 and a switching unit 35 that switches the output to the inverter 23 with respect to various driving amounts for each cooling machine 20 obtained by the driving amount calculation unit 40 are provided. In the present embodiment, the drive amount calculated by the drive amount calculation unit 40 is a frequency corresponding to the rotation speed of the fan 21 (= motor 22 rotation speed).

運転設定部31は、外気温度計11で検知された外気温度Tiと、各故障検知器14で検知された冷却機故障と、タービン出力制御器6からの冷却制御指令とが入力する。   The operation setting unit 31 receives the outside air temperature Ti detected by the outside air thermometer 11, the cooler failure detected by each failure detector 14, and the cooling control command from the turbine output controller 6.

この運転設定部31は、各種判断処理を行う判断処理部を有しており、外気温度計11で検知された外気温度Tiが例えば25℃以上のときに冷却機20の運転台数を3台(第一台数)に定め、外気温度Tiが25℃未満のときに冷却機20の運転台数を2台(第二台数)に定める。但し、外気温度Tiが25℃以上のときであっても、冷却機20の全台数である3台のうち、いずれか1台が故障の場合には、運転台数を2台に定める。さらに、運転設定部31は、運転台数と共に、予め定められたルールに従って運転する冷却機20も特定する。具体的に、3台の冷却機20をそれぞれ冷却機A、冷却機B、冷却機Cとしると、2台を運転する場合には、冷却機A,Bを優先的に運転冷却機とする。但し、冷却機A,Bのうち、いずれか一方の冷却機AorBの故障が故障検知器14で検知された場合には、冷却機AorBのうちの他方の冷却機と残りの冷却機Cを運転冷却機とする。なお、以下の説明においても、3台の冷却機20のうち、特定の冷却機を示す場合には、冷却機A、冷却機B、冷却機Cと表現する。   The operation setting unit 31 includes a determination processing unit that performs various determination processes. When the outside air temperature Ti detected by the outside air thermometer 11 is, for example, 25 ° C. or more, the operation number of the cooler 20 is three ( 1st number), and when the outside air temperature Ti is less than 25 ° C., the number of operating cooling units 20 is set to 2 (second number). However, even when the outside air temperature Ti is 25 ° C. or higher, if any one of the three cooling units 20 is out of order, the number of operating units is set to two. Furthermore, the operation setting unit 31 also specifies the cooler 20 that operates according to a predetermined rule together with the number of operating units. Specifically, assuming that the three coolers 20 are the cooler A, the cooler B, and the cooler C, respectively, when operating the two coolers, the coolers A and B are preferentially set as the operation coolers. . However, when the failure detector 14 detects a failure of one of the cooling devices A and B, the other cooling device C and the remaining cooling device C are operated. Use a cooling machine. In the following description, when a specific cooler is shown among the three coolers 20, they are expressed as cooler A, cooler B, and cooler C.

駆動量演算部40は、3台の冷却機20毎に設けられている。各駆動量演算部40は、タービン出力と外気温度とに応じて、3台全ての冷却機20を運転する場合の1台の冷却機20の駆動量を求める第一駆動量演算部41と、タービン出力と外気温度とに応じて、3台の冷却機20のうちで2台を運転する場合の1台の冷却機20の駆動量を求める第二駆動量演算部45と、冷却空気温度と予め定めた目標温度との偏差に応じて、第一駆動量演算部41が求めた駆動量及び第二駆動量演算部45が求めた駆動量を補正するフィードバック制御部51と、を有している。   The drive amount calculation unit 40 is provided for each of the three coolers 20. Each drive amount calculation unit 40, according to the turbine output and the outside air temperature, a first drive amount calculation unit 41 for determining the drive amount of one cooler 20 when operating all three coolers 20; A second drive amount calculation unit 45 for determining the drive amount of one cooler 20 when operating two of the three coolers 20 according to the turbine output and the outside air temperature; A feedback control unit 51 that corrects the drive amount obtained by the first drive amount computation unit 41 and the drive amount obtained by the second drive amount computation unit 45 in accordance with a deviation from a predetermined target temperature. Yes.

第一駆動量演算部41は、3台全ての冷却機20を運転する場合のタービン出力と駆動量との関係を示す基本駆動量関数(出力相対関係)Fb1を用いて、検知されたタービン出力に応じて冷却機20の基本駆動量を出力する基本駆動量発生器42と、3台全ての冷却機20を運転する場合の外気温度と補正係数との関係を示す補正係数関数(温度相対関係)Fk1を用いて、検知された外気温度Tiに応じた補正係数を出力する補正係数発生器43と、基本駆動量発生器42が出力した基本駆動量に補正係数を掛けて3台運転時の駆動量を出力する乗算器44と、を有している。   The first drive amount calculation unit 41 uses the basic drive amount function (output relative relationship) Fb1 indicating the relationship between the turbine output and the drive amount when all three coolers 20 are operated to detect the detected turbine output. The basic drive amount generator 42 that outputs the basic drive amount of the cooler 20 in response to the above, and a correction coefficient function (temperature relative relationship) indicating the relationship between the outside air temperature and the correction coefficient when all three coolers 20 are operated. ) Using Fk1, a correction coefficient generator 43 that outputs a correction coefficient according to the detected outside air temperature Ti, and a basic drive amount output by the basic drive amount generator 42 are multiplied by the correction coefficient, and three units are operated. And a multiplier 44 that outputs a driving amount.

また、第二駆動量演算部45は、2台の冷却機20を運転する場合のタービン出力と駆動量との関係を示す基本駆動量関数(出力相対関係)Fb2を用いて、検知されたタービン出力に応じて冷却機20の基本駆動量を出力する基本駆動量発生器46と、2台の冷却機20を運転する場合の外気温度と補正係数との関係を示す補正係数関数(温度相対関係)Fk2を用いて、検知された外気温度Tiに応じた補正係数を出力する補正係数発生器47と、基本駆動量発生器46が出力した基本駆動量に補正係数を掛けて2台運転時の駆動量を出力する乗算器48と、を有している。   Further, the second drive amount calculation unit 45 uses the basic drive amount function (output relative relationship) Fb2 indicating the relationship between the turbine output and the drive amount when operating the two coolers 20 to detect the detected turbine. A basic drive amount generator 46 that outputs the basic drive amount of the cooler 20 according to the output, and a correction coefficient function (temperature relative relationship) indicating the relationship between the outside air temperature and the correction coefficient when operating the two coolers 20 ) Using Fk2, the correction coefficient generator 47 that outputs a correction coefficient corresponding to the detected outside air temperature Ti, and the basic drive amount output by the basic drive amount generator 46 are multiplied by the correction coefficient, and the two units are operated. And a multiplier 48 for outputting a driving amount.

フィードバック制御部51は、タービン出力が95%以上であるか否かに応じて目標温度(100℃)と検知された冷却空気温度Toとのうちの一方を出力する切替器54と、検知された冷却空気温度Toと切替器54からの出力との偏差Δを求める減算器52と、減算器52で求められた偏差Δに応じた比例・積分動作分の補正量を求めるPI制御器53と、PI制御器53が求めた補正量を第一駆動量演算部41で求められた駆動量に加える第一加算器55と、PI制御器53が求めた補正量を第二駆動量演算部45で求められた駆動量に加える第二加算器56と、を有している。   The feedback control unit 51 detects the switch 54 that outputs one of the target temperature (100 ° C.) and the detected cooling air temperature To according to whether or not the turbine output is 95% or more. A subtractor 52 for obtaining a deviation Δ between the cooling air temperature To and the output from the switch 54; a PI controller 53 for obtaining a correction amount for proportional / integral operation according to the deviation Δ obtained by the subtractor 52; A first adder 55 that adds the correction amount obtained by the PI controller 53 to the drive amount obtained by the first drive amount calculation unit 41, and the correction amount obtained by the PI controller 53 by the second drive amount calculation unit 45. And a second adder 56 for adding to the determined drive amount.

切替部35は、駆動量演算部40と同様、3台の冷却機20毎に設けられている。各切替部35は、対応する冷却機20に対する駆動量演算部40の第一駆動量演算部41が求めた駆動量に応じた量と第二駆動量演算部45が求めた駆動量に応じた量とのうちの一方を出力する駆動量切替器36と、駆動量切替器36からの出力を対応する冷却機20のインバータ23へ出力するか否かを切替える運転切替器37と、を有している。   The switching unit 35 is provided for each of the three coolers 20 as in the drive amount calculation unit 40. Each switching unit 35 corresponds to the amount according to the drive amount obtained by the first drive amount computation unit 41 of the drive amount computation unit 40 for the corresponding cooler 20 and the drive amount obtained by the second drive amount computation unit 45. A drive amount switch 36 that outputs one of the amounts, and an operation switch 37 that switches whether to output the output from the drive amount switch 36 to the inverter 23 of the corresponding cooler 20. ing.

