JP2013076406A - Wind power generator using piezoelectric element, wind velocity measurement device, and wind power generation system - Google Patents

Wind power generator using piezoelectric element, wind velocity measurement device, and wind power generation system Download PDF

Info

Publication number
JP2013076406A
JP2013076406A JP2012282123A JP2012282123A JP2013076406A JP 2013076406 A JP2013076406 A JP 2013076406A JP 2012282123 A JP2012282123 A JP 2012282123A JP 2012282123 A JP2012282123 A JP 2012282123A JP 2013076406 A JP2013076406 A JP 2013076406A
Authority
JP
Japan
Prior art keywords
wind
piezoelectric element
wind speed
vertical
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012282123A
Other languages
Japanese (ja)
Other versions
JP5608215B2 (en
Inventor
Shoichi Ogawa
彰一 小川
Rei Eriguchi
玲 江里口
Shoichi Tan
省一 丹
Makoto Goto
誠 後藤
Hajime Motohashi
元 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012282123A priority Critical patent/JP5608215B2/en
Publication of JP2013076406A publication Critical patent/JP2013076406A/en
Application granted granted Critical
Publication of JP5608215B2 publication Critical patent/JP5608215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind velocity measuring device easy in installation and capable of measuring an instantaneous wind velocity, and a wind power generation system capable of supplying electric power to the outside.SOLUTION: The wind power generator comprises a wind force transmission mechanism (1) having a vertical axis wind turbine, and vertical grooves provided to a plurality of poles circumferentially installed in the inside of a cylinder having a center axis commonly with the vertical axis wind turbine, at an upper part, a lower part or the inside of the vertical axis wind turbine; and a power generating mechanism (2) having a piezoelectric element member whose one end is fixed to a fixing holding member pivotally supported by a center axis of the vertical axis wind turbine and which is vertically overhung from the center axis to the circumference and generates power by bending, and a force-receiving plate mounted on the other end where the piezoelectric element member is not fixed and vibrating by being periodically pushed so as not to be dislocated from the vertical groove and generating power by transmitting the vibration to the piezoelectric element member.

Description

本発明は、圧電素子を用い、風力を利用して発電する風力発電機、並びに、該風力発電機を用いた風速測定装置及び風力発電装置に関する。   The present invention relates to a wind power generator that uses a piezoelectric element to generate power using wind power, and a wind speed measuring device and a wind power generator using the wind power generator.

クリーンな発電方法として風力発電が注目されるようになってきている。一般的な風力発電装置としては、プロペラを風力で回転させ、電磁誘導により発電するものが知られているが、これには、装置が大型であってコストが高いことや、設置場所が制限されること、また、所定の設置間隔を取らなければ発電効率が低下すること等の問題があった。   Wind power generation is gaining attention as a clean power generation method. As a general wind power generation device, one that rotates a propeller with wind power and generates electric power by electromagnetic induction is known, but this is because the device is large and expensive, and the installation place is limited. In addition, there is a problem that power generation efficiency is lowered unless a predetermined installation interval is taken.

このような問題を解決するために、圧電素子を用いた発電装置が提案されている。例えば、特許文献1には、空気の渦流を発生させて振動板を振動させ、その振動を圧電素子に加えて発電する方法が記載されている。しかしながら、この構造では圧電素子に加わる振動の変位は限られたものになる場合があった。   In order to solve such a problem, a power generation device using a piezoelectric element has been proposed. For example, Patent Document 1 describes a method of generating electricity by generating an eddy current of air to vibrate a diaphragm and applying the vibration to a piezoelectric element. However, in this structure, the displacement of vibration applied to the piezoelectric element may be limited.

また、特許文献2には、フレーム部材と、フレーム部材に支持された圧電振動板と、振動板の表面に取り付けられた受風部材とを備え、風を受けて振動板に屈曲運動を生じさせることにより発電する風力発電装置が記載されている。しかしながら、この構造では、振動板の振動がフレーム部材によって抑制され、発電量が十分に得られないという問題があった。一方、振動抑制を小さくするためにフレーム部材を大きくすると、設置面積が広くなってしまうという問題があった。   Further, Patent Document 2 includes a frame member, a piezoelectric diaphragm supported by the frame member, and a wind receiving member attached to the surface of the diaphragm, and receives a wind to cause the diaphragm to bend. The wind power generator which generates electric power by is described. However, this structure has a problem that the vibration of the diaphragm is suppressed by the frame member, and the power generation amount cannot be sufficiently obtained. On the other hand, when the frame member is enlarged to reduce vibration suppression, there is a problem that the installation area becomes wide.

更に、特許文献1と特許文献2に共通する問題点として、これらの装置は、風が脈動しているか、または定常流であっても羽根の後方でカルマン渦を形成する場合しか振動しないので、駆動効率が低いという問題もあった。   Furthermore, as a problem common to Patent Document 1 and Patent Document 2, these devices vibrate only when the wind is pulsating or even when a Karman vortex is formed behind the blades even in a steady flow, There was also a problem that driving efficiency was low.

風の脈動や羽根の後方での渦だけに依存しない装置として、特許文献3には、長尺状でその幅方向に所定角度で二つ折りされた形状を有し、その長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化している受風翼と、前記受風翼の振動によって発電する発電部とを具備する風力発電装置が記載されている。そして、発電部には、屈曲することによって発電する圧電素子が使用されている。しかしながら、この構造では、風自体を制御していないため、受風翼に取り付けられた圧電素子に効率的な振動を常に与えられない場合があった。   As a device that does not depend only on wind pulsations or vortices behind the blades, Patent Document 3 has a long shape and is folded in half at a predetermined angle in the width direction, and one end in the longitudinal direction is fixed. A wind turbine comprising a wind receiving blade whose width is changed in the longitudinal direction so as to generate a predetermined torsional vibration when receiving wind force in the generated state, and a power generation unit that generates electric power by the vibration of the wind receiving blade A power generator is described. A piezoelectric element that generates electricity by bending is used for the power generation unit. However, in this structure, since the wind itself is not controlled, there is a case where efficient vibration is not always given to the piezoelectric element attached to the wind receiving blade.

また、特許文献4には、断面形状が略V字状等の受風翼を支持する支持棒をその軸芯回りに回転自在に保持する軸保持部材と、この軸保持手段が取り付けられる振動板と、風力によって振動板に発生する振動を利用して発電する発電機構を具備する風力発電装置が記載されている。そして、振動板には圧電素子は貼り付けられており、圧電素子が屈曲することによって発電できる構造が記載されている。しかしながら、この構造でも、風自体を制御していないため、振動板に貼り付けられた圧電素子に効率的な振動を常には与えられない場合があった。   Patent Document 4 discloses a shaft holding member that holds a support rod that supports a wind receiving blade having a substantially V-shaped cross section, and the like, and a diaphragm to which the shaft holding means is attached. And a wind power generation apparatus including a power generation mechanism that generates power using vibration generated in a diaphragm by wind power is described. And the piezoelectric element is affixed on the diaphragm, and the structure which can generate electric power by bending a piezoelectric element is described. However, even in this structure, since the wind itself is not controlled, there are cases where efficient vibration is not always applied to the piezoelectric element attached to the diaphragm.

特開平11−303726号公報JP-A-11-303726 特開2001−231273号公報JP 2001-231273 A 特開2005−273644号公報JP 2005-273644 A 特開2006−291842号公報JP 2006-291842 A

本発明は上記背景技術に鑑みてなされたものであり、その課題は、風力を有効的に利用し、安価で設置が容易であり、瞬間風速の測定が可能な風速測定装置、及び外部に電力の供給が可能な風力発電装置を提供することにある。   The present invention has been made in view of the above-described background art, and its problem is that it effectively uses wind power, is inexpensive and easy to install, and can measure instantaneous wind speed, and external power. It is providing the wind power generator which can supply.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、垂直軸風車を有する風力伝達機構、及び、圧電素子部材に振動を与える受力板と該振動により屈曲し発電する圧電素子部材とを有する発電機構を組み合わせることによって上記課題が解決できることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained a wind power transmission mechanism having a vertical axis wind turbine, a force receiving plate that applies vibration to the piezoelectric element member, and a piezoelectric element that bends and generates power by the vibration. The present invention has been completed by finding that the above problem can be solved by combining a power generation mechanism having a member.

すなわち本発明は、垂直軸風車、及び、該垂直軸風車の上部又は下部に、該垂直軸風車の中心軸に一端が軸支された複数の垂直板、若しくは、該垂直軸風車の中心軸に固定された軸柱に設けられた複数の垂直溝、を有する風力伝達機構(1)、並びに、
該垂直軸風車と中心軸を共通にする円周上に一端が固定され、円周の内部に垂直に張り出された、屈曲することによって発電する圧電素子部材、及び、該圧電素子部材の固定されていない他端に取り付けられており、上記垂直板若しくは垂直溝から外れないように周期的に押されて振動してその振動を該圧電素子部材に伝えて発電させる受力板、を有する発電機構(2)、
を具備する風力発電機を提供するものである(態様1)。
That is, the present invention provides a vertical axis wind turbine and a plurality of vertical plates, one end of which is pivotally supported by the central axis of the vertical axis wind turbine, or the central axis of the vertical axis wind turbine. A wind power transmission mechanism (1) having a plurality of vertical grooves provided in a fixed shaft column, and
A piezoelectric element member that has one end fixed on a circumference sharing the central axis with the vertical axis wind turbine and projecting vertically inside the circumference, and generating electric power by bending, and fixing the piezoelectric element member A power receiving plate that is attached to the other end that is not mounted, and that is periodically pushed to vibrate from the vertical plate or vertical groove and vibrates and transmits the vibration to the piezoelectric element member to generate electric power. Mechanism (2),
(Aspect 1).

