JP2013084358A - Method of manufacturing battery - Google Patents

Method of manufacturing battery Download PDF

Info

Publication number
JP2013084358A
JP2013084358A JP2011221642A JP2011221642A JP2013084358A JP 2013084358 A JP2013084358 A JP 2013084358A JP 2011221642 A JP2011221642 A JP 2011221642A JP 2011221642 A JP2011221642 A JP 2011221642A JP 2013084358 A JP2013084358 A JP 2013084358A
Authority
JP
Japan
Prior art keywords
piece
container
battery
current collector
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011221642A
Other languages
Japanese (ja)
Inventor
Yasushi Tsuchida
靖 土田
Akira Tsujiko
曜 辻子
Michiyuki Ide
道行 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011221642A priority Critical patent/JP2013084358A/en
Publication of JP2013084358A publication Critical patent/JP2013084358A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery capable of suppressing deterioration of a collector and an electrode body in a manufacturing process.SOLUTION: There is provided a method of manufacturing a battery having: a container having a container body and a lid member; and an electrode body accommodated in the container. The electrode body includes a current collector part protruding outward. The container includes: a terminal protruding outside of the container; and a connection jig provided inside of the container and electrically connected with the terminal. The connection jig includes a first piece and a second piece provided on the lid member side with respect to the first piece. The method of manufacturing a battery includes: accommodating the electrode body in the container so as to set the current collector part between the first piece and the second piece; and deforming the connection jig so that the first piece and the second piece are close to each other by pressing the first piece and the second piece with the container body and the lid member as well as pressing the current collector part with the first piece and the second piece to fix the current collector.

Description

本発明は、電池の製造方法に関する。   The present invention relates to a battery manufacturing method.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、リチウムイオン二次電池は小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されている。また、近年は電気自動車やハイブリッド自動車用等の大型機器の動力用としても、リチウムイオン二次電池の需要が高まっている。   A lithium ion secondary battery has the characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. Therefore, lithium ion secondary batteries are used in information devices such as mobile phones as secondary batteries that are easy to reduce in size and weight. In recent years, the demand for lithium ion secondary batteries has also increased for powering large equipment such as electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられている。当該電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質が知られている。液体状の電解質(以下において、「電解液」という。)は、正極層や負極層の内部へと浸透しやすい。そのため、電解液が用いられる場合には、正極層や負極層に含有されている活物質と電解質との界面が形成され易いので、電池の性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、不燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「全固体リチウム電池」という。)が提案されている。   A lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween. As an electrolyte used for the electrolyte layer, for example, a non-aqueous liquid or solid substance is known. A liquid electrolyte (hereinafter referred to as “electrolytic solution”) easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, when the electrolytic solution is used, the interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolyte is easily formed, so that the battery performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, when a solid electrolyte that is nonflammable (hereinafter referred to as “solid electrolyte”) is used, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter referred to as “all-solid lithium battery”) in a form provided with a layer containing a solid electrolyte that is nonflammable (hereinafter referred to as “solid electrolyte layer”) is proposed. Has been.

このような電池に適用可能な技術として、例えば特許文献1には、発電要素の端部からはみ出した電極の集電基材となる金属箔が複数重なり合って金属板からなる挟持板の板片間に挟み込まれかしめられると共に、端子に接続された集電接続体にこの挟持板が溶接により接続固定されたことを特徴とする電池が開示されている。また、特許文献2には、ケース本体と蓋部材とによって囲まれる内部空間に、積層された正極および正極リード部材を有する平板状の正極部材と、積層された負極および負極リード部材を有する平板状の負極部材と、正極および負極の間に介設された電解質層と、ケース本体上に形成された正極端子および負極端子と、を配置した電池であって、正極端子、負極端子の上に、正極リード部材、負極リード部材をそれぞれ載置し、正極リード部材、負極リード部材の上に絶縁物を載置して、蓋部材の一部の上から圧着した1対の圧着部が設けられている電池が開示されている。   As a technique applicable to such a battery, for example, in Patent Document 1, a plurality of metal foils serving as a current collecting base material for electrodes protruding from the end portion of the power generation element overlap each other between the plate pieces of the sandwich plate made of metal plates. In addition, a battery is disclosed in which the clamping plate is connected and fixed to a current collector connection body connected to a terminal by welding. In Patent Document 2, a flat plate-shaped positive electrode member having a stacked positive electrode and a positive electrode lead member and a flat plate shape having a stacked negative electrode and a negative electrode lead member in an internal space surrounded by the case body and the lid member. A negative electrode member, an electrolyte layer interposed between the positive electrode and the negative electrode, and a positive electrode terminal and a negative electrode terminal formed on the case body, on the positive electrode terminal and the negative electrode terminal, A positive electrode lead member and a negative electrode lead member are respectively placed, an insulator is placed on the positive electrode lead member and the negative electrode lead member, and a pair of crimping parts are provided which are crimped from a part of the lid member. A battery is disclosed.

特開2004−071199号公報JP 2004-071199 A 特開2009−199921号公報JP 2009-199921 A

上記特許文献1に記載された電池では、端子と集電体(集電接続体)とを確実に接続することが容易であると考えられる。しかしながら、特許文献1に記載された電池のような、端子と集電体とが接続された状態の電池は、該電池を容器に収容して該容器と端子との隙間を溶接などによってシール処理するときに、熱が端子等を介して集電体に伝わる。また、集電接続体と挟持板とを溶接により接続固定するときにも熱が集電体に伝わる。このとき、その熱によって集電体や電極体を劣化させる虞があるという問題があった。また、特許文献2に開示されている技術では、容器と端子との隙間のシール処理について考慮していない。それゆえ、特許文献1及び特許文献2に開示されている技術を組み合わせたとしても、上記問題を解決することはできなかった。   In the battery described in Patent Document 1, it is considered easy to reliably connect the terminal and the current collector (current collector connection body). However, in a battery in which a terminal and a current collector are connected, such as the battery described in Patent Document 1, the battery is accommodated in a container, and the gap between the container and the terminal is sealed by welding or the like. When heat is transmitted, heat is transferred to the current collector through the terminal or the like. Also, heat is transmitted to the current collector when the current collector connector and the clamping plate are connected and fixed by welding. At this time, there is a problem that the current collector and the electrode body may be deteriorated by the heat. Further, the technique disclosed in Patent Document 2 does not consider the sealing process for the gap between the container and the terminal. Therefore, even if the techniques disclosed in Patent Document 1 and Patent Document 2 are combined, the above problem cannot be solved.

