JP2013088048A - Electrode drying method and electrode drying device - Google Patents

Electrode drying method and electrode drying device Download PDF

Info

Publication number
JP2013088048A
JP2013088048A JP2011229625A JP2011229625A JP2013088048A JP 2013088048 A JP2013088048 A JP 2013088048A JP 2011229625 A JP2011229625 A JP 2011229625A JP 2011229625 A JP2011229625 A JP 2011229625A JP 2013088048 A JP2013088048 A JP 2013088048A
Authority
JP
Japan
Prior art keywords
drying
electrode
solvent
electrode layer
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229625A
Other languages
Japanese (ja)
Other versions
JP5909986B2 (en
Inventor
Akikazu Ito
晃数 伊藤
Jiro Kishitani
二郎 岸谷
Hitoshi Yamamoto
整 山本
Shigenori Kazama
重徳 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011229625A priority Critical patent/JP5909986B2/en
Priority to KR1020120115755A priority patent/KR101550487B1/en
Publication of JP2013088048A publication Critical patent/JP2013088048A/en
Application granted granted Critical
Publication of JP5909986B2 publication Critical patent/JP5909986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating Apparatus (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode drying method and an electrode drying device capable of shortening a drying time by efficiently volatilizing a solvent included in an electrode layer of a slurry state without causing deterioration of electrode performance.SOLUTION: In this electrode drying device 10, the electrode layer 40 formed by applying electrode slurry 20 including the solvent 21 on an electrode foil 30 is dried in a drying furnace 50. The electrode drying device includes: an evaporation speed adjusting member 70 reducing a concentration difference between a solvent concentration remaining in the electrode layer and a solvent concentration in an atmosphere 57 in the drying furnace by increasing the solvent concentration in the atmosphere; and a heater part 80 providing heat for drying the electrode layer.

Description

本発明は、電極乾燥方法、および電極乾燥装置に関する。   The present invention relates to an electrode drying method and an electrode drying apparatus.

リチウムイオン二次電池は、蓄電密度が大きく、充放電を繰り返し行っても蓄電性能をよく保つことから、自動車や家電製品の電源として広く用いられている。   Lithium ion secondary batteries are widely used as power sources for automobiles and home appliances because they have a high storage density and maintain good storage performance even after repeated charging and discharging.

リチウムイオン二次電池の電極形成過程においては、まず、正極のアルミニウム箔、負極の銅箔のような電極箔上に、溶媒を含むスラリー状態の電極スラリーを一定重量塗布することによって電極層を形成する。次に、電極乾燥装置の乾燥炉の中において、電極層に含まれる溶媒を揮発させて乾燥させ、電極層の固形分と電極箔とを固着させている。   In the process of forming an electrode of a lithium ion secondary battery, first, an electrode layer is formed by applying a certain weight of a slurry slurry containing a solvent on an electrode foil such as a positive electrode aluminum foil or a negative electrode copper foil. To do. Next, in the drying furnace of the electrode drying apparatus, the solvent contained in the electrode layer is volatilized and dried to fix the solid content of the electrode layer and the electrode foil.

電極乾燥工程においては、乾燥炉内において、電極箔の上下面から熱風を吹きつける方法が一般的である(例えば、特許文献1、および2を参照)。熱風による場合の乾燥条件の主なものとして、熱風の温度、熱風の吹き付け量、および乾燥時間がある。   In the electrode drying step, a method of blowing hot air from the upper and lower surfaces of the electrode foil in a drying furnace is common (see, for example, Patent Documents 1 and 2). The main drying conditions in the case of hot air include the temperature of hot air, the amount of hot air sprayed, and the drying time.

特開2003−272612JP2003-272612A 特開2006− 73234JP 2006-73234 A

電極乾燥装置には、電極の生産性を上げるために乾燥時間の短縮を図ることが要請されている。このような要請に対して、乾燥条件(熱風の場合における熱風の温度、および熱風の吹き付け量)を大きく変化させると、電極内部の微細構造に影響が及んでしまい、電極性能が低下することがある。電極性能の劣化を招かない範囲内において乾燥条件を変化させなければならないため、乾燥時間の短縮に対して効果的な対策をとることができない。   The electrode drying apparatus is required to shorten the drying time in order to increase the productivity of the electrode. In response to such a request, if the drying conditions (the temperature of hot air in the case of hot air and the amount of hot air blown) are changed significantly, the fine structure inside the electrode will be affected, and the electrode performance may deteriorate. is there. Since the drying conditions must be changed within a range that does not cause deterioration of electrode performance, it is not possible to take effective measures for shortening the drying time.

電極内部の微細構造に影響が及んでしまう理由は、乾燥温度を高温にしたり、熱風量を増加させたりすると、スラリー状態の電極層において、表面における溶媒の揮発速度と、深部からの溶媒の拡散速度との差が大きくなって、電極スラリー中のバインダーが偏析してしまうことに起因していると考えられる。このようなバインダーの偏析が生じると、電極箔と塗膜である電極層との間の十分な密着力を得ることができなくなる。強密着の塗膜が得られないと、初期における電池内の抵抗値のみならず、充放電を繰り返した後の電池内の抵抗値も高くなり、電極性能の低下を招くことになる。   The reason why the fine structure inside the electrode is affected is that when the drying temperature is increased or the amount of hot air is increased, the volatilization rate of the solvent on the surface and the diffusion of the solvent from the deep part in the electrode layer in the slurry state. It is considered that the difference from the speed is increased and the binder in the electrode slurry is segregated. When such segregation of the binder occurs, it becomes impossible to obtain sufficient adhesion between the electrode foil and the electrode layer as the coating film. If a strongly adherent coating film is not obtained, not only the resistance value in the battery at the initial stage but also the resistance value in the battery after repeated charge / discharge increases, leading to a decrease in electrode performance.

そこで、本発明の目的は、電極性能の低下を招くことなく、スラリー状態の電極層に含まれる溶媒を効率よく揮発させて、乾燥時間の短縮を図ることが可能な電極乾燥方法、および電極乾燥装置を提供することにある。   Accordingly, an object of the present invention is to provide an electrode drying method and an electrode drying method capable of efficiently evaporating the solvent contained in the electrode layer in a slurry state without reducing the electrode performance and shortening the drying time. To provide an apparatus.

上記目的を達成するための電極乾燥方法は、溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる方法である。そして、前記電極層内に残存する溶媒濃度と前記乾燥炉内の雰囲気における溶媒濃度との濃度差を、前記雰囲気における溶媒濃度を高めることによって小さくしつつ、熱を付与して前記電極層を乾燥させている。   The electrode drying method for achieving the above object is a method in which an electrode layer formed by applying an electrode slurry containing a solvent to a current collector is dried in a drying furnace. Then, heat is applied to dry the electrode layer while reducing the concentration difference between the solvent concentration remaining in the electrode layer and the solvent concentration in the atmosphere in the drying furnace by increasing the solvent concentration in the atmosphere. I am letting.

また、上記目的を達成するための電極乾燥装置は、溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる電極乾燥装置である。電極乾燥装置は、前記電極層内に残存する溶媒濃度と前記乾燥炉内の雰囲気における溶媒濃度との濃度差を、前記雰囲気における溶媒濃度を高めることによって小さくする蒸発速度調整部材と、前記電極層を乾燥させる熱を付与するヒーター部と、を有している。   Moreover, the electrode drying apparatus for achieving the said objective is an electrode drying apparatus which dries the electrode layer formed by apply | coating the electrode slurry containing a solvent to a collector in a drying furnace. An electrode drying apparatus includes: an evaporation rate adjusting member that reduces a concentration difference between a solvent concentration remaining in the electrode layer and a solvent concentration in the atmosphere in the drying furnace by increasing the solvent concentration in the atmosphere; and the electrode layer And a heater part for applying heat for drying the liquid.