また本発明は、垂直軸風車、及び、該垂直軸風車の上部、下部又は内部に、該垂直軸風車と中心軸を共通にする円筒の内部に周設された複数の柱に設けられた垂直溝、を有する風力伝達機構(1)、並びに、
該垂直軸風車の中心軸に軸支された固定保持部材に一端が固定され、円周の外部に垂直に張り出された、屈曲することによって発電する圧電素子部材、及び、該圧電素子部材の固定されていない他端に取り付けられており、上記垂直溝から外れないように周期的に押されて振動してその振動を該圧電素子部材に伝えて発電させる受力板、を有する発電機構(2)、
を具備する風力発電機を提供するものである(態様2)。
The present invention also relates to a vertical axis wind turbine, and a vertical axis provided on a plurality of pillars provided around a cylinder having a common center axis with the vertical axis wind turbine at an upper portion, a lower portion, or an inside of the vertical axis wind turbine. A wind power transmission mechanism (1) having a groove, and
One end is fixed to a fixed holding member pivotally supported by the central axis of the vertical axis wind turbine, and the piezoelectric element member that generates power by bending is projected perpendicularly to the outside of the circumference, and the piezoelectric element member A power generation mechanism having a force receiving plate attached to the other non-fixed end and periodically pushed and vibrated so as not to be disengaged from the vertical groove and transmitting the vibration to the piezoelectric element member to generate electric power ( 2),
(Aspect 2).

また本発明は、上記風力発電機を用いた風速測定装置を提供するものである。   Moreover, this invention provides the wind speed measuring apparatus using the said wind power generator.

また本発明は、上記風力発電機を用い、外部に電力を供給できるようにした風力発電装置を提供するものである。   The present invention also provides a wind power generator that uses the wind power generator and can supply power to the outside.

更に本発明は、本発明における上記風速測定装置を用いて測定された風速データを無線送信するための電力供給用の上記風力発電装置を提供するものである。   Furthermore, this invention provides the said wind power generator for the electric power supply for carrying out the radio transmission of the wind speed data measured using the said wind speed measuring apparatus in this invention.

本発明によれば、一定風速下で生じるカルマン渦によって生じる非対称の流れによる回転振動を捉えることができ、風力を有効的に利用し、単純な構造であるため安価で、措置の設置が容易である。また、瞬間風速の測定が可能であり突風信号を発信することができ、該回転振動を複数の圧電素子部材に段階的に伝えることにより風速の階級分けが可能な風速測定装置を提供することができる。更に、該回転振動を圧電素子部材に伝達させることにより、高い発電効率を実現できて外部に電力を供給できる風力発電装置を提供することができる。   According to the present invention, it is possible to capture rotational vibration caused by an asymmetric flow caused by Karman vortices generated at a constant wind speed, effectively using wind power, and having a simple structure, it is inexpensive and easy to install measures. is there. Further, it is possible to provide a wind speed measuring device capable of measuring an instantaneous wind speed, transmitting a gust signal, and classifying the wind speed by transmitting the rotational vibration to a plurality of piezoelectric element members in stages. it can. Furthermore, by transmitting the rotational vibration to the piezoelectric element member, it is possible to provide a wind power generator capable of realizing high power generation efficiency and supplying electric power to the outside.

本発明の風力発電機の好ましい基本構成を有する装置である。It is an apparatus which has the preferable basic composition of the wind power generator of this invention. 本発明の風力発電機の好ましい基本構成を示す上面図である。It is a top view which shows the preferable basic composition of the wind power generator of this invention. 本発明の風力発電機の好ましい基本構成を示す側面図である。It is a side view which shows the preferable basic composition of the wind power generator of this invention. 本発明の風力発電機の好ましい基本構成を示す上からの透視図である。 (a)複数の垂直板14を用いた場合 (b)複数の垂直溝16を用いた場合 (c)複数の柱19に設けられた垂直溝16を用いた場合It is a perspective view from the top which shows the preferable basic composition of the wind power generator of this invention. (A) When a plurality of vertical plates 14 are used (b) When a plurality of vertical grooves 16 are used (c) When a vertical groove 16 provided on a plurality of pillars 19 is used 本発明の風力発電機を用いた風速測定装置の風速が測定できる機構を示す上からの透視図である。 (a)圧電素子部材21[1]のみが振動している場合 (b)圧電素子部材21[1]〜[2]が振動している場合 (c)圧電素子部材21[1]〜[3]が振動している場合 (d)圧電素子部材21[1]〜[4]が振動している場合It is a perspective view from the top which shows the mechanism which can measure the wind speed of the wind speed measuring apparatus using the wind power generator of this invention. (A) When only the piezoelectric element member 21 [1] vibrates (b) When the piezoelectric element members 21 [1] to [2] vibrate (c) The piezoelectric element members 21 [1] to [3] ] Is vibrating (d) When the piezoelectric element members 21 [1] to [4] are vibrating 本発明の風力発電機において、垂直溝16を用いたときの、垂直溝16と受力板23及び圧電素子部材21との位置関係を示したものである。 (a)垂直溝16の各溝幅を段階的に広くした場合 (b)垂直溝16の各溝幅が全て等しい場合In the wind power generator of the present invention, the positional relationship between the vertical groove 16, the force receiving plate 23, and the piezoelectric element member 21 when the vertical groove 16 is used is shown. (A) When each groove width of the vertical groove 16 is increased stepwise (b) When each groove width of the vertical groove 16 is equal 本発明の風速測定装置からの出力を検知するための測定回路の一例を示す回路図である。It is a circuit diagram which shows an example of the measurement circuit for detecting the output from the wind speed measuring apparatus of this invention. 本発明の風力発電機からの集電を行う集電回路の一例を示す回路図である。It is a circuit diagram which shows an example of the current collection circuit which collects current from the wind power generator of this invention. 実施例1において圧電素子部材21から得られる発電電圧の一例を示すグラフである。3 is a graph showing an example of a generated voltage obtained from a piezoelectric element member 21 in Example 1. 実施例2で用いた風速測定機の上からの透視図である。It is a perspective view from the top of the wind speed measuring machine used in Example 2. FIG. 実施例2において圧電素子部材21から得られる出力電圧の一例を示すグラフである。 (a)風速8.17m/s下における出力電圧 (b)風速16.5m/sにおける出力電圧 (c)風速22.5m/sにおける出力電圧 (d)風速27.2m/sにおける出力電圧6 is a graph showing an example of an output voltage obtained from a piezoelectric element member 21 in Example 2. (A) Output voltage at a wind speed of 8.17 m / s (b) Output voltage at a wind speed of 16.5 m / s (c) Output voltage at a wind speed of 22.5 m / s (d) Output voltage at a wind speed of 27.2 m / s

以下、本発明の実施の形態について図面を参照しながら説明するが、本発明は以下の実施の具体的形態のみに限定されるものではなく、技術的思想の範囲内で任意に変形して実施することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following specific embodiments, and may be arbitrarily modified within the scope of the technical idea. can do.

(1)風力発電機について
図1〜図4には、風力伝達機構(1)と風力発電機構(2)が示されている。図1は、本発明の風力発電機の好ましい基本構成を有する装置の一例を示すものであり、図2は、本発明の風力発電機の好ましい基本構成を示す上面図であり、図3はその側面図であり、図4は上からの透視図である。
(1) About wind power generator The wind power transmission mechanism (1) and the wind power generation mechanism (2) are shown in FIGS. FIG. 1 shows an example of a device having a preferable basic configuration of the wind power generator of the present invention, FIG. 2 is a top view showing a preferable basic configuration of the wind power generator of the present invention, and FIG. FIG. 4 is a side view, and FIG. 4 is a perspective view from above.

<態様1について>
風力伝達機構(1)は、少なくとも、
(a)垂直軸風車10
(b)該垂直軸風車10の上部又は下部に、該垂直軸風車10の中心軸11に一端が軸支された複数の垂直板14、若しくは、該垂直軸風車10の中心軸11に一端が固定された軸柱15に設けられた複数の垂直溝16
によって構成されている。
<About aspect 1>
The wind power transmission mechanism (1) is at least
(A) Vertical axis wind turbine 10
(B) A plurality of vertical plates 14 whose one ends are axially supported by the central axis 11 of the vertical axis wind turbine 10 or one end of the vertical axis wind turbine 10 at one end. A plurality of vertical grooves 16 provided in the fixed shaft column 15
It is constituted by.

風力発電機構(2)は、少なくとも、
(c)該垂直軸風車10と中心軸を共通にする円周上に一端が固定され、円周の内部に垂直に張り出された、屈曲することによって発電する圧電素子部材21
(d)前記圧電素子部材21の一端に取り付けられており、上記垂直板14若しくは垂直溝16から外れないように周期的に押されて振動してその振動を該圧電素子部材21に伝えて発電させる受力板23
(e)前記圧電素子部材21の、前記受力板23が取り付けられていない側の一端を保持する固定保持部材24
によって構成されている。
The wind power generation mechanism (2) is at least
(C) One end of the vertical axis wind turbine 10 and a central axis that are common to the central axis are fixed, and the piezoelectric element member 21 that generates power by bending is projected vertically inside the circumference.
(D) Attached to one end of the piezoelectric element member 21 and periodically pushed and vibrated so as not to be disengaged from the vertical plate 14 or vertical groove 16, and the vibration is transmitted to the piezoelectric element member 21 to generate power. Power receiving plate 23
(E) A fixed holding member 24 that holds one end of the piezoelectric element member 21 on the side where the force receiving plate 23 is not attached.
It is constituted by.