そこで本発明は、製造過程における集電体や電極体の劣化を抑制できる電池の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the battery which can suppress deterioration of the electrical power collector and electrode body in a manufacture process.

上記課題を解決するために、本発明は以下の構成をとる。すなわち、
本発明は、容器本体及び蓋部材を有する容器と、該容器内に収容された電極体とを有する電池の製造方法であって、電極体は、外側に突出した集電部を備えており、容器は、該容器の外側に突出した端子と、該容器の内側に備えられるとともに該端子と電気的に接続された接続冶具とを備えており、該接続冶具は、第1の片と、該第1の片より蓋部材側に備えられた第2の片とを備えており、集電部が第1の片と第2の片との間に収まるように、電極体を容器に収容する工程、並びに、容器本体と蓋部材とで第1の片及び第2の片を押さえることによって、第1の片及び第2の片が近付くように接続冶具を変形させるとともに、第1の片及び第2の片で集電部を押さえて固定する工程、を備える、電池の製造方法である。
In order to solve the above problems, the present invention has the following configuration. That is,
The present invention is a method of manufacturing a battery having a container body and a container having a lid member, and an electrode body accommodated in the container, the electrode body comprising a current collector protruding outward, The container includes a terminal projecting to the outside of the container, and a connection jig provided inside the container and electrically connected to the terminal. The connection jig includes a first piece, And a second piece provided closer to the lid member than the first piece, and the electrode body is accommodated in the container so that the current collector is located between the first piece and the second piece. And the step of deforming the connecting jig so that the first piece and the second piece approach each other by pressing the first piece and the second piece with the container body and the lid member, and the first piece and And a step of pressing and fixing the current collector with the second piece.

本発明において、「電気的に接続され」とは、両者の間を通電可能な形態を意味し、直に接している形態に限定されず、他の部材を介して間接的に接している形態も含む概念である。   In the present invention, “electrically connected” means a form in which electricity can be passed between the two, and is not limited to a form in which it is in direct contact, but is in a form in which it is indirectly in contact through another member. It is a concept that also includes

上記本発明の電池の製造方法において、電極体を容器に収容する工程より前に、容器の端子が突出した部分にシール処理を行うことが好ましい。   In the battery manufacturing method of the present invention, it is preferable to perform a sealing process on a portion where the terminal of the container protrudes before the step of housing the electrode body in the container.

上記本発明の電池の製造方法において、第1の片及び第2の片によって集電部に加えられる圧力が1kg/cm以上であることが好ましい。 In the battery manufacturing method of the present invention, the pressure applied to the current collector by the first piece and the second piece is preferably 1 kg / cm 2 or more.

また、上記本発明の電池の製造方法において、電極体が固体電解質層を備えることが好ましい。   In the battery manufacturing method of the present invention, the electrode body preferably includes a solid electrolyte layer.

本発明の電池の製造方法によれば、製造過程における集電体や電極体の劣化を抑制することができる。   According to the battery manufacturing method of the present invention, it is possible to suppress the deterioration of the current collector and the electrode body during the manufacturing process.

図1(A)は電池10を概略的に示した断面図である。図1(B)は図1(A)に示したIB−IB線での電池10の断面を概略的に示した図である。FIG. 1A is a cross-sectional view schematically showing the battery 10. FIG. 1B is a diagram schematically showing a cross section of the battery 10 taken along the line IB-IB shown in FIG. 電池10の製造方法S10の流れを概略的に示した図である。It is the figure which showed schematically the flow of manufacturing method S10 of the battery 10. FIG. 電池10の製造過程を説明する断面図である。4 is a cross-sectional view illustrating a manufacturing process of battery 10. FIG.

以下、図面を参照しつつ、主に全固体リチウム電池を製造する場合について、本発明の電池の製造方法を説明する。各図面は、図示と理解のしやすさの便宜上、適宜縮尺等は変更して簡略化している。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。   Hereinafter, the battery manufacturing method of the present invention will be described mainly for the case of manufacturing an all-solid lithium battery with reference to the drawings. Each drawing is simplified by changing the scale and the like as appropriate for the convenience of illustration and understanding. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

図1は、本発明の電池の製造方法によって製造される電池の一例である電池10の構成を概略的に示した図である。図1(A)は電池10を概略的に示した断面図である。図1(B)は図1(A)に示したIB−IB線での電池10の断面を概略的に示した図である。   FIG. 1 is a diagram schematically showing a configuration of a battery 10 which is an example of a battery manufactured by the battery manufacturing method of the present invention. FIG. 1A is a cross-sectional view schematically showing the battery 10. FIG. 1B is a diagram schematically showing a cross section of the battery 10 taken along the line IB-IB shown in FIG.