本発明によれば、電極層内に残存する溶媒濃度と乾燥炉内の雰囲気における溶媒濃度との濃度差を、雰囲気における溶媒濃度を高めることによって小さくしつつ、熱を付与して電極層を乾燥させているので、電極層を緩やかに乾燥させて、バインダーの偏析が生じることを防止することができる。バインダーの偏析を生じさせない条件にて電極層を乾燥させることから、集電体と電極層との密着性が向上し、初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。もって、電極性能の低下を招くことなく、スラリー状態の電極層に含まれる溶媒を効率よく揮発させて、乾燥時間の短縮を図ることが可能な電極乾燥方法、および電極乾燥装置を提供できた。   According to the present invention, heat is applied to dry the electrode layer while reducing the concentration difference between the solvent concentration remaining in the electrode layer and the solvent concentration in the atmosphere in the drying furnace by increasing the solvent concentration in the atmosphere. Therefore, it is possible to prevent the binder from segregating by gently drying the electrode layer. Since the electrode layer is dried under conditions that do not cause segregation of the binder, the adhesion between the current collector and the electrode layer is improved, and not only the initial resistance value in the battery but also after repeated charging and discharging. The resistance value in the battery is also lowered, and the electrode performance can be improved. Accordingly, it is possible to provide an electrode drying method and an electrode drying apparatus capable of efficiently evaporating the solvent contained in the electrode layer in a slurry state and reducing the drying time without causing deterioration in electrode performance.

実施形態に係る電極乾燥装置を示す概略構成図である。It is a schematic block diagram which shows the electrode drying apparatus which concerns on embodiment. 実施形態の乾燥方式によって電極層を乾燥させている状態を示す模式図である。It is a schematic diagram which shows the state which has dried the electrode layer with the drying system of embodiment. 対比例の乾燥方式によって電極層を乾燥させている状態を示す模式図である。It is a schematic diagram which shows the state which has dried the electrode layer by the comparative drying system. 雰囲気における溶媒濃度を高めながら電極層を乾燥する実施形態と、雰囲気における溶媒濃度を高めることなく電極層を乾燥する対比例とのそれぞれにおける、炉内NMP蒸気濃度の変化を示すグラフである。It is a graph which shows the change of NMP vapor | steam density | concentration in a furnace in each of embodiment which dries an electrode layer, raising the solvent concentration in atmosphere, and the proportionality which dries an electrode layer, without raising the solvent concentration in atmosphere.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and are different from the actual ratios.

図1および図2に示すように、電極乾燥装置10は、溶媒21を含む電極スラリー20を電極箔30(集電体に相当する)に塗布することによって形成された電極層40を乾燥炉50の中において乾燥させる。この電極乾燥装置10は、電極層40が形成された電極箔30を乾燥炉50内において搬送する搬送部60と、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差を、雰囲気57における溶媒濃度を高めることによって小さくする蒸発速度調整部材70と、電極層40を乾燥させる熱を付与するヒーター部80と、を有している。ヒーター部80は、熱源として熱風を用いている。そして、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差を、雰囲気57における溶媒濃度を高めることによって小さくしつつ、熱を付与して電極層40を乾燥させている。以下、詳述する。   As shown in FIGS. 1 and 2, the electrode drying apparatus 10 is configured to dry an electrode layer 40 formed by applying an electrode slurry 20 containing a solvent 21 to an electrode foil 30 (corresponding to a current collector). Dry in. The electrode drying apparatus 10 includes a transport unit 60 that transports the electrode foil 30 on which the electrode layer 40 is formed in the drying furnace 50, a solvent concentration remaining in the electrode layer 40, and a solvent concentration in the atmosphere 57 in the drying furnace 50. The evaporation rate adjusting member 70 that reduces the difference in concentration by increasing the solvent concentration in the atmosphere 57 and the heater unit 80 that applies heat to dry the electrode layer 40 are included. The heater unit 80 uses hot air as a heat source. Then, while reducing the concentration difference between the solvent concentration remaining in the electrode layer 40 and the solvent concentration in the atmosphere 57 in the drying furnace 50 by increasing the solvent concentration in the atmosphere 57, heat is applied to make the electrode layer 40. It is dried. Details will be described below.

電極箔30は、集電体として用いられる。電極箔30は、適宜の材料、例えば、アルミニウム、銅、ニッケル、鉄、ステンレス鋼を用いることができる。具体的には、例えば、正極集電体にはアルミニウムなどの電極箔30を用い、負極集電体には銅などの電極箔30を用いることができる。電極箔30の具体的な厚さについて特に制限はないが、例えば、アルミニウムの場合には20μm、銅の場合には10μ程度の薄膜である。   The electrode foil 30 is used as a current collector. The electrode foil 30 can be made of an appropriate material such as aluminum, copper, nickel, iron, and stainless steel. Specifically, for example, an electrode foil 30 such as aluminum can be used for the positive electrode current collector, and an electrode foil 30 such as copper can be used for the negative electrode current collector. Although there is no restriction | limiting in particular about the specific thickness of the electrode foil 30, For example, in the case of aluminum, it is a thin film of about 20 micrometers, and in the case of copper, it is about 10 micrometers.

電極スラリー20には、正極を形成するために用いる正極スラリーと、負極を形成するために用いる負極スラリーとがある。   The electrode slurry 20 includes a positive electrode slurry used for forming a positive electrode and a negative electrode slurry used for forming a negative electrode.

正極スラリーは、例えば、正極活物質22、導電助剤24、およびバインダー23を有し、溶媒21を添加することで、所定の粘度にされる。正極活物質22は、例えば、マンガン酸リチウムである。導電助剤24は、例えば、アセチレンブラックである。バインダー23は、例えば、PVDF(ポリフッ化ビニリデン)である。溶媒21は、例えば、NMP(ノルマルメチルピロリドン)である。なお、正極活物質22は、マンガン酸リチウムに特に限定されないが、容量および出力特性の観点から、リチウム−遷移金属複合酸化物を適用することが好ましい。導電助剤24は、例えば、カーボンブラックやグラファイトを利用することも可能である。バインダー23および溶媒21は、PVDFおよびNMPに限定されない。溶媒21として水を用いることもできる。   The positive electrode slurry has, for example, a positive electrode active material 22, a conductive auxiliary agent 24, and a binder 23, and has a predetermined viscosity by adding a solvent 21. The positive electrode active material 22 is, for example, lithium manganate. The conductive auxiliary agent 24 is, for example, acetylene black. The binder 23 is, for example, PVDF (polyvinylidene fluoride). The solvent 21 is, for example, NMP (normal methyl pyrrolidone). The positive electrode active material 22 is not particularly limited to lithium manganate, but it is preferable to apply a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics. For example, carbon black or graphite can be used as the conductive assistant 24. The binder 23 and the solvent 21 are not limited to PVDF and NMP. Water can also be used as the solvent 21.

負極スラリーは、例えば、負極活物質22、導電助剤24、およびバインダー23を有し、溶媒21を添加することで、所定の粘度にされる。負極活物質22は、例えば、グラファイトである。導電助剤24、バインダー23、および溶媒21は、例えば、アセチレンブラック、PVDF、およびNMPである。なお、負極活物質22は、グラファイトに特に限定されず、ハードカーボンや、リチウム−遷移金属複合酸化物を利用することも可能である。導電助剤24は、例えば、カーボンブラックやグラファイトを利用することも可能である。バインダー23および溶媒21は、PVDFおよびNMPに限定されない。溶媒21として水を用いることもできる。   The negative electrode slurry has, for example, a negative electrode active material 22, a conductive auxiliary agent 24, and a binder 23, and has a predetermined viscosity by adding the solvent 21. The negative electrode active material 22 is, for example, graphite. The conductive auxiliary agent 24, the binder 23, and the solvent 21 are, for example, acetylene black, PVDF, and NMP. The negative electrode active material 22 is not particularly limited to graphite, and hard carbon or a lithium-transition metal composite oxide can also be used. For example, carbon black or graphite can be used as the conductive assistant 24. The binder 23 and the solvent 21 are not limited to PVDF and NMP. Water can also be used as the solvent 21.

電極箔30に正極スラリーを塗布することによって形成した正極の電極層40および負極スラリーを塗布することによって形成した負極の電極層40を、乾燥炉50において乾燥し、正極および負極を形成する。このとき、電極スラリー20に含まれる溶媒21としてのNMPは、揮発することによって電極スラリー20から除去する。   The positive electrode layer 40 formed by applying the positive electrode slurry to the electrode foil 30 and the negative electrode layer 40 formed by applying the negative electrode slurry are dried in a drying furnace 50 to form the positive electrode and the negative electrode. At this time, NMP as the solvent 21 contained in the electrode slurry 20 is removed from the electrode slurry 20 by volatilization.