(1−1)風力伝達機構について
本発明における垂直軸風車とは、風向きに対し回転軸が垂直になっている風車である。垂直軸風車であることによって、風向きの影響を受けずに常に風を受けることができ発電が効率的となり、また、風速が正確に測定でき、特に本発明の特長である瞬間風速の測定にも適用が可能となる。具体的には、例えば、クロスフロー形風車、サボニウス形風車、パドル形(風杯型)風車、ジャイロミル形風車、ダリウス形風車、S形風車等が挙げられる。
(1-1) About a wind power transmission mechanism The vertical axis windmill in the present invention is a windmill whose rotation axis is perpendicular to the wind direction. By being a vertical axis wind turbine, it is possible to receive wind constantly without being affected by the wind direction, and power generation is efficient, and wind speed can be measured accurately, especially for measuring instantaneous wind speed, which is a feature of the present invention. Applicable. Specifically, for example, a cross flow type windmill, a Savonius type windmill, a paddle type (wind cup type) windmill, a gyromill type windmill, a Darius type windmill, an S type windmill, and the like can be given.

垂直軸風車には、抗力型垂直軸風車と揚力型垂直軸風車がある。抗力型垂直軸風車とは、風向きに対し回転軸が垂直であり、抗力で回転力を得る風車であり、揚力型垂直軸風車とは、風向きに対し回転軸が垂直であり、揚力で回転力を得る風車である。本発明においては何れも用いられるが、受力板23を押す力が強く、また、強風時においても過度な回転力を与えないように、半円筒羽根13の枚数で回転数やトルクを調整可能等の点で抗力型垂直軸風車が好ましい。   The vertical axis wind turbine includes a drag type vertical axis wind turbine and a lift type vertical axis wind turbine. A drag type vertical axis wind turbine is a wind turbine whose rotational axis is perpendicular to the wind direction and obtains rotational force by the drag, and a lift type vertical axis wind turbine is perpendicular to the wind direction and has a rotational force by lift. Is a windmill. Any of them can be used in the present invention, but the force to push the force receiving plate 23 is strong, and the number of rotations and torque can be adjusted by the number of the semi-cylindrical blades 13 so as not to give excessive rotational force even in strong winds. In view of the above, a drag type vertical axis wind turbine is preferable.

抗力型垂直軸風車の中でも、騒音、起動性、安全性、指向性、出力特性等の点で、クロスフロー形風車、サボニウス形風車、パドル形(風杯型)風車等がより好ましく、一定風速下で生じるカルマン渦を利用して効率良く回転振動が捉えられる点、風向きの影響を受け難くい点で、クロスフロー形風車が特に好ましい。   Among drag type vertical axis wind turbines, cross flow type wind turbines, Savonius type wind turbines, paddle type (wind cup type) wind turbines, etc. are more preferable in terms of noise, startability, safety, directivity, output characteristics, etc., constant wind speed A cross-flow type windmill is particularly preferable in that the rotational vibration can be efficiently captured by using the Karman vortex generated below, and it is difficult to be influenced by the wind direction.

本発明における抗力型垂直軸風車としてクロスフロー形風車を用いる場合には、効率良く回転力を得るために、上円盤12aと下円盤12bとで中心軸11が固定された半円筒羽根13が4〜10枚用いられることが好ましい。特に好ましくは6〜10枚である。半円筒羽根13の数が多すぎると、回転速度が大きくなりすぎる場合があり、一方、少なすぎると、回転速度が小さく圧電素子に与える振動が少なくなる場合がある。   When a cross flow type wind turbine is used as the drag type vertical axis wind turbine in the present invention, in order to obtain a rotational force efficiently, four semi-cylindrical blades 13 each having a central shaft 11 fixed by an upper disk 12a and a lower disk 12b are provided. It is preferable to use 10 sheets. Particularly preferred is 6 to 10 sheets. If the number of the semicylindrical blades 13 is too large, the rotational speed may be excessively increased. On the other hand, if the number is too small, the rotational speed is small and vibration applied to the piezoelectric element may be decreased.

半円筒羽根13の大きさについては、風向きの影響を受けずに回転できれば特に制限はない。   The size of the semi-cylindrical blade 13 is not particularly limited as long as it can be rotated without being affected by the wind direction.

本発明の風力伝達機構(1)には、該風車の中心軸11に一端が軸支された複数の垂直板14、若しくは、該風車の中心軸11に固定された軸柱15に設けられた複数の垂直溝16を有する。   The wind power transmission mechanism (1) of the present invention is provided on a plurality of vertical plates 14 whose one ends are pivotally supported on the center shaft 11 of the windmill, or on a shaft column 15 fixed to the center shaft 11 of the windmill. A plurality of vertical grooves 16 are provided.

風車の中心軸11に一端が軸支された複数の垂直板14は、例えば、図4(a)に示すように、中心軸11に固定された軸柱15に一端が軸支されていてもよく、中心軸11に直接に一端が軸支されていてもよい(図示せず)。垂直板14は、中心軸11の回りを風車の回転と共に回転し、その回転の際に、受力板23を押して振動を開始させるものである。   For example, as shown in FIG. 4A, the plurality of vertical plates 14 whose one ends are pivotally supported on the center shaft 11 of the windmill may be supported on one end on a shaft column 15 fixed to the center shaft 11. Alternatively, one end may be directly supported by the central shaft 11 (not shown). The vertical plate 14 rotates around the central axis 11 together with the rotation of the windmill, and at the time of the rotation, pushes the force receiving plate 23 to start vibration.

本発明における複数の垂直板14の形状については、効率的に受力板23を通じて圧電素子部材21を屈曲させることができれば特に限定はなく、長方形板状や円形板状等の何れでもよい。垂直板14の面積についても特に限定はないが、受力板23を押す際に垂直板14自身が変形し、圧電素子部材21を屈曲させるのに十分な力を伝達できないことがないように、垂直板14に用いる材質の弾性係数から鑑みて十分な面積を有していることが、弱い風によっても圧電素子部材21をより屈曲させることができる点で好ましい。複数の垂直板14の材質も特に限定はなく、金属や樹脂等の何れでもよいが、繰り返し強度、塑性変形しない材質が好ましい。   The shape of the plurality of vertical plates 14 in the present invention is not particularly limited as long as the piezoelectric element member 21 can be bent efficiently through the force receiving plate 23, and may be any of a rectangular plate shape, a circular plate shape, and the like. The area of the vertical plate 14 is not particularly limited, but the vertical plate 14 itself is not deformed when the force receiving plate 23 is pushed, so that a force sufficient to bend the piezoelectric element member 21 cannot be transmitted. In view of the elastic coefficient of the material used for the vertical plate 14, it is preferable that it has a sufficient area in that the piezoelectric element member 21 can be bent even by a weak wind. The material of the plurality of vertical plates 14 is not particularly limited, and may be any of metal, resin, and the like, but a material that does not have repeated strength and plastic deformation is preferable.

複数の垂直板14は、3〜16枚の垂直板14が好ましく、より好ましくは4〜8枚の垂直板14であり、特に好ましくは4枚の垂直板である。垂直板14の枚数が多すぎると、回転力に対する反発力が大きくなりすぎ、小さい風力では効率的な発電ができない等の場合があり、一方、少なすぎると、その枚数分しか段階分けによって風速が測定できない場合があるので、風速測定の細かい段階分けができなくなる、風向により圧電素子部材21の出力が影響を受けやすくなる等の場合がある。   The plurality of vertical plates 14 is preferably 3 to 16 vertical plates 14, more preferably 4 to 8 vertical plates 14, and particularly preferably 4 vertical plates. If the number of the vertical plates 14 is too large, the repulsive force against the rotational force will be too large, and there may be cases where efficient power generation cannot be performed with a small wind force. Since measurement may not be possible, there are cases where it is not possible to divide the wind speed measurement into fine steps, and the output of the piezoelectric element member 21 is easily affected by the wind direction.

複数の垂直板14は、段階的に受力板23を押し始めるように、一定の距離ずつずらして設置してあることも好ましい。段階的に受力板23を押し始めるようにするには、後で詳述するように複数の受力板23の方を一定の距離ずつずらして設置することもできるが、複数の垂直板14の方を一定の距離ずつずらして設置することも可能である。これにより、後述する方法(A)を用いた風速測定装置が得られる。   It is also preferable that the plurality of vertical plates 14 are arranged so as to be shifted by a certain distance so as to start pressing the force receiving plate 23 step by step. In order to start pushing the force receiving plate 23 step by step, the plurality of force receiving plates 23 can be installed by being shifted by a certain distance as will be described in detail later. It is also possible to install by shifting the direction by a certain distance. Thereby, the wind speed measuring apparatus using the method (A) mentioned later is obtained.

また、風車の中心軸11に固定された軸柱15に設けられた複数の垂直溝16とは、例えば、図4(b)に示すように、風車の中心軸11に軸支された軸柱15に、中心軸11と平行に、地面とは垂直に設けられた溝であり、風車の回転と共に回転し、その回転の際に、受力板23を押して振動を開始させるものである。   Further, the plurality of vertical grooves 16 provided in the shaft column 15 fixed to the center shaft 11 of the windmill is, for example, a shaft column supported on the center shaft 11 of the windmill as shown in FIG. 15 is a groove provided in parallel with the central axis 11 and perpendicular to the ground, and rotates with the rotation of the windmill. At the time of the rotation, the force receiving plate 23 is pressed to start vibration.

垂直溝16の個数としては、3〜16個であることが好ましく、より好ましくは4〜8個であり、特に好ましくは4個である。垂直溝16の個数が多すぎると、回転力に対して圧電素子部材21自身が有する反発力が大きくなりすぎ、小さい風力では効率的な発電ができない等の場合があり、一方、少なすぎると、その個数分しか段階分けによって風速が測定できない場合があるので、風速測定の細かい段階分けができなくなる、風向により圧電素子部材21の出力が影響を受けやすくなる等の場合がある。   The number of vertical grooves 16 is preferably 3 to 16, more preferably 4 to 8, and particularly preferably 4. If the number of the vertical grooves 16 is too large, the repulsive force of the piezoelectric element member 21 itself with respect to the rotational force becomes too large, and there are cases where efficient power generation cannot be performed with a small wind force. Since the wind speed may be measured only by the number of stages, the wind speed measurement may not be finely divided, and the output of the piezoelectric element member 21 may be easily affected by the wind direction.