図1に示したように、電池10は、容器本体41及び蓋部材42を有する容器4と、容器4内に収容された電極体1とを有している。また、電極体1は、外側に突出した正極集電部2a、及び負極集電部2b(以下、正極集電部2aと負極集電部2bとを区別する必要がない場合は、単に「集電部2」と表記する場合がある。)を備えている。また、容器4は、容器4の外側に突出した正極端子3a及び負極端子3b(以下、正極端子3aと負極端子3bとを区別する必要がない場合は、単に「端子3」と表記する場合がある。)と、容器4の内側に備えられるとともに端子3と電気的に接続された接続冶具6a、6b(以下、接続冶具6aと接続冶具6bとを区別する必要がない場合は、単に「接続冶具6」と表記する場合がある。)とを備えている。さらに、接続冶具6a及び接続冶具6bはそれぞれ、第1の片61と第1の片61より蓋部材42側に備えられた第2の片62とを備えている。以下、これらの構成要素について詳細に説明する。   As shown in FIG. 1, the battery 10 includes a container 4 having a container main body 41 and a lid member 42, and the electrode body 1 accommodated in the container 4. In addition, the electrode body 1 may be formed simply by “collecting the positive electrode current collector 2a and the negative electrode current collector 2b (hereinafter referred to as the positive electrode current collector 2a and the negative electrode current collector 2b” when it is not necessary to distinguish between them. May be referred to as “electric part 2”). Further, the container 4 may be simply referred to as “terminal 3” when it is not necessary to distinguish between the positive electrode terminal 3a and the negative electrode terminal 3b (hereinafter referred to as the positive electrode terminal 3a and the negative electrode terminal 3b) projecting outside the container 4. If there is no need to distinguish between the connection jigs 6a and 6b provided inside the container 4 and electrically connected to the terminal 3 (hereinafter referred to as the connection jig 6a and the connection jig 6b), simply “connect” May be referred to as “Jig 6”). Further, each of the connection jig 6 a and the connection jig 6 b includes a first piece 61 and a second piece 62 provided closer to the lid member 42 than the first piece 61. Hereinafter, these components will be described in detail.

電極体1は、正極層と、負極層と、正極層及び負極層に挟持された固体電解質層とを有しており、正極層は正極集電部2a及び接続冶具6aを介して正極端子3aに接続されており、負極層は負極集電部2b及び接続冶具6bを介して負極端子3bに接続されている。また、正極端子3a及び負極端子3bは、その一端が容器4の外側に位置している。   The electrode body 1 has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer. The positive electrode layer is connected to the positive electrode terminal 3a via the positive electrode current collector 2a and the connection jig 6a. The negative electrode layer is connected to the negative electrode terminal 3b via the negative electrode current collector 2b and the connection jig 6b. One end of each of the positive electrode terminal 3 a and the negative electrode terminal 3 b is located outside the container 4.

電極体1において、正極層に含有させる正極活物質としては、リチウムイオン二次電池の正極層に含有させることが可能な公知の正極活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)等の層状化合物を例示することができる。また、正極層には、リチウムイオン二次電池の正極層に含有させることが可能な公知の固体電解質を適宜含有させることができる。そのような固体電解質としては、LiPO等の酸化物系固体電解質のほか、LiPSや、LiS:P=50:50〜100:0となるようにLiS及びPを混合して作製した硫化物系固体電解質(例えば、モル比で、LiS:P=75:25となるようにLiS及びPを混合して作製した硫化物固体電解質)等を例示することができる。このほか、正極層には、正極活物質と固体電解質とを結着させるバインダーや導電性を向上させる導電材が含有されていても良い。正極層に含有させることが可能なバインダーとしては、ブチレンゴム等を例示することができ、正極層に含有させることが可能な導電材としては、カーボンブラック等を例示することができる。また、正極層の作製時には、リチウムイオン二次電池の正極層作製時に用いるスラリーを調整する際に使用可能な公知の溶媒を適宜用いることができる。そのような溶媒としては、ヘプタン等を例示することができる。 In the electrode body 1, as a positive electrode active material contained in the positive electrode layer, a known positive electrode active material that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used. As such a positive electrode active material, a layered compound such as lithium cobaltate (LiCoO 2 ) can be exemplified. The positive electrode layer can appropriately contain a known solid electrolyte that can be contained in the positive electrode layer of the lithium ion secondary battery. Such solid electrolyte, Li 3 PO 4 addition of the oxide-based solid electrolytes such as, Li 3 PS 4 and, Li 2 S: P 2 S 5 = 50: 50~100: 0 become as Li 2 A sulfide-based solid electrolyte prepared by mixing S and P 2 S 5 (for example, mixing Li 2 S and P 2 S 5 so that the molar ratio is Li 2 S: P 2 S 5 = 75: 25) Examples thereof include a sulfide solid electrolyte produced in the above manner. In addition, the positive electrode layer may contain a binder that binds the positive electrode active material and the solid electrolyte and a conductive material that improves conductivity. Examples of the binder that can be contained in the positive electrode layer include butylene rubber, and examples of the conductive material that can be contained in the positive electrode layer include carbon black. In preparing the positive electrode layer, a known solvent that can be used when adjusting the slurry used in preparing the positive electrode layer of the lithium ion secondary battery can be appropriately used. As such a solvent, heptane and the like can be exemplified.

負極層に含有させる負極活物質としては、リチウムイオン二次電池の負極層に含有させることが可能な公知の負極活物質を適宜用いることができる。そのような負極活物質としては、グラファイト等を例示することができる。また、負極層には固体電解質を含有させることができ、リチウムイオン二次電池の負極層に含有させることが可能な公知の固体電解質を適宜含有させることができる。そのような固体電解質としては、正極層に含有させることが可能な上記固体電解質等を例示することができる。このほか、負極層には、負極活物質と固体電解質とを結着させるバインダーや導電性を向上させる導電材が含有されていても良い。負極層に含有させることが可能なバインダーや導電材としては、正極層に含有させることが可能な上記バインダーや導電材等を例示することができる。また、負極層の作製時には、正極層の作製時に使用可能な上記溶媒等を適宜用いることができる。   As the negative electrode active material contained in the negative electrode layer, a known negative electrode active material that can be contained in the negative electrode layer of the lithium ion secondary battery can be appropriately used. Examples of such a negative electrode active material include graphite. Further, the negative electrode layer can contain a solid electrolyte, and a known solid electrolyte that can be contained in the negative electrode layer of the lithium ion secondary battery can be appropriately contained. Examples of such a solid electrolyte include the solid electrolyte that can be contained in the positive electrode layer. In addition, the negative electrode layer may contain a binder that binds the negative electrode active material and the solid electrolyte and a conductive material that improves conductivity. Examples of the binder and conductive material that can be contained in the negative electrode layer include the binder and conductive material that can be contained in the positive electrode layer. Moreover, the said solvent etc. which can be used at the time of preparation of a positive electrode layer can be used suitably at the time of preparation of a negative electrode layer.