駆動量切替器36は、運転設定部31からの運転台数指令Inが示す運転台数(3台or2台)に応じて、第一駆動量演算部41が求めた駆動量に応じた量と第二駆動量演算部45が求めた駆動量に応じた量とのうち一方を出力する。また、運転切替器37は、対応する冷却機20を運転するか否かを示す運転指令Idに応じて、切替器54からの出力を出力するか否かを切替える。   The drive amount switching unit 36 is configured so that the amount corresponding to the drive amount obtained by the first drive amount calculation unit 41 and the second amount are determined in accordance with the operation number (3 units or 2 units) indicated by the operation number command In from the operation setting unit 31. One of the amounts corresponding to the drive amount obtained by the drive amount calculation unit 45 is output. Further, the operation switching unit 37 switches whether to output the output from the switching unit 54 in accordance with an operation command Id indicating whether or not to operate the corresponding cooler 20.

図3及び図4に示すように、第一駆動量演算部41が用いる基本駆動量関数Fb1(図3)及び第二駆動量演算部45が用いる基本駆動量関数Fb2(図4)は、基本的にタービン出力が大きいときには大きな駆動量を示す。具体的に、これらの基本駆動量関数Fb1,Fb2は、タービン出力が0〜35%程度まではほぼ一定の駆動量を示し、タービン出力が35〜80%前後まではタービン出力の増加に伴ってリニアに増加する駆動量を示し、80%前後以上ではほぼ一定の駆動量を示す。   As shown in FIGS. 3 and 4, the basic drive amount function Fb1 (FIG. 3) used by the first drive amount calculation unit 41 and the basic drive amount function Fb2 (FIG. 4) used by the second drive amount calculation unit 45 are fundamental. When the turbine output is large, a large driving amount is shown. Specifically, these basic drive amount functions Fb1 and Fb2 indicate a substantially constant drive amount until the turbine output is about 0 to 35%, and with an increase in the turbine output until the turbine output is around 35 to 80%. The driving amount increases linearly, and the driving amount is almost constant above 80%.

以上のように、基本駆動量関数Fb1,Fb2は、タービン出力が大きいときには大きな駆動量を示すのは、タービン出力が大きくなると、必然的にタービン3で駆動する圧縮機1による空気圧縮率が高まり、圧縮機1から抽気した圧縮空気の温度も高まるため、冷却空気を目標とする温度にする場合に冷却機20の駆動量を大きくする必要があるからである。   As described above, the basic drive amount functions Fb1 and Fb2 indicate a large drive amount when the turbine output is large. As the turbine output increases, the air compression rate by the compressor 1 driven by the turbine 3 inevitably increases. This is because the temperature of the compressed air extracted from the compressor 1 also increases, so that the driving amount of the cooler 20 needs to be increased when the cooling air is set to the target temperature.

ところで、2台運転時に用いられる基本駆動量関数Fb2(図4)が示す駆動量は、タービン出力がいずれの値であっても、3台運転時に用いられる基本駆動量関数Fb1(図3)が示す駆動量よりも大きく、しかもタービン出力が35〜80%前後でのタービン出力の増加に伴う駆動量の増加率は、基本駆動量関数Fb1よりも基本駆動量関数Fb2の方が大きい。これは、2台の冷却機20の運転時でも、3台の冷却機20の運転時と同等の空気冷却能力が得られるようにするためである。   By the way, the drive amount indicated by the basic drive amount function Fb2 (FIG. 4) used at the time of two-unit operation is the basic drive amount function Fb1 (FIG. 3) used at the time of three-unit operation regardless of the turbine output. The basic driving amount function Fb2 is larger than the basic driving amount function Fb1 in the increase rate of the driving amount accompanying the increase in the turbine output when the turbine output is around 35 to 80%. This is because even when the two coolers 20 are operated, an air cooling capacity equivalent to that when the three coolers 20 is operated can be obtained.

第一駆動量演算部41が用いる補正係数関数Fk1は、図5に示すように、基本的に外気温度が25℃以上のときに用いる関数であり、第二駆動量演算部45が用いる補正係数関数Fk2は、図6に示すように、基本的に外気温度が25℃未満のときに用いる関数である。これらの補正係数関数Fk1,Fk2は、いずれもタービン出力の増大に伴って補正係数が大きくなる関係を示す関数である。さらに、これらの補正係数関数Fk1,Fk2は、運転する冷却機20がこの関数で定められる駆動量に応じた量で駆動した場合に、圧縮機1が外気温度での飽和空気を吸入しても、冷却空気導入系統10の出口での空気が結露しない関係を示す関数である。   As shown in FIG. 5, the correction coefficient function Fk1 used by the first drive amount calculation unit 41 is basically a function used when the outside air temperature is 25 ° C. or higher, and the correction coefficient function used by the second drive amount calculation unit 45. The function Fk2 is basically a function used when the outside air temperature is less than 25 ° C. as shown in FIG. These correction coefficient functions Fk1 and Fk2 are functions indicating a relationship in which the correction coefficient increases as the turbine output increases. Further, these correction coefficient functions Fk1 and Fk2 are obtained even when the compressor 1 sucks saturated air at the outside air temperature when the operating cooler 20 is driven by an amount corresponding to the drive amount determined by this function. FIG. 6 is a function showing a relationship in which air at the outlet of the cooling air introduction system 10 is not condensed.

ところで、外気温度が25℃未満のときに冷却機20の運転台数を2台にするのは、冷却機20の3台運転では、圧縮空気を冷却し過ぎて、冷却空気導入系統10の出口で空気が結露してしまうのを回避するためである。仮に、2台運転時に用いられる基本駆動量関数Fb2が示す基本駆動量で2台の冷却機20を運転すると、この基本駆動量は、前述したように、3台の冷却機20の運転時と同等の空気冷却能力が得られる基本駆動量であるため、運転台数を2台にする意義がなく、冷却空気導入系統10の出口で空気が結露するおそれがある。そこで、本実施形態では、同一外気温度であっても、2台運転時に用いられる補正係数関数Fk2は、3台運転時に用いられる補正係数関数Fk1で定まる補正係数よりも小さな補正係数を示すものになっている。具体的に、運転台数の切替温度である25℃において、3台運転時に用いられる補正係数関数Fk1で定まる補正係数の値が約1.2に対して、2台運転時に用いられる補正係数関数Fk2で定まる補正係数の値は1.0である。   By the way, when the outside air temperature is less than 25 ° C., the number of operating the coolers 20 is set to two. In the operation of the three coolers 20, the compressed air is excessively cooled and This is to avoid the condensation of air. If the two coolers 20 are operated with the basic drive amount indicated by the basic drive amount function Fb2 used during the operation of two units, the basic drive amount is the same as that during the operation of the three coolers 20 as described above. Since this is a basic drive amount that can provide the same air cooling capacity, there is no significance in setting the number of operating units to two, and there is a possibility that air is condensed at the outlet of the cooling air introduction system 10. Therefore, in the present embodiment, even when the outside air temperature is the same, the correction coefficient function Fk2 used at the time of two-unit operation shows a correction coefficient smaller than the correction coefficient determined by the correction coefficient function Fk1 used at the time of three-unit operation. It has become. Specifically, at a switching temperature of the number of operating units of 25 ° C., the correction coefficient function Fk2 used when operating two units is about 1.2 while the value of the correction coefficient determined by the correction coefficient function Fk1 used when operating three units is about 1.2. The value of the correction coefficient determined by is 1.0.

なお、本実施形態において、冷却機20の運転台数の切替温度である25℃は、この温度の飽和空気を圧縮機1が吸入した場合に、ガスタービン設備が備えている全ての冷却機20(この実施形態では3台)を運転すると、冷却空気導入系統10の出口で空気が結露してしまう可能性がある温度である。よって、冷却機20の運転台数の切替温度は、そのガスタービン設備が備えている冷却機20の台数や、各冷却機20の冷却能力に依存するため、ガスタービン設備毎に適宜設定すべき温度である。   In addition, in this embodiment, 25 degreeC which is the switching temperature of the operation | use number of the cooler 20 is all the coolers 20 with which gas turbine equipment is equipped when the compressor 1 suck | inhales the saturated air of this temperature ( When three units are operated in this embodiment, the air may be condensed at the outlet of the cooling air introduction system 10. Therefore, since the switching temperature of the number of operating coolers 20 depends on the number of coolers 20 provided in the gas turbine equipment and the cooling capacity of each cooler 20, the temperature to be set appropriately for each gas turbine equipment. It is.

次に、本実施形態のガスタービン設備の動作について説明する。   Next, operation | movement of the gas turbine installation of this embodiment is demonstrated.