本発明における垂直溝16の形状については、効率的に受力板23を押して圧電素子部材21を屈曲させることができれば特に限定はない。複数の垂直溝16が設けられている軸柱15の材質も特に限定はなく、金属や樹脂等の何れでもよいが、繰り返し強度、耐摩耗性等の点で金属が好ましい。   The shape of the vertical groove 16 in the present invention is not particularly limited as long as the piezoelectric element member 21 can be bent by pressing the force receiving plate 23 efficiently. The material of the shaft column 15 provided with the plurality of vertical grooves 16 is not particularly limited and may be any of metal, resin, and the like, but metal is preferable from the viewpoint of repeated strength, wear resistance, and the like.

また、複数の垂直溝16の各溝幅は、その全てが等しくなっていてもよく、段階的に広くなっていてもよい。複数の垂直溝16のうち、どの段階のものまでが受力板23を押して振動を開始させたかを検知して風速を測定する場合(後述する方法(A)の場合)には、段階的に広くなっている必要がある。   Further, the widths of the plurality of vertical grooves 16 may all be equal or may be increased stepwise. When the wind speed is measured by detecting which stage of the plurality of vertical grooves 16 has pushed the force receiving plate 23 to start vibration (in the case of method (A) described later), stepwise It needs to be wide.

好ましい溝幅としては、1mm〜8mm、より好ましくは1mm〜4mmである。溝幅が大きすぎる場合は、垂直溝16の個数を少なくせざるを得ないので、上記した垂直溝16の個数が少ない時と同様の問題が生じる場合があり、また、小さい風力下では圧電素子部材21に伝達する力が少なくなる等の場合があり、一方、小さすぎる場合は、回転力が圧電素子部材21に与える力が過剰になる場合があり、圧電素子部材21の耐久性に影響を与える等の場合がある。   A preferable groove width is 1 mm to 8 mm, more preferably 1 mm to 4 mm. If the groove width is too large, the number of vertical grooves 16 must be reduced, so the same problem as that when the number of vertical grooves 16 is small may occur. The force transmitted to the member 21 may be reduced. On the other hand, when the force is too small, the force applied to the piezoelectric element member 21 by the rotational force may be excessive, which affects the durability of the piezoelectric element member 21. May give.

垂直溝16と受力板23との間のクリアランスは、その全てが等しくなっていてもよく、段階的に広くなっていてもよい。また、このクリアランスは0mmであってもよい。すなわち、クリアランスは実質的になくてもよい。   The clearance between the vertical groove 16 and the force receiving plate 23 may be all equal or may be increased stepwise. Further, this clearance may be 0 mm. That is, there may be substantially no clearance.

(1−2)風力発電機構について
本発明における圧電素子部材21は、垂直軸風車10と中心軸11を共通にする円周上に一端が固定され、円周の内部に中心に向かって垂直に張り出している。該圧電素子部材21は、薄手の圧電素子22を金属板等に貼り合わせたモノモルフ構造を有するものであっても、2枚の圧電素子を貼り合わせたバイモルフ構造を有するものであってもよいが、製造が容易である、発熱しない、発電能力の効率からバイモルフ構造が好ましい。また、1個の圧電素子部材21を構成する圧電素子22は複数個であってもよい。
(1-2) Wind Power Generation Mechanism The piezoelectric element member 21 according to the present invention has one end fixed on the circumference sharing the vertical axis wind turbine 10 and the central axis 11 and vertically extending toward the center inside the circumference. It is overhanging. The piezoelectric element member 21 may have a monomorph structure in which a thin piezoelectric element 22 is bonded to a metal plate or the like, or may have a bimorph structure in which two piezoelectric elements are bonded. The bimorph structure is preferable because it is easy to manufacture, does not generate heat, and has an efficient power generation capacity. Further, a plurality of piezoelectric elements 22 constituting one piezoelectric element member 21 may be provided.

本発明における複数の圧電素子部材21の位置は、垂直軸風車10と中心軸11を共通にする円周上に、それぞれ等しい距離を持って等間隔に固定してもよいが、風速により上記複数の垂直板14が、段階的に上記受力板23を押して振動を開始させるようにするためには、図5(a)に示すように段階的に一定の距離ずつずらして固定する。   The positions of the plurality of piezoelectric element members 21 in the present invention may be fixed at equal intervals on the circumference that shares the vertical axis wind turbine 10 and the central axis 11 with equal distances. In order for the vertical plate 14 to press the force receiving plate 23 in a stepwise manner to start vibration, the vertical plate 14 is fixed while being shifted in steps by a certain distance as shown in FIG.

圧電素子部材21は、上記複数の垂直板14又は複数の垂直溝16と通常等しい数だけ設けられる。   The piezoelectric element members 21 are usually provided in the same number as the plurality of vertical plates 14 or the plurality of vertical grooves 16.

本発明における受力板23は、図3に示すように、上記の圧電素子部材21の一端に取り付けられており、垂直板14若しくは垂直溝16から外れないように周期的に押されて振動してその振動を該圧電素子部材21に伝えて発電させるものである。本発明における受力板23の形状については、効率的に圧電素子部材21を屈曲させることができれば特に限定はなく、長方形板状や円形板状等の何れでもよい。受力板23の面積についても特に限定はないが、受力板23を押す際に垂直板14自身が変形し圧電素子部材21を屈曲させるために十分な力を伝達できないことがないように、垂直板14に用いる材質の弾性係数から鑑みて十分な面積を有していることが好ましい。受力板23の材質も特に限定はなく、金属や樹脂等の何れでもよい。   As shown in FIG. 3, the force receiving plate 23 according to the present invention is attached to one end of the piezoelectric element member 21 and is periodically pushed and vibrated so as not to be detached from the vertical plate 14 or the vertical groove 16. The vibration is transmitted to the piezoelectric element member 21 to generate power. The shape of the force receiving plate 23 in the present invention is not particularly limited as long as the piezoelectric element member 21 can be efficiently bent, and may be any of a rectangular plate shape and a circular plate shape. The area of the force receiving plate 23 is not particularly limited. However, when the force receiving plate 23 is pushed, the vertical plate 14 itself is deformed so that a force sufficient to bend the piezoelectric element member 21 cannot be transmitted. In view of the elastic modulus of the material used for the vertical plate 14, it is preferable to have a sufficient area. The material of the force receiving plate 23 is not particularly limited, and may be any metal or resin.

上記圧電素子部材21の、上記受力板23が取り付けられていない側は、固定保持部材24によって固定されている。固定保持部材24は、垂直軸風車10と中心軸11を共通にする同心円の円周上に配置されている。本発明における圧電素子部材21は、垂直軸風車10と中心軸11を共通にする円周上に、固定保持部材24によって一端が固定されて、中心に向かって張り出している。   The side of the piezoelectric element member 21 to which the force receiving plate 23 is not attached is fixed by a fixed holding member 24. The fixed holding member 24 is disposed on a concentric circle having the vertical axis wind turbine 10 and the central axis 11 in common. The piezoelectric element member 21 according to the present invention has one end fixed on a circumference having the vertical axis wind turbine 10 and the central axis 11 in common by a fixed holding member 24, and projects toward the center.

固定保持部材24は、圧電素子部材21が動かないように固定するものであり、圧電素子部材21の屈曲の力を逃がさないようになっていることが好ましく、風力によって実質的に変位を受けずに静止しているようになっている。   The fixing holding member 24 fixes the piezoelectric element member 21 so as not to move, and preferably does not release the bending force of the piezoelectric element member 21 and is not substantially displaced by wind force. It seems to be stationary.

<態様2について>
本発明の態様2については、図4(c)に示した。
風力伝達機構(1)は、少なくとも、
(a)垂直軸風車10
(b)該垂直軸風車10の上部、下部又は内部に、該垂直軸風車10と中心軸11を共通にする円筒18の内部に周設された複数の柱19に設けられた垂直溝16
によって構成されている。
<About aspect 2>
The aspect 2 of the present invention is shown in FIG.
The wind power transmission mechanism (1) is at least
(A) Vertical axis wind turbine 10
(B) Vertical grooves 16 provided in a plurality of pillars 19 provided around a cylinder 18 having the vertical axis windmill 10 and the central axis 11 in common at the upper part, the lower part, or the inside of the vertical axis windmill 10.
It is constituted by.

風力発電機構(2)は、少なくとも、
(c)該垂直軸風車10の中心軸11に軸支された固定保持部材24
(d)前記固定保持部材24に一端が固定され、円周の外部に垂直に張り出された、屈曲することによって発電する圧電素子部材21
(d)前記圧電素子部材21の固定されていない他端に取り付けられており、上記垂直溝16から外れないように周期的に押されて振動してその振動を該圧電素子部材21に伝えて発電させる受力板23
によって構成されている。
The wind power generation mechanism (2) is at least
(C) The fixed holding member 24 supported by the central shaft 11 of the vertical axis wind turbine 10
(D) One end of the fixed holding member 24 is fixed, and the piezoelectric element member 21 that generates electricity by bending is projected perpendicularly to the outside of the circumference.
(D) It is attached to the other unfixed end of the piezoelectric element member 21 and is periodically pushed so as not to be detached from the vertical groove 16 and vibrates to transmit the vibration to the piezoelectric element member 21. Power receiving plate 23 for generating electricity
It is constituted by.

(1−3)風力伝達機構について
垂直軸風車10は上記態様1で記載した通りである。本発明の風力発電機構(1)には、該風車10と中心軸11を共通にする円筒18の内部に周設された複数の柱19に設けられた垂直溝16を有する。該垂直溝16は、垂直軸風車10の上部、下部又は垂直軸風車10と同一面の内部(垂直軸風車10の内部)の何れにあってもよいが、垂直軸風車10の内部にあることが好ましい。
(1-3) About Wind Power Transmission Mechanism The vertical axis wind turbine 10 is as described in the first aspect. The wind power generation mechanism (1) of the present invention has vertical grooves 16 provided in a plurality of pillars 19 provided around a cylinder 18 that shares the central axis 11 with the windmill 10. The vertical groove 16 may be in the upper part, the lower part of the vertical axis wind turbine 10, or in the same plane as the vertical axis wind turbine 10 (inside the vertical axis wind turbine 10), but in the vertical axis wind turbine 10. Is preferred.