固体電解質層に含有させる固体電解質としては、正極層に含有させることが可能な上記固体電解質等を例示することができる。また、固体電解質層の作製時には、正極層の作製時に使用可能な上記溶媒等を適宜用いることができる。   Examples of the solid electrolyte contained in the solid electrolyte layer include the above solid electrolyte that can be contained in the positive electrode layer. Moreover, the said solvent etc. which can be used at the time of preparation of a positive electrode layer can be used suitably at the time of preparation of a solid electrolyte layer.

正極集電部2a及び負極集電部2b、並びに、正極端子3a及び負極端子3bは、リチウムイオン二次電池の正極集電体及び負極集電体、並びに、正極端子及び負極端子として使用可能な公知の導電性材料によって構成することができる。そのような導電性材料としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。また、接続冶具6a及び接続冶具6bは、後に説明するようにして集電部2を固定可能な形態であって、通電可能な材料で構成されている。接続冶具6a及び接続冶具6bは、例えば、上述した正極集電部2a及び負極集電部2bと同様の材料で構成することができる。   The positive electrode current collector 2a and the negative electrode current collector 2b, and the positive electrode terminal 3a and the negative electrode terminal 3b can be used as a positive electrode current collector and a negative electrode current collector, and a positive electrode terminal and a negative electrode terminal of a lithium ion secondary battery. It can be composed of a known conductive material. Examples of such a conductive material include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Examples of the metal material to be included can be given. Moreover, the connection jig 6a and the connection jig 6b are the forms which can fix the current collection part 2 so that it may demonstrate later, Comprising: It is comprised with the material which can supply with electricity. The connection jig 6a and the connection jig 6b can be made of, for example, the same material as that of the positive electrode current collector 2a and the negative electrode current collector 2b described above.

なお、電極体1はフィルムに包まれた形態であってもよい。当該フィルムとしては、リチウムイオン二次電池の使用時の環境に耐えることができ、気体や液体を透過させない性質を有し、且つ、密封することができるフィルムを、特に限定されることなく用いることができる。そのようなフィルムの構成材料としては、ポリエチレン、ポリフッ化ビニルやポリ塩化ビニリデン等の樹脂フィルムのほか、これらの表面にアルミニウム等の金属を蒸着させた金属蒸着フィルム等を例示することができる。   The electrode body 1 may be in a form wrapped in a film. As the film, a film that can withstand the environment at the time of use of the lithium ion secondary battery, has a property of not allowing gas or liquid to permeate, and can be sealed is used without particular limitation. Can do. Examples of the constituent material of such a film include resin films such as polyethylene, polyvinyl fluoride, and polyvinylidene chloride, and metal deposited films obtained by depositing a metal such as aluminum on these surfaces.

容器本体41及び蓋部材42は、電池10の作動時の環境に耐え得る材料によって構成されていれば、その構成材料は特に限定されない。容器本体41及び蓋部材42は、例えば、アルミニウムやステンレス鋼等の金属製とすることができる。   The container main body 41 and the lid member 42 are not particularly limited as long as they are made of a material that can withstand the environment during operation of the battery 10. The container body 41 and the lid member 42 can be made of a metal such as aluminum or stainless steel, for example.

このような電池10の製造方法を例にして、本発明の電池の製造方法について以下に説明する。図2は、電池10の製造方法S10の流れを概略的に示した図である。図3は、電池10の製造過程を説明する断面図である。   Taking the manufacturing method of the battery 10 as an example, the manufacturing method of the battery of the present invention will be described below. FIG. 2 is a diagram schematically showing the flow of the manufacturing method S10 of the battery 10. FIG. 3 is a cross-sectional view illustrating the manufacturing process of the battery 10.

図2に示したように、本発明の電池の製造方法は、電極体作製工程(以下、工程S11と表記する。)と、容器用意工程(以下、工程S12と表記する。)と、収容工程(以下、工程S13と表記する。)と、固定工程(以下、工程S14と表記する。)とを備えている。以下、これらの工程について説明する。   As shown in FIG. 2, the battery manufacturing method of the present invention includes an electrode body manufacturing step (hereinafter referred to as step S11), a container preparation step (hereinafter referred to as step S12), and a housing step. (Hereinafter referred to as step S13) and a fixing step (hereinafter referred to as step S14). Hereinafter, these steps will be described.

工程S11は、電極体1を作製する工程であって、その方法は特に限定されない。電極体1は、例えば以下の工程を経て作製することができる。電極体1を作製する際には、まず、正極層及び負極層の間に固体電解質層を配置する過程を経て積層体を作製する。正極層は、例えば、少なくとも正極活物質及び固体電解質を溶媒に分散して作製した正極用組成物を、正極集電体の表面に塗布する過程を経て作製することができる。負極層は、例えば、負極活物質及び固体電解質を溶媒に分散して作製した負極用組成物を、負極集電体の表面に塗布する過程を経て作製することができる。固体電解質層は、例えば、固体電解質を溶媒に分散して作製した電解質用組成物を、正極層の表面に塗布する過程を経て作製することができる。こうして、固体電解質層を作製したら、固体電解質層が正極層及び負極層で挟まれるように、例えば、正極層の表面に形成した固体電解質層の上に、負極集電体の表面に形成した負極層を積層し、積層方向の両端側から圧縮力を付与する過程を経て、積層体を作製することができる。こうして積層体を作製したら、接続冶具6bを介して負極端子3bに接続される負極集電体の端部(負極集電部2b)、及び、接続冶具6aを介して正極端子3aに接続される正極集電体の端部(正極集電部2a)の全部を収容しないようにしながら、フィルムで積層体を包み、フィルムの外縁を熱溶着等の公知の方法で接合することにより、電極体1を作製することができる。   Step S11 is a step of manufacturing the electrode body 1, and the method is not particularly limited. The electrode body 1 can be produced through the following steps, for example. When producing the electrode body 1, first, a laminated body is produced through a process of disposing a solid electrolyte layer between the positive electrode layer and the negative electrode layer. The positive electrode layer can be prepared, for example, through a process in which a positive electrode composition prepared by dispersing at least a positive electrode active material and a solid electrolyte in a solvent is applied to the surface of the positive electrode current collector. The negative electrode layer can be prepared, for example, through a process in which a negative electrode composition prepared by dispersing a negative electrode active material and a solid electrolyte in a solvent is applied to the surface of the negative electrode current collector. The solid electrolyte layer can be produced, for example, through a process of applying an electrolyte composition produced by dispersing a solid electrolyte in a solvent to the surface of the positive electrode layer. Thus, when the solid electrolyte layer is produced, the negative electrode formed on the surface of the negative electrode current collector on the solid electrolyte layer formed on the surface of the positive electrode layer, for example, so that the solid electrolyte layer is sandwiched between the positive electrode layer and the negative electrode layer A laminated body can be produced through a process of laminating layers and applying a compressive force from both ends in the laminating direction. When the laminate is manufactured in this manner, the end of the negative electrode current collector (negative electrode current collector 2b) connected to the negative electrode terminal 3b via the connection jig 6b and the positive electrode terminal 3a via the connection jig 6a are connected. The electrode body 1 is formed by wrapping the laminated body with a film and bonding the outer edge of the film by a known method such as heat welding while not accommodating the entire end of the positive electrode current collector (positive electrode current collector 2a). Can be produced.