まず、ガスタービン設備の基本的動作について説明する。タービン起動時には、発電機4に電力を供給して電動機として機能させ、この発電機4を回転させることで、タービンロータ及び圧縮機ロータを回転させる。そして、図7に示すように、タービンロータ及び圧縮機ロータの回転数(以下、タービン回転数とする)が定格回転数の約20%になると、燃焼器2への燃料供給が開始される。なお、燃焼器2への燃料供給量の調節は、タービン出力制御器6が燃料流量調節弁2aの弁開度を制御することで、実行される。   First, the basic operation of the gas turbine equipment will be described. When the turbine is started, electric power is supplied to the generator 4 to function as an electric motor, and by rotating the generator 4, the turbine rotor and the compressor rotor are rotated. Then, as shown in FIG. 7, when the rotation speed of the turbine rotor and the compressor rotor (hereinafter referred to as turbine rotation speed) reaches about 20% of the rated rotation speed, fuel supply to the combustor 2 is started. The fuel supply amount to the combustor 2 is adjusted by the turbine output controller 6 controlling the valve opening of the fuel flow rate adjusting valve 2a.

燃焼器2へ燃料が供給され始めると、燃焼器2では、圧縮機1からの圧縮空気にこの燃料が混合されて燃焼し、高温の燃焼ガスが生成される。この燃焼ガスは、燃焼器2からタービン3に送られ、タービンロータを回転させる。タービン回転数は、燃焼器2への燃料供給量が徐々に増加するに連れて徐々に増加する。この過程で、燃焼器2からの燃焼ガスによるタービン駆動力が大きくなり、発電機4を電動機として機能させる必要がなくなると、発電機4への電力供給を停止する。そして、タービン回転数が定格回転数になる時点の前後で、発電機4による発電を開始させる。   When the fuel starts to be supplied to the combustor 2, the combustor 2 mixes the fuel with the compressed air from the compressor 1 and burns it, thereby generating high-temperature combustion gas. This combustion gas is sent from the combustor 2 to the turbine 3 to rotate the turbine rotor. The turbine rotation speed gradually increases as the amount of fuel supplied to the combustor 2 gradually increases. In this process, when the turbine driving force by the combustion gas from the combustor 2 increases and it becomes unnecessary to cause the generator 4 to function as an electric motor, the power supply to the generator 4 is stopped. Then, power generation by the power generator 4 is started before and after the turbine rotational speed reaches the rated rotational speed.

以降、タービン出力制御器6により、燃料流量調節弁2aの弁開度等が制御され、燃焼器2への燃料供給量等が調節されることで、タービン出力が調節される。   Thereafter, the turbine output controller 6 controls the valve opening degree of the fuel flow rate adjusting valve 2a and the like, and the turbine output is adjusted by adjusting the fuel supply amount to the combustor 2 and the like.

タービン3の停止時には、燃焼器2への燃料供給を停止する。燃焼器2に燃料が供給されなくなり、タービン3に燃焼ガスが送られなくなると、タービン回転数は次第に低下する。   When the turbine 3 is stopped, the fuel supply to the combustor 2 is stopped. When no fuel is supplied to the combustor 2 and no combustion gas is sent to the turbine 3, the turbine rotational speed gradually decreases.

次に、本実施形態の冷却制御器30及び冷却機20の動作について説明する。   Next, operations of the cooling controller 30 and the cooler 20 of the present embodiment will be described.

前述したように、タービン起動時に、タービン回転数が増加して、定格回転数の約90%になると、タービン出力制御器6は、冷却制御器30に対して、冷却機20の運転を示す冷却制御指令を出力する。冷却制御器30の運転設定部31は、この冷却制御指令を受けると、そのときの状況に応じて運転台数及び運転する冷却機20を定める。この結果、図7に示すように、タービン回転数が定格回転数の約90%になると、この運転設定部31により運転すると定められた冷却機20の運転が開始される。   As described above, when the turbine rotation speed is increased to about 90% of the rated rotation speed when the turbine is started, the turbine output controller 6 causes the cooling controller 30 to indicate the operation of the cooler 20. Output control commands. When receiving the cooling control command, the operation setting unit 31 of the cooling controller 30 determines the number of operating units and the cooling unit 20 to be operated according to the situation at that time. As a result, as shown in FIG. 7, when the turbine rotational speed reaches about 90% of the rated rotational speed, the operation of the cooler 20 determined to be operated by the operation setting unit 31 is started.

駆動量演算部40では、図2に示すように、第一駆動量演算部41の基本駆動量発生器42が図3に示す基本駆動量関数Fb1を用いて、検知されたタービン出力に対応した3台運転時の基本駆動量を求め、これを出力する。さらに、第一駆動量演算部41の補正係数発生器43が図5に示す補正係数関数Fk1を用いて、検知された外気温度Tiに対応した3台運転時の補正係数を求め、これを出力する。そして、第一駆動量演算部41の乗算器44は、基本駆動量発生器42が求めた基本駆動量と補正係数発生器43が求めた補正係数とを掛け合わせて、3台運転時の駆動量を求め、これを出力する。   In the drive amount calculation unit 40, as shown in FIG. 2, the basic drive amount generator 42 of the first drive amount calculation unit 41 corresponds to the detected turbine output using the basic drive amount function Fb1 shown in FIG. The basic drive amount during operation of 3 units is obtained and output. Further, the correction coefficient generator 43 of the first drive amount calculation unit 41 uses the correction coefficient function Fk1 shown in FIG. 5 to obtain a correction coefficient during operation of three units corresponding to the detected outside air temperature Ti, and outputs this. To do. Then, the multiplier 44 of the first drive amount calculation unit 41 multiplies the basic drive amount obtained by the basic drive amount generator 42 and the correction coefficient obtained by the correction coefficient generator 43 to drive when operating three units. Find the quantity and output it.

駆動量演算部40では、上記第一駆動量演算部41の処理と並行して、第二駆動量演算部45の処理が実行される。具体的に、第二駆動量演算部45の基本駆動量発生器46が図4に示す基本駆動量関数Fb2を用いて、検知されたタービン出力に対応した2台運転時の基本駆動量を求め、これを出力する。さらに、第二駆動量演算部45の補正係数発生器47が図6に示す補正係数関数Fk2を用いて、検知された外気温度Tiに対応した2台運転時の補正係数を求め、これを出力する。そして、第二駆動量演算部45の乗算器48は、基本駆動量発生器46が求めた基本駆動量と補正係数発生器47が求めた補正係数とを掛け合わせて、2台運転時の駆動量を求め、これを出力する。   In the drive amount calculation unit 40, the process of the second drive amount calculation unit 45 is executed in parallel with the process of the first drive amount calculation unit 41. Specifically, the basic drive amount generator 46 of the second drive amount calculation unit 45 uses the basic drive amount function Fb2 shown in FIG. 4 to obtain the basic drive amount during two-unit operation corresponding to the detected turbine output. And output this. Further, the correction coefficient generator 47 of the second drive amount calculation unit 45 uses the correction coefficient function Fk2 shown in FIG. 6 to determine a correction coefficient during two-unit operation corresponding to the detected outside air temperature Ti, and outputs this. To do. Then, the multiplier 48 of the second drive amount calculation unit 45 multiplies the basic drive amount obtained by the basic drive amount generator 46 and the correction coefficient obtained by the correction coefficient generator 47 to drive when two units are operating. Find the quantity and output it.

さらに、駆動量演算部40では、フィードバック制御部51の減算器52が、冷却空気温度計13で検知された冷却空気温度Toとその目標温度(例えば、100℃)との偏差Δを求める。PI制御器53は、この偏差Δに応じた比例・積分動作分の補正量を求め、これを出力する。第一加算器55は、PI制御器53からの補正量と第一駆動量演算部41で求められた駆動量とを加算して、これを切替部35に出力する。また、第二加算器56は、PI制御器53からの補正量と第二駆動量演算部45で求められた駆動量とを加算して、これを切替部35に出力する。   Further, in the drive amount calculation unit 40, the subtractor 52 of the feedback control unit 51 obtains a deviation Δ between the cooling air temperature To detected by the cooling air thermometer 13 and its target temperature (for example, 100 ° C.). The PI controller 53 obtains a correction amount for the proportional / integral operation corresponding to the deviation Δ and outputs it. The first adder 55 adds the correction amount from the PI controller 53 and the drive amount obtained by the first drive amount calculation unit 41 and outputs this to the switching unit 35. The second adder 56 adds the correction amount from the PI controller 53 and the drive amount obtained by the second drive amount calculation unit 45 and outputs this to the switching unit 35.