風車10と中心軸11を共通にする円筒18の内部に周設された複数の柱19に設けられた垂直溝16は、例えば、図4(c)に示すように、風車と中心軸11を共通にする円筒18の内部に周設された複数の柱19に、地面とは垂直に設けられた溝であり、風車の回転と共に回転し、その回転の際に受力板23を振動させるものである。   For example, as shown in FIG. 4 (c), the vertical grooves 16 provided in the plurality of pillars 19 provided around the inside of the cylinder 18 that shares the windmill 10 and the central axis 11 are connected to the windmill and the central axis 11, respectively. A plurality of pillars 19 that are provided around a common cylinder 18 are grooves that are provided perpendicular to the ground, and rotate with the rotation of the windmill and vibrate the force receiving plate 23 during the rotation. It is.

円筒18の内部に周設された柱19の個数としては、3〜16個であることが好ましく、より好ましくは4〜8個であり、特に好ましくは4個である。柱19の個数が多すぎると、回転力に対して圧電素子部材21が有する反発力が大きくなりすぎ(あまり屈曲せず)、小さい風力では効率的な発電ができない場合があり、一方、少なすぎると、その個数分しか段階分けによって風速が測定できない場合があるので、風速測定の細かい段階分けができなくなる、風向により圧電素子部材21の出力が影響を受けやすくなる等の場合がある。垂直溝16の形状、溝幅やクリアランスは上記態様1と同様である。   The number of columns 19 provided around the inside of the cylinder 18 is preferably 3 to 16, more preferably 4 to 8, and particularly preferably 4. If the number of the pillars 19 is too large, the repulsive force of the piezoelectric element member 21 with respect to the rotational force becomes too large (does not bend too much), and efficient power generation may not be possible with a small wind force, but is too small. In some cases, the wind speed can be measured only by the number of steps, so that it is not possible to finely divide the wind speed measurement, and the output of the piezoelectric element member 21 is easily affected by the wind direction. The shape, groove width and clearance of the vertical groove 16 are the same as those in the first aspect.

(1−4)風力発電機構について
本発明における圧電素子部材21は、風車10の中心軸11に軸支された固定保持部材24に一端が固定され、中心軸11から円周の方に向かって垂直に張り出している。該圧電素子部材21及び固定保持部材24の構造等は、前記態様1と同様である。
(1-4) Wind Power Generation Mechanism One end of the piezoelectric element member 21 according to the present invention is fixed to a fixed holding member 24 that is pivotally supported by the center shaft 11 of the windmill 10, toward the circumference from the center shaft 11. Projects vertically. The structure and the like of the piezoelectric element member 21 and the fixed holding member 24 are the same as in the first aspect.

上記圧電阻止部材21の一端に取り付けられている受力板23は、図4(c)に示すように、垂直溝16から外れないように周期的に押されて振動して、その振動を該圧電素子部材21に伝えて、圧電素子22を発電させるものである。受力板23の形状等については、前記態様1で上記した通りである。   The force receiving plate 23 attached to one end of the piezoelectric blocking member 21 is periodically pushed and vibrated so as not to be detached from the vertical groove 16 as shown in FIG. This is transmitted to the piezoelectric element member 21 to cause the piezoelectric element 22 to generate electricity. The shape and the like of the force receiving plate 23 are as described in the first aspect.

以下、本発明の風力発電機を用いた風速測定装置と風力発電装置について説明する。   Hereinafter, a wind speed measuring device and a wind power generator using the wind power generator of the present invention will be described.

(2)風速測定装置について
本発明の風速測定装置は、上記した風力発電機を用いたものである。該風速測定装置は、以下の(A)、(B)及び/又は(C)の方法によって風速を測定する。
(A)上記複数の垂直板14又は上記複数の垂直溝16のうち、どの段階のものまでが上記受力板23を押して振動を開始させたかを検知して風速を測定する。
(B)上記複数の垂直板14又は上記複数の垂直溝16から受力板23が周期的に押されて振動する際の振動数を圧電素子部材21が検知して風速を測定する。
(C)上記複数の垂直板14又は上記複数の垂直溝16から受力板23が周期的に押されて振動することによって圧電素子部材21が振動して発電する際の出力電圧又は電力を検知して風速を測定する。
(2) About wind speed measuring apparatus The wind speed measuring apparatus of this invention uses the above-mentioned wind power generator. The wind speed measuring device measures the wind speed by the following method (A), (B) and / or (C).
(A) Of the plurality of vertical plates 14 or the plurality of vertical grooves 16, up to which stage is pushed to start the vibration by pressing the force receiving plate 23, and the wind speed is measured.
(B) The piezoelectric element member 21 detects the frequency when the force receiving plate 23 is periodically pushed from the plurality of vertical plates 14 or the plurality of vertical grooves 16 and vibrates, and measures the wind speed.
(C) Detecting an output voltage or electric power when the piezoelectric element member 21 vibrates and generates electric power when the force receiving plate 23 is periodically pushed from the plurality of vertical plates 14 or the plurality of vertical grooves 16 and vibrates. And measure the wind speed.

<方法(A)について>
方法(A)は、圧電素子部材21の位置を、該垂直軸風車10の中心軸11からそれぞれ段階的にずらして固定して、風速により、上記複数の垂直板14が、段階的に上記受力板23を押して振動を開始させるようにして風速を測定するものである。すなわち、例えば、図5(a)〜(d)に示すように、垂直板14と受力板23との接触が段階的になるように、垂直板14と受力板23との間隔が、距離tずつ増えていくように設定し、風速に応じて各垂直板14が段階的に受力板23を押して振動を開始させるようにする。図5(a)では、受力板23[1]と垂直板14との距離は、両者が接触しているので0であり、受力板23[2]と垂直板14との距離はtであり、受力板23[3]と垂直板14との距離は2tであり、受力板23[4]と垂直板14との距離は3tである。
<About method (A)>
In the method (A), the position of the piezoelectric element member 21 is fixed while being shifted stepwise from the central axis 11 of the vertical axis wind turbine 10, and the plurality of vertical plates 14 are received stepwise by the wind speed. The wind speed is measured by pressing the force plate 23 to start vibration. That is, for example, as shown in FIGS. 5A to 5D, the distance between the vertical plate 14 and the force receiving plate 23 is set so that the contact between the vertical plate 14 and the force receiving plate 23 is stepwise. The distance t is set so as to increase, and each vertical plate 14 pushes the force receiving plate 23 in a stepwise manner according to the wind speed to start vibration. In FIG. 5A, the distance between the force receiving plate 23 [1] and the vertical plate 14 is 0 because they are in contact with each other, and the distance between the force receiving plate 23 [2] and the vertical plate 14 is t. The distance between the force receiving plate 23 [3] and the vertical plate 14 is 2t, and the distance between the force receiving plate 23 [4] and the vertical plate 14 is 3t.

方法(A)による風速測定は、具体的には以下の通りである。すなわち、風速が小さい場合には、図5(a)に示すように、垂直板14が「受力板23[1]−圧電素子部材21[1]」のみに振動を与え、風速がそれより大きくなると、図5(b)に示すように、2枚の垂直板14が、それぞれ「受力板23[1]−圧電素子部材21[1]」と「受力板23[2]−圧電素子部材21[2]」の2個に振動を与える。このように、風速が大きくなるにつれて、振動を与える垂直板14と「受力板23−圧電素子部材21」の組数が増えていく。そして、何組が振動して発電されているかを検知して風速を測定する。   The wind speed measurement by the method (A) is specifically as follows. That is, when the wind speed is low, as shown in FIG. 5A, the vertical plate 14 vibrates only the “power receiving plate 23 [1] -piezoelectric element member 21 [1]”, and the wind speed is higher than that. When it becomes larger, as shown in FIG. 5B, the two vertical plates 14 become “power receiving plate 23 [1] -piezoelectric element member 21 [1]” and “power receiving plate 23 [2] -piezoelectric, respectively. Vibration is applied to two of the element members 21 [2]. As described above, as the wind speed increases, the number of sets of the vertical plate 14 and the “force receiving plate 23-piezoelectric element member 21” that gives vibration increases. And how many sets vibrate and generate | occur | produce electric power is detected, and a wind speed is measured.

距離tとしては、1mm〜8mmが好ましく、特に好ましくは1mm〜4mmである。距離tが大き過ぎる場合には、小さい風力下で圧電素子22に伝達する力が少なくなる等の場合があり、弱風時の検知感度が低下する場合があり、小さすぎる場合には、圧電素子22に与える力が弱風時において高くなるため強風時に適切に検知できない場合がある。   The distance t is preferably 1 mm to 8 mm, particularly preferably 1 mm to 4 mm. If the distance t is too large, the force transmitted to the piezoelectric element 22 under a small wind force may be reduced, and the detection sensitivity during a weak wind may be reduced. Since the force applied to 22 is high when the wind is weak, it may not be detected properly when the wind is strong.