電極乾燥装置10の乾燥炉50は、熱風通路および電極箔30の搬送路を形成するケーシング90を有している。乾燥炉50内は、複数(図示例にあっては、6個)に区画した乾燥ゾーン51〜56から構成されている。乾燥ゾーン51〜56ごとに、蒸発速度調整部材70とヒーター部80とを設けている。説明の便宜上、電極箔30を搬送する方向の上流側から順に(図1において左側から順に)、第1の乾燥ゾーン51、第2の乾燥ゾーン52、第3の乾燥ゾーン53、第4の乾燥ゾーン54、第5の乾燥ゾーン55、および第6の乾燥ゾーン56という。ケーシング90内に仕切り壁91を設けることによって、第1〜第6のそれぞれの乾燥ゾーン51〜56を形成している。搬送部60を配置するために、ケーシング90の端面、および仕切り壁91には開口部を設けている。第1〜第6の乾燥ゾーン51〜56のそれぞれには、搬送される電極箔30の上方位置から熱風を供給するための上ノズル92と、搬送される電極箔30の下方位置から熱風を供給するための下ノズル93と、乾燥ゾーン51〜56内を排気するための排気口94とを設けている。上ノズル92、下ノズル93および排気口94は、乾燥ゾーン51〜56内の熱風を撹拌し、熱風が通路内を均一に流れる位置に設定されている。   The drying furnace 50 of the electrode drying apparatus 10 includes a casing 90 that forms a hot air passage and a conveyance path for the electrode foil 30. The inside of the drying furnace 50 is composed of drying zones 51 to 56 divided into a plurality (six in the illustrated example). An evaporation rate adjusting member 70 and a heater unit 80 are provided for each of the drying zones 51 to 56. For convenience of explanation, the first drying zone 51, the second drying zone 52, the third drying zone 53, and the fourth drying are sequentially performed from the upstream side in the direction in which the electrode foil 30 is conveyed (in order from the left side in FIG. 1). These are referred to as zone 54, fifth drying zone 55, and sixth drying zone 56. By providing the partition wall 91 in the casing 90, the first to sixth drying zones 51 to 56 are formed. In order to arrange the transport unit 60, an opening is provided in the end surface of the casing 90 and the partition wall 91. In each of the first to sixth drying zones 51 to 56, hot air is supplied from an upper nozzle 92 for supplying hot air from an upper position of the conveyed electrode foil 30, and from a lower position of the conveyed electrode foil 30. A lower nozzle 93 for exhausting air and an exhaust port 94 for exhausting the inside of the drying zones 51 to 56 are provided. The upper nozzle 92, the lower nozzle 93, and the exhaust port 94 are set to positions where the hot air in the drying zones 51 to 56 is stirred and the hot air flows uniformly in the passage.

図示例の蒸発速度調整部材70は、乾燥炉50から排出された排気を雰囲気57内に供給するための配管系100を備えている。乾燥炉50から排出された排気を再利用することによって、雰囲気57における溶媒濃度を高めている。蒸発速度調整部材70はまた、排気の温度を結露温度まで下げることなく雰囲気57内に供給する。排気を再利用するため、低コストで量産を実現することもできる。   The illustrated evaporation rate adjusting member 70 includes a piping system 100 for supplying exhaust discharged from the drying furnace 50 into the atmosphere 57. By reusing the exhaust discharged from the drying furnace 50, the solvent concentration in the atmosphere 57 is increased. The evaporation rate adjusting member 70 also supplies the atmosphere 57 without reducing the temperature of the exhaust gas to the dew condensation temperature. Since the exhaust gas is reused, mass production can be realized at low cost.

配管系100には、各排気口94と溶媒回収装置110とを接続する第1配管101、溶媒回収装置110の出口と乾燥ゾーン51〜56ごとに設けられた熱交換器120の入口とを接続する第2配管102と、熱交換器105の出口と上下のノズル92、93とを接続する第3配管103と、溶媒回収装置110をバイパスして排気を流下させるバイパス管104とを含んでいる。溶媒回収装置110は、溶媒回収器111と送風ファン112とを有し、過剰なNMPを液体にして回収するとともに、回収した溶媒21の一部を雰囲気57内に供給する空気(給気)に再び混合する。バイパス管104には、熱媒体(例えば、蒸気や蒸気還流水)との間で熱交換を行って空気を加熱する熱交換器105と、バイパスさせる排気量を調整するためのバルブ106が設けられている。第1配管101には、溶媒回収装置110の入口側の排気温度を測定する温度センサー107を設け、第2配管102には、溶媒回収装置110の出口側の給気温度を測定する温度センサー108を設けている。出口側の温度センサー108は、バイパス管104が第2配管102に合流した後の位置において、給気温度を測定する。第2配管102には、給気の溶媒濃度を測定する濃度センサー109を設けている。溶媒回収装置110は、給気の溶媒濃度を定められた濃度とするように、給気に再び混合させる溶媒量を制御する。   The piping system 100 is connected to the first piping 101 connecting each exhaust port 94 and the solvent recovery device 110, the outlet of the solvent recovery device 110, and the inlet of the heat exchanger 120 provided for each of the drying zones 51 to 56. A second pipe 102 that connects the outlet of the heat exchanger 105 and the upper and lower nozzles 92 and 93, and a bypass pipe 104 that bypasses the solvent recovery device 110 and flows down the exhaust gas. . The solvent recovery device 110 includes a solvent recovery device 111 and a blower fan 112, recovers excess NMP as a liquid, and supplies air (supply air) that supplies a part of the recovered solvent 21 to the atmosphere 57. Mix again. The bypass pipe 104 is provided with a heat exchanger 105 that heats air by exchanging heat with a heat medium (for example, steam or steam reflux water), and a valve 106 for adjusting the amount of exhaust to be bypassed. ing. The first pipe 101 is provided with a temperature sensor 107 that measures the exhaust temperature on the inlet side of the solvent recovery device 110, and the temperature sensor 108 that measures the supply air temperature on the outlet side of the solvent recovery device 110 is provided in the second pipe 102. Is provided. The outlet-side temperature sensor 108 measures the supply air temperature at a position after the bypass pipe 104 joins the second pipe 102. The second pipe 102 is provided with a concentration sensor 109 that measures the solvent concentration of the supply air. The solvent recovery device 110 controls the amount of solvent mixed with the supply air so that the solvent concentration of the supply air becomes a predetermined concentration.

排気の温度を結露温度まで下げることなく雰囲気57内に供給するために、測定した給気温度に基づいて、バイパス管104を流下させる排気風量を制御する。溶媒回収装置110をバイパスして流下する排気は、溶媒回収装置110を通過した空気に比べて高温であることから、給気温度を高めて給気温度を一定に保つことができる。バイパス管104に設けた熱交換器105によってバイパス管104を流下する排気を加温することによって、給気温度がさらに低下した場合においても給気温度を一定に保つことができる。排気の温度を結露温度まで下げることなく雰囲気57内に供給することによって、配管系100における結露を防止するための特段の対策、例えば断熱材の配置などが不要となる。これにともなって、設備費の低減に寄与することができる。   In order to supply the exhaust gas to the atmosphere 57 without lowering the exhaust temperature to the dew condensation temperature, the amount of exhaust air flowing through the bypass pipe 104 is controlled based on the measured supply air temperature. Since the exhaust gas that flows down by bypassing the solvent recovery device 110 has a higher temperature than the air that has passed through the solvent recovery device 110, the supply air temperature can be increased to keep the supply air temperature constant. By heating the exhaust gas flowing down the bypass pipe 104 by the heat exchanger 105 provided in the bypass pipe 104, the supply air temperature can be kept constant even when the supply air temperature further decreases. By supplying the temperature of the exhaust gas into the atmosphere 57 without lowering it to the dew condensation temperature, special measures for preventing dew condensation in the piping system 100, for example, the arrangement of a heat insulating material, etc. are not required. In connection with this, it can contribute to reduction of an installation cost.

第1〜第3の配管101〜103には、ダンパー類を設けていない。結露を防止するためである。   The first to third pipes 101 to 103 are not provided with dampers. This is to prevent condensation.

乾燥ゾーン51〜56ごとに設けられた熱交換器120は、熱媒体(例えば、蒸気や蒸気還流水)との間で熱交換を行って空気を加熱する。乾燥ゾーン51〜56ごとに雰囲気57の温度を測定する温度センサー121を設けている。各熱交換器120によって給気を加温することによって、上下のノズル92、93から噴出す熱風温度を制御して、各乾燥ゾーン51〜56の温度を設定した温度に保つことができる。熱風の温度は、環境温度や電極スラリー20の種類などによって種々異なることから特に限定されないが、例えば100±40℃である。   The heat exchanger 120 provided for each of the drying zones 51 to 56 heats the air by exchanging heat with a heat medium (for example, steam or steam reflux water). A temperature sensor 121 that measures the temperature of the atmosphere 57 is provided for each of the drying zones 51 to 56. By heating the supply air by each heat exchanger 120, the temperature of hot air ejected from the upper and lower nozzles 92, 93 can be controlled, and the temperature of each drying zone 51-56 can be maintained at a set temperature. The temperature of the hot air is not particularly limited because it varies depending on the environmental temperature, the type of the electrode slurry 20, and the like, but is 100 ± 40 ° C., for example.