フィードバック制御部51の切替器54は、検知されたタービン出力として95%以上のタービン出力が入力すると、予め記憶している前述の目標温度(例えば、100℃)を減算器52に出力し、検知されたタービン出力として95%未満のタービン出力が入力すると、冷却空気温度計13で検知された冷却空気温度Toを減算器52に出力する。この結果、タービン出力が95%未満のとき、減算器52は、冷却空気温度計13で検知された冷却空気温度Toから、同じ冷却空気温度Toを減算して、偏差0を出力する。よって、タービン出力が95%未満のときには、冷却空気温度のフィードバック制御は実行されない。一方、タービン出力が95%以上のとき、減算器52は、冷却空気温度計13で検知された冷却空気温度Toから、前述したように、目標温度を減算して、冷却空気温度Toと目標温度との偏差を出力し、図7に示すように、冷却空気温度のフィードバック制御は実行される。   When a turbine output of 95% or more is input as the detected turbine output, the switching unit 54 of the feedback control unit 51 outputs the above-mentioned target temperature (for example, 100 ° C.) stored in advance to the subtractor 52 to detect it. When a turbine output of less than 95% is input as the turbine output, the cooling air temperature To detected by the cooling air thermometer 13 is output to the subtractor 52. As a result, when the turbine output is less than 95%, the subtractor 52 subtracts the same cooling air temperature To from the cooling air temperature To detected by the cooling air thermometer 13 and outputs a deviation 0. Therefore, when the turbine output is less than 95%, the feedback control of the cooling air temperature is not executed. On the other hand, when the turbine output is 95% or more, the subtractor 52 subtracts the target temperature from the cooling air temperature To detected by the cooling air thermometer 13 as described above to obtain the cooling air temperature To and the target temperature. As shown in FIG. 7, feedback control of the cooling air temperature is executed.

運転設定部31は、前述したように、タービン出力制御器6から冷却機20の運転を示す冷却制御信号を受けると、まず、外気温度計11で検知された外気温度Tiが予め定められた温度である25℃以上であるか否かを判断する(S1)。運転設定部31は、外気温度が25℃以上であると判断すると、3台全ての冷却機20、つまり冷却機A,B,Cを運転することを前提とし、3台の冷却機A,B,C毎の故障検知器14のいずれかで故障が検知されたか否かを判断する(S2)。いずれの故障検知器14でも故障が検知されてなければ、予定通り、3台全ての冷却機A,B,Cを運転することに決定し、運転することにした冷却機A,B,Cに対応する切替部35に対して、3台を運転することを示す運転台数指令Inと、当該冷却機A,B,Cを運転することを示す運転指令Idとを出力する(S3)。   As described above, when the operation setting unit 31 receives the cooling control signal indicating the operation of the cooler 20 from the turbine output controller 6, first, the outdoor temperature Ti detected by the outdoor thermometer 11 is set to a predetermined temperature. It is determined whether the temperature is 25 ° C. or higher (S1). If the operation setting unit 31 determines that the outside air temperature is 25 ° C. or higher, it is assumed that all three coolers 20, that is, the coolers A, B, and C are operated. , It is determined whether or not a failure is detected by any one of the failure detectors 14 for each C (S2). If no failure is detected by any failure detector 14, it is decided to operate all three coolers A, B, C as scheduled, and the coolers A, B, C decided to operate are scheduled. An operation number command In indicating that the three units are operated and an operation command Id indicating that the coolers A, B, and C are operated are output to the corresponding switching unit 35 (S3).

冷却機20毎の切替部35の駆動量切替器36は、運転設定部31から3台運転を示す運断台数指令Inを受けると、第一駆動量演算部41が求めた駆動量に応じた量、つまり第一加算器55から出力された駆動量を出力する。また、冷却機20毎の切替部35の運転切替器37は、当該冷却機20を運転することを示す運転指令Idを受けると、駆動量切替器36からの出力、つまり第一加算器55から出力された駆動量を該当冷却機20のインバータ23に出力する。この場合、冷却機Aの運転切替器37、冷却機Bの運転切替器37、冷却機Cの運転切替器37は、いずれも、第一加算器55から出力された3台運転時の駆動量を対応するインバータ23に出力する。   When the drive amount switching unit 36 of the switching unit 35 for each cooler 20 receives the operation number command In indicating three-unit operation from the operation setting unit 31, the drive amount switching unit 36 corresponds to the drive amount obtained by the first drive amount calculation unit 41. The amount, that is, the drive amount output from the first adder 55 is output. When the operation switch 37 of the switching unit 35 for each cooler 20 receives the operation command Id indicating that the cooler 20 is operated, the output from the drive amount switch 36, that is, from the first adder 55. The output drive amount is output to the inverter 23 of the corresponding cooler 20. In this case, the operation switch 37 of the cooler A, the operation switch 37 of the cooler B, and the operation switch 37 of the cooler C are all driven from the first adder 55 during the operation of the three units. Is output to the corresponding inverter 23.

各冷却機20のインバータ23は、この駆動量を受けると、この駆動量が示す周波数の交流電力をモータ22に供給して、モータ22を駆動させる。この結果、ファン21は、駆動量が示す周波数に対応した回転数で回転する。すなわち、3台の冷却機20の各ファン21は、図7に示すように、外気温度が25℃以上のとき、基本的に、そのときのタービン出力、外気温度、場合によって冷却空気温度に応じた、3台運転時の回転数で回転する。   When receiving the drive amount, the inverter 23 of each cooler 20 supplies AC power having a frequency indicated by the drive amount to the motor 22 to drive the motor 22. As a result, the fan 21 rotates at a rotation speed corresponding to the frequency indicated by the drive amount. That is, as shown in FIG. 7, each fan 21 of the three coolers 20 basically corresponds to the turbine output, the outside air temperature, and the cooling air temperature depending on the case when the outside air temperature is 25 ° C. or higher. In addition, it rotates at the number of rotations when operating three units.

また、運転設定部31は、S2において、3台の冷却機20毎の故障検知器14のいずれか一つで故障が検知されていれば、3台の冷却機20のうちの故障していない2台の冷却機20を運転することに決定し、運転することにした2台の冷却機20に対応する切替部35に対して、2台を運転することを示す運転台数指令Inと、当該冷却機20を運転することを示す運転指令Idとを出力する(S4)。   In addition, if the failure is detected by any one of the failure detectors 14 for each of the three coolers 20 in S <b> 2, the operation setting unit 31 has not failed among the three coolers 20. The operation number command In indicating that the two coolers 20 are to be operated and the two switching units 35 corresponding to the two coolers 20 that are to be operated are operated. An operation command Id indicating that the cooler 20 is operated is output (S4).

この場合、冷却機20毎の切替部35の駆動量切替器36は、運転設定部31から2台運転を示す運断台数指令Inを受けると、第二駆動量演算部45が求めた駆動量に応じた量、つまり第二加算器56から出力された駆動量を出力する。また、冷却機20毎の切替部35の運転切替器37は、当該冷却機20を運転することを示す運転指令Idを受けると、駆動量切替器36からの出力、つまり第二加算器56から出力された駆動量を該当冷却機20のインバータ23に出力する。   In this case, when the drive amount switch 36 of the switching unit 35 for each cooler 20 receives the operation number command In indicating two-unit operation from the operation setting unit 31, the drive amount obtained by the second drive amount calculation unit 45. , That is, the drive amount output from the second adder 56 is output. When the operation switch 37 of the switching unit 35 for each cooler 20 receives the operation command Id indicating that the cooler 20 is operated, the output from the drive amount switch 36, that is, from the second adder 56. The output drive amount is output to the inverter 23 of the corresponding cooler 20.

仮に、冷却機Aが故障している場合、冷却機Bの運転切替器37、冷却機Cの運転切替器37は、いずれも、第二加算器56から出力された2台運転時の駆動量を対応するインバータ23に出力する。一方、冷却機Aの運転切替器37は、冷却機Aを運転することを示す運転指令Idを受けないので、対応するインバータ23に駆動量を出力しない。この結果、冷却機B,Cのファン21は、そのときのタービン出力、外気温度、場合によって冷却空気温度に応じた、2台運転時の回転数で回転する。   If the cooler A is out of order, the operation switch 37 of the cooler B and the operation switch 37 of the cooler C are both driven from the second adder 56 during driving. Is output to the corresponding inverter 23. On the other hand, since the operation switching unit 37 of the cooler A does not receive the operation command Id indicating that the cooler A is operated, the drive amount is not output to the corresponding inverter 23. As a result, the fans 21 of the coolers B and C rotate at the number of rotations at the time of two-unit operation according to the turbine output at that time, the outside air temperature, and the cooling air temperature in some cases.

このように、本実施形態では、外気温度が25℃以上で、3台全ての冷却機20を運転することを前提とする場合に、1台が故障していても、2台の冷却機20により、3台運転時と同等の冷却能力で運転されるので、冷却機故障による障害を回避することができる。   Thus, in the present embodiment, when the outside air temperature is 25 ° C. or more and it is assumed that all three coolers 20 are operated, even if one of the coolers 20 fails, the two coolers 20 Therefore, since it is operated with the same cooling capacity as when three units are operated, a failure due to a failure of the cooler can be avoided.