また、方法(A)については、複数の垂直溝16の溝幅を段階的に広げ、上記受力板23との間に段階的にクリアランスを設け、風速により、上記複数の垂直溝16が、段階的に上記受力板23を押して振動を開始させるようにすることもできる。すなわち、例えば図6(a)に示すように、複数の垂直溝16の溝幅を段階的に広げ、受力板23との間に段階的に広くなるクリアランスを設け、風速により、複数の垂直溝16が、段階的に受力板23を押し始めて振動を開始させることもできる。風速が大きくなるにつれて、振動を与える垂直板14と垂直溝16の組数が増えていく。そして、何組が振動して発電されているかを検知して風速を測定する。   As for the method (A), the groove width of the plurality of vertical grooves 16 is increased stepwise, clearance is provided stepwise between the force receiving plate 23, and the plurality of vertical grooves 16 are The force receiving plate 23 can be pushed stepwise to start vibration. That is, for example, as shown in FIG. 6A, the groove widths of the plurality of vertical grooves 16 are increased stepwise, and clearances that are increased stepwise are provided between the force receiving plates 23. It is also possible for the groove 16 to start pushing the force receiving plate 23 step by step to start vibration. As the wind speed increases, the number of sets of vertical plates 14 and vertical grooves 16 that apply vibrations increases. And how many sets vibrate and generate | occur | produce electric power is detected, and a wind speed is measured.

この場合、溝幅は、0.5mm〜1mmずつ広げていくことが好ましく、特に好ましくは1mmずつ広げていくことである。   In this case, the groove width is preferably widened by 0.5 mm to 1 mm, particularly preferably by 1 mm.

上記風速測定装置は、何組が振動しているかが瞬時に分かることから、瞬間時の風速が容易に得られ、従来は測定が難しかった瞬間風速測定装置として機能する。例えば、パドル形(風杯型、三杯型)風速計では、瞬間風速の値はその直前の風速の影響を受けてしまう。従って、本発明の風速測定装置は、瞬間風速測定装置として用いられることも好ましい。また、振動している受力板23の数によって、容易に風速の階級分けが可能になる。更に、受力板23の特定の枚数以上が振動を開始したときに(特定の組数が振動した時に)警報を発信するように設定しておけば、瞬間風速により警報を発信することができて災害防止に極めて有効である。   Since the wind speed measuring device can instantly know how many sets vibrate, the instantaneous wind speed can be easily obtained, and functions as an instantaneous wind speed measuring device that has conventionally been difficult to measure. For example, in a paddle type (wind cup type, triple cup type) anemometer, the value of the instantaneous wind speed is affected by the wind speed immediately before that. Therefore, the wind speed measuring device of the present invention is also preferably used as an instantaneous wind speed measuring device. Further, it is possible to easily classify the wind speed depending on the number of vibrating force receiving plates 23. Furthermore, if a setting is made so that an alarm is issued when a specific number or more of the force receiving plates 23 starts to vibrate (when a specific number of groups vibrate), the alarm can be sent based on the instantaneous wind speed. It is extremely effective for disaster prevention.

<方法(B)について>
方法(B)は、上記複数の垂直板14又は上記複数の垂直溝16から受力板23が周期的に押されて振動する際の振動数を圧電素子部材21が検知して風速を測定する。通常、振動数が大きいほど風速が強いことになる。方法(B)の場合、上記tは0であっても、0でなくてもよい。また、垂直溝16の溝幅は段階的に広げてあっても(図6(a))、段階的に広げてなくて(溝幅が等しくて)もよい(図6(b))。すなわち、方法(B)は、単独で風速を測定しても、方法(A)と組み合わせて風速を測定してもよい。
<About method (B)>
In the method (B), the piezoelectric element member 21 detects the frequency when the force receiving plate 23 is periodically pushed from the plurality of vertical plates 14 or the plurality of vertical grooves 16 to vibrate, and measures the wind speed. . Usually, the higher the frequency, the stronger the wind speed. In the case of the method (B), t may be 0 or may not be 0. Further, the groove width of the vertical groove 16 may be expanded stepwise (FIG. 6A) or may not be expanded stepwise (the groove widths are equal) (FIG. 6B). That is, in the method (B), the wind speed may be measured alone or in combination with the method (A).

<方法(C)について>
方法(C)は、上記複数の垂直板14又は上記複数の垂直溝16から受力板23が周期的に押されて振動することによって、その振動を圧電素子部材21に伝え、圧電素子部材21が周期的に振動して発電する際の出力電圧又は電力を検知して風速を測定する。圧電素子部材21からの出力電圧又は電力が大きいほど風速が強いことになる。方法(C)は、単独で風速を測定しても、方法(A)や方法(B)と組み合わせて風速を測定してもよい。
<About method (C)>
In the method (C), the force receiving plate 23 is periodically pushed from the plurality of vertical plates 14 or the plurality of vertical grooves 16 to vibrate, thereby transmitting the vibration to the piezoelectric element member 21. Measures the wind speed by detecting the output voltage or power when generating power by periodically vibrating. The higher the output voltage or power from the piezoelectric element member 21, the stronger the wind speed. In the method (C), the wind speed may be measured alone, or the wind speed may be measured in combination with the method (A) or the method (B).

図7に、本発明の風速測定装置の測定回路80の一例を示した。測定回路80では、圧電素子部材21が発生した電圧を電圧計82で測定する。   FIG. 7 shows an example of the measurement circuit 80 of the wind speed measuring apparatus of the present invention. In the measurement circuit 80, the voltage generated by the piezoelectric element member 21 is measured by the voltmeter 82.

(3)風力発電装置について
本発明の風力発電装置は、上記した風力発電機を用い、外部に電力を供給できるようにしたものである。また、上記した風速測定装置を用いて測定された風速データを無線送信するための電力供給用としても用いることができる。
(3) About wind power generator The wind power generator of this invention can supply electric power outside using the above-mentioned wind power generator. Further, it can also be used for power supply for wirelessly transmitting wind speed data measured using the wind speed measuring apparatus described above.

本発明における風力発電装置は、例えば図6(b)に示すように、複数の垂直溝16の各溝幅は全て等しい方が好ましい。また、本発明における圧電素子部材21は、垂直軸風車10の中心軸11から放射状に全て等しい距離をおいて固定することが好ましい。   In the wind power generator according to the present invention, for example, as shown in FIG. 6B, it is preferable that the groove widths of the plurality of vertical grooves 16 are all equal. Moreover, it is preferable that the piezoelectric element member 21 in the present invention is fixed at equal distances from the central axis 11 of the vertical axis wind turbine 10 in a radial manner.

より多くの電力を得るために、本発明における風力伝達機構(1)及び発電機構(2)を1個の垂直軸風車10に複数設置してもよい。その際、垂直軸風車10の下部に積み重ねるようにして設置することが、装置の設置がしやすい等点で好ましい。   In order to obtain more electric power, a plurality of wind power transmission mechanisms (1) and power generation mechanisms (2) according to the present invention may be installed in one vertical axis wind turbine 10. At that time, it is preferable to install the apparatus so as to be stacked under the vertical axis wind turbine 10 in terms of easy installation of the apparatus.

また、風速測定装置と風力発電装置は共通の装置とすることも可能ではあるが、両者を分離させた構造の方が、風速測定装置の測定回路80を動作させるための安定的な電力を確保できる点で好ましい。また、1個の垂直軸風車10に対して、前記の風速測定装置と風力発電装置を積み重ねて設置し、かかる風速測定装置で測定した風速のデータを、かかる風力発電装置で発電した電力により無線発信することも好ましい。   The wind speed measuring device and the wind power generation device can be a common device, but the structure in which both are separated ensures more stable power for operating the measurement circuit 80 of the wind speed measuring device. It is preferable in that it can be performed. Further, the wind speed measuring device and the wind power generator are stacked and installed on one vertical axis wind turbine 10, and the wind speed data measured by the wind speed measuring device is wirelessly transmitted by the power generated by the wind power generator. It is also preferable to transmit.

図8に、圧電素子部材21からの集電を行う集電回路90の一例を示した。かかる集電回路90は本発明の風力発電装置に好適に用いられる。集電回路90は、圧電素子部材21a、21bが発生した電気(交流)を整流する整流回路91と、整流回路91によって整流された電力の一部を貯蔵するとともに、貯蔵した電力を負荷92へ供給する充放電回路93とを有している。整流回路91は、ダイオード94で全波整流する構成を有する。また、充放電回路93は、電力を貯蔵/放出するコンデンサや二次電池等の電力貯蔵体95を備えていてもよい。   FIG. 8 shows an example of a current collecting circuit 90 that collects current from the piezoelectric element member 21. Such a current collecting circuit 90 is preferably used in the wind power generator of the present invention. The current collecting circuit 90 rectifies the electricity (alternating current) generated by the piezoelectric element members 21 a and 21 b, and stores part of the power rectified by the rectifying circuit 91, and the stored power to the load 92. And a charge / discharge circuit 93 to be supplied. The rectifier circuit 91 has a configuration in which full-wave rectification is performed by a diode 94. The charge / discharge circuit 93 may include a power storage body 95 such as a capacitor or a secondary battery for storing / releasing power.

このような集電回路90によれば、整流回路91により整流された電力のうち、負荷92へ必要な電力をリアルタイムに送ることができる。一方、負荷92で必要とされない余剰電力を電力貯蔵体95に貯蔵することができるために、例えば、受力板23に変位が生じない無風時等には、この電力貯蔵体95に貯蔵された電力を用いて負荷92を動作させることができる。   According to such a current collecting circuit 90, necessary power can be sent to the load 92 in real time among the power rectified by the rectifying circuit 91. On the other hand, surplus power that is not required by the load 92 can be stored in the power storage body 95. For example, when no wind is generated in the power receiving plate 23, the power storage body 95 stores the surplus power. The load 92 can be operated using electric power.

本発明の風力発電装置を無線送信用の電力供給用に用いることは、メンテナンスフリーを実現できる点で好ましい。更には、無電源で風速を測定し、その結果を無線送信するための電力供給用に用いることも好ましい。   Use of the wind power generator of the present invention for power supply for wireless transmission is preferable in that maintenance-free can be realized. Furthermore, it is also preferable that the wind speed is measured with no power source and the result is used for power supply for wireless transmission.