乾燥時において、各乾燥ゾーン51〜56の雰囲気57中には、再利用する排気に含まれている溶媒21と、電極層40から揮発した溶媒21とが含まれる。乾燥時の雰囲気57の溶媒濃度は適宜設定可能であるが、強密着性の電極層40を得るためには、例えば、1000PPM以下となるように制御することが好ましい。   At the time of drying, the atmosphere 57 in each of the drying zones 51 to 56 includes the solvent 21 contained in the exhaust gas to be reused and the solvent 21 volatilized from the electrode layer 40. The solvent concentration of the atmosphere 57 at the time of drying can be set as appropriate. However, in order to obtain the strongly adherent electrode layer 40, for example, it is preferable to control it to be 1000 PPM or less.

電極層40は、残留NMPが200ppm以下となるまで乾燥される。熱源に蒸気を使用するのは容易に入手可能な熱源であるからであるのと、溶媒21にNMP(融点−24℃、沸点204℃)を使用していることから、比較的低温度100℃前後での連続乾燥が可能となるからである。   The electrode layer 40 is dried until the residual NMP becomes 200 ppm or less. The reason why steam is used as the heat source is that it is an easily available heat source, and NMP (melting point −24 ° C., boiling point 204 ° C.) is used as the solvent 21, so that a relatively low temperature of 100 ° C. This is because continuous drying before and after is possible.

蒸発速度調整部材70は、配管系100、および溶媒回収装置110などによって構成されている。ヒーター部80は、配管系100、溶媒回収装置110、熱交換器105、120、および熱交換器105、120に供給する熱媒体の温度や流量を調整するための図示しない部材などによって構成されている。   The evaporation rate adjusting member 70 includes a piping system 100, a solvent recovery device 110, and the like. The heater unit 80 includes a piping system 100, a solvent recovery device 110, heat exchangers 105 and 120, and a member (not shown) for adjusting the temperature and flow rate of the heat medium supplied to the heat exchangers 105 and 120. Yes.

搬送部60は、電極スラリー20を塗布する前の電極箔30を供給する供給ロール61と、電極層40を乾燥させた後の電極箔30を巻き取る巻取りロール62と、供給ロール61と巻取りロール62との間に配置され電極箔30の下面を保持する複数のサポートロール63と、を有している。供給ロール61には、電極箔30を予め巻回してある。巻取りロール62には、巻取りロール62を回転駆動するモータMを接続してある。モータMを駆動して巻取りロール62を回転駆動すると、電極箔30は、供給ロール61から繰り出され、乾燥炉50内を搬送され、巻取りロール62に巻き取られる。このようにして、搬送部60は、長尺状の電極箔30をロール・トゥ・ロール方式によって連続的に搬送する。   The transport unit 60 includes a supply roll 61 that supplies the electrode foil 30 before the electrode slurry 20 is applied, a winding roll 62 that winds up the electrode foil 30 after the electrode layer 40 is dried, a supply roll 61 and a winding roll. A plurality of support rolls 63 that are arranged between the take-up roll 62 and hold the lower surface of the electrode foil 30. The electrode foil 30 is wound around the supply roll 61 in advance. A motor M that rotationally drives the winding roll 62 is connected to the winding roll 62. When the motor M is driven and the take-up roll 62 is rotationally driven, the electrode foil 30 is unwound from the supply roll 61, conveyed in the drying furnace 50, and taken up by the take-up roll 62. Thus, the conveyance part 60 conveys the elongate electrode foil 30 continuously by a roll-to-roll system.

電極スラリー20の塗布は、電極箔30を搬送しつつ、塗布部95によって行う。塗布部95は、溶媒21を含むスラリー状の電極スラリー20を電極箔30に塗布するコーター96を有している。コーター96は、電極箔30に対向し、電極箔30を搬送しながら間欠的に電極スラリー20を塗布する。これにより、電極スラリー20は、一定の間隔の隙間を空けて間欠的に配列する。コーター96を使っての間欠塗工方式では、ロール・トゥ・ロール方式で供給される集電箔に、粘度10,000〜300,000cps程度(固形分63.4±10%)としたスラリーを、コーター96塗工部分で片面(Wet膜厚130±10μm、Dry膜厚87±10μm)程度の均一塗工を行い連続生産する方法が一般的である。   Application | coating of the electrode slurry 20 is performed by the application part 95, conveying the electrode foil 30. FIG. The application unit 95 includes a coater 96 that applies the slurry-like electrode slurry 20 containing the solvent 21 to the electrode foil 30. The coater 96 faces the electrode foil 30 and intermittently applies the electrode slurry 20 while conveying the electrode foil 30. Thereby, the electrode slurry 20 is intermittently arranged with a gap of a constant interval. In the intermittent coating method using the coater 96, a slurry having a viscosity of about 10,000 to 300,000 cps (solid content: 63.4 ± 10%) is applied to the current collector foil supplied by the roll-to-roll method. In general, the coater 96 is coated with a uniform coating on one side (Wet film thickness 130 ± 10 μm, Dry film thickness 87 ± 10 μm) for continuous production.

電極乾燥装置10は、溶媒回収装置110、バイパス管104のバルブ106、ヒーター部80、モータM、および塗布部95の作動を制御するコントローラー130を有している。コントローラー130は、CPUおよびメモリを主体として構成され、動作を制御するためのプログラムがメモリに記憶されている。コントローラー130は、塗布部95の作動を制御して、電極スラリー20の塗布量、塗布厚さなどを調整し、ヒーター部80の作動を制御して、給気の温度、風量などを調整する。コントローラー130はまた、モータMの作動を制御して、電極箔30の搬送速度を調整する。   The electrode drying apparatus 10 includes a controller 130 that controls the operation of the solvent recovery apparatus 110, the valve 106 of the bypass pipe 104, the heater unit 80, the motor M, and the coating unit 95. The controller 130 is mainly composed of a CPU and a memory, and a program for controlling the operation is stored in the memory. The controller 130 controls the operation of the application unit 95 to adjust the application amount and application thickness of the electrode slurry 20, and controls the operation of the heater unit 80 to adjust the temperature of the supply air, the air volume, and the like. The controller 130 also controls the operation of the motor M to adjust the conveyance speed of the electrode foil 30.

本実施形態の作用を説明する前に、乾燥炉50に供給する給気の温度や風量を大きく変化させたときに生じる不具合について説明する。   Before describing the operation of the present embodiment, a problem that occurs when the temperature or air volume of the supply air supplied to the drying furnace 50 is greatly changed will be described.

乾燥工程において変化する品質指標の一つとして、電極層40と電極箔30との間の密着性がある。一般的に、乾燥工程においては、下記の式(1)(2)(3)にしたがって、溶媒21であるNMPを緩やかに揮発させて電極層40を緩やかに乾燥させることによって、密着性が向上することが知られている。   One of the quality indexes that change in the drying process is the adhesion between the electrode layer 40 and the electrode foil 30. In general, in the drying step, adhesion is improved by gently evaporating NMP as the solvent 21 and gently drying the electrode layer 40 according to the following formulas (1), (2), and (3). It is known to do.

図3は、乾燥炉50に供給する給気の温度や風量を大きく変化させたときに生じる不具合を示す図である。   FIG. 3 is a diagram illustrating a problem that occurs when the temperature or air volume of the supply air supplied to the drying furnace 50 is changed greatly.

熱風を用いた乾燥炉50において乾燥速度の向上を図る場合には、熱風温度を高くするとともに風量を増加し、電極層40の表面と雰囲気57との界面部分における溶媒21(NMP)の除去量を増加させている。このような対応の場合、乾燥が早くなって、電極層40の表面近傍にバインダー23(PVDF)が偏析してしまう。このため、電極箔30に強く密着した塗膜つまり強密着の電極層40を得ることができなくなる。   When the drying rate is improved in the drying furnace 50 using hot air, the hot air temperature is increased and the air volume is increased, and the amount of solvent 21 (NMP) removed at the interface portion between the surface of the electrode layer 40 and the atmosphere 57 is increased. Is increasing. In such a case, drying is accelerated and the binder 23 (PVDF) is segregated near the surface of the electrode layer 40. For this reason, it becomes impossible to obtain a coating film strongly adhered to the electrode foil 30, that is, a strongly adhered electrode layer 40.