また、運転設定部31は、S1において、外気温度が25℃未満であると判断すると、予め定められている2台の冷却機A,Bを運転することを前提とし、2台の冷却機A,B毎の故障検知器14のいずれか一方のみで故障が検知されたか否かを判断する(S5)。いずれの故障検知器14でも故障が検知されてなければ、予定通り、2台の冷却機A,Bを運転することに決定し、運転することにした冷却機A,Bに対応する切替部35に対して、2台を運転することを示す運転台数指令Inと、当該冷却機A,Bを運転することを示す運転指令Idとを出力する(S6)。   Further, if the operation setting unit 31 determines in S1 that the outside air temperature is less than 25 ° C., it is assumed that the two coolers A and B that are set in advance are operated. , B is determined whether or not a failure is detected by only one of the failure detectors 14 for each B (S5). If no failure is detected in any of the failure detectors 14, it is decided to operate the two coolers A and B as scheduled, and the switching unit 35 corresponding to the coolers A and B decided to operate. On the other hand, an operation number command In indicating that the two units are operated and an operation command Id indicating that the coolers A and B are operated are output (S6).

この場合、冷却機A,B毎の切替部35の駆動量切替器36は、運転設定部31から2台運転を示す運断台数指令Inを受けると、第二駆動量演算部45が求めた駆動量に応じた量、つまり第二加算器56から出力された駆動量を出力する。また、運転することになった冷却機A,B毎の切替部35の運転切替器37は、当該冷却機A,Bを運転することを示す運転指令Idを受けると、駆動量切替器36からの出力、つまり第二加算器56から出力された駆動量を該当冷却機A,Bのインバータ23に出力する。   In this case, when the drive amount switching unit 36 of the switching unit 35 for each of the coolers A and B receives the operation number command In indicating two-unit operation from the operation setting unit 31, the second drive amount calculation unit 45 obtains it. An amount corresponding to the drive amount, that is, the drive amount output from the second adder 56 is output. Further, when the operation switching unit 37 of the switching unit 35 for each of the coolers A and B that is to be operated receives an operation command Id indicating that the cooling units A and B are operated, the operation amount switching unit 36 , That is, the drive amount output from the second adder 56 is output to the inverters 23 of the corresponding coolers A and B.

具体的に、冷却機Aの運転切替器37、冷却機Bの運転切替器37は、いずれも、第二加算器56から出力された2台運転時の駆動量を対応するインバータ23に出力する。一方、冷却機Cの運転切替器37は、冷却機Cを運転することを示す運転指令Idを受けないので、対応するインバータ23に駆動量を出力しない。この結果、図7に示すように、外気温度が25℃未満のとき、基本的に、冷却機A,Bのファン21は、そのときのタービン出力、外気温度、場合によって冷却空気温度に応じた、2台運転時の回転数で回転する。   Specifically, each of the operation switch 37 of the cooler A and the operation switch 37 of the cooler B outputs the drive amount during the two-unit operation output from the second adder 56 to the corresponding inverter 23. . On the other hand, since the operation switching unit 37 of the cooler C does not receive the operation command Id indicating that the cooler C is operated, the drive amount is not output to the corresponding inverter 23. As a result, as shown in FIG. 7, when the outside air temperature is less than 25 ° C., the fans 21 of the coolers A and B basically correspond to the turbine output at that time, the outside air temperature, and in some cases the cooling air temperature. It rotates at the number of rotations when operating two units.

このように、本実施形態では、外気温度が25℃未満の場合、3台全ての冷却機20を運転すると、圧縮機1から抽気した圧縮空気を冷却し過ぎて、冷却空気導入系統10の出口で空気が結露してしまうのを回避するため、2台の冷却機20を運転することにし、しかも、各冷却機20は、冷却空気(冷却空気導入系統10の出口の圧縮空気)が結露してしまうのを回避するために補正された駆動力で運転される。よって、本実施形態では、圧縮空気中の水分の一部が結露し、液滴化して、タービン3内に流れ込むことを防ぐことができる。   Thus, in this embodiment, when the outside air temperature is less than 25 ° C., when all three coolers 20 are operated, the compressed air extracted from the compressor 1 is overcooled, and the outlet of the cooling air introduction system 10 In order to avoid the condensation of air, the two coolers 20 are operated, and in addition, each of the coolers 20 is condensed with cooling air (compressed air at the outlet of the cooling air introduction system 10). In order to avoid this, it is operated with a corrected driving force. Therefore, in this embodiment, it is possible to prevent a part of the moisture in the compressed air from condensing into droplets and flowing into the turbine 3.

また、運転設定部31は、S5において、2台の冷却機A,B毎の故障検知器14のいずれか一方のみで故障が検知されていれば、2台の冷却機A,Bのうちの故障していない1台の冷却機AorBと、残りの冷却機Cとを運転することに決定する。すなわち、運転設定部31は、S5において、故障が検知された冷却機を除く冷却機の台数が自身で定めた運転台数(2台)に足りるか否か判断し、足りると判断して、故障が検知された冷却機を除く冷却機のうちから運転台数分(2台分)の冷却機を決定する。そして、運転設定部31は、運転することにした冷却機AorB,Cに対応する切替部35に対して、2台を運転することを示す運転台数指令Inと、当該冷却機AorB,Cを運転することを示す運転指令Idとを出力する(S7)。   In addition, in S5, if the failure is detected by only one of the failure detectors 14 for each of the two coolers A and B, the operation setting unit 31 may It is decided to operate one cooler AorB that has not failed and the remaining cooler C. That is, in S5, the operation setting unit 31 determines whether or not the number of the coolers excluding the cooler in which the failure is detected is sufficient to determine the number of operations (two) determined by itself, and determines that it is sufficient. Among the coolers excluding the cooler in which is detected, coolers for the number of operating units (for two units) are determined. Then, the operation setting unit 31 operates the operation number command In indicating that two units are operated to the switching unit 35 corresponding to the cooling units AorB and C that are to be operated, and operates the cooling units AorB and C. An operation command Id indicating that the operation is to be performed is output (S7).

仮に、冷却機Aが故障している場合、冷却機Bの運転切替器37、冷却機Cの運転切替器37は、いずれも、第二加算器56から出力された2台運転時の駆動量を対応するインバータ23に出力する。一方、冷却機Aの運転切替器37は、冷却機Aを運転することを示す運転指令Idを受けないので、対応するインバータ23に駆動量を出力しない。この結果、冷却機B,Cのファン21は、そのときのタービン出力、外気温度、場合によって冷却空気温度に応じた、2台運転時の回転数で回転する。   If the cooler A is out of order, the operation switch 37 of the cooler B and the operation switch 37 of the cooler C are both driven from the second adder 56 during driving. Is output to the corresponding inverter 23. On the other hand, since the operation switching unit 37 of the cooler A does not receive the operation command Id indicating that the cooler A is operated, the drive amount is not output to the corresponding inverter 23. As a result, the fans 21 of the coolers B and C rotate at the number of rotations at the time of two-unit operation according to the turbine output at that time, the outside air temperature, and the cooling air temperature in some cases.

このように、本実施形態では、外気温度が25℃未満で、予め定められている2台の冷却機A,Bを運転することを前提とする場合に、1台が故障していても、2台の冷却機B,Cが運転されるので、冷却機故障による障害を回避することができる。   As described above, in this embodiment, when the outside air temperature is less than 25 ° C. and it is assumed that two predetermined coolers A and B are operated, even if one unit fails, Since the two coolers B and C are operated, it is possible to avoid a failure due to a cooler failure.

以上のように、本実施形態では、冷却空気導入系統10の出口での空気が結露しないよう、外気温度に応じて、複数の冷却機20による冷却能力が抑制制御されるので、冷却空気としての圧縮空気中の水分の一部が結露し、液滴化して、タービン3内に流れ込むことを防ぐことができる。   As described above, in the present embodiment, the cooling capacity of the plurality of coolers 20 is suppressed and controlled according to the outside air temperature so that the air at the outlet of the cooling air introduction system 10 is not condensed. A part of the moisture in the compressed air can be prevented from condensing into droplets and flowing into the turbine 3.

さらに、本実施形態では、複数の冷却機20のうち、いずれかの冷却機20が故障しても、他の冷却機20の運転で、冷却機20全体での冷却能力の低下を補うことができる。   Furthermore, in this embodiment, even if any one of the plurality of coolers 20 breaks down, the operation of the other coolers 20 can compensate for a decrease in the cooling capacity of the entire cooler 20. it can.

なお、以上の実施形態の基本駆動量発生器42,46では、検知されたタービン出力に応じた基本駆動量を求めているが、タービン出力に応じて設定される入口案内翼1a(空気吸込量調節手段)の開度(駆動量)に応じて基本駆動量を求めるようにしてもよい。   In the basic drive amount generators 42 and 46 of the above-described embodiments, the basic drive amount corresponding to the detected turbine output is obtained, but the inlet guide vane 1a (air intake amount) set according to the turbine output is obtained. The basic drive amount may be obtained according to the opening degree (drive amount) of the adjusting means).