以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

実施例1
図4(a)に示した本発明の風力発電機を用いて、9.69m/s及び12.3m/sの一定風速下での各圧電素子部材21から得られる電圧(V)を測定した。図9に横軸が時間(ms)、縦軸が発電電圧(V)の電圧曲線の一例を示す。
Example 1
Using the wind power generator of the present invention shown in FIG. 4A, the voltage (V) obtained from each piezoelectric element member 21 under constant wind speeds of 9.69 m / s and 12.3 m / s was measured. . FIG. 9 shows an example of a voltage curve in which the horizontal axis is time (ms) and the vertical axis is the generated voltage (V).

本実施例で用いた本発明の風力発電機の構造は、図4(a)に示したように、8枚の半円筒羽根13を有する垂直軸風車10の下部に、該垂直軸風車10の中心軸11に軸支された軸柱15に一端が固定された4枚の垂直板14を有し、該垂直軸風車10と中心軸11を共通にする円周上に一端が固定され、円周の内部に中心に向かって垂直に張り出された4個の圧電素子部材21及び該圧電素子部材21に固定されている受力板23を有する風力発電機である。   As shown in FIG. 4A, the structure of the wind power generator of the present invention used in the present embodiment is the lower part of the vertical axis windmill 10 having eight semicylindrical blades 13. It has four vertical plates 14 each having one end fixed to a shaft column 15 supported by the center shaft 11, and one end is fixed on the circumference sharing the vertical shaft wind turbine 10 and the center shaft 11. The wind power generator includes four piezoelectric element members 21 projecting vertically toward the center inside the circumference and a force receiving plate 23 fixed to the piezoelectric element member 21.

図9から明らかなように、一定風速下で生じるカルマン渦を利用して、圧電素子部材21の振動により発電した。更に、風速が速くなるにつれて圧電素子部材21が振動する個数が2個から4個に増加し、総発電量も増加していることが分かった。従って、本発明の風力発電機は、風速測定装置としても風力発電装置としても用いることができ、これを利用することで外部に電力を供給することも可能である。   As is clear from FIG. 9, power was generated by vibration of the piezoelectric element member 21 using Karman vortices generated at a constant wind speed. Further, it was found that the number of piezoelectric element members 21 that vibrate increased from two to four as the wind speed increased, and the total power generation amount also increased. Therefore, the wind power generator of the present invention can be used as both a wind speed measuring device and a wind power generating device, and by using this, it is possible to supply electric power to the outside.

実施例2
図1と図10に示した本発明の風力発電機を用いて、風速5m/s〜28m/sにおける風速下での各圧電素子部材21から得られる電圧(V)を測定した。ここで、本実施例で用いた風力発電機は、図10に示すように、受力板23と複数の垂直板14が段階的に接触するように、各圧電素子部材21[1]〜[4]を距離t=1mmだけずらして固定した以外は、実施例1と同様のものである。結果を図11に、横軸が時間(ms)、縦軸が出力電圧(V)の電圧曲線として示す。
Example 2
The voltage (V) obtained from each piezoelectric element member 21 under the wind speed at a wind speed of 5 m / s to 28 m / s was measured using the wind power generator of the present invention shown in FIGS. Here, in the wind power generator used in this example, as shown in FIG. 10, the piezoelectric element members 21 [1] to [1] to [[]] so that the force receiving plate 23 and the plurality of vertical plates 14 come into contact in stages. 4] is the same as that of Example 1 except that the distance t is shifted by 1 mm and fixed. The results are shown in FIG. 11 as a voltage curve of time (ms) on the horizontal axis and output voltage (V) on the vertical axis.

図11(a)〜(d)に示したように、風速8.17m/s下では1個の圧電素子部材21[1]のみが、16.54m/sでは2個が、22.52m/sでは3個が、27.22m/sでは4個の圧電素子部材21[1]〜[4]全てが振動し、発電した。このとき、垂直板14が接触していない(押していない)受力板23に固定された圧電素子部材21からの出力はほぼ0であった。つまり、風速の大小により、振動する圧電素子の個数が変化するのを利用して、風速の階級分けをすることができた。以下に本実施例における風速と、圧電素子が振動し発電した個数を示す。   As shown in FIGS. 11A to 11D, only one piezoelectric element member 21 [1] is obtained at a wind speed of 8.17 m / s, and two pieces at 22.54 m / s are 22.52 m / s. Three piezoelectric elements 21 [1] to [4] vibrated and generated electricity at s, and at 27.22 m / s. At this time, the output from the piezoelectric element member 21 fixed to the force receiving plate 23 in which the vertical plate 14 is not in contact (not pressed) was almost zero. In other words, it was possible to classify the wind speed by utilizing the fact that the number of oscillating piezoelectric elements changes depending on the wind speed. In the following, the wind speed and the number of electric power generated by vibration of the piezoelectric element are shown.

また、風速が小さい(8.17m/s)図11(a)では振動数が小さく、風速が大きくなるにつれて(例えば風速22.52m/sの図11(c))、振動数が大きくなった。これより、振動周波数が大きくなることによっても、風速が測定できることが明らかになった。   In addition, the frequency is small in FIG. 11 (a) with a low wind speed (8.17 m / s), and the frequency increases as the wind speed increases (for example, FIG. 11 (c) with a wind speed of 22.52 m / s). . From this, it became clear that the wind speed can also be measured by increasing the vibration frequency.

また、風速が小さい(8.17m/s)図11(a)では電力量が小さく、風速が大きくなるにつれて(例えば風速22.52m/sの図11(c))、電力量が大きくなった。これより、電力量が大きくなることによっても、風速が測定できることが明らかになった。   In addition, the amount of electric power is small in FIG. 11 (a) with a low wind speed (8.17 m / s), and the amount of electric power increases as the wind speed increases (for example, FIG. 11 (c) with a wind speed of 22.52 m / s). . From this, it became clear that the wind speed can be measured by increasing the amount of electric power.

以上より、本発明の風力発電機を用いれば、圧電素子が振動し発電する個数等から風速の階級分けが可能な風速測定装置、及び、自然風下での風力発電が可能な風力発電装置を提供することができる。   As described above, by using the wind power generator of the present invention, it is possible to provide a wind speed measuring device capable of classifying wind speeds based on the number of piezoelectric elements that vibrate and generate power, and a wind power generator capable of wind power generation under natural wind. can do.

本発明の風力発電機は、風速測定用、無線送信の電力供給用等に用いられるほか、発電効率に特に優れているため、電力を必要とするあらゆる分野に広く一般に利用されるものである。   The wind power generator of the present invention is used not only for measuring wind speed, supplying power for wireless transmission, and the like, but also because it is particularly excellent in power generation efficiency, it is widely used in all fields that require power.

1・・・・・風力伝達機構
2・・・・・発電機構
10・・・・・垂直軸風車
11・・・・・中心軸
12a・・・・上円盤
12b・・・・下円盤
13・・・・・半円筒羽根
14・・・・・垂直板
15・・・・・軸柱
16・・・・・垂直溝
17・・・・・台座
18・・・・・円筒
19・・・・・柱
21・・・・・圧電素子部材
21a・・・・圧電素子部材a
21b・・・・圧電素子部材b
21[1]・・圧電素子部材[1]
21[2]・・圧電素子部材[2]
21[3]・・圧電素子部材[3]
21[4]・・圧電素子部材[4]
22・・・・・圧電素子
23・・・・・受力板
23[1]・・受力板[1]
23[2]・・受力板[2]
23[3]・・受力板[3]
23[4]・・受力板[4]
24・・・・・固定保持部材
80・・・・・風速測定装置の測定回路
81・・・・・抵抗
82・・・・・電圧計
90・・・・・風力発電装置の集電回路
91・・・・・整流回路
92・・・・・負荷
93・・・・・充放電回路
94・・・・・ダイオード
95・・・・・電力貯蔵体
DESCRIPTION OF SYMBOLS 1 ... Wind power transmission mechanism 2 ... Electric power generation mechanism 10 ... Vertical axis windmill 11 ... Center axis 12a ... Upper disk 12b ... Lower disk 13.・ ・ ・ ・ Semi-cylindrical blade 14 ・ ・ ・ Vertical plate 15 ・ ・ ・ Axis column 16 ・ ・ ・ ・ ・ Vertical groove 17 ・ ・ ・ Pedestal 18 ・ ・ ・ Cylinder 19 ・ ・ ・· Column 21 ··· Piezoelectric element member 21a ··· Piezoelectric element member a
21b .... Piezoelectric element member b
21 [1] .. Piezoelectric element member [1]
21 [2] .. Piezoelectric element member [2]
21 [3] .. Piezoelectric element member [3]
21 [4] .. Piezoelectric element member [4]
22... Piezoelectric element 23... Power receiving plate 23 [1] .. Power receiving plate [1]
23 [2] ・ ・ Power receiving plate [2]
23 [3] ・ ・ Power receiving plate [3]
23 [4] ・ ・ Power receiving plate [4]
24... Fixed holding member 80... Measurement circuit of wind speed measuring device 81... Resistance 82... Voltmeter 90. ... Rectifier circuit 92 ... Load 93 ... Charge / discharge circuit 94 ... Diode 95 ... Power storage

Claims (8)