工程S12は、電極体1を収容する容器4を用意する工程である。容器4は、上述したように容器本体41及び蓋部材42を有している。また、容器4は、容器4の外側に突出した端子3と、容器4の内側に備えられるとともに端子3と電気的に接続された接続冶具6とを備えている。工程S12では、後の工程S13より前に、端子3と接続冶具6との電気的な接続を済ませておく。端子3と接続冶具6とを電気的に接続する方法は特に限定されない。例えば、端子3と接続冶具6とを一体の部材で構成してもよく、端子3と接続冶具6とを別々に作製してから両者を溶接してもよい。また、工程S12では、後の工程S13より前に、容器本体41の端子3が突出した部分、すなわち、容器本体41と端子3との隙間に、シール処理を済ませておく。容器本体41と端子3との隙間のシール処理の方法も特に限定されない。例えば、容器本体41と端子3との隙間を溶接することによって容器本体41と端子3との隙間をシール処理することができる。   Step S12 is a step of preparing the container 4 that houses the electrode body 1. The container 4 has the container main body 41 and the lid member 42 as described above. In addition, the container 4 includes a terminal 3 that protrudes outside the container 4, and a connection jig 6 that is provided inside the container 4 and is electrically connected to the terminal 3. In step S12, the electrical connection between the terminal 3 and the connection jig 6 is completed before the subsequent step S13. A method for electrically connecting the terminal 3 and the connection jig 6 is not particularly limited. For example, the terminal 3 and the connection jig 6 may be configured as an integral member, or the terminal 3 and the connection jig 6 may be separately manufactured and then both may be welded. Further, in step S12, the sealing process is completed in the portion where the terminal 3 of the container body 41 protrudes, that is, the gap between the container body 41 and the terminal 3 before the subsequent step S13. The method for sealing the gap between the container body 41 and the terminal 3 is not particularly limited. For example, the gap between the container body 41 and the terminal 3 can be sealed by welding the gap between the container body 41 and the terminal 3.

工程S13は、図3(A)に矢印で示したように集電部2が第1の片61と第2の片62との間に収まるようにして、図3(B)に示したように電極体1を容器4(容器本体41)に収容する工程である。   As shown in FIG. 3B, the step S13 is performed so that the current collector 2 fits between the first piece 61 and the second piece 62 as indicated by an arrow in FIG. The electrode body 1 is accommodated in the container 4 (container body 41).

工程S14は、工程S13において図3(B)に示したように電極体1を容器4(容器本体41)に収容した後、容器本体41に蓋部材42を被せて容器本体41と蓋部材42とで第1の片61及び第2の片62を押さえることによって、第1の片61及び第2の片62が近付くように接続冶具6を変形させるとともに、第1の片61及び第2の片62で集電部材2を押さえて接続冶具6で集電部材2を固定する工程である。このとき、第1の片61及び第2の片62によって集電部2に加えられる圧力は、1kg/cm以上であることが好ましく、10kg/cm以上であることがより好ましく、15kg/cm以上であることがさらに好ましい。第1の片61及び第2の片62によって集電部2に高い圧力が付与されるようにすることによって、第1の片61及び第2の片62と集電部2との間での接触抵抗が低くなり、電池10の出力を高くすることができる。 In step S14, after the electrode body 1 is accommodated in the container 4 (container body 41) as shown in FIG. 3B in step S13, the container body 41 and the lid member 42 are covered with the lid member 42. By pressing the first piece 61 and the second piece 62, the connecting jig 6 is deformed so that the first piece 61 and the second piece 62 approach each other, and the first piece 61 and the second piece 62 This is a step of pressing the current collecting member 2 with the piece 62 and fixing the current collecting member 2 with the connection jig 6. At this time, the pressure applied to the current collector 2 by the first piece 61 and the second piece 62 is preferably 1 kg / cm 2 or more, more preferably 10 kg / cm 2 or more, and 15 kg / cm 2. More preferably, it is cm 2 or more. By making a high pressure applied to the current collector 2 by the first piece 61 and the second piece 62, the first piece 61 and the second piece 62 and the current collector 2 A contact resistance becomes low and the output of the battery 10 can be made high.

また、工程S14において、容器本体41に蓋部材42を被せた後に両者を固定する方法は特に限定されないが、図3(C)に示したように、容器本体41と蓋部材42との端部4aをかしめて両者を固定することが好ましい。このようにして容器本体41と蓋部材42とを固定することにより、容易に容器4を密閉することができ、容器本体41と蓋部材42とによって押さえられることにより第1の片61及び第2の片62を介して集電部2に加えられている圧力を容易に保持することもできる。   Further, in step S14, the method for fixing the container main body 41 after covering the lid member 42 is not particularly limited. However, as shown in FIG. 3C, the end portions of the container main body 41 and the lid member 42 are used. It is preferable to fix both by crimping 4a. By fixing the container body 41 and the lid member 42 in this way, the container 4 can be easily sealed, and by being pressed by the container body 41 and the lid member 42, the first piece 61 and the second piece The pressure applied to the current collector 2 via the piece 62 can be easily maintained.

このように本発明によれば、接続冶具6と集電部2とを固定する前に端子3及び接続冶具6を容器4に取り付けるとともに、容器4と端子3との隙間をシール処理することができるので、従来技術のように端子と容器との隙間をシール処理する際に生じる熱によって集電体や電極体が劣化するとう事態を防ぐことができる。   As described above, according to the present invention, the terminal 3 and the connection jig 6 are attached to the container 4 and the gap between the container 4 and the terminal 3 is sealed before the connection jig 6 and the current collector 2 are fixed. Therefore, it is possible to prevent the current collector and the electrode body from being deteriorated by heat generated when the gap between the terminal and the container is sealed as in the prior art.

また、本発明によれば、上述したように容器本体41に蓋部材42を被せることによって接続冶具6で集電部2を固定することができるため、接続冶具6と集電部2との接続のみを行う工程を別に設ける必要がない。そのため、生産性を向上させることができる。また、容器本体41に蓋部材42を被せることによって接続冶具6と集電部2とを固定することができるため、接続冶具6と集電部2とを固定する作業を行うためのスペースを容器4内に設ける必要がなく、エネルギー密度が高い電池10を製造することができる。   Further, according to the present invention, since the current collector 2 can be fixed by the connection jig 6 by covering the container body 41 with the lid member 42 as described above, the connection between the connection jig 6 and the current collector 2 is achieved. It is not necessary to provide a separate process for performing only the above. Therefore, productivity can be improved. In addition, since the connection jig 6 and the current collector 2 can be fixed by covering the container body 41 with the lid member 42, a space for performing the operation of fixing the connection jig 6 and the current collector 2 is used for the container. It is not necessary to provide in 4 and the battery 10 with a high energy density can be manufactured.

本発明に関する上記説明では、1つの電極体1を有する電池10を例示したが、本発明の電池の製造方法によって製造される電池に備えられる電極体の数は特に限定されない。複数の電極体を有する形態とする場合、隣接する各電極体は電気的に直列又は並列に接続することができる。   In the above description regarding the present invention, the battery 10 having one electrode body 1 has been exemplified, but the number of electrode bodies provided in the battery manufactured by the battery manufacturing method of the present invention is not particularly limited. When it is set as the form which has a some electrode body, each adjacent electrode body can be electrically connected in series or in parallel.

また、本発明に関する上記説明では、巻回されていない電極体1の製造方法を例示したが、本発明の電池の製造方法によって製造される電池は当該形態に限定されない。本発明の電池の製造方法によって製造される電池には、正極層と負極層との間に固体電解質層が配設されるように、正極層と固体電解質層と負極層とを積層した後、これを巻回する過程を経て作製した電極体が備えられていても良い。   Moreover, in the said description regarding this invention, although the manufacturing method of the electrode body 1 which is not wound was illustrated, the battery manufactured by the manufacturing method of the battery of this invention is not limited to the said form. In the battery manufactured by the battery manufacturing method of the present invention, after laminating the positive electrode layer, the solid electrolyte layer, and the negative electrode layer so that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer, The electrode body produced through the process of winding this may be provided.

また、本発明に関する上記説明では、リチウムイオン二次電池に本発明が適用される場合を例示したが、本発明は当該形態に限定されない。本発明の電池の製造方法によって製造される電池は、正極層と負極層との間を、リチウムイオン以外のイオンが移動する形態とすることも可能である。そのようなイオンとしては、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、固体電解質、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。   Moreover, although the case where this invention is applied to a lithium ion secondary battery was illustrated in the said description regarding this invention, this invention is not limited to the said form. The battery manufactured by the method for manufacturing a battery of the present invention can be configured such that ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions, potassium ions, magnesium ions, calcium ions and the like. In the case where ions other than lithium ions move, the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.

また、本発明に関する上記説明では、固体電解質層を有する固体電池に本発明が適用される場合を例示したが、本発明は当該形態に限定されない。本発明の電池は、電解液を用いた電解質層を有する電池であっても良い。ただし、加圧による電解質層の潰れや液枯れが起きず背反りが少ないという観点からは、固体電池とすることが好ましい。   Moreover, although the case where this invention is applied to the solid battery which has a solid electrolyte layer was illustrated in the said description regarding this invention, this invention is not limited to the said form. The battery of the present invention may be a battery having an electrolyte layer using an electrolytic solution. However, it is preferable to use a solid battery from the viewpoint that the electrolyte layer is not crushed or withered by pressurization and there is little warping.

また、本発明に関する上記説明では、充放電可能な二次電池に本発明が適用される場合を例示したが、本発明は当該形態に限定されない。本発明の電池は、いわゆる一次電池であっても良い。   Moreover, although the case where this invention is applied to the secondary battery which can be charged / discharged was illustrated in the said description regarding this invention, this invention is not limited to the said form. The battery of the present invention may be a so-called primary battery.

以下に実施例を示して、本発明をさらに具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

<固体電解質の合成>
LiS(日本化学工業社製)を0.421gと、P(シグマ アルドリッチ ジャパン社製)を0.679gと、LiI(シグマ アルドリッチ ジャパン社製)を1.34g秤量し、メノウ乳鉢で5分間混合した。その後、ヘプタンを4g加え、遊星型ボールミルを用いて40時間メカニカルミリングすることで固体電解質を得た。
<Synthesis of solid electrolyte>
Weigh 0.421 g of Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.), 0.679 g of P 2 S 5 (manufactured by Sigma Aldrich Japan), and 1.34 g of LiI (manufactured by Sigma Aldrich Japan), and agate mortar. For 5 minutes. Thereafter, 4 g of heptane was added, and a solid electrolyte was obtained by mechanical milling for 40 hours using a planetary ball mill.

<正極合剤の作製>
昭和電工社製のVGCF(登録商標)を0.51mgと、上記固体電解質を5.03mg秤量し、これらを乳鉢で10分間混合した後、さらに正極活物質としてLiNi1/3Co1/3Mn1/3(日亜化学社製)を12.03mg加えて混合したものを正極合剤とした。
<Preparation of positive electrode mixture>
0.51 mg of VGCF (registered trademark) manufactured by Showa Denko KK and 5.03 mg of the above solid electrolyte were weighed and mixed for 10 minutes in a mortar, and then LiNi 1/3 Co 1/3 Mn as a positive electrode active material. A positive electrode mixture was prepared by adding 12.03 mg of 1/3 O 2 (manufactured by Nichia Corporation) and mixing them.

<負極合剤の作製>
負極活物質としてグラファイト(三菱化学社製)を9.06mgと、上記固体電解質を8.24mg秤量し、これらを混合したものを負極合剤とした。
<Preparation of negative electrode mixture>
As a negative electrode active material, 9.06 mg of graphite (manufactured by Mitsubishi Chemical Corporation) and 8.24 mg of the solid electrolyte were weighed, and a mixture thereof was used as a negative electrode mixture.

<電池の作製>
(実施例1)
実施例1にかかる電池として、図1に示したような電池を作製した。まず、上記固体電解質を18mg秤量して、マコール(登録商標)製の絶縁リングの中空部に投入し、一対のピストンで両面側から押圧して固体電解質層を作製した。このとき固体電解質に加えた圧力は1ton/cmであった。また、絶縁リングの中空部の軸心(ピストンでプレスされる方向)に垂直な方向の断面積は1cmであった。次に、固体電解質層の一方の面側に上記正極合剤を17.57mgのせて固体電解質層とともに一対のピストンで両面側から押圧し、固体電解質層の一方の面側に正極層を形成した。このときピストンによって加えた圧力は1ton/cmであった。次に、固体電解質層の他方の面側に上記負極合剤を17.3mgのせて固体電解質層及び正極層とともに一対のピストンで両面側から押圧し、固体電解質層の他方の面側に負極層を形成した。このときピストンによって加えた圧力は4ton/cmであった。絶縁リングを取り外し、負極層に銅箔(負極集電体)を貼り付けるとともに、正極層にアルミニウム箔(正極集電体)を貼り付けた。一方、銅製の端子及び接続冶具を取り付けたアルミニウム製の皿型からなる容器本体と、アルミニウム製の蓋部材とを備えた容器を用意した。その後、負極集電体の一部及び正極集電体の一部がそれぞれ接続冶具の第1の片と第2の片との間に挟まれるようにして電極体を容器本体に収容した。次に、アルミニウム製の蓋部材を容器本体の開口面に被せ、15kg/cmで加圧し、蓋部材及び容器本体の内側の面を使って接続冶具を押圧し、第1の片及び第2の片を介して負極集電体及び正極集電体に圧力が付与されている状態で、容器本体と蓋部材との端部をかしめて両者を固定した。
<Production of battery>
Example 1
As the battery according to Example 1, a battery as shown in FIG. 1 was produced. First, 18 mg of the solid electrolyte was weighed and put into a hollow portion of an insulating ring made of Macor (registered trademark), and pressed from both sides with a pair of pistons to produce a solid electrolyte layer. At this time, the pressure applied to the solid electrolyte was 1 ton / cm 2 . Moreover, the cross-sectional area in the direction perpendicular to the axial center (direction pressed by the piston) of the hollow portion of the insulating ring was 1 cm 2 . Next, 17.57 mg of the positive electrode mixture was placed on one side of the solid electrolyte layer and pressed from both sides with a pair of pistons together with the solid electrolyte layer to form a positive electrode layer on one side of the solid electrolyte layer . At this time, the pressure applied by the piston was 1 ton / cm 2 . Next, 17.3 mg of the negative electrode mixture is placed on the other surface side of the solid electrolyte layer and pressed from both sides with a pair of pistons together with the solid electrolyte layer and the positive electrode layer, and the negative electrode layer is formed on the other surface side of the solid electrolyte layer. Formed. At this time, the pressure applied by the piston was 4 ton / cm 2 . The insulating ring was removed, and a copper foil (negative electrode current collector) was attached to the negative electrode layer, and an aluminum foil (positive electrode current collector) was attached to the positive electrode layer. On the other hand, the container provided with the container main body which consists of an aluminum plate shape which attached the terminal made from copper and a connection jig, and the lid member made from aluminum was prepared. Thereafter, the electrode body was accommodated in the container body such that a part of the negative electrode current collector and a part of the positive electrode current collector were sandwiched between the first piece and the second piece of the connection jig, respectively. Next, the lid member made of aluminum is placed on the opening surface of the container body, pressurized at 15 kg / cm 2 , the connecting jig is pressed using the inner surface of the lid member and the container body, and the first piece and the second piece In a state where pressure was applied to the negative electrode current collector and the positive electrode current collector through the piece, the ends of the container main body and the lid member were caulked to fix both.

(実施例2)
アルミニウム製の蓋部材を容器本体の開口面に被せる際に、1kg/cmで加圧した以外は実施例1と同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that when the aluminum lid member was put on the opening surface of the container main body, it was pressurized at 1 kg / cm 2 .

(比較例1)
接続冶具を用いずに端子と集電体とを無加圧状態で接触させた以外は実施例1と同様にして電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that the terminal and the current collector were contacted in a non-pressurized state without using a connection jig.

<評価>
上記のようにして作製した電池について、0.3mAで4.2Vまで定電流充電した後、2.5Vまで0.3mAで放電を行った。そのときの放電容量を調べた。結果を表1に示した。
<Evaluation>
About the battery produced as mentioned above, after carrying out constant current charge to 4.2V at 0.3 mA, it discharged at 0.3 mA to 2.5V. The discharge capacity at that time was examined. The results are shown in Table 1.

Figure 2013084358
Figure 2013084358

表1に示したように、実施例1及び実施例2にかかる電池は作製が容易であり、高い放電容量を得ることができた。一方、比較例1にかかる電池では充電することができなかった。これは接続冶具を用いなかったため、集電体と端子との接触が不十分になったからであると考えられる。なお、実施例1にかかる電池と実施例2にかかる電池との放電容量の差は、接続冶具によって集電体に加えられている圧力に起因する接続冶具と集電体との間の接触抵抗の差によるものであると考えられる。すなわち、接続冶具によって集電体に加えられる圧力が大きいほど接続冶具と集電体との接触抵抗が低減し、高い放電容量を得られることがわかった。   As shown in Table 1, the batteries according to Example 1 and Example 2 were easy to produce, and a high discharge capacity could be obtained. On the other hand, the battery according to Comparative Example 1 could not be charged. This is presumably because the contact between the current collector and the terminal became insufficient because no connection jig was used. The difference in discharge capacity between the battery according to Example 1 and the battery according to Example 2 is the contact resistance between the connection jig and the current collector caused by the pressure applied to the current collector by the connection jig. It is thought that this is due to the difference between the two. That is, it was found that the contact resistance between the connection jig and the current collector decreases as the pressure applied to the current collector by the connection jig increases, and a high discharge capacity can be obtained.

1 電極体
2 集電部
3 端子
4 容器本体
5 蓋部材
6 接続冶具
61 第1の片
62 第2の片
10 電池
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Current collection part 3 Terminal 4 Container main body 5 Lid member 6 Connection jig 61 1st piece 62 2nd piece 10 Battery

Claims (4)

容器本体及び蓋部材を有する容器と、該容器内に収容された電極体とを有する電池の製造方法であって、
前記電極体は、外側に突出した集電部を備えており、
前記容器は、該容器の外側に突出した端子と、該容器の内側に備えられるとともに前記端子と電気的に接続された接続冶具とを備えており、
前記接続冶具は、第1の片と、該第1の片より前記蓋部材側に備えられた第2の片とを備えており、
前記集電部が前記第1の片と前記第2の片との間に収まるように、前記電極体を前記容器に収容する工程、並びに、
前記容器本体と前記蓋部材とで前記第1の片及び前記第2の片を押さえることによって、前記第1の片及び前記第2の片が近付くように前記接続冶具を変形させるとともに、前記第1の片及び前記第2の片で前記集電部を押さえて固定する工程、
を備える、電池の製造方法。
A method for producing a battery comprising a container having a container main body and a lid member, and an electrode body accommodated in the container,
The electrode body includes a current collector protruding outward,
The container includes a terminal projecting to the outside of the container, and a connection jig provided on the inside of the container and electrically connected to the terminal,
The connection jig includes a first piece and a second piece provided closer to the lid member than the first piece,
A step of accommodating the electrode body in the container so that the current collecting part fits between the first piece and the second piece; and
By pressing the first piece and the second piece with the container body and the lid member, the connecting jig is deformed so that the first piece and the second piece approach each other. Pressing and fixing the current collector with one piece and the second piece;
A method for producing a battery.
前記電極体を前記容器に収容する工程より前に、前記容器の前記端子が突出した部分にシール処理を行う、請求項1に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein a sealing process is performed on a portion of the container where the terminal protrudes before the step of housing the electrode body in the container. 記第1の片及び前記第2の片によって前記集電部に加えられる圧力が1kg/cm以上である、請求項1又は2に記載の電池の製造方法。 The battery manufacturing method according to claim 1 or 2, wherein a pressure applied to the current collector by the first piece and the second piece is 1 kg / cm 2 or more. 前記電極体が固体電解質層を備える、請求項1〜3のいずれかに記載の電池の製造方法。   The manufacturing method of the battery in any one of Claims 1-3 with which the said electrode body is equipped with a solid electrolyte layer.
JP2011221642A 2011-10-06 2011-10-06 Method of manufacturing battery Pending JP2013084358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221642A JP2013084358A (en) 2011-10-06 2011-10-06 Method of manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221642A JP2013084358A (en) 2011-10-06 2011-10-06 Method of manufacturing battery

Publications (1)

Publication Number Publication Date
JP2013084358A true JP2013084358A (en) 2013-05-09

Family

ID=48529386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221642A Pending JP2013084358A (en) 2011-10-06 2011-10-06 Method of manufacturing battery

Country Status (1)

Country Link
JP (1) JP2013084358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194946A (en) * 2018-05-01 2019-11-07 積水化学工業株式会社 Laminate type battery and method for manufacturing laminate type battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194946A (en) * 2018-05-01 2019-11-07 積水化学工業株式会社 Laminate type battery and method for manufacturing laminate type battery

Similar Documents

Publication Publication Date Title
JP5720779B2 (en) Bipolar all-solid battery
US9818996B2 (en) Solid battery and method for manufacturing solid battery
JP5610057B2 (en) Solid battery
JP5686191B2 (en) Solid battery manufacturing method
EP3654438B1 (en) Coin-shaped battery and method for producing same
JP2013120717A (en) All-solid-state battery
JP2011238504A (en) Secondary battery
JP2011159635A (en) Solid lithium secondary battery and method for manufacturing the same
CN102683751A (en) High-capacity high-magnification square lithium ion power battery and manufacturing method thereof
JPWO2014010042A1 (en) Manufacturing method of all solid state battery
JP2013243004A (en) Solid battery, and solid battery manufacturing method
JP2015050153A (en) Laminate for all-solid state battery
JP2013093216A (en) Battery
JP2013093291A (en) Battery
JP5605348B2 (en) battery
KR20180047992A (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
EP2765631B1 (en) Assembled battery and production method for assembled battery
JP5648747B2 (en) Solid battery and manufacturing method thereof
JP2009032398A (en) Electrode body for battery and its manufacturing method
JP2019029339A (en) battery
JP2019192564A (en) All-solid battery
CN112514106A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
JP2013084358A (en) Method of manufacturing battery
JP2013120718A (en) All-solid-state battery
WO2013008816A1 (en) Battery