また、本実施形態では、2台運転の場合、冷却機A,Bを固定的に優先しているが、優先する二台を順次変更してもよい。例えば、各冷却機20の累積運転時間を管理しておき、2台運転の場合、3台の冷却機20のうちで、累積運転時間の短い2台の冷却機20を優先するようにしてもよい。   In the present embodiment, in the case of two-unit operation, the coolers A and B are given priority in a fixed manner, but the two units that have priority may be changed sequentially. For example, the cumulative operation time of each cooler 20 is managed, and in the case of two-unit operation, priority is given to two coolers 20 having a short cumulative operation time among the three coolers 20. Good.

また、本実施形態では、冷却機20毎に駆動量演算部40を設けているが、各駆動量演算部40は、基本的に同じ駆動量を出力するので、冷却機20毎に設けなくてもよい。但し、複数の冷却機20毎に、その性能が異なる場合には、本実施形態のように、冷却機20毎に駆動量演算部40を設けることが好ましい。   Moreover, in this embodiment, although the drive amount calculating part 40 is provided for every cooler 20, since each drive amount calculating part 40 outputs the same drive amount fundamentally, it is not provided for every cooler 20. Also good. However, when the performance differs for each of the plurality of coolers 20, it is preferable to provide the drive amount calculation unit 40 for each cooler 20, as in the present embodiment.

また、本実施形態のガスタービン設備では、3台の冷却機20を備えているが、冷却機20の台数は2台であってもよいし、4台以上であってもよい。また、本実施形態の冷却機20は、インバータ23とモータ22とファン21とを有しているものであるが、冷却能力を変えることができるものであれば、如何なるものでもよく、例えば、可変翼を有するファンを用いて冷却能力を変えるようにしてもよいし、極数変換モータを用いて冷却能力を変えるようにしてもよい。   Moreover, in the gas turbine equipment of this embodiment, although the three coolers 20 are provided, the number of the coolers 20 may be two, and may be four or more. In addition, the cooler 20 of the present embodiment includes the inverter 23, the motor 22, and the fan 21, but may be any type as long as the cooling capacity can be changed. The cooling capacity may be changed using a fan having blades, or the cooling capacity may be changed using a pole number conversion motor.

また、以上の実施形態では、タービン出力制御器6と冷却制御器30とは別体であるが、タービン出力制御器6の中に冷却制御器30の機能を設けるようにしてもよい。   In the above embodiment, the turbine output controller 6 and the cooling controller 30 are separate bodies, but the function of the cooling controller 30 may be provided in the turbine output controller 6.

1:圧縮機、2:燃焼器、3:タービン、4:発電機、6:タービン出力制御器、10:冷却空気導入系統、11:外気温度計、12:タービン出力計、13:冷却空気温度計、14:故障検知器、20:冷却機、21:ファン、22:モータ、23:インバータ、30:冷却制御器、31:運転設定部、35:切替部、40:駆動量演算部、41:第一駆動量演算部、45:第二駆動量演算部、51:フィードバック制御部   1: compressor, 2: combustor, 3: turbine, 4: generator, 6: turbine output controller, 10: cooling air introduction system, 11: outside air thermometer, 12: turbine output meter, 13: cooling air temperature 14: failure detector, 20: cooler, 21: fan, 22: motor, 23: inverter, 30: cooling controller, 31: operation setting unit, 35: switching unit, 40: drive amount calculation unit, 41 : First drive amount calculation unit, 45: second drive amount calculation unit, 51: feedback control unit

Claims (14)

燃焼用空気を吸入して圧縮空気を生成する圧縮機と、
前記圧縮機からの圧縮空気中に燃料を混合して燃焼させ、燃焼ガスを生成する燃焼器と、
前記燃焼器からの前記燃焼ガスにより駆動するタービンと、
前記圧縮機の途中から抽気した一部の前記圧縮空気を前記タービンの高温部に導く冷却空気導入系統と、
前記冷却空気導入系統中の前記圧縮空気を冷却する冷却手段と、
外気温度を検知する外気温度計と、
前記冷却空気導入系統の出口での空気が結露しないよう、前記外気温度計で検知された前記外気温度に応じて、前記冷却手段の冷却能力を抑制制御する冷却制御器と、
を備えていることを特徴とするガスタービン設備。
A compressor that sucks combustion air and generates compressed air;
A combustor that mixes and burns fuel in compressed air from the compressor to generate combustion gas;
A turbine driven by the combustion gas from the combustor;
A cooling air introduction system for guiding a part of the compressed air extracted from the middle of the compressor to a high temperature part of the turbine;
Cooling means for cooling the compressed air in the cooling air introduction system;
An outside temperature thermometer that detects the outside temperature,
A cooling controller that suppresses and controls the cooling capacity of the cooling means according to the outside air temperature detected by the outside air thermometer so that air at the outlet of the cooling air introduction system is not condensed;
A gas turbine facility comprising:
請求項1に記載のガスタービン設備において、
前記冷却手段は複数の冷却機を有し、
前記冷却制御器は、前記外気温度が予め定めた設定温度以上であるか否かに応じて、前記冷却機の運転台数を定める運転設定部を有する、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 1,
The cooling means has a plurality of coolers,
The cooling controller has an operation setting unit that determines the number of operating the coolers according to whether the outside air temperature is equal to or higher than a predetermined set temperature.
Gas turbine equipment characterized by that.
請求項2に記載のガスタービン設備において、
前記運転設定部は、複数の前記冷却機の運転台数を、前記外気温度が前記設定温度以上のときには予め定めた第一台数とし、該外気温度が該設定温度未満のときには該第一台数よりも少ない予め定めた第二台数とする、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 2,
The operation setting unit sets the operation number of the plurality of the coolers as a first predetermined number when the outside air temperature is equal to or higher than the set temperature, and more than the first number when the outside air temperature is lower than the set temperature. A small second number is set in advance.
Gas turbine equipment characterized by that.
請求項3に記載のガスタービン設備において、
前記冷却制御器は、前記冷却機の駆動量を求める駆動量演算部を有し、
前記駆動量演算部は、前記外気温度と前記第一台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第一駆動量演算部と、前記外気温度と前記第二台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第二駆動量演算部と、を有し、
前記冷却制御器は、前記運転設定部が複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算部で求められた前記駆動量に応じた量を出力し、前記運転設定部が複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算部で求められた前記駆動量に応じた量を出力する切替部を有し、
前記第一駆動量演算部及び前記第二駆動量演算部が用いる前記温度相関関係は、前記外気温度の増加に伴って前記駆動量を増加させる関係であって、前記圧縮機が前記外気温度での飽和空気を吸入しても、複数の前記冷却機のうちで運転する冷却機が該関係で定められる前記駆動量に応じた量で駆動した場合に、前記冷却空気導入系統の出口での空気が結露しない関係である、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 3,
The cooling controller has a drive amount calculation unit for determining the drive amount of the cooler,
The drive amount calculation unit uses the predetermined temperature correlation that relates the outside air temperature and the drive amount of one of the coolers in the case of the first number to perform the cooling corresponding to the detected outside air temperature. Detected by using a first drive amount calculation unit for obtaining the drive amount of the machine, and a predetermined temperature correlation that relates the outside air temperature and the drive amount of the single cooler in the case of the second number of units. A second drive amount calculation unit that calculates the drive amount of the cooler corresponding to the outside air temperature,
The cooling controller is configured such that when the operation setting unit sets the operation number of the plurality of coolers as the first number, the first drive amount with respect to the cooler that operates among the plurality of coolers. An amount corresponding to the drive amount obtained by the calculation unit is output, and when the operation setting unit sets the operation number of the plurality of coolers as the second number, the plurality of coolers are operated. For the cooler, having a switching unit that outputs an amount corresponding to the drive amount obtained by the second drive amount calculation unit,
The temperature correlation used by the first drive amount calculator and the second drive amount calculator is a relationship that increases the drive amount as the outside air temperature increases, and the compressor is at the outside air temperature. The air at the outlet of the cooling air introduction system when a cooler that is operated among the plurality of coolers is driven by an amount corresponding to the drive amount determined by the relationship even if the saturated air is sucked in. Is a non-condensing relationship,
Gas turbine equipment characterized by that.
請求項4に記載のガスタービン設備において、
前記第一駆動量演算部は、前記温度相関関係と、前記タービンの出力と前記第一台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求め、
前記第二駆動量演算部は、前記温度相関関係と、前記タービンの出力と前記第二台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求める、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 4,
The first drive amount calculation unit is detected using the temperature correlation and a predetermined output correlation between the output of the turbine and the drive amount of the single cooler at the time of the first number. Determining the driving amount of the cooler corresponding to the detected outside air temperature and the detected output of the turbine;
The second drive amount calculation unit is detected using the temperature correlation and a predetermined output correlation between the output of the turbine and the drive amount of the single cooler when the second number is used. Determining the driving amount of the cooler corresponding to the detected outside air temperature and the detected output of the turbine;
Gas turbine equipment characterized by that.
請求項4に記載のガスタービン設備において、
前記圧縮機は、前記タービンの出力に応じて前記燃焼用空気の吸込流量を調節する空気吸込量調節手段を有し、
前記第一駆動量演算部は、前記温度相関関係と、前記空気吸込量調節手段の駆動量と前記第一台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び前記空気吸込量調節手段の駆動量に対応する該冷却機の駆動量を求め、
前記第二駆動量演算部は、前記温度相関関係と、前記空気吸込量調節手段の駆動量と前記第二台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び前記空気吸込量調節手段の駆動量に対応する該冷却機の駆動量を求める、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 4,
The compressor has an air intake amount adjusting means for adjusting an intake flow rate of the combustion air according to an output of the turbine,
The first driving amount calculation unit includes the temperature correlation and a predetermined output correlation between the driving amount of the air suction amount adjusting means and the driving amount of the single cooler in the case of the first number. Using the detected outside air temperature and the driving amount of the cooler corresponding to the driving amount of the air suction amount adjusting means,
The second drive amount calculation unit includes the temperature correlation, and a predetermined output correlation between the drive amount of the air suction amount adjusting means and the drive amount of the single cooler when the second number is used. Using the detected outside air temperature and the driving amount of the cooler corresponding to the driving amount of the air suction amount adjusting means;
Gas turbine equipment characterized by that.
請求項4から6のいずれか一項に記載のガスタービン設備において、
前記冷却空気導入系統の出口における前記圧縮空気の温度を検知する冷却空気温度計を備え、
前記駆動量演算部は、前記冷却空気温度計で検知された前記圧縮空気の温度と予め定めた目標温度との偏差に応じて、前記第一駆動量演算部が求めた前記駆動量及び前記第二駆動量演算部が求めた前記駆動量を補正するフィードバック制御部を有し、
前記切替部は、前記運転設定部が複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算部で求められた前記駆動量について前記フィードバック制御部で補正された量を出力し、前記運転設定部が複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算部で求められた前記駆動量について前記フィードバック制御部で補正された量を出力する、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to any one of claims 4 to 6,
A cooling air thermometer for detecting the temperature of the compressed air at the outlet of the cooling air introduction system;
The drive amount calculation unit is configured to determine the drive amount obtained by the first drive amount calculation unit and the first amount according to a deviation between the temperature of the compressed air detected by the cooling air thermometer and a predetermined target temperature. A feedback control unit for correcting the driving amount obtained by the two driving amount calculation unit;
The switching unit is configured to calculate the first drive amount with respect to a cooler that operates among the plurality of coolers when the operation setting unit sets the number of operated coolers as the first number. Output the amount corrected by the feedback control unit with respect to the drive amount determined by the unit, and when the operation setting unit sets the number of operating cooling units to the second number, the plurality of cooling units Output the amount corrected by the feedback control unit for the driving amount obtained by the second driving amount calculation unit,
Gas turbine equipment characterized by that.
請求項4から7のいずれか一項に記載のガスタービン設備において、
複数の前記冷却機のそれぞれについての故障を検知する故障検知器を備え、
前記運転設定部は、前記故障検知器により、複数の前記冷却機のうちのいずれかの冷却機の故障が検知されると、該故障が検知された故障冷却機を除く冷却機の台数が自身で定めた運転台数に足りるか否か判断し、冷却機の台数が自身で定めた運転台数に足りると判断すると、該故障冷却機を除く冷却機のうちから運転台数分の冷却機を定め、
前記切替部は、前記運転設定部により、前記故障冷却機を除く冷却機の台数が自身が定めた運転台数に足りると判断され、且つ前記故障冷却機を除く冷却機のうちで運転すると定められた前記冷却機に対して、前記第一駆動量演算部と前記第二駆動量演算部とのうちで該運転台数に対応する駆動量を求める駆動量演算部で求められた前記駆動量に応じた量を出力する、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to any one of claims 4 to 7,
A failure detector for detecting a failure for each of the plurality of coolers;
When the failure detector detects a failure of any one of the plurality of coolers, the operation setting unit determines the number of coolers excluding the failed cooler in which the failure has been detected. If it is determined whether or not the number of operating units determined in (1) is sufficient, and it is determined that the number of cooling units is sufficient for the number of operating units determined by itself, determine the number of cooling units for the number of operating units out of the cooling units excluding the failed cooler,
The switching unit is determined by the operation setting unit that the number of coolers excluding the failed cooler is sufficient for the number of operating units determined by the operation setting unit, and is determined to operate among the coolers excluding the failed cooler. Further, according to the drive amount obtained by the drive amount computation unit that obtains the drive amount corresponding to the number of operating units among the first drive amount computation unit and the second drive amount computation unit for the cooler. Output the amount
Gas turbine equipment characterized by that.
請求項4から8のいずれか一項に記載のガスタービン設備において、
複数の前記冷却機のそれぞれについての故障を検知する故障検知器を備え、
前記運転設定部は、前記外気温度が前記設定温度以上のときに、前記故障検知器により、複数の前記冷却機のうちのいずれかの冷却機の故障が検知されると、該故障が検知された故障冷却機を除く冷却機のうちから前記第二台数分の冷却機を定め、
前記切替部は、前記運転設定部により、前記故障冷却機を除く冷却機のうちで運転すると定められた前記第二台数分の前記冷却機に対して、前記第二駆動量演算部で求められた前記駆動量に応じた量を出力する、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to any one of claims 4 to 8,
A failure detector for detecting a failure for each of the plurality of coolers;
The operation setting unit detects the failure when the failure detector detects a failure of any of the plurality of coolers when the outside air temperature is equal to or higher than the set temperature. The second number of coolers is determined from the coolers excluding the failed cooler,
The switching unit is determined by the second drive amount calculation unit for the second number of the coolers determined to be operated by the operation setting unit among the coolers excluding the failed cooler. Output an amount corresponding to the drive amount,
Gas turbine equipment characterized by that.
請求項2から9のいずれか一項に記載のガスタービン設備において、
前記冷却機は、ファンと、該ファンを回転させるモータと、該モータに供給する電力を変化させて該モータの回転数を変えるインバータと、を有し、
前記冷却制御器は、前記冷却機の前記インバータを制御することで、前記モータの駆動量を制御する、
ことを特徴とするガスタービン設備。
In the gas turbine equipment according to any one of claims 2 to 9,
The cooler includes a fan, a motor that rotates the fan, and an inverter that changes power supplied to the motor to change the rotation speed of the motor,
The cooling controller controls the drive amount of the motor by controlling the inverter of the cooler.
Gas turbine equipment characterized by that.
燃焼用空気を吸入して圧縮空気を生成する圧縮機と、該圧縮機からの圧縮空気中に燃料を混合して燃焼させ、燃焼ガスを生成する燃焼器と、該燃焼器からの該燃焼ガスにより駆動するタービンと、該圧縮機の途中から抽気した一部の該圧縮空気を該タービンの高温部に導く冷却空気導入系統と、該冷却空気導入系統中の該圧縮空気を冷却して冷却空気を生成する冷却手段と、を備えているガスタービン設備の冷却空気制御方法において、
前記冷却空気導入系統の出口での空気が結露しないよう、外気温度に応じて、前記冷却手段の冷却能力を抑制制御する、
ことを特徴とするガスタービン設備の冷却空気制御方法。
A compressor that sucks combustion air to generate compressed air, a combustor that mixes and burns fuel in the compressed air from the compressor to generate combustion gas, and the combustion gas from the combustor A turbine driven by the above, a cooling air introduction system for guiding a part of the compressed air extracted from the middle of the compressor to a high temperature portion of the turbine, and cooling air by cooling the compressed air in the cooling air introduction system And a cooling air control method for gas turbine equipment comprising:
According to the outside air temperature, the cooling capacity of the cooling means is suppressed and controlled so that the air at the outlet of the cooling air introduction system is not condensed.
A cooling air control method for gas turbine equipment.
請求項11に記載のガスタービン設備の冷却空気制御方法において、
前記冷却手段は複数の冷却機を有しており、
前記外気温度が予め定めた設定温度以上のときには、複数の前記冷却機のうちの運転台数を予め定めた第一台数とし、該外気温度が該設定温度未満のときには、該運転台数を該第一台数よりも少ない予め定めた第二台数とする運転設定工程を、
実行することを特徴とするガスタービン設備の冷却空気制御方法。
In the cooling air control method of the gas turbine equipment according to claim 11,
The cooling means has a plurality of coolers,
When the outside air temperature is equal to or higher than a predetermined set temperature, the number of operating units of the plurality of the coolers is set to a predetermined first number. When the outside air temperature is lower than the set temperature, the operating number is set to the first number. The operation setting process with a predetermined second number smaller than the number of units,
A cooling air control method for gas turbine equipment, comprising:
請求項11に記載のガスタービン設備の冷却空気制御方法において、
前記外気温度と前記第一台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第一駆動量演算工程と、
前記外気温度と前記第二台数の際の前記冷却機一台の駆動量とを関係付ける予め定めた温度相関関係を用いて、検知された外気温度に対応する該冷却機の駆動量を求める第二駆動量演算工程と、
前記運転設定工程で複数の前記冷却機の運転台数を前記第一台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第一駆動量演算工程で求められた前記駆動量に応じた量を出力し、前記運転設定工程で複数の前記冷却機の運転台数を前記第二台数としたときに、複数の該冷却機のうちで運転する冷却機に対して、前記第二駆動量演算工程で求められた前記駆動量に応じた量を出力する出力工程と、
を実行し、
前記第一駆動量演算工程及び前記第二駆動量演算工程で用いる前記温度相関関係は、前記外気温度の増加に伴って前記駆動量を増加させる関係であって、前記圧縮機が前記外気温度での飽和空気を吸入しても、複数の前記冷却機のうちで運転する冷却機が該関係で定められる前記駆動量に応じた量で駆動した場合に、前記冷却空気導入系統の出口での空気が結露しない関係である、
ことを特徴とするガスタービン設備の冷却空気制御方法。
In the cooling air control method of the gas turbine equipment according to claim 11,
First, a driving amount of the cooler corresponding to the detected outside air temperature is obtained using a predetermined temperature correlation that relates the outside air temperature and the driving amount of the single cooler in the first number. One driving amount calculation step;
First, a driving amount of the cooler corresponding to the detected outside air temperature is obtained using a predetermined temperature correlation that relates the outside air temperature and the driving amount of one of the coolers in the second number. Two driving amount calculation process;
When the operation number of the plurality of coolers is the first number in the operation setting step, the first drive amount calculation step is obtained for the cooler to be operated among the plurality of coolers. Output the amount according to the drive amount, when the operation number of the plurality of coolers in the operation setting step is the second number, for the cooler that operates among the plurality of the coolers, An output step of outputting an amount corresponding to the drive amount obtained in the second drive amount calculation step;
Run
The temperature correlation used in the first drive amount calculation step and the second drive amount calculation step is a relationship that increases the drive amount as the outside air temperature increases, and the compressor is at the outside air temperature. The air at the outlet of the cooling air introduction system when a cooler that is operated among the plurality of coolers is driven by an amount corresponding to the drive amount determined by the relationship even if the saturated air is sucked in. Is a non-condensing relationship,
A cooling air control method for gas turbine equipment.
請求項13に記載のガスタービン設備の冷却空気制御方法において、
前記第一駆動量演算工程では、前記温度相関関係と、前記タービンの出力と前記第一台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求め、
前記第二駆動量演算工程では、前記温度相関関係と、前記タービンの出力と前記第二台数の際の前記冷却機一台の駆動量との予め定めた出力相関関係とを用いて、検知された外気温度及び検知された前記タービンの出力に対応する該冷却機の駆動量を求める、
ことを特徴とするガスタービン設備の冷却空気制御方法。
In the cooling air control method of the gas turbine equipment according to claim 13,
In the first drive amount calculation step, the temperature correlation is detected using a predetermined output correlation between the output of the turbine and the drive amount of the single cooler at the time of the first number. Determining the driving amount of the cooler corresponding to the detected outside air temperature and the detected output of the turbine;
In the second drive amount calculation step, the temperature correlation is detected using a predetermined output correlation between the output of the turbine and the drive amount of the single cooler at the time of the second number. Determining the driving amount of the cooler corresponding to the detected outside air temperature and the detected output of the turbine;
A cooling air control method for gas turbine equipment.
JP2011234823A 2011-10-26 2011-10-26 Gas turbine equipment and cooling air control method thereof Active JP5901225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234823A JP5901225B2 (en) 2011-10-26 2011-10-26 Gas turbine equipment and cooling air control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234823A JP5901225B2 (en) 2011-10-26 2011-10-26 Gas turbine equipment and cooling air control method thereof

Publications (2)

Publication Number Publication Date
JP2013092112A true JP2013092112A (en) 2013-05-16
JP5901225B2 JP5901225B2 (en) 2016-04-06

Family

ID=48615426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234823A Active JP5901225B2 (en) 2011-10-26 2011-10-26 Gas turbine equipment and cooling air control method thereof

Country Status (1)

Country Link
JP (1) JP5901225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465608B2 (en) 2013-10-29 2019-11-05 Mitsubishi Hitachi Power Systems, Ltd. Temperature control device, gas turbine, temperature control method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226329A (en) * 1985-07-29 1987-02-04 Hitachi Ltd Control method of cooling air quantity
JPH0754669A (en) * 1993-08-09 1995-02-28 Mitsubishi Heavy Ind Ltd Gas turbine cooling air control device
JPH08151934A (en) * 1994-11-29 1996-06-11 Toshiba Corp Gas turbine bearing cooling water supply device
JPH08284689A (en) * 1995-04-14 1996-10-29 Mitsubishi Heavy Ind Ltd Gas turbine fuel heating device
JPH08319852A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Gas turbine plant and its cooling method
WO2003074854A1 (en) * 2002-03-04 2003-09-12 Mitsubishi Heavy Industries, Ltd. Turbine equipment, compound power generating equipment, and turbine operating method
JP5704564B2 (en) * 2011-03-31 2015-04-22 三菱日立パワーシステムズ株式会社 Gas turbine and gas turbine cooling method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226329A (en) * 1985-07-29 1987-02-04 Hitachi Ltd Control method of cooling air quantity
JPH0754669A (en) * 1993-08-09 1995-02-28 Mitsubishi Heavy Ind Ltd Gas turbine cooling air control device
JPH08151934A (en) * 1994-11-29 1996-06-11 Toshiba Corp Gas turbine bearing cooling water supply device
JPH08284689A (en) * 1995-04-14 1996-10-29 Mitsubishi Heavy Ind Ltd Gas turbine fuel heating device
JPH08319852A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Gas turbine plant and its cooling method
WO2003074854A1 (en) * 2002-03-04 2003-09-12 Mitsubishi Heavy Industries, Ltd. Turbine equipment, compound power generating equipment, and turbine operating method
JP5704564B2 (en) * 2011-03-31 2015-04-22 三菱日立パワーシステムズ株式会社 Gas turbine and gas turbine cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465608B2 (en) 2013-10-29 2019-11-05 Mitsubishi Hitachi Power Systems, Ltd. Temperature control device, gas turbine, temperature control method, and program

Also Published As

Publication number Publication date
JP5901225B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
EP2410154B1 (en) Systems and methods for controlling the startup of a gas turbine
JP6072286B2 (en) Temperature control device, gas turbine, temperature control method and program
JP6130131B2 (en) Control device for two-shaft gas turbine and two-shaft gas turbine having the same
KR101819844B1 (en) Control device for gas turbine, gas turbine, and method for controlling gas turbine
JP2007040171A (en) Inlet guide vane control device of gas turbine
KR101813430B1 (en) Combined cycle plant, control method for same, and control device for same
JP2004060457A (en) Compressor internal state estimating device and air conditioner
KR20150036248A (en) Method for controlling gas turbine cooling system, control device for executing this method, and gas turbine facility equipped with same
US11333081B2 (en) Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program
KR101095101B1 (en) Power generation equipment
JP2009085047A (en) Compression device and control method of the same
JP5901225B2 (en) Gas turbine equipment and cooling air control method thereof
JP6673733B2 (en) Modified rotational speed calculation method for compressor, method for controlling compressor, apparatus for executing these methods, and gas turbine plant equipped with this apparatus
JP3214981U (en) System and method for improving shutdown purge flow in a gas turbine system
JP4597556B2 (en) Air flow measuring device and air flow measuring method
JP5953424B2 (en) Gas turbine power generation system
JP2013040567A (en) Power generating plant and method of remodeling the same
JP2018031373A (en) Systems and methods to improve shut-down purge flow in gas turbine system
JP5653786B2 (en) Anomaly detection device
JP6596759B2 (en) Gas turbine system and control method
JP6267087B2 (en) Power control apparatus, gas turbine, and power control method
JP5704564B2 (en) Gas turbine and gas turbine cooling method
Cruz-Manzo et al. Performance analysis of a twin-shaft gas turbine with fault in the variable stator guide vane system of the axial compressor
JP2018066371A (en) Systems and methods to improve shut-down purge flow in gas turbine system
JP5675527B2 (en) Gas turbine control device and gas turbine control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350