熱風温度を高くした場合にバインダー23の偏析が生じる原因として、次のようなものを挙げることができる。すなわち、乾燥時においてはバインダー23を溶媒21に溶かしたものが電極層40に含まれているので、電極層40を高い温度の環境下にさらすと、電極層40内において溶媒21自体が対流を起こす。その結果、溶解しているバインダー23が偏析してしまう。   The following can be cited as causes of segregation of the binder 23 when the hot air temperature is increased. That is, since the electrode layer 40 contains the binder 23 dissolved in the solvent 21 at the time of drying, the solvent 21 itself convects in the electrode layer 40 when the electrode layer 40 is exposed to a high temperature environment. Wake up. As a result, the dissolved binder 23 is segregated.

また、風量を増加した場合にバインダー23の偏析が生じる原因として、次のようなものを挙げることができる。すなわち、電極層40の表面近傍における溶媒21(NMP)だけが優先的に揮発して表面近傍だけが先に乾き(表面先乾き)、この表面先乾き部分に生じた亀裂やホールなどによる毛細管現象によって、NMPを深部から表面に向けて吸い上げる。その結果、溶解しているバインダー23が偏析してしまう。   Moreover, the following can be mentioned as a cause of the segregation of the binder 23 when the air volume is increased. That is, only the solvent 21 (NMP) in the vicinity of the surface of the electrode layer 40 is preferentially volatilized and only the vicinity of the surface is dried first (surface pre-drying), and the capillary phenomenon due to cracks or holes generated in the surface pre-drying portion. The NMP is sucked from the depth toward the surface. As a result, the dissolved binder 23 is segregated.

乾燥時にバインダー23の偏析を生じ得る乾燥条件では、表面粗さが大きく、密着力も弱いことから、電極箔30と電極層40との接触量あるいは接触面積が少なくなる。このため、初期における電池内の抵抗値のみならず、充放電を繰り返した後の電池内の抵抗値も高くなり、電極性能の低下を招くことになる。   Under drying conditions that can cause segregation of the binder 23 at the time of drying, the surface roughness is large and the adhesion is weak, so the contact amount or contact area between the electrode foil 30 and the electrode layer 40 is reduced. For this reason, not only the resistance value in the battery in the initial stage, but also the resistance value in the battery after repeated charge / discharge increases, leading to a decrease in electrode performance.

発生したバインダー23の偏析を解消するために、乾燥後の電極をロールプレス機などによって圧縮する方法がある。しかしながら、乾燥が完了して電極層40が固着した後に強制的に構造変化させることになるため、電極層40の密着強度はさほど向上しない。しかも、低コストで量産を実現する観点から、乾燥工程の後に圧縮工程を付加することは避けることが望ましい。   In order to eliminate the segregation of the generated binder 23, there is a method in which the dried electrode is compressed by a roll press or the like. However, since the structure is forcibly changed after the drying is completed and the electrode layer 40 is fixed, the adhesion strength of the electrode layer 40 is not improved so much. Moreover, it is desirable to avoid adding a compression step after the drying step from the viewpoint of realizing mass production at a low cost.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

モータMを駆動して巻取りロール62を回転駆動し、電極箔30を、供給ロール61から繰り出し、巻取りロール62に巻き取る。コーター96は、移動している電極箔30の表面に間欠的に電極スラリー20を塗布する。コントローラー130は、塗布部95の作動を制御し、電極スラリー20の塗布量、塗布厚さなどを調整している。ヒーター部80は、熱風を、上下のノズル92、93から熱風通路内に供給する。電極箔30の表面に溶媒21を含む電極スラリー20を塗布した後、乾燥炉50内において、電極層40に含まれる溶媒21を揮発させる。電極箔30を搬送しつつ、電極スラリー20の塗布と、塗布した電極層40の乾燥とを継続する。   The motor M is driven to rotationally drive the take-up roll 62, and the electrode foil 30 is unwound from the supply roll 61 and taken up on the take-up roll 62. The coater 96 intermittently applies the electrode slurry 20 to the surface of the moving electrode foil 30. The controller 130 controls the operation of the coating unit 95 and adjusts the coating amount and coating thickness of the electrode slurry 20. The heater unit 80 supplies hot air from the upper and lower nozzles 92 and 93 into the hot air passage. After applying the electrode slurry 20 containing the solvent 21 to the surface of the electrode foil 30, the solvent 21 contained in the electrode layer 40 is volatilized in the drying furnace 50. While conveying the electrode foil 30, the application of the electrode slurry 20 and the drying of the applied electrode layer 40 are continued.

電極層40を乾燥炉50の中において乾燥させるときには、蒸発速度調整部材70は、配管系100を介して、乾燥炉50から排出された排気を雰囲気57内に供給する。これにより、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差は、雰囲気57における溶媒濃度が高められることによって小さくなる。さらに、ヒーター部80は、電極層40を乾燥させる熱を付与している。   When the electrode layer 40 is dried in the drying furnace 50, the evaporation rate adjusting member 70 supplies exhaust gas discharged from the drying furnace 50 into the atmosphere 57 via the piping system 100. As a result, the concentration difference between the solvent concentration remaining in the electrode layer 40 and the solvent concentration in the atmosphere 57 in the drying furnace 50 is reduced by increasing the solvent concentration in the atmosphere 57. Further, the heater unit 80 applies heat that dries the electrode layer 40.

このように雰囲気57における溶媒濃度を高めつつ乾燥させると、乾燥速度の向上を図るために熱風温度を高くするとともに風量を増加しても、溶媒21であるNMPを緩やかに揮発させて電極層40を緩やかに乾燥させることができる。電極層40を緩やかに乾燥させるのではあるが、熱風温度を高くできるとともに風量を増加することができるので、全体として乾燥時間を短縮することができ、生産性を高めることができる。乾燥時間の短縮を図ることができることから、乾燥炉50の長さを短くすることもできる。もって、電極の乾燥に要する投資を削減することが可能となる。   When drying is performed while increasing the solvent concentration in the atmosphere 57 as described above, even if the hot air temperature is increased and the air volume is increased in order to improve the drying speed, the NMP which is the solvent 21 is gradually volatilized and the electrode layer 40 is evaporated. Can be gently dried. Although the electrode layer 40 is gently dried, since the hot air temperature can be increased and the air volume can be increased, the drying time can be shortened as a whole, and the productivity can be increased. Since the drying time can be shortened, the length of the drying furnace 50 can be shortened. Therefore, the investment required for drying the electrode can be reduced.

雰囲気57における溶媒濃度は、電極層40内に残存する溶媒濃度を越えない濃度に高める必要がある。電極層40の乾燥が進行しない状態を回避するためである。   The solvent concentration in the atmosphere 57 needs to be increased to a concentration not exceeding the solvent concentration remaining in the electrode layer 40. This is to avoid a state where the drying of the electrode layer 40 does not proceed.

図2に示したように、電極層40を緩やかに乾燥させるので、バインダー23の偏析が生じることを防止することができる。バインダー23の偏析を生じさせない条件にて電極層40を乾燥させているので、電極箔30と電極層40との密着性が向上し、電極箔30と電極層40との接触量あるいは接触面積が十分大きくなる。このため、初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。   As shown in FIG. 2, since the electrode layer 40 is gently dried, segregation of the binder 23 can be prevented. Since the electrode layer 40 is dried under conditions that do not cause segregation of the binder 23, the adhesion between the electrode foil 30 and the electrode layer 40 is improved, and the contact amount or contact area between the electrode foil 30 and the electrode layer 40 is increased. Become big enough. For this reason, not only the resistance value in the battery in the initial stage, but also the resistance value in the battery after repeated charging and discharging is reduced, and the electrode performance can be improved.

第1〜第6の乾燥ゾーン51〜56ごとに、蒸発速度調整部材70とヒーター部80とを設けている。このため、第1〜第6の乾燥ゾーン51〜56ごとに、雰囲気57における溶媒濃度を高めることによって濃度差を小さくしつつ、熱を付与して電極層40を乾燥させることができる。複数の乾燥ゾーン51〜56に区画した場合にも、乾燥ゾーン51〜56ごとにバインダー23の偏析が生じることを防止することができ、電極性能の向上を図った電極を製造することができる。   An evaporation rate adjusting member 70 and a heater unit 80 are provided for each of the first to sixth drying zones 51 to 56. Therefore, for each of the first to sixth drying zones 51 to 56, the electrode layer 40 can be dried by applying heat while reducing the concentration difference by increasing the solvent concentration in the atmosphere 57. Even when partitioned into a plurality of drying zones 51 to 56, segregation of the binder 23 can be prevented in each of the drying zones 51 to 56, and an electrode with improved electrode performance can be manufactured.

バインダー23の偏析が生じないので、乾燥後の電極をロールプレス機などによって圧縮する必要がない。乾燥工程の後に圧縮工程を付加しなくてよいので、低コストで量産を実現することもできる。   Since the segregation of the binder 23 does not occur, there is no need to compress the dried electrode with a roll press or the like. Since it is not necessary to add a compression step after the drying step, mass production can be realized at low cost.

図4は、雰囲気57における溶媒濃度を高めながら電極層40を乾燥する実施形態と、雰囲気57における溶媒濃度を高めることなく電極層40を乾燥する対比例とのそれぞれにおける、炉内NMP蒸気濃度の変化を示すグラフである。横軸は乾燥炉通過時間(秒)を示し、縦軸は炉内NMP蒸気濃度を示している。なお、本実施形態の値は、雰囲気57における溶媒濃度を高めた分を減算したものである。図において、実施形態は実線にて、対比例は破線にて示される。   FIG. 4 shows the in-furnace NMP vapor concentration in each of the embodiment in which the electrode layer 40 is dried while increasing the solvent concentration in the atmosphere 57 and the proportionality in which the electrode layer 40 is dried without increasing the solvent concentration in the atmosphere 57. It is a graph which shows a change. The horizontal axis represents the drying furnace passage time (second), and the vertical axis represents the in-furnace NMP vapor concentration. Note that the value of this embodiment is obtained by subtracting the amount by which the solvent concentration in the atmosphere 57 is increased. In the figure, the embodiment is indicated by a solid line, and the proportionality is indicated by a broken line.

第1の乾燥ゾーン51は、予熱ゾーンであり、電極層40から溶媒21は揮発していない。   The first drying zone 51 is a preheating zone, and the solvent 21 is not volatilized from the electrode layer 40.

対比例においては、第2の乾燥ゾーン52では、溶媒21の揮発が急激に始まって、炉内NMP蒸気濃度が急激に高くなる。第3、第4の乾燥ゾーン53、54では、炉内NMP蒸気濃度の変動が大きい。そして、第5の乾燥ゾーン55の出口部分では、電極層40の乾燥がほぼ完了し、炉内NMP蒸気濃度がゼロとなる。   In contrast, in the second drying zone 52, the volatilization of the solvent 21 starts abruptly and the in-furnace NMP vapor concentration increases rapidly. In the third and fourth drying zones 53 and 54, the variation of the in-furnace NMP vapor concentration is large. Then, at the outlet portion of the fifth drying zone 55, the drying of the electrode layer 40 is almost completed, and the in-furnace NMP vapor concentration becomes zero.

実施形態においては、第2の乾燥ゾーン52では、炉内NMP蒸気濃度の変化は対比例に比べて緩やかであり、電極層40の乾燥が緩やかに始まっていることがわかる。第3〜第5の乾燥ゾーン53〜55では、炉内NMP蒸気濃度の変動が比較的小さく、溶媒濃度範囲Δcの範囲内に収まっている。炉内NMP蒸気濃度の変動が対比例に比べて均一であり、電極層40の乾燥が緩やかに進行していることがわかる。そして、第6の乾燥ゾーン56の出口部分では、電極層40の乾燥がほぼ完了し、炉内NMP蒸気濃度がゼロとなる。   In the embodiment, in the second drying zone 52, it can be seen that the change in the in-furnace NMP vapor concentration is gradual compared with the proportionality, and the drying of the electrode layer 40 starts gradually. In the third to fifth drying zones 53 to 55, the fluctuation of the in-furnace NMP vapor concentration is relatively small and falls within the solvent concentration range Δc. It can be seen that the variation of the NMP vapor concentration in the furnace is more uniform than the proportionality, and the drying of the electrode layer 40 is proceeding slowly. And in the exit part of the 6th drying zone 56, drying of the electrode layer 40 is substantially completed and the NMP vapor | steam density | concentration in a furnace will be zero.

対比例における電極層40の密着力は製品としてNGのレベルであったが、実施形態における電極層40の密着力は製品としてOKのレベルを満足した。   The adhesion strength of the electrode layer 40 in the comparative example was NG as a product, but the adhesion strength of the electrode layer 40 in the embodiment satisfied the OK level as a product.

対比例の乾燥条件では、雰囲気57における溶媒濃度を高めていないため、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差が大きく、第5の乾燥ゾーン55の出口部分で電極層40の乾燥がほぼ完了するほど、乾燥速度が速くなっている。しかしながら、電極層40の密着力は製品としての要求を満足することができなかった。   Since the solvent concentration in the atmosphere 57 is not increased under the proportional drying conditions, the concentration difference between the solvent concentration remaining in the electrode layer 40 and the solvent concentration in the atmosphere 57 in the drying furnace 50 is large, and the fifth drying zone. The drying speed increases as the drying of the electrode layer 40 is almost completed at the outlet portion 55. However, the adhesive strength of the electrode layer 40 could not satisfy the demand as a product.

一方、実施形態の乾燥条件では、雰囲気57における溶媒濃度を高めているため、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差が小さく、緩やかに電極層40を乾燥させている。対比例に比べると乾燥速度は緩やかではあるが、熱風温度を高くできるとともに風量を増加することができるので、全体として乾燥時間を短縮することができる。しかも、電極層40の密着力は製品としての要求を十分に満足することができた。   On the other hand, under the drying conditions of the embodiment, since the solvent concentration in the atmosphere 57 is increased, the difference in concentration between the solvent concentration remaining in the electrode layer 40 and the solvent concentration in the atmosphere 57 in the drying furnace 50 is small, and the electrode gradually increases. Layer 40 is dried. Although the drying speed is moderate as compared with the proportionality, the hot air temperature can be increased and the air volume can be increased, so that the drying time can be shortened as a whole. In addition, the adhesion of the electrode layer 40 was able to fully satisfy the product requirements.

以上説明したように、本実施形態によれば、電極乾燥装置10に蒸発速度調整部材70とヒーター部80とを設け、電極層40内に残存する溶媒濃度と乾燥炉50内の雰囲気57における溶媒濃度との濃度差を、雰囲気57における溶媒濃度を高めることによって小さくしつつ、熱を付与して電極層40を乾燥させている。このため、電極層40を緩やかに乾燥させるので、バインダー23の偏析が生じることを防止することができる。バインダー23の偏析を生じさせない条件にて電極層40を乾燥させているので、電極箔30と電極層40との密着性が向上し、初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。電極層40を緩やかに乾燥させているが、炉内温度等を高く設定できるので、スラリー状態の電極層40に含まれる溶媒21を効率よく揮発させて、全体として乾燥時間を短縮することができる。   As described above, according to the present embodiment, the electrode drying apparatus 10 is provided with the evaporation rate adjusting member 70 and the heater unit 80, the solvent concentration remaining in the electrode layer 40 and the solvent in the atmosphere 57 in the drying furnace 50. The electrode layer 40 is dried by applying heat while reducing the concentration difference from the concentration by increasing the solvent concentration in the atmosphere 57. For this reason, since the electrode layer 40 is gently dried, segregation of the binder 23 can be prevented. Since the electrode layer 40 is dried under conditions that do not cause segregation of the binder 23, the adhesion between the electrode foil 30 and the electrode layer 40 is improved, and charge / discharge is performed as well as the resistance value in the battery in the initial stage. The resistance value in the battery after the repetition is reduced, and the electrode performance can be improved. Although the electrode layer 40 is gently dried, since the furnace temperature and the like can be set high, the solvent 21 contained in the electrode layer 40 in a slurry state can be efficiently volatilized and the drying time can be shortened as a whole. .