垂直軸風車、及び、該垂直軸風車の上部、下部又は内部に、該垂直軸風車と中心軸を共通にする円筒の内部に周設された複数の柱に設けられた垂直溝、を有する風力伝達機構(1)、並びに、
該垂直軸風車の中心軸に軸支された固定保持部材に一端が固定され、中心軸から円周に向かって垂直に張り出された、屈曲することによって発電する圧電素子部材、及び、該圧電素子部材の固定されていない他端に取り付けられており、上記複数の柱に設けられた垂直溝から外れないように周期的に押されて振動してその振動を該圧電素子部材に伝えて発電させる受力板、を有する発電機構(2)、
を具備する風力発電機。
Wind power having a vertical axis wind turbine, and vertical grooves provided in a plurality of pillars provided inside a cylinder having a central axis in common with the vertical axis wind turbine at the upper, lower, or inside of the vertical axis wind turbine Transmission mechanism (1), and
A piezoelectric element member that has one end fixed to a fixed holding member that is pivotally supported by the central axis of the vertical axis wind turbine and that projects vertically from the central axis toward the circumference, and generates electricity by bending, and the piezoelectric element It is attached to the other end of the element member that is not fixed, and is periodically pushed and vibrated so as not to be disengaged from the vertical grooves provided on the plurality of pillars, and the vibration is transmitted to the piezoelectric element member to generate power. A power generating mechanism (2) having a force receiving plate,
A wind power generator comprising:
請求項1記載の風力発電機を用いた風速測定装置。   A wind speed measuring apparatus using the wind power generator according to claim 1. 上記複数の柱に設けられた垂直溝の溝幅を段階的に広げ、上記受力板との間に段階的にクリアランスを設け、風速により、上記複数の柱に設けられた垂直溝が、段階的に上記受力板を押して振動を開始させるようにした請求項2記載の風速測定装置。   The vertical grooves provided in the plurality of pillars are gradually increased in width, the clearance is provided in steps with the force receiving plate, and the vertical grooves provided in the plurality of pillars are stepped by the wind speed. 3. A wind speed measuring apparatus according to claim 2, wherein vibration is started by pressing the force receiving plate. 上記複数の柱に設けられた垂直溝のうち、どの段階のものまでが上記受力板を押して振動を開始させたかを検知して風速を測定する請求項3記載の風速測定装置。   The wind speed measuring apparatus according to claim 3, wherein the wind speed is measured by detecting up to which stage of the vertical grooves provided in the plurality of pillars the vibration is started by pressing the force receiving plate. 上記複数の柱に設けられた垂直溝から受力板が周期的に押されて振動する際の振動数を該圧電素子部材が検知して風速を測定する請求項2又は請求項3記載の風速測定装置。   The wind speed according to claim 2 or 3, wherein the piezoelectric element member detects the frequency when the force receiving plate is periodically pushed from the vertical grooves provided in the plurality of pillars and vibrates to measure the wind speed. measuring device. 請求項2ないし請求項5の何れかの請求項記載の風速測定装置を用いたことを特徴とする瞬間風速測定装置。   An instantaneous wind speed measuring device using the wind speed measuring device according to any one of claims 2 to 5. 請求項1記載の風力発電機を用い、外部に電力を供給できるようにした風力発電装置。   A wind power generator using the wind power generator according to claim 1 so that electric power can be supplied to the outside. 請求項2ないし請求項5の何れかの請求項記載の風速測定装置を用いて測定された風速データを無線送信するための電力供給用の請求項7記載の風力発電装置。   The wind power generator according to claim 7 for supplying power for wirelessly transmitting wind speed data measured by using the wind speed measuring device according to any one of claims 2 to 5.
JP2012282123A 2012-12-26 2012-12-26 A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator Expired - Fee Related JP5608215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282123A JP5608215B2 (en) 2012-12-26 2012-12-26 A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282123A JP5608215B2 (en) 2012-12-26 2012-12-26 A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007306638A Division JP5174441B2 (en) 2007-11-27 2007-11-27 A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator

Publications (2)

Publication Number Publication Date
JP2013076406A true JP2013076406A (en) 2013-04-25
JP5608215B2 JP5608215B2 (en) 2014-10-15

Family

ID=48480029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282123A Expired - Fee Related JP5608215B2 (en) 2012-12-26 2012-12-26 A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator

Country Status (1)

Country Link
JP (1) JP5608215B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503784B1 (en) * 2013-07-18 2014-05-28 株式会社シマダ Impeller, power generator and electrical product
JP2015021495A (en) * 2014-03-14 2015-02-02 株式会社シマダ Impeller, blocking member, power generator, and electric product
KR101487926B1 (en) 2014-09-16 2015-02-06 (주)도암엔지니어링 Hybride type wind measurment and revision system
WO2016013263A1 (en) * 2014-07-24 2016-01-28 豊田鉄工株式会社 Wind power generation device
CN106286123A (en) * 2015-05-13 2017-01-04 涓ュ己 Vertical axis aerogenerator built-in blade rotational structure
KR101707784B1 (en) * 2016-12-12 2017-02-16 임성빈 A Filter Unit Having Ink Material Removal Function
KR101785848B1 (en) 2016-05-27 2017-10-17 배봉관 Safety receptacle
CN108035850A (en) * 2017-12-28 2018-05-15 西南交通大学 A kind of adaptive Wind energy collecting device of wind direction
CN109787512A (en) * 2019-03-12 2019-05-21 哈尔滨工业大学 A kind of vertical concatenation arrangement formula piezoelectric harvester increasing coupling
CN110685862A (en) * 2019-11-11 2020-01-14 西南交通大学 Mountain cantilever type wind energy and rainwater power generation facility
CN112383244A (en) * 2020-11-19 2021-02-19 上海第二工业大学 Spherical piezoelectric power generation device
CN112727689A (en) * 2020-12-29 2021-04-30 河北科技大学 Permanent magnet generator and power generation system
KR20220170602A (en) * 2021-06-23 2022-12-30 이순선 Apparatus for generating electricity using wind

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769615A (en) * 2017-11-08 2018-03-06 中国航空工业集团公司金城南京机电液压工程研究中心 One kind utilizes blade flutter TRT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253754A (en) * 1997-03-06 1998-09-25 Yokogawa Electric Corp Radio data collection device
JP2002005948A (en) * 2000-06-26 2002-01-09 Ueda Japan Radio Co Ltd Electronic weather vane
JP2006136078A (en) * 2004-11-04 2006-05-25 Taiheiyo Cement Corp Method of integrating piezoelectric elements, and power generating unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253754A (en) * 1997-03-06 1998-09-25 Yokogawa Electric Corp Radio data collection device
JP2002005948A (en) * 2000-06-26 2002-01-09 Ueda Japan Radio Co Ltd Electronic weather vane
JP2006136078A (en) * 2004-11-04 2006-05-25 Taiheiyo Cement Corp Method of integrating piezoelectric elements, and power generating unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503784B1 (en) * 2013-07-18 2014-05-28 株式会社シマダ Impeller, power generator and electrical product
JP2015021495A (en) * 2014-03-14 2015-02-02 株式会社シマダ Impeller, blocking member, power generator, and electric product
WO2016013263A1 (en) * 2014-07-24 2016-01-28 豊田鉄工株式会社 Wind power generation device
KR101487926B1 (en) 2014-09-16 2015-02-06 (주)도암엔지니어링 Hybride type wind measurment and revision system
CN106286123A (en) * 2015-05-13 2017-01-04 涓ュ己 Vertical axis aerogenerator built-in blade rotational structure
KR101785848B1 (en) 2016-05-27 2017-10-17 배봉관 Safety receptacle
KR101707784B1 (en) * 2016-12-12 2017-02-16 임성빈 A Filter Unit Having Ink Material Removal Function
CN108035850B (en) * 2017-12-28 2023-04-28 西南交通大学 Wind energy acquisition device with wind direction self-adaptation function
CN108035850A (en) * 2017-12-28 2018-05-15 西南交通大学 A kind of adaptive Wind energy collecting device of wind direction
CN109787512A (en) * 2019-03-12 2019-05-21 哈尔滨工业大学 A kind of vertical concatenation arrangement formula piezoelectric harvester increasing coupling
CN110685862A (en) * 2019-11-11 2020-01-14 西南交通大学 Mountain cantilever type wind energy and rainwater power generation facility
CN110685862B (en) * 2019-11-11 2023-08-11 西南交通大学 Mountain wall-hanging type wind energy and rainwater power generation device
CN112383244A (en) * 2020-11-19 2021-02-19 上海第二工业大学 Spherical piezoelectric power generation device
CN112727689A (en) * 2020-12-29 2021-04-30 河北科技大学 Permanent magnet generator and power generation system
KR20220170602A (en) * 2021-06-23 2022-12-30 이순선 Apparatus for generating electricity using wind
KR102506367B1 (en) * 2021-06-23 2023-03-03 이순선 Apparatus for generating electricity using wind

Also Published As

Publication number Publication date
JP5608215B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5608215B2 (en) A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator
JP5174441B2 (en) A wind power generator using a piezoelectric element, a wind speed measuring device, and a wind power generator
US8026619B2 (en) Generator utilizing fluid-induced oscillations
JP3951438B2 (en) Piezoelectric wind power generator
JP4976864B2 (en) Wind power generator using piezoelectric elements
Fei et al. A wind-flutter energy converter for powering wireless sensors
CN103259453B (en) Piezoelectric cantilever beam generator for wind driven generator blade monitoring system
US8519554B2 (en) Device and method for harvesting energy from flow-induced oscillations
CN103248269B (en) Wheel-type piezoelectric beam generator based on clamping limit
CN103269181B (en) A kind of suspending hammer self-excitation wheel-type electric generator
Zhu et al. A novel miniature wind generator for wireless sensing applications
US20170191466A1 (en) Electrostatic converter
JP2006291842A (en) Wind power generation device
EP2087579A1 (en) Generator utilizing fluid-induced oscillations
US20150115775A1 (en) Piezoelectric power generator using wind power
JP5885314B2 (en) Vibration power generation wireless sensor
JP5219854B2 (en) Cylindrical fluid vibration power generator
JP5179235B2 (en) Wind power generator using piezoelectric element, wind power generator using the same, and wind speed measuring device
JP4562617B2 (en) Wind power generator
CN104018991A (en) Piezoelectric ceramic wind driven generator
CN202395680U (en) Novel piezoelectric power generating device
CN109854453A (en) A kind of naturally wind-driven light piezoelectric energy trapping device and method
Avirovik et al. Miniature contactless piezoelectric wind turbine
JP6099240B2 (en) Energy conversion device having a plurality of vibrators and method for manufacturing the same
JP5243189B2 (en) Piezoelectric power generation module, wireless transmission system using the same, and wind speed monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5608215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees