JP2013084532A - Conductive low-temperature baked carbon - Google Patents

Conductive low-temperature baked carbon Download PDF

Info

Publication number
JP2013084532A
JP2013084532A JP2011235439A JP2011235439A JP2013084532A JP 2013084532 A JP2013084532 A JP 2013084532A JP 2011235439 A JP2011235439 A JP 2011235439A JP 2011235439 A JP2011235439 A JP 2011235439A JP 2013084532 A JP2013084532 A JP 2013084532A
Authority
JP
Japan
Prior art keywords
active material
charging
electrode active
discharging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011235439A
Other languages
Japanese (ja)
Inventor
Masaru Sugita
勝 杉田
Tokio Yamabe
時雄 山邊
Kyosuke Yamuro
亨佑 矢室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Institute of Applied Science
Original Assignee
Nagasaki Institute of Applied Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Institute of Applied Science filed Critical Nagasaki Institute of Applied Science
Priority to JP2011235439A priority Critical patent/JP2013084532A/en
Publication of JP2013084532A publication Critical patent/JP2013084532A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To satisfy needs as follows; in charging/discharging a lithium ion battery, a high current needs to be charged into a battery, or a high current needs to be discharged to outside, and for such charging/discharging electric conductivity of an electrode active material needs to be improved as well as charging/discharging operation needs to be driven by a simple voltage operation.SOLUTION: A lithium ion battery is a battery having as an electrode active material a carbon obtained by baking a xylene formaldehyde resin precursor in an inert atmosphere at 550°C to 950°C and pulverizing it. An internal resistance of a carbon electrode active material of the battery is lower in charging/discharging than that of a synthetic graphite system electrode active material so that input and output of a high current associated with charging/discharging becomes possible, and charging/discharging can be linearly controlled by a voltage after determining a certain charging/discharging capacitance range.

Description

本発明はリチウムイオン電池およびキャパシタ用炭素系活物質である低温焼成炭素に関するものであり、リチウムイオン電池は正極と負極と電解液と分離膜から成り立っている。当該発明はこれらの構成材料の中で負極に関するものである。負極は負極活物質と結着剤と銅箔から成り立つ。負極活物質は一般に黒鉛あるいはその他の炭素系あるいはその他の元素例えばシリコン等である。銅箔は集電体であり、電子を電池外に放出するかあるいは電子を電池外から電池に導入するためである。結着剤は一般にバインダーといわれており一種ののりであって負極活物質を集電体である銅箔に均一に塗布するために負極活物質に配合される。さらにこの結着剤を分散するための溶剤も配合される。当該発明は負極活物質であるその他の炭素に含まれる一般に低温焼成炭素と言われる炭素に関するものである。低温焼成炭素は普通フェノールフォルムアルデヒド樹脂あるいはキシレンフォルムアルデヒド樹脂等前駆体を窒素等不活性ガス雰囲気で500度乃至1000度以下で焼成し粉砕し粒径を均一化して得られる炭素系多孔質ナノカーボンである。当該発明はキシレンフォルムアルデヒド樹脂前駆体を原料として窒素ガス雰囲気で500度乃至1000度以下で焼成して得られる低温焼成炭素に関するものである。The present invention relates to a low-temperature calcined carbon that is a carbon-based active material for lithium ion batteries and capacitors, and the lithium ion battery is composed of a positive electrode, a negative electrode, an electrolytic solution, and a separation membrane. The present invention relates to a negative electrode among these constituent materials. The negative electrode is composed of a negative electrode active material, a binder, and copper foil. The negative electrode active material is generally graphite or other carbon-based or other elements such as silicon. The copper foil is a current collector for discharging electrons to the outside of the battery or introducing electrons from the outside of the battery into the battery. The binder is generally referred to as a binder and is a kind of paste, and is blended into the negative electrode active material in order to uniformly apply the negative electrode active material to the copper foil as a current collector. Furthermore, a solvent for dispersing the binder is also blended. The present invention relates to carbon generally referred to as low-temperature calcined carbon contained in other carbon as a negative electrode active material. Low-temperature calcined carbon is a carbon-based porous nanocarbon obtained by calcining a precursor such as phenol formaldehyde resin or xylene formaldehyde resin in an inert gas atmosphere such as nitrogen at 500 ° to 1000 ° C. and homogenizing the particle size. It is. The present invention relates to a low-temperature calcined carbon obtained by calcining at 500 ° C. to 1000 ° C. or less in a nitrogen gas atmosphere using a xylene formaldehyde resin precursor as a raw material.