乾燥炉50内を複数の乾燥ゾーン51〜56に区画し、乾燥ゾーン51〜56ごとに、蒸発速度調整部材70とヒーター部80とを設け、乾燥ゾーン51〜56ごとに、雰囲気57における溶媒濃度を高めることによって濃度差を小さくしつつ、熱を付与して電極層40を乾燥させている。このため、複数の乾燥ゾーン51〜56に区画した場合にも、乾燥ゾーン51〜56ごとにバインダー23の偏析が生じることを防止することができ、電極性能の向上を図った電極を製造することができる。   The inside of the drying furnace 50 is divided into a plurality of drying zones 51 to 56, the evaporation rate adjusting member 70 and the heater unit 80 are provided for each of the drying zones 51 to 56, and the solvent concentration in the atmosphere 57 is set for each of the drying zones 51 to 56. The electrode layer 40 is dried by applying heat while reducing the difference in concentration by increasing. For this reason, even when partitioned into a plurality of drying zones 51 to 56, it is possible to prevent the segregation of the binder 23 from occurring in each of the drying zones 51 to 56, and to manufacture an electrode with improved electrode performance. Can do.

雰囲気57における溶媒濃度を、電極層40内に残存する溶媒濃度を越えない濃度に高めているので、電極層40の乾燥が進行しない状態を回避することができる。   Since the solvent concentration in the atmosphere 57 is increased to a concentration that does not exceed the solvent concentration remaining in the electrode layer 40, it is possible to avoid a state in which the drying of the electrode layer 40 does not proceed.

蒸発速度調整部材70は、乾燥炉50から排出された排気を雰囲気57内に供給するための配管系100を備え、雰囲気57における溶媒濃度を、乾燥炉50から排出された排気を再利用して高めている。排気を再利用するため、低コストで量産を実現することもできる。   The evaporation rate adjusting member 70 includes a piping system 100 for supplying the exhaust discharged from the drying furnace 50 into the atmosphere 57, and the solvent concentration in the atmosphere 57 is reused by reusing the exhaust discharged from the drying furnace 50. It is increasing. Since the exhaust gas is reused, mass production can be realized at low cost.

蒸発速度調整部材70は、排気の温度を結露温度まで下げることなく雰囲気57内に供給している。このため、配管系100における結露を防止するための特段の対策、例えば断熱材の配置などを講じる必要がなく、設備費の低減を図ることができる。   The evaporation rate adjusting member 70 supplies the atmosphere 57 without reducing the temperature of the exhaust gas to the condensation temperature. For this reason, it is not necessary to take special measures for preventing dew condensation in the piping system 100, for example, the arrangement of a heat insulating material, and the equipment cost can be reduced.

(改変例)
乾燥炉50内を複数の乾燥ゾーン51〜56に区画した実施形態を示したが、乾燥ゾーンが一つだけの乾燥炉にも本発明を適用することはできる。各乾燥ゾーン51〜56の雰囲気57に同じ溶媒濃度の給気を供給する実施形態を示したが、各乾燥ゾーン51〜56の雰囲気57に異なる溶媒濃度の給気を供給するようにしてもよい。
(Modification example)
Although the embodiment in which the inside of the drying furnace 50 is partitioned into a plurality of drying zones 51 to 56 is shown, the present invention can be applied to a drying furnace having only one drying zone. Although the embodiment has been described in which supply air having the same solvent concentration is supplied to the atmosphere 57 of each drying zone 51 to 56, supply air having a different solvent concentration may be supplied to the atmosphere 57 of each drying zone 51 to 56. .

雰囲気57における溶媒濃度を、乾燥炉50から排出された排気を再利用して高める実施形態を示したが、本発明は、この場合に限定されるものではない。例えば、NMPなどの溶媒21を噴霧することによって、雰囲気57における溶媒濃度を高めるようにしても良い。   Although the embodiment has been described in which the solvent concentration in the atmosphere 57 is increased by reusing the exhaust discharged from the drying furnace 50, the present invention is not limited to this case. For example, the solvent concentration in the atmosphere 57 may be increased by spraying the solvent 21 such as NMP.

また、溶媒用のキャリアガスとして、窒素等の不活性ガスを用いても良い。   Further, an inert gas such as nitrogen may be used as the carrier gas for the solvent.

ヒーター部80の熱源として熱風を用いた実施形態を示したが、赤外線ヒーターを用いてもよい。また、熱源としての熱風や赤外線ヒーターを組み合わせて用いてもよい。   Although the embodiment using hot air as the heat source of the heater unit 80 has been shown, an infrared heater may be used. Further, hot air or an infrared heater as a heat source may be used in combination.

電極箔30を連続して搬送する形態を図示したが、バッチ式で搬送する形態でもよい。   Although the form which conveys the electrode foil 30 continuously was illustrated, the form conveyed by a batch type may be sufficient.

さらに、本発明は、電極スラリー20を間欠的に塗布する場合に限られるものではなく、電極スラリー20を連続塗布する場合にも適用できることは言うまでもない。   Further, the present invention is not limited to the case where the electrode slurry 20 is intermittently applied, and it goes without saying that the present invention can also be applied to the case where the electrode slurry 20 is continuously applied.

10 電極乾燥装置、
20 電極スラリー、
21 溶媒、
22 活物質、
23 バインダー、
24 導電助剤、
30 電極箔(集電体)、
40 電極層、
50 乾燥炉、
51〜56 乾燥ゾーン、
57 雰囲気、
60 搬送部、
70 蒸発速度調整部材、
80 ヒーター部、
90 ケーシング、
91 仕切り壁、
92 上ノズル、
93 下ノズル、
94 排気口、
95 塗布部、
96 コーター、
100 配管系、
101 第1配管、
102 第2配管、
103 第3配管、
104 バイパス管、
105 熱交換器、
106 バルブ、
107、108 温度センサー、
109 濃度センサー、
110 溶媒回収装置、
111 溶媒回収器、
112 送風ファン、
120 熱交換器、
121 温度センサー、
130 コントローラー。
10 electrode drying device,
20 electrode slurry,
21 solvent,
22 active material,
23 binder,
24 conductive aid,
30 electrode foil (current collector),
40 electrode layers,
50 drying ovens,
51-56 drying zone,
57 Atmosphere,
60 transport section,
70 evaporation rate adjusting member,
80 heater section,
90 casing,
91 partition wall,
92 Upper nozzle,
93 Lower nozzle,
94 exhaust port,
95 Application part,
96 coaters,
100 piping system,
101 first piping,
102 second piping,
103 3rd piping,
104 bypass pipe,
105 heat exchanger,
106 valves,
107, 108 temperature sensor,
109 concentration sensor,
110 solvent recovery device,
111 solvent collector,
112 Blower fan,
120 heat exchanger,
121 temperature sensor,
130 Controller.

Claims (9)

溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる方法であって、
前記電極層内に残存する溶媒濃度と前記乾燥炉内の雰囲気における溶媒濃度との濃度差を、前記雰囲気における溶媒濃度を高めることによって小さくしつつ、熱を付与して前記電極層を乾燥させる電極乾燥方法。
A method of drying an electrode layer formed by applying an electrode slurry containing a solvent to a current collector in a drying furnace,
An electrode for drying the electrode layer by applying heat while reducing the concentration difference between the solvent concentration remaining in the electrode layer and the solvent concentration in the atmosphere in the drying furnace by increasing the solvent concentration in the atmosphere. Drying method.
前記乾燥炉内を複数に区画した乾燥ゾーンごとに、前記雰囲気における溶媒濃度を高めることによって前記濃度差を小さくしつつ、熱を付与して前記電極層を乾燥させる請求項1記載の電極乾燥方法。   2. The electrode drying method according to claim 1, wherein the electrode layer is dried by applying heat to each of the drying zones partitioned into a plurality of drying furnaces while increasing the solvent concentration in the atmosphere while reducing the concentration difference. . 前記雰囲気における溶媒濃度を、前記電極層内に残存する溶媒濃度を越えない濃度に高める請求項1または請求項2に記載の電極乾燥方法。   The electrode drying method according to claim 1, wherein the solvent concentration in the atmosphere is increased to a concentration not exceeding the solvent concentration remaining in the electrode layer. 前記雰囲気における溶媒濃度を、前記乾燥炉から排出された排気を再利用して高める請求項1〜請求項3のいずれか1項に記載の電極乾燥方法。   The electrode drying method according to any one of claims 1 to 3, wherein the solvent concentration in the atmosphere is increased by reusing the exhaust discharged from the drying furnace. 前記排気の温度を結露温度まで下げることなく前記雰囲気内に供給する請求項4に記載の電極乾燥方法。   The electrode drying method according to claim 4, wherein the temperature of the exhaust is supplied into the atmosphere without lowering to a dew condensation temperature. 溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる電極乾燥装置であって、
前記電極層内に残存する溶媒濃度と前記乾燥炉内の雰囲気における溶媒濃度との濃度差を、前記雰囲気における溶媒濃度を高めることによって小さくする蒸発速度調整部材と、
前記電極層を乾燥させる熱を付与するヒーター部と、を有する電極乾燥装置。
An electrode drying apparatus for drying an electrode layer formed by applying an electrode slurry containing a solvent to a current collector in a drying furnace,
An evaporation rate adjusting member that reduces the concentration difference between the solvent concentration remaining in the electrode layer and the solvent concentration in the atmosphere in the drying furnace by increasing the solvent concentration in the atmosphere;
An electrode drying apparatus comprising: a heater unit that applies heat to dry the electrode layer.
前記乾燥炉内は、複数に区画した乾燥ゾーンから構成され、前記乾燥ゾーンごとに、前記蒸発速度調整部材と前記ヒーター部とを設ける請求項6記載の電極乾燥装置。   The electrode drying apparatus according to claim 6, wherein the drying furnace includes a plurality of drying zones, and the evaporation rate adjusting member and the heater unit are provided for each drying zone. 前記蒸発速度調整部材は、前記乾燥炉から排出された排気を前記雰囲気内に供給するための配管系を備える請求項6または請求項7に記載の電極乾燥装置。   The electrode drying apparatus according to claim 6 or 7, wherein the evaporation rate adjusting member includes a piping system for supplying the exhaust discharged from the drying furnace into the atmosphere. 前記蒸発速度調整部材は、前記排気の温度を結露温度まで下げることなく前記雰囲気内に供給する請求項8に記載の電極乾燥装置。   The electrode drying apparatus according to claim 8, wherein the evaporation rate adjusting member supplies the exhaust gas to the atmosphere without reducing the temperature of the exhaust gas to a dew condensation temperature.
JP2011229625A 2011-10-19 2011-10-19 Electrode drying method and electrode drying apparatus Active JP5909986B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011229625A JP5909986B2 (en) 2011-10-19 2011-10-19 Electrode drying method and electrode drying apparatus
KR1020120115755A KR101550487B1 (en) 2011-10-19 2012-10-18 Method for drying electrode and apparatus for drying electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229625A JP5909986B2 (en) 2011-10-19 2011-10-19 Electrode drying method and electrode drying apparatus

Publications (2)

Publication Number Publication Date
JP2013088048A true JP2013088048A (en) 2013-05-13
JP5909986B2 JP5909986B2 (en) 2016-04-27

Family

ID=48441499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229625A Active JP5909986B2 (en) 2011-10-19 2011-10-19 Electrode drying method and electrode drying apparatus

Country Status (2)

Country Link
JP (1) JP5909986B2 (en)
KR (1) KR101550487B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004839A1 (en) * 2013-07-12 2015-01-15 トヨタ自動車株式会社 Drying device, drying method, and battery manufacturing method
JP2016065649A (en) * 2014-09-22 2016-04-28 株式会社Screenホールディングス Dryer, coating membrane forming device and drying method
CN107457163A (en) * 2016-06-02 2017-12-12 宁德时代新能源科技股份有限公司 Coating oven
JP2018522728A (en) * 2015-11-27 2018-08-16 韓国機械研究院Korea Institute Of Machinery & Materials Substrate coating apparatus and conductive film coating apparatus including the same
CN111617942A (en) * 2020-05-21 2020-09-04 浙江兜兰智能设备股份有限公司 Adhesive dispensing and curing production line and process for storage battery
CN114174748A (en) * 2019-08-01 2022-03-11 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
WO2024008855A1 (en) * 2022-07-06 2024-01-11 Northvolt Ab A drying chamber assembly for drying battery electrodes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102170893B1 (en) * 2016-02-12 2020-10-28 주식회사 엘지화학 Electrode Drying Oven For Manufacturing Secondary Battery
KR20170109912A (en) 2016-03-22 2017-10-10 삼성에스디아이 주식회사 Apparatus for drying electrode plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838855A (en) * 1994-07-29 1996-02-13 Chugai Ro Co Ltd Operation of drying and baking oven
JP2002320898A (en) * 2001-04-25 2002-11-05 Yasui Seiki:Kk Coating method and coating device
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2004290963A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Drying method of coating film, optical film having construction laminating optical functional layers formed by the same, polarizer having the film, and picture indicating device provided with the polarizer
JP2010064022A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Solvent recovery system and solvent recovery method
WO2010053125A1 (en) * 2008-11-05 2010-05-14 株式会社 東芝 Film-forming apparatus, film-forming method and semiconductor device
JP2011200822A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Method for producing laminate and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838855A (en) * 1994-07-29 1996-02-13 Chugai Ro Co Ltd Operation of drying and baking oven
JP2002320898A (en) * 2001-04-25 2002-11-05 Yasui Seiki:Kk Coating method and coating device
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2004290963A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Drying method of coating film, optical film having construction laminating optical functional layers formed by the same, polarizer having the film, and picture indicating device provided with the polarizer
JP2010064022A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Solvent recovery system and solvent recovery method
WO2010053125A1 (en) * 2008-11-05 2010-05-14 株式会社 東芝 Film-forming apparatus, film-forming method and semiconductor device
JP2011200822A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Method for producing laminate and equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004839A1 (en) * 2013-07-12 2015-01-15 トヨタ自動車株式会社 Drying device, drying method, and battery manufacturing method
JP2016065649A (en) * 2014-09-22 2016-04-28 株式会社Screenホールディングス Dryer, coating membrane forming device and drying method
JP2018522728A (en) * 2015-11-27 2018-08-16 韓国機械研究院Korea Institute Of Machinery & Materials Substrate coating apparatus and conductive film coating apparatus including the same
CN107457163A (en) * 2016-06-02 2017-12-12 宁德时代新能源科技股份有限公司 Coating oven
CN107457163B (en) * 2016-06-02 2023-07-04 宁德时代新能源科技股份有限公司 Coating oven
CN114174748A (en) * 2019-08-01 2022-03-11 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
CN114174748B (en) * 2019-08-01 2023-03-24 株式会社Lg新能源 Electrode drying apparatus equipped with moisture supply unit and electrode drying method using the same
CN111617942A (en) * 2020-05-21 2020-09-04 浙江兜兰智能设备股份有限公司 Adhesive dispensing and curing production line and process for storage battery
CN111617942B (en) * 2020-05-21 2021-06-08 浙江兜兰智能设备股份有限公司 Adhesive dispensing and curing production line and process for storage battery
WO2024008855A1 (en) * 2022-07-06 2024-01-11 Northvolt Ab A drying chamber assembly for drying battery electrodes

Also Published As

Publication number Publication date
KR101550487B1 (en) 2015-09-04
KR20130043073A (en) 2013-04-29
JP5909986B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5909986B2 (en) Electrode drying method and electrode drying apparatus
JP5655769B2 (en) Electrode manufacturing method
JP5929190B2 (en) Electrode drying method and electrode drying apparatus
JP3953911B2 (en) Method for producing coating sheet
JP2012172960A (en) Drying device and thermal processing system
JP4904782B2 (en) Electrode plate manufacturing method and manufacturing apparatus thereof
JP2008103098A (en) Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment
WO2014103786A1 (en) Method for drying electrode coating film of battery and drying furnace
JP4571841B2 (en) Electrode plate manufacturing method
WO2011105348A1 (en) Method for drying electrode coating film for lithium ion battery
JP5834898B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
US20120295037A1 (en) Method for manufacturing electrodes
JP2012028164A (en) Drying furnace for electrode coating film for lithium ion battery
US11024834B2 (en) Electrode coating apparatus
JP2018041535A (en) Drying method, drying apparatus, electrode manufacturing method, and electrode manufacturing apparatus
JP2009037893A (en) Manufacturing method of negative electrode plate for nonaqueous secondary battery
KR101931018B1 (en) Manufacturing method of electrode and manufacturing apparatus of electrode
WO2011145556A1 (en) Coating apparatus
JP2002231228A (en) Manufacturing device and method for battery component
JPH11329416A (en) Manufacture of sheet electrode
JP2013089573A (en) Electrode, electrode manufacturing device, and electrode manufacturing method
JP2012069358A (en) Electrode drying method and electrode drying apparatus
JP2014127438A (en) Method of manufacturing electrode and dryer
JP2015011964A (en) Electrode plate for battery, apparatus of manufacturing electrode plate for battery and method of manufacturing electrode plate for battery
JP2015044132A (en) Coating film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5909986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250