近年エネルギー分野において温暖化防止が全地球規模で要望されており、炭酸ガスの削減が必須条件でありそのため発電技術および電力貯蔵技術さらに電力消費技術において効率の良い技術が求められている。これら各種の改善技術の中で当該発明は電力貯蔵技術に含まれる。各種電力貯蔵技術の中で当該発明はリチウムイオン電池の効率向上技術であり、リチウムイオン電池の正極活物質の効率向上は多くの研究がなされてきた。即ち一定の容量の電力を一定時間内に放出したりまたは導入したりするためには、例えば一定時間内に大量の電力すなわち電気容量を導入するすなわち充電するためには正極および負極活物質の導電性を高める必要があり、そうすれば一定時間内に電気容量を多く充電出来ることになる。従来、正極活物質は金属酸化物のリチウム塩でありしたがって電気絶縁性であるため各種の導電性物質例えばアセチレンブラック、カーボンブラック、ケッチェンブラックその他のナノカーボンを正極活物質の表面に被覆し、あるいは正極活物質の作製過程の最終過程において窒素雰囲気中で各種原料を正極活物質と焼成またはその他の熱分解技術により正極活物質表面等にナノカーボンを被覆し、導電性を付与することによりリチウムイオン電池の正極として作動することが可能となる。一方負極活物質は従来天然講演、または天然黒鉛をさらに加工した天然系黒鉛、あるいは合成黒鉛系が主なる活物質であったため導電性を考慮することは必要なかった。
しかも、一定時間内に大容量の電力を貯蔵する電池に供給するまたは電池外に放出すること、言いかえればリチウムイオン電池を貯蔵電池として一定時間内に充電するまたは放電するという現象はリチウムイオン電池内の電極例えば負極活物質に電解液からリチウムイオンを注入するあるいはドープすることでありこの化学現象と同時に外部電導線を経由してくる電子をも負極活物質内に取り込む必要がありながら電圧操作と線形に駆動させることは困難であった。
In recent years, prevention of global warming has been demanded in the energy field on a global scale, and reduction of carbon dioxide gas is an indispensable condition. Therefore, efficient technology is required for power generation technology, power storage technology, and power consumption technology. Among these various improvement techniques, the invention is included in the power storage technique. Among various power storage technologies, the present invention is a technology for improving the efficiency of a lithium ion battery, and many studies have been made on improving the efficiency of a positive electrode active material of a lithium ion battery. That is, in order to release or introduce a certain amount of power within a certain time, for example, to introduce a large amount of power, that is, an electric capacity within a certain time, that is, to charge, the conductivity of the positive and negative electrode active materials. Therefore, it is possible to charge a large amount of electric capacity within a certain time. Conventionally, since the positive electrode active material is a lithium salt of a metal oxide and is therefore electrically insulating, various conductive materials such as acetylene black, carbon black, ketjen black and other nanocarbons are coated on the surface of the positive electrode active material, Alternatively, in the final stage of the production process of the positive electrode active material, various raw materials are coated with nanocarbon on the surface of the positive electrode active material by firing with the positive electrode active material or other thermal decomposition techniques in a nitrogen atmosphere, thereby providing conductivity. It becomes possible to operate as a positive electrode of an ion battery. On the other hand, since the negative electrode active material was mainly a natural lecture, natural graphite obtained by further processing natural graphite, or synthetic graphite, it was not necessary to consider conductivity.
Moreover, the phenomenon of supplying or discharging a large amount of power to a battery that stores a large amount of power within a certain time, in other words, charging or discharging a lithium ion battery as a storage battery within a certain time is a lithium ion battery. In this case, it is necessary to inject lithium ions from the electrolyte into the negative electrode active material, for example, or dope, and simultaneously with this chemical phenomenon, it is necessary to take in electrons that have passed through the external conductive wire into the negative electrode active material. It was difficult to drive linearly.

特開2004−250275

Figure 2013084532
第48回電池討論会講演要旨2A10 第50回電池討論会講演要旨1B21 第46回電池討論会講演要旨2D22 第47回電池討論会講演要旨2D23 JP 2004-250275 A
Figure 2013084532
48th Battery Symposium Abstract 2A10 The 50th Battery Symposium Abstract 1B21 46th Battery Symposium Abstract 2D22 47th Battery Symposium Abstract 2D23

リチウムイオン電池負極活物質として今取り組むべき課題は、負極活物質の大容量化、導電性の付与、電圧に線形に応じてリチウムの挿入脱離(ドープとアンドープ)が行われること等である。比較されるべき基本の活物質は黒鉛である。  Problems to be addressed as a negative electrode active material for a lithium ion battery include increasing the capacity of the negative electrode active material, imparting conductivity, and performing lithium insertion / extraction (doping and undoping) depending on the voltage linearly. The basic active material to be compared is graphite.

キシレンフォルムアルデヒド樹脂前駆体を窒素ガス等不活性中で550℃乃至950℃で焼成して粉砕してなるリチウムイオン電池負極活物質は、すでに報告している結果であり黒鉛系負極活物質が360mAh/g乃至400mAh/gであるのに比較して600mAh/g乃至1200mAh/gでありさらに大容量化も可能であろう。特に各種の物性から優れていると考えられる焼成温度650℃のキシレンフォルムアルデヒド前駆体焼成物は初期充電容量が1176mAh/g初期放電容量が796mAh/gであって極めて大きな放電容量を表出している。従って残された導電性の付与および電圧に線形に応じる充電および放電を駆動させることが出来れば極めて好ましい。
発明者達は鋭意研究した結果、キシレンフォルムアルデヒド樹脂前駆体を原料にして窒素ガス等不活性雰囲気で550℃乃至950℃で焼成してなる炭素活物質PPhSが従来の黒鉛系活物質より内部抵抗が低いことを発見した。さらにある種の物質あるいは天然物質たとえば蔗糖や樟脳をキシレンフォルムアルデヒド樹脂前駆体に配合すれば導電性は改良されることも判明した。
さらにキシレンフォルムアルデヒド樹脂前駆体を窒素等不活性雰囲気中で550℃乃至950℃で焼成してなる炭素活物質の充放電において初期充電および初期放電を終了させた後の充電および放電はほぼクーロン効率100%でありかつ充電と放電にともなうヒステリシス現象は一定容量範囲でほぼ解消されていることを発見した。
この現象から充電および放電を駆動させる操作において電圧に応じた充電および放電が可能になることを発見した。すなわち充電および放電の負極活物質容量が外部の電圧操作に線形に対応しているということである。
A lithium ion battery negative electrode active material obtained by firing and crushing a xylene formaldehyde resin precursor in an inert gas such as nitrogen gas at 550 ° C. to 950 ° C. has already been reported, and a graphite negative electrode active material is 360 mAh. Compared to / mA to 400 mAh / g, it is 600 mAh / g to 1200 mAh / g, and it is possible to further increase the capacity. In particular, a calcined xylene formaldehyde precursor having a firing temperature of 650 ° C., which is considered to be excellent from various physical properties, has an initial charge capacity of 1176 mAh / g and an initial discharge capacity of 796 mAh / g, and exhibits a very large discharge capacity. . Therefore, it is extremely preferable if the remaining conductivity can be driven and charging and discharging corresponding to the voltage can be driven.
As a result of intensive research, the inventors have found that a carbon active material PPhS obtained by firing xylene formaldehyde resin precursor as a raw material in an inert atmosphere such as nitrogen gas at 550 ° C. to 950 ° C. has an internal resistance higher than that of a conventional graphite-based active material. Found that is low. It has also been found that the conductivity can be improved by incorporating certain substances or natural substances such as sucrose or camphor into the xylene formaldehyde resin precursor.
Further, in the charge / discharge of the carbon active material obtained by firing the xylene formaldehyde resin precursor in an inert atmosphere such as nitrogen at 550 ° C. to 950 ° C., the charge and discharge after the completion of the initial charge and initial discharge are almost coulomb efficiency. It was found that the hysteresis phenomenon associated with charging and discharging was 100% and was almost eliminated within a certain capacity range.
From this phenomenon, it was discovered that charging and discharging according to the voltage can be performed in the operation of driving charging and discharging. That is, the negative electrode active material capacity for charging and discharging corresponds linearly to external voltage operation.

キシレンフォルムアルデヒド樹脂前駆体を窒素ガス雰囲気中で650℃で焼成し粉砕して得られた試料PPhS650の85重量部を導電剤アセチレンブラックABの5重量部と結着剤PVDFの10重量部とを溶剤N−メチルピロリドン(NMP)を使用して塗料を作製し、銅箔に塗布し円形にくり抜きプレスして作用極とした。対極をリチウム金属、電解液を1molLiPF/EC−DMC(1:2)1Lとしてコインセルを作製した。
開始電圧3.5V,終止電圧0.001V,定電流0.4mA/cmで充放電を行った。
充放電サイクル試験の結果、初期充電容量は1176mAh/g,初期放電容量は796mAh/g二回目の充電容量は783mAh/g,二回目の放電容量は779mAh/gであり二回目クーロン効率は99.5%であった。三回目以降の充電容量はほぼ二回目の充電容量であり、三回目以降の放電容量はほぼ充電容量に同じであった。すなわち二回目以降の充放電クーロン効率はほぼ100%となり、しかもヒステリシス現象は極めて低減されており一定容量範囲でほぼ電圧に線形に対応していた。
さらに同一条件でコインセルを作製し電流休止法による内部抵抗を測定した。
開始電圧3.0V,終止電圧0.001V,充電および放電の時間は5分間、電流値は0.8mA/断面積2cmとして電流休止は1分で60回繰り返した。
比較するために、活物質に合成系黒鉛MCMB6−28の85重量部と導電剤ABの5重量部と結着剤PVDFの10重量部を溶剤Nメチルピロリドンを使用して塗料化し銅箔に塗布して円形に打ち抜きプレスして作用極とした。対極をリチウム金属とし、電解液を1molLiPF/EC−DMC(1:2)1Lとしてコインセルを作製した。開始電圧3.0V,終止電圧0.001V,充電および放電の時間は5分間、電流値は0.8mA/断面積2cmとして電流休止は1分で60回繰り返した。
その結果、PPhS650の内部抵抗は充電時に200ohm乃至100ohmであった。これに比較してMCMBの内部抵抗は280ohm乃至260ohmであった。PPhS650の内部抵抗は放電時に50ohmから400ohmに上昇し150ohmに戻った。これに比較してMCMBの内部抵抗は、260ohmを維持した。
85 parts by weight of a sample PPhS650 obtained by calcining and pulverizing a xylene formaldehyde resin precursor at 650 ° C. in a nitrogen gas atmosphere was mixed with 5 parts by weight of a conductive agent acetylene black AB and 10 parts by weight of a binder PVDF. A paint was prepared using a solvent N-methylpyrrolidone (NMP), applied to a copper foil, cut into a circle and pressed to obtain a working electrode. A coin cell was prepared using lithium metal as the counter electrode and 1 L of the electrolyte as 1 mol LiPF 6 / EC-DMC (1: 2).
Charging / discharging was performed at a start voltage of 3.5 V, a stop voltage of 0.001 V, and a constant current of 0.4 mA / cm 2 .
As a result of the charge / discharge cycle test, the initial charge capacity was 1176 mAh / g, the initial discharge capacity was 796 mAh / g, the second charge capacity was 783 mAh / g, the second discharge capacity was 779 mAh / g, and the second coulomb efficiency was 99.mA. It was 5%. The charge capacity after the third time was almost the second charge capacity, and the discharge capacity after the third time was almost the same as the charge capacity. That is, the charge / discharge coulombic efficiency after the second time is almost 100%, and the hysteresis phenomenon is extremely reduced, and the voltage corresponds almost linearly to the voltage within a certain capacity range.
Furthermore, a coin cell was produced under the same conditions, and the internal resistance was measured by a current pause method.
The start voltage was 3.0 V, the end voltage was 0.001 V, the charge and discharge time was 5 minutes, the current value was 0.8 mA / cross-sectional area 2 cm 2 , and the current pause was repeated 60 times in 1 minute.
For comparison, 85 parts by weight of synthetic graphite MCMB6-28, 5 parts by weight of conductive agent AB, and 10 parts by weight of binder PVDF were used as active materials and coated on copper foil using solvent N-methylpyrrolidone. Then, it was punched into a circle and pressed to form a working electrode. A coin cell was prepared using lithium metal as the counter electrode and 1 L of 1 mol LiPF 6 / EC-DMC (1: 2) as the electrolyte. The start voltage was 3.0 V, the end voltage was 0.001 V, the charge and discharge time was 5 minutes, the current value was 0.8 mA / cross-sectional area 2 cm 2 , and the current pause was repeated 60 times in 1 minute.
As a result, the internal resistance of PPhS650 was 200 ohms to 100 ohms during charging. Compared with this, the internal resistance of MCMB was 280 ohm to 260 ohm. The internal resistance of PPhS650 increased from 50 ohms to 400 ohms during discharge and returned to 150 ohms. In comparison, the internal resistance of MCMB was maintained at 260 ohms.

各種炭素原料の中で容易に入手できることが可能しかも品質が安定している原料として合成高分子でありかつ難黒鉛化素材であるキシレンフォルムアルデヒド前駆体を選定した。キシレンフォルムアルデヒド樹脂前駆体は本来熱硬化樹脂であるため加熱すれば架橋構造が構成されるため極めて強固な樹脂塊となるが窒素ガス等雰囲気において550℃乃至950℃で焼成するため高温による熱分解により水分(HO)、メチレン架橋(−CH−),水酸基(OH),カルボン酸基(−COOH)、カルボニル基(=C=0)が低減して炭素(C)骨格と末端の水素(H)が残る周端水素含有多環状炭化水素となる。
ただし、焼成温度により水素原子と炭素原子比(H/C)は変化し当然高温化するほどこのH/Cは低下する。従来各種焼成温度を変化させた結果、700℃程度を境にして結晶化による電気伝導性は上昇することは確認しているもののリチウムイオン電池の負極活物質としてのリチウムイオンのドープ量やノンドープ量すなわちリチウムイオン電池の充放電容量の高い条件、比表面積、細孔分布等を考慮して焼成温度を650℃に設定しているが、この焼成温度に限定されるものではない。
Among various carbon raw materials, a xylene formaldehyde precursor that is a synthetic polymer and a non-graphitizing material was selected as a raw material that can be easily obtained and has a stable quality. Since the xylene formaldehyde resin precursor is inherently a thermosetting resin, it forms a very strong resin mass when heated to form a cross-linked structure, but it is fired at 550 ° C. to 950 ° C. in an atmosphere such as nitrogen gas, so it is thermally decomposed at a high temperature. Moisture (H 2 O), methylene bridge (—CH 2 —), hydroxyl group (OH), carboxylic acid group (—COOH), carbonyl group (═C = 0) is reduced, and the carbon (C) skeleton and terminal The peripheral hydrogen-containing polycyclic hydrocarbon in which hydrogen (H) remains is obtained.
However, the hydrogen atom to carbon atom ratio (H / C) varies depending on the firing temperature, and naturally this H / C decreases as the temperature rises. As a result of changing various firing temperatures, it has been confirmed that the electrical conductivity due to crystallization increases at about 700 ° C., but the doping amount and non-doping amount of lithium ion as the negative electrode active material of the lithium ion battery That is, the firing temperature is set to 650 ° C. in consideration of the high charge / discharge capacity conditions of the lithium ion battery, the specific surface area, the pore distribution, etc., but is not limited to this firing temperature.

敢えて電気伝導性の低い650℃焼成を選定してキシレンフォルムアルデヒド前駆体焼成により得られた試料PPhS650を標準試料とした。比較試料として合成系黒鉛であるMCMB6−28を選定した。さらに導電性を高めるために導電材アセチレンブラックABを選定してリチウムイオン電池構成する負極作製に配合した。しかし、比較試料として合成黒鉛系のMCMB6−28を選定したがMCMB6−28に限定されるものではない。また導電剤はアセチレンブラックABに限定されるものではない。Sample PPhS650 obtained by calcining xylene formaldehyde precursor with 650 ° C. calcining having low electrical conductivity was selected as a standard sample. MCMB6-28, which is a synthetic graphite, was selected as a comparative sample. Furthermore, in order to improve electroconductivity, conductive material acetylene black AB was selected and mix | blended with preparation of the negative electrode which comprises a lithium ion battery. However, although synthetic graphite-based MCMB6-28 was selected as a comparative sample, it is not limited to MCMB6-28. Further, the conductive agent is not limited to acetylene black AB.

キシレンフォルムアルデヒド樹脂前駆体を窒素雰囲気内で650℃焼成した負極活物質を試験するための電解液は1molLiPF/EC−DMC(1:2)としたが特に電解液は限定されるものではない。
充放電実験ならびに電流休止法による充放電実験条件は以下の条件であるが特にこの条件に限定されるものではない。充放電条件は開始電圧3.5V,終止電圧0.001V,定電流0.8mA/断面積(2cm)であり、電流休止法による内部抵抗の条件は開始電圧3.0V,終止電圧0.001V,充電および放電の時間は5分間で電流値は0.8mA/断面積(2cm)であり電流休止は1分で60回繰り返した。
The electrolyte for testing the negative electrode active material obtained by baking the xylene formaldehyde resin precursor in a nitrogen atmosphere at 650 ° C. was 1 mol LiPF 6 / EC-DMC (1: 2), but the electrolyte is not particularly limited. .
The charging / discharging experiment and the charging / discharging experiment conditions by the current pause method are the following conditions, but are not particularly limited to these conditions. The charging / discharging conditions were a start voltage of 3.5 V, a stop voltage of 0.001 V, a constant current of 0.8 mA / cross-sectional area (2 cm 2 ), and the internal resistance conditions according to the current pause method were a start voltage of 3.0 V and a stop voltage of 0. The time of charge and discharge was 5 minutes, the current value was 0.8 mA / cross-sectional area (2 cm 2 ), and the current pause was repeated 60 times in 1 minute.

キシレンとフォルムアルデヒド縮合物であるキシレン樹脂前駆体(日本カーバイド社製)を窒素ガス雰囲気で先ず200℃で脱水させその後650℃で焼成した後、粉砕して試料PPh650を得た。試料PPhS650の0.15gに導電剤アセチレンブラック0.016g,結着剤PVDFの0.036および溶剤N−メチルピロリドン0.2CCを混合し、得られた塗料状液体を銅箔の上に塗布した。PPhS650を塗布した銅箔を約170℃で乾燥させたのち、円形に打ち抜き断面積が約2cmの銅箔とカーボンとの貼り合せたものを得た。この円形板を10MPaの圧力でプレスした。プレスを元にもどし、別に準備したスクリューセルのSUS製下基盤の中心にピンセットで設置し、上にSUS板を置き、その上からSUS製上基盤を置いてネジを絞めて測定用セルを作製した。抵抗測定機のプラス極とマイナス極をスクリューセル上下に接続して抵抗値を直接測定した。その後抵抗測定機のプラス極とマイナス極をスクリュ−セルの上下を反対に接続し抵抗値を測定しいずれの抵抗測定値も同一であることを確認した。さらに抵抗値測定後に銅箔上のPPhS650塗布径およびPPhS650の膜厚を測定した。電導度σは公式(1/R)(L/S)により計算して算出した。
ここに、Rは測定した抵抗値(ohm)、LはPPhS650の膜厚(cm)、SはPPhS650の断面積(cm)を示す。測定し計算した結果電導度(PPhS650)は3.3×10−4S/cmであった。
A xylene resin precursor (manufactured by Nippon Carbide), which is a condensate of xylene and formaldehyde, was first dehydrated at 200 ° C. in a nitrogen gas atmosphere and then calcined at 650 ° C. and then pulverized to obtain a sample PPh650. 0.15 g of the sample PPhS650 was mixed with 0.016 g of the conductive agent acetylene black, 0.036 of the binder PVDF and 0.2 CC of the solvent N-methylpyrrolidone, and the resulting paint-like liquid was applied onto the copper foil. . After drying the copper foil coated with PPhS650 at about 170 ° C., a circular punched cross-sectional area of about 2 cm 2 of copper foil and carbon was obtained. This circular plate was pressed at a pressure of 10 MPa. Return the press, install it with tweezers in the center of the SUS lower base of the separately prepared screw cell, place the SUS plate on the top, place the SUS upper base on it, and tighten the screw to make the measurement cell did. The resistance value was measured directly by connecting the plus and minus poles of the resistance measuring machine to the top and bottom of the screw cell. Thereafter, the positive electrode and the negative electrode of the resistance measuring machine were connected to the top and bottom of the screw cell in the opposite direction, and the resistance value was measured to confirm that all the resistance measurement values were the same. Furthermore, after measuring the resistance value, the PPhS650 coating diameter on the copper foil and the film thickness of PPhS650 were measured. The electrical conductivity σ was calculated by the formula (1 / R) (L / S).
Here, R represents the measured resistance value (ohm), L represents the film thickness (cm) of PPhS650, and S represents the cross-sectional area (cm 2 ) of PPhS650. As a result of measurement and calculation, the conductivity (PPhS650) was 3.3 × 10 −4 S / cm.

〔実施例1〕と同様にキシレンフォルムアルデヒド樹脂前駆体3重量部に対し蔗糖(C122211)2重量部を配合した原料を〔実施例1〕と同一条件で焼成し粉砕し試料を得た。実験条件は原料が〔実施例1〕と異なる外は〔実施例1〕と同一である。
得られた電導度は4.3×10−4S/cmであった。
Example 1 in the same manner as in sucrose in xylene formaldehyde resin precursor 3 parts by weight (C 12 H 22 O 11) raw material blended with 2 parts by weight and fired at the same conditions as Example 1 ground sample Got. The experimental conditions are the same as those in [Example 1] except that the raw materials are different from those in [Example 1].
The electric conductivity obtained was 4.3 × 10 −4 S / cm.

〔実施例1〕と同様にキシレンフォルムアルデヒド樹脂前駆体4重量部に対し樟脳(Camphor,C1016)1重量部を配合した原料を〔実施例1〕と同一条件で焼成し粉砕し試料を得た。実験条件は原料が〔実施例1〕と異なる外は〔実施例1〕と同一である。得られた電導度は7.0×10−4S/cmであった。In the same manner as in [Example 1], a raw material in which 1 part by weight of camphor (C 10 H 16 O 1 ) is blended with 4 parts by weight of xylene formaldehyde resin precursor is calcined under the same conditions as in [Example 1]. A sample was obtained. The experimental conditions are the same as those in [Example 1] except that the raw materials are different from those in [Example 1]. The electric conductivity obtained was 7.0 × 10 −4 S / cm.

比較例1Comparative Example 1

合成系黒鉛MCMB6−28の85重量部と導電剤アセチレンブラック5重量部と結着剤PVDFの10重量部を配合して溶剤N−メチルピロリドンを使用して塗料を作製し銅箔上に塗布し〔実施例1〕と同様に円形試料を作製して電導度を測定した。
電導度は20.3×10−4S/cmであった。
85 parts by weight of synthetic graphite MCMB6-28, 5 parts by weight of a conductive agent acetylene black and 10 parts by weight of a binder PVDF are blended to prepare a paint using a solvent N-methylpyrrolidone and apply it on a copper foil. A circular sample was produced in the same manner as in [Example 1], and the electrical conductivity was measured.
The conductivity was 20.3 × 10 −4 S / cm.

〔実施例1〕と同様に作製したリチウムイオン電池用負極すなわち(PPhS650/導電剤AB/結着剤PVDF)/銅箔(Cu))を作用極とし、リチウム金属を対極とし、電解液1molLiPF/(EC−DMC)1Lとしてコインセルを構成し、上限電圧3.0V,下限電圧0.001V、充電および放電の時間は5分間で電流値は0.8mAとして電流休止は1分で60回繰り返した。その結果、この電流休止法で測定した抵抗値は、充電開始時に200ohmであり次第に抵抗値は降下して100ohmであった。
一方放電開始時には50ohmであり次第に上昇し400ohmまで上昇しその後150ohmまで降下した。
A negative electrode for a lithium ion battery produced in the same manner as in [Example 1], that is, (PPhS650 / conductive agent AB / binder PVDF) / copper foil (Cu)) was used as a working electrode, lithium metal was used as a counter electrode, and 1 mol LiPF 6 electrolyte. / (EC-DMC) 1L coin cell, upper limit voltage 3.0V, lower limit voltage 0.001V, charging and discharging time is 5 minutes, current value is 0.8mA, current pause is repeated 60 times in 1 minute It was. As a result, the resistance value measured by this current pause method was 200 ohms at the start of charging, and the resistance value gradually decreased to 100 ohms.
On the other hand, it was 50 ohms at the start of discharge and gradually increased to 400 ohms and then decreased to 150 ohms.

比較例2Comparative Example 2

比較例1と同様に作製したリチウムイオン電池用負極すなわち(MCMB6−28/導電剤AB/結着剤PVDF/銅箔(Cu))を作用極とし、リチウム金属を対極とし、電解液1molLiPF/(EC−DMC)1Lとしてコインセルを構成し、上限電圧3.0V,下限電圧0.001V,充電および放電の時間は5分間で電流値は0.8mAとして電流休止は1分で60回繰り返した。その結果、この電流休止法で測定した抵抗値は充電開始時に280ohmでありその後わずかに降下して260ohmであった。
一方、放電時には260ohmでありその後も260ohmを維持した。
A negative electrode for a lithium ion battery produced in the same manner as in Comparative Example 1, that is, (MCMB6-28 / conductive agent AB / binder PVDF / copper foil (Cu)) was used as a working electrode, lithium metal was used as a counter electrode, and 1 mol LiPF 6 / (EC-DMC) A coin cell was constructed as 1 L, the upper limit voltage was 3.0 V, the lower limit voltage was 0.001 V, the charging and discharging time was 5 minutes, the current value was 0.8 mA, and the current pause was repeated 60 times in 1 minute. . As a result, the resistance value measured by this current pause method was 280 ohms at the start of charging, and then dropped slightly to 260 ohms.
On the other hand, it was 260 ohms at the time of discharge, and maintained 260 ohms thereafter.

実施例1と同様に作製されたPPhS650の85重量部と導電剤アセチレンブラックABの5重量部と結着剤PVDFの10重量部および溶剤N−メチルピロリドンを配合して塗料を作製し銅箔に塗布した。電解液に1mol LiPF/EC−DMC(1:2)1Lを使用し開始電圧3.5V,終止電圧0.001V,定電流0.4mA/cmで充放電サイクル試験を行い初期充電容量1176mAh/g,初期放電容量796mAh/g、二回目充電容量783mAh/g.二回目放電容量779mAh/g,を得た。その後の充電容量および放電容量は二回目充電容量および二回目放電容量に同じであった。すなわち、当該発明のPPhS650を使用して予めリチウム(Li)をプリドープするかもしくは初期充電および放電を終了させた後、このリチウムイオン電池を充放電すればその充電放電はヒステリシスが少なくその充放電容量は790mAh/gであった。このことから一定容量範囲を考慮すれば充電電圧および放電電圧に線形に容量が充放電可能であることがは判明した。A paint was prepared by blending 85 parts by weight of PPhS650 prepared in the same manner as in Example 1, 5 parts by weight of the conductive agent acetylene black AB, 10 parts by weight of the binder PVDF, and the solvent N-methylpyrrolidone. Applied. Using 1 mol of 1 mol LiPF 6 / EC-DMC (1: 2) as the electrolyte, a charge / discharge cycle test was performed at a start voltage of 3.5 V, a stop voltage of 0.001 V, and a constant current of 0.4 mA / cm 2 , and an initial charge capacity of 1176 mAh. / G, initial discharge capacity 796 mAh / g, second charge capacity 783 mAh / g. A second discharge capacity of 779 mAh / g was obtained. The subsequent charge capacity and discharge capacity were the same as the second charge capacity and the second discharge capacity. That is, after pre-doping lithium (Li) using the PPhS650 of the present invention, or after initial charge and discharge are completed, if this lithium ion battery is charged / discharged, the charge / discharge has less hysteresis and its charge / discharge capacity Was 790 mAh / g. From this, it was found that the capacity can be charged and discharged linearly with respect to the charging voltage and the discharging voltage when a certain capacity range is taken into consideration.

以上説明したように本発明によればリチウムイオン電池により電力を貯蔵するため負極活物質としてキシレンフォルムアルデヒド樹脂前駆体を原料とする低温焼成炭素で構成したリチウムイオン電池の放電および充電時における内部抵抗は合成黒鉛の内部抵抗より低くそのため短時間に大電流を外部に供給出来および短時間に大電流を外部から電池へ充電が可能であり、しかも一定容量範囲を考慮すれば充電電圧および放電電圧に線形に制御できる二次電池として産業上の利用は有望である。As described above, according to the present invention, the internal resistance at the time of discharging and charging of a lithium ion battery composed of low-temperature calcined carbon using a xylene formaldehyde resin precursor as a negative electrode active material in order to store electric power by a lithium ion battery. Is lower than the internal resistance of synthetic graphite, so that a large current can be supplied to the outside in a short time, and a large current can be charged from the outside to the battery in a short time. Industrial applications are promising as secondary batteries that can be controlled linearly.

Claims (7)

キシレンフォルムアルデヒド樹脂前駆体を原料として不活性雰囲気内で焼成してなるリチウムイオン電池用電極活物質Electrode active material for lithium-ion batteries, fired in an inert atmosphere using xylene formaldehyde resin precursor as a raw material 焼成温度が550℃乃至950℃である〔請求項1〕The firing temperature is 550 ° C. to 950 ° C. [Claim 1] 原料に樟脳を添加した〔請求項1〕Addition of camphor to raw material [Claim 1] 原料に蔗糖を添加した〔請求項1〕Sucrose was added to the raw material [Claim 1] 〔請求項1〕を電極活物質として構成されるリチウムイオン電池Lithium ion battery comprising [Claim 1] as an electrode active material 〔請求項1〕を電極活物質として構成されるリチウムイオン電池を予め初期充放電終了させた後に一定充放電容量範囲を決めてから充電電圧および放電電圧を操作させることにより当該リチウムイオン電池を充放電駆動させる方法A lithium ion battery comprising [Claim 1] as an electrode active material is charged and discharged by operating a charge voltage and a discharge voltage after a predetermined charge / discharge capacity range is determined after initial charge / discharge is completed in advance. Discharge drive method 〔請求項1〕を電極活物質として構成されるリチウムイオン電池を予めリチウムのプリドープを終了させ放電させた後に一定充放電容量範囲をきめてから充電電圧および放電電圧を操作させることにより当該リチウムイオン電池を充放電駆動させる方法A lithium ion battery comprising [Claim 1] as an electrode active material is discharged after the lithium pre-dope has been terminated in advance, and after a predetermined charge / discharge capacity range has been determined, the charge voltage and the discharge voltage are manipulated to operate the lithium ion battery. Method for driving a battery to charge / discharge
JP2011235439A 2011-10-11 2011-10-11 Conductive low-temperature baked carbon Pending JP2013084532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235439A JP2013084532A (en) 2011-10-11 2011-10-11 Conductive low-temperature baked carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235439A JP2013084532A (en) 2011-10-11 2011-10-11 Conductive low-temperature baked carbon

Publications (1)

Publication Number Publication Date
JP2013084532A true JP2013084532A (en) 2013-05-09

Family

ID=48529525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235439A Pending JP2013084532A (en) 2011-10-11 2011-10-11 Conductive low-temperature baked carbon

Country Status (1)

Country Link
JP (1) JP2013084532A (en)

Similar Documents

Publication Publication Date Title
KR101939270B1 (en) Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
CN102683705A (en) Lithium-titanate-coated modified graphite composite anode material, and preparation method and application thereof
TW201422526A (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
WO2016206548A1 (en) Preparation method for lithium battery high-voltage modified negative electrode material
US10862124B2 (en) Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
KR101454380B1 (en) Silicon Compound Based Negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
CN103928668B (en) Lithium ion battery and preparation method of anode material thereof
CN104393291B (en) A kind of vanadium phosphate cathode material of doping, cladding modification altogether and preparation method thereof
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
CN104659346A (en) Germanium/carbon composite negative electrode material and preparation method thereof
CN102339999B (en) Polyanion composite material, its preparation method and application
CN111029551A (en) Synthesis of in situ carbon coated FeF2Method for producing granules, and FeF2Particle and battery
CN113611839A (en) Novel mixed system lithium-rich manganese-based positive plate and preparation method thereof, and lithium ion battery
CN113539694A (en) Method for reducing oxidation potential of cathode pre-metallization, application of method and electrochemical energy storage device
JP2012204310A (en) Lithium pre-doping method, manufacturing method of electrode, and power storage device made using the methods
WO2017206307A1 (en) Method for applying graphene as conductive agent to anode slurry for lithium-ion batteries
CN113921792A (en) Lithium ion battery positive pole piece and preparation method and application thereof
JP4941623B2 (en) Electrode material for electrochemical device, method for producing the same, electrode for electrochemical device, and electrochemical device
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP2015115233A (en) Negative electrode for magnesium ion secondary battery and magnesium ion secondary battery
TWI434453B (en) Modification of artificial graphite as a lithium battery anode material preparation method
CN105226251A (en) A kind of pure carbon compound cathode materials and preparation method thereof
CN112599733B (en) Synthesis method of phosphorus-doped Si/SiOx/C negative electrode material
Yang et al. Capacity-enhanced and kinetic-expedited zinc-ion storage ability in a Zn 3 V 3 O 8/VO 2 cathode enabled by heterostructural design