JP4562617B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP4562617B2
JP4562617B2 JP2005235807A JP2005235807A JP4562617B2 JP 4562617 B2 JP4562617 B2 JP 4562617B2 JP 2005235807 A JP2005235807 A JP 2005235807A JP 2005235807 A JP2005235807 A JP 2005235807A JP 4562617 B2 JP4562617 B2 JP 4562617B2
Authority
JP
Japan
Prior art keywords
wind
power generation
plate
power
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005235807A
Other languages
Japanese (ja)
Other versions
JP2007051561A (en
Inventor
健実 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2005235807A priority Critical patent/JP4562617B2/en
Publication of JP2007051561A publication Critical patent/JP2007051561A/en
Application granted granted Critical
Publication of JP4562617B2 publication Critical patent/JP4562617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は風力を利用して電気工ネルギーを取り出す風力発電装置およびこれを用いた風力発電システムに関する。   The present invention relates to a wind power generation apparatus that extracts electric energy using wind power and a wind power generation system using the wind power generation apparatus.

近年、クリーンなエネルギーを用いた発電方法として風力発電が注目されている。一般的な風力発電装置としては、プロペラを風力で回転させてモータを回し、電磁誘導により発電するものが実用化されているが、これらは装置が大型であってコストが高いことや、設置場所が制限されること、また、所定の設置間隔を取らなければ発電効率が低下する等の問題がある。   In recent years, wind power generation has attracted attention as a power generation method using clean energy. As a general wind power generation device, a propeller is rotated by wind power and a motor is rotated to generate electric power by electromagnetic induction. However, these devices are large in size and high in cost. However, there is a problem that power generation efficiency is lowered unless a predetermined installation interval is taken.

このような問題を解決するために、圧電素子を用いた発電装置が提案されている。たとえば、特許文献1には、枠状のフレーム部材と、フレーム部材の上開口面を覆う振動板と、振動板の表面に取り付けられた受風翼とを具備し、振動板に屈曲変位を生ずることにより発電するバイモルフ型等の圧電素子が取り付けられた構造を有する風力発電装置が開示されている。この風力発電装置では、受風翼が風力を受けることによって振動し、この振動が振動板に伝えられて圧電素子を屈曲させることにより、電気エネルギーを得ることができる。   In order to solve such a problem, a power generation device using a piezoelectric element has been proposed. For example, Patent Document 1 includes a frame-shaped frame member, a diaphragm that covers the upper opening surface of the frame member, and a wind receiving blade that is attached to the surface of the diaphragm, and causes bending displacement in the diaphragm. A wind power generator having a structure to which a piezoelectric element of a bimorph type or the like that generates electricity is attached is disclosed. In this wind power generator, the wind receiving blades vibrate when receiving wind force, and the vibration is transmitted to the diaphragm to bend the piezoelectric element, thereby obtaining electric energy.

しかしながら、このような風力発電装置では、振動板の振動がフレームによって抑制されることにより、発電効率が低下する問題がある。一方、このような振動板のフレームによる振動抑制を低減させるためには、フレームを大きくしなければならず、設置面積が広くなってしまう。また、屈曲型圧電素子の大きさには製造技術上の制限があるために、大電力発電を目的とする場合には、必ずしも圧電素子を用いることが適切ではない場合がある。
特開2001−231273号公報
However, in such a wind power generator, there is a problem in that the power generation efficiency decreases due to the vibration of the diaphragm being suppressed by the frame. On the other hand, in order to reduce such vibration suppression by the frame of the diaphragm, the frame must be enlarged, and the installation area is increased. In addition, since the size of the bent piezoelectric element is limited in terms of manufacturing technology, it may not always be appropriate to use a piezoelectric element for the purpose of high power generation.
JP 2001-231273 A

本発明はこのような事情に鑑みてなされたものであり、構造が単純で、風速の小さな微風でも発電可能で、高い効率で発電が可能な風力発電装置を提供することを目的とする。また、本発明は、設置面積を狭くすることができ、また設置場所の制限も少ない風力発電装置を提供することを目的とする。さらに本発明は、このような風力発電装置を用いた風力発電システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wind turbine generator that has a simple structure, can generate power even with a small wind speed, and can generate power with high efficiency. It is another object of the present invention to provide a wind turbine generator that can reduce the installation area and has few restrictions on the installation location. Furthermore, an object of this invention is to provide the wind power generation system using such a wind power generator.

本発明は第1発明として、長尺状でその幅方向に所定角度で二つ折りされた形状を有し、その長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化している受風翼と、前記受風翼の振動によって振動して発電する板状発電部と、前記発電部からの電気を取り出す電気回路と、を具備する風力発電装置であって、前記板状発電部が、その板を含む平面と前期受風翼の該二つ折りされた所定角の二等分面とが平行であり、その振動方向が該二等分面に対して略直角となるものと、その板を含む平面と該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする風力発電装置(請求項1)、を提供する。   As a first invention, the present invention has a long shape and is folded in half at a predetermined angle in the width direction, and a predetermined torsional vibration is generated when wind force is received with one end in the longitudinal direction fixed. A wind-receiving blade whose width changes in the longitudinal direction so as to occur, a plate-like power generation unit that generates electric power by vibrating by vibration of the wind-receiving blade, and an electric circuit that extracts electricity from the power generation unit, The plate-shaped power generation unit includes a plane including the plate, and a bisecting plane of the two-folded predetermined angle of the wind-receiving blade in the previous period, and a vibration direction thereof is A plane substantially perpendicular to the bisecting plane, a plane including the plate and the bisecting plane are perpendicular, and the vibration direction is substantially parallel to the bisecting plane; A wind turbine generator (claim 1) is provided.

この風力発電装置においては、受風翼として、対向する短辺の長さが互いに異なる略短冊状の2枚の板部材が、所定の角度をなし、かつ、長手方向の一端が他端よりも幅広となるように、その長辺で接合された構造を有するものが好適に用いられる。この場合、前記受風翼の二つ折りの折れ線部分相当部又は接合部分相当部に、ピアノ線等の補強部材を有することが望ましい。補強部は、受風翼の長さ方向全体に取り付けることもできるが、発電部との固着部から受風翼の中途で止めることもできる。このとき、受風翼の動きの制動を小さくしながら、受風翼を補強することができ、さらに振動エネルギーを発電部分に着実に伝達できる。(請求項2乃至3)   In this wind turbine generator, as a wind receiving blade, two substantially strip-shaped plate members having opposite short sides that are different from each other form a predetermined angle, and one end in the longitudinal direction is more than the other end. What has the structure joined by the long side so that it may become wide is used suitably. In this case, it is desirable to have a reinforcing member such as a piano wire in the folded portion corresponding to the folded fold portion or the joint corresponding portion of the wind receiving blade. The reinforcing portion can be attached to the entire length of the wind receiving blade, but can be stopped midway from the fixing portion with the power generation portion. At this time, it is possible to reinforce the wind receiving blade while reducing the braking of the movement of the wind receiving blade, and to steadily transmit vibration energy to the power generation portion. (Claims 2 to 3)

また本発明は第2発明として、長尺状で、その長さ方向に垂直な断面の形状が略弧状であり、その長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化している受風翼と、前記受風翼の振動によって振動して発電する板状発電部と、前記発電部からの電気を取り出す電気回路と、を具備する風力発電装置であって、前記板状発電部が、その板を含む平面と該受風翼の断面形状である円弧の二等分点を垂直方向に連ねた線と該円弧の円中心を鉛直方向に連ねた線とを含む前記受風翼の二等分面とが平行であり、その振動方向が該二等分面に対して略直角となるものと、その板を含む平面と該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする風力発電装置、を提供する。(請求項4)   Further, as a second invention, the present invention has a long shape and a cross-sectional shape perpendicular to the longitudinal direction thereof is substantially arc-shaped, and a predetermined twist when receiving wind force with one end in the longitudinal direction fixed. A wind receiving blade whose width is changed in the longitudinal direction so as to generate vibration, a plate-shaped power generation unit that generates electric power by vibrating by the vibration of the wind receiving blade, and an electric circuit that extracts electricity from the power generation unit, The plate-shaped power generation unit includes a plane that includes the plate and a line connecting the bisectors of the arc that is the cross-sectional shape of the wind receiving blade in the vertical direction and the arc Including a plate that is parallel to a bisecting plane of the wind vane including a line that connects a center of a circle in a vertical direction and whose vibration direction is substantially perpendicular to the bisecting plane. The plane and the bisector are perpendicular to each other, and the vibration direction is substantially parallel to the bisector. Provided is a wind power generator characterized by being installed in such a manner. (Claim 4)

上記本発明に係る風力発電装置においては、発電部として屈曲することによって発電する圧電素子を有するものが好適に用いられる。この場合、圧電素子を受風翼に取り付けてもよい。また、受風翼とこの圧電素子とを連結する連結部材をさらに設けて、受風翼のねじれ振動がこの連結部材を介して圧電素子に伝えられるようにして圧電素子を屈曲させ又は撓ませて、発電させてもよい。なお、本発明において、受風翼にはバネ性を有する金属材料や樹脂材料が好適に用いられる。(請求項5)   In the wind power generator according to the present invention, a wind power generator having a piezoelectric element that generates power by bending is preferably used. In this case, the piezoelectric element may be attached to the wind receiving blade. Further, a connecting member for connecting the wind receiving blade and the piezoelectric element is further provided, and the piezoelectric element is bent or bent so that the torsional vibration of the wind receiving blade is transmitted to the piezoelectric element through the connecting member. You may generate electricity. In the present invention, a metal material or resin material having a spring property is preferably used for the wind receiving blade. (Claim 5)

一方、発電部として電磁誘導により発電する発電コイルを用いることもできる。この場合、受風翼と発電コイルとを連結する連結部材をさらに設けて、受風翼のねじれ振動をこの連結部材を介して発電コイルに伝え、発電コイルを動作させることができる(請求項6)。さらに、発電コイルに代えて、油圧ポンプおよび油圧発電機を用いて発電してもよい。また、発電部として電磁誘導により発電する巻線発電機及び偏心ロッドをさらに含み、前記受風翼のねじれ振動により、前記巻線発電機を通して動作させて発電させることができる(請求項7)。発電コイルと磁石で発電させる方式と、請求項1乃至5までの方式を併用する方式でも良い。例えば、板状発電部に圧電板と発電コイルの双方が含まれる場合である。さらに、巻線発電機と偏心ロッドで発電させる方式では、必ずしも板状発電部を併用させることなく、棒状弾性体に置き換える方式でもよい。なお、本発明において、受風翼にはバネ性を有する金属材料や樹脂材料が好適に用いられる。   On the other hand, a power generation coil that generates power by electromagnetic induction may be used as the power generation unit. In this case, a connecting member for connecting the wind receiving blade and the power generating coil is further provided, and the torsional vibration of the wind receiving blade can be transmitted to the power generating coil through the connecting member to operate the power generating coil. ). Furthermore, instead of the power generation coil, power may be generated using a hydraulic pump and a hydraulic power generator. The power generator may further include a winding generator that generates power by electromagnetic induction and an eccentric rod, and the torsional vibration of the wind receiving blades causes the power generator to operate through the winding generator to generate electric power. A method of generating power with a power generation coil and a magnet and a method of combining the methods of claims 1 to 5 may be used. For example, this is a case where the plate-shaped power generation unit includes both a piezoelectric plate and a power generation coil. Further, in the method of generating power with the winding generator and the eccentric rod, a method of replacing the rod-shaped elastic body without necessarily using the plate-shaped power generation unit may be used. In the present invention, a metal material or resin material having a spring property is preferably used for the wind receiving blade.

本発明は第3発明として、前記請求項1乃至7のいずれか又は段落0010に記載の風力発電装置を複数用いて構成される風力発電システムであって、複数の前記受風翼が所定間隔で並べられ、複数の前記発電部で発生する電気エネルギーを直列および/または並列で集電する集電装置を具備することを特徴とする風力発電システム、を提供する(請求項8等)。 The present invention provides, as a third invention, a wind power generation system configured by using a plurality of wind power generators according to any one of claims 1 to 7 or paragraph 0010, wherein the plurality of wind-receiving blades are arranged at predetermined intervals. Provided is a wind power generation system comprising a current collecting device that is arranged and collects electric energy generated in a plurality of the power generation units in series and / or in parallel (Claim 8 or the like).

さらに、所定数の前記受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットと、尾翼と、前記受風ユニットと前記尾翼とを連結する連結部材と、前記連結部材を回転自在に支持する支持機構と、を具備し、前記尾翼が風力を受けることによって前記受風ユニットの前記板状発電部の板を含む平面が当該二等分面と平行であり、その振動が当該二等分面に対して略垂直となるものと、前記板状発電部の板を含む平面と当該二等分面とが略垂直であり、その振動方向が当該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする請求項7等に記載の風力発電システム、を提供する(請求項9等) Further, the wind receiving unit having a configuration in which a predetermined number of the wind receiving blades are arranged in tandem, parallel, longitudinal parallel, or radially so that the wind receiving surfaces face the same direction, the tail blade, and the wind receiving unit And a support mechanism that rotatably supports the connection member, and includes a plate of the plate-like power generation unit of the wind receiving unit when the tail receives wind force. The plane is parallel to the bisector, and the vibration is substantially perpendicular to the bisector, and the plane including the plate of the plate-like power generation unit is substantially perpendicular to the bisector. And a wind power generation system according to claim 7 or the like, wherein the wind power generation system is installed so that the vibration direction thereof is substantially parallel to the bisecting plane. (Claim 9 etc.)

本発明の風力発電装置は、構造が簡単であり、1個あたりの設置面積が狭い。また、発電部に圧電素子を用いる場合には、受風翼の振動がダイレクトに伝えられる。受風翼は、二等分面に平行に風を受けたときが、もっとも効率よく風エネルギーを受ける。本発明では、前記板状発電部の板を含む平面が受風翼の該二等分面と略平行であり、その振動方向を該二等分面に対して略垂直とするもの(A)と、前記板状発電部の板を含む平面と該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるもの(B)と、を含むように設置されていることを特徴とする。(A)によって、引き続いて吹く当該風による当該板状発電部の振動運動の阻害を少なくすることが可能である。さらに、(B)により、該二等分面に平行なねじれ振動成分も有効に電気ネルギーに変換可能であり、小さな風速でも効率良く発電可能で、発電装置全体として高い発電効率を実現することができる。また、発電部として圧電素子を用いた場合と電磁誘導を用いた発電コイルを用いた場合とで、実質的に相違のない構造を実現することができ、さらに、受風翼の大きさや設置目的等に合わせて、(A)、(B)の板状発電部の垂直方向の長さの比率を変化させることも含め、発電部を組み合わせて選択することができる。このような風力発電ユニットを複数用いれば、電気エネルギーの使用目的に応じて低出力から大出力に亘る効率の良い発電を行うことができる風力発電システムを容易に構築することができる。   The wind power generator of the present invention has a simple structure and a small installation area per unit. Further, when a piezoelectric element is used for the power generation unit, the vibration of the wind receiving blade is directly transmitted. The wind receiving blade receives wind energy most efficiently when it receives wind parallel to the bisector. In the present invention, the plane including the plate of the plate-shaped power generation unit is substantially parallel to the bisector of the wind receiving blade, and the vibration direction is substantially perpendicular to the bisector (A) A plane including the plate of the plate-like power generation unit and the bisector are perpendicular to each other, and a vibration direction thereof is substantially parallel to the bisector (B). It is characterized by being installed. By (A), it is possible to reduce the obstruction of the vibration motion of the plate-like power generation unit due to the wind that blows continuously. Furthermore, the torsional vibration component parallel to the bisector can be effectively converted into electric energy by (B), can be generated efficiently even at a low wind speed, and high power generation efficiency can be realized as a whole power generation device. it can. In addition, it is possible to realize a structure that does not substantially differ between the case where a piezoelectric element is used as the power generation unit and the case where a power generation coil using electromagnetic induction is used. In accordance with the above, it is possible to select a combination of the power generation units, including changing the ratio of the lengths in the vertical direction of the plate-shaped power generation units of (A) and (B). By using a plurality of such wind power generation units, it is possible to easily construct a wind power generation system that can perform efficient power generation from low output to large output according to the purpose of use of electric energy.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。図1は、風力発電装置1の概略構造を示す斜視図であり、図2は風力発電装置1を構成する受風翼10と板状発電部11aの位置関係を示す概略の平面図であり、板状発電部11bは、省略されている。風力発電装置1は、風力を受けることによって所定の振動を生ずる受風翼10と、受風翼10と板状発電部11aに取り付けられ、受風翼10の振動を板状発電部11a、11bに伝える連結部材13と、板状発電部11a、11b、両発電部の連結部材14及び発電部11bを保持する保持部材40とを有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a schematic structure of the wind power generator 1, and FIG. 2 is a schematic plan view showing the positional relationship between the wind receiving blades 10 and the plate-like power generator 11a constituting the wind power generator 1, The plate-like power generation unit 11b is omitted. The wind power generator 1 is attached to a wind receiving blade 10 that generates a predetermined vibration by receiving wind power, and the wind receiving blade 10 and the plate-shaped power generation unit 11a, and the vibration of the wind receiving blade 10 is transmitted to the plate power generation units 11a and 11b. And a plate-like power generation section 11a, 11b, a connection member 14 of both power generation sections, and a holding member 40 for holding the power generation section 11b.

図1において、発電部たる板状発電部11aは、その板を含む平面と受風翼の該二等分面とが平行であり、その振動方向が該二等分面に対して略直角となるものであり、板状発電部11bは、その板を含む平面と該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるように、板状発電部11aに連結部13及び支持部40により、それぞれ固着されている。また、設置されている11a、11bの主面に図示しない電極膜を備えており、厚み方向に分極されている。   In FIG. 1, a plate-like power generation unit 11a as a power generation unit has a plane including the plate and the bisector of the wind receiving blade parallel to each other, and the vibration direction is substantially perpendicular to the bisector. The plate-shaped power generation section 11b is formed in a plate shape so that the plane including the plate and the bisector are perpendicular to each other and the vibration direction is substantially parallel to the bisector. The power generation unit 11a is fixed to the power generation unit 11a by the connection unit 13 and the support unit 40, respectively. In addition, electrode films (not shown) are provided on the main surfaces of the installed 11a and 11b and are polarized in the thickness direction.

連結部材12は、受風翼10を連結し、その振動を発電部に伝達することができる所定の硬さを有していればよく、その形状は、任意でよい。受風翼と圧電部は、例えば、金属材料、樹脂材料、セラミックス材料、これらの材料からなる複合材料等を用いることができる。   The connecting member 12 only needs to have a predetermined hardness capable of connecting the wind receiving blades 10 and transmitting the vibration to the power generation unit, and the shape thereof may be arbitrary. For the wind receiving blade and the piezoelectric portion, for example, a metal material, a resin material, a ceramic material, a composite material made of these materials, or the like can be used.

受風翼は、図3に示すように、受風翼10の幅は長手方向において変化している。すなわち、受風翼10は、対向する短辺の長さがそれぞれ2L1、2L2で互いに異なり(L1>L2とする)、受風翼10の長さL3が短辺の長さよりもさらに長い(L3>>L1)略台形状の板部材が、所定の角度θ(以下、「内角θ」という)で幅方向に二つ折りにされた構造を有している。連結部材13は図示されていないが、受風翼10の短辺のうちの短い方の端部側に連結している。   As shown in FIG. 3, the width of the wind receiving blade 10 varies in the longitudinal direction. That is, the length of the short side facing the wind receiving blade 10 is 2L1 and 2L2 which are different from each other (L1> L2), and the length L3 of the wind receiving blade 10 is longer than the length of the short side (L3 >> L1) A substantially trapezoidal plate member has a structure that is folded in two in the width direction at a predetermined angle θ (hereinafter referred to as “inner angle θ”). Although not shown, the connecting member 13 is connected to the shorter end of the short sides of the wind receiving blade 10.

受風翼10としては、バネ性を有する金属材料または樹脂材料(剛性のある不織布を含む)、紙(撥水効果をもたせた剛性のあるものを含む)が好適に用いられる。ここでは、受風翼10は金属材料で構成されているとする。受風翼10の長さL3に制限はなく、例えば、数センチメートル、数十センチメートル、数メートル、数十メートルと、設置場所および設置目的によって任意に設定することができる。受風翼10の形状(つまり、各辺の長さL1、L2、L3)と厚み、内角θは、使用される材料特性を考慮して、後述する受風翼10の振動が効率的に発生するように、適宜、設定される。   As the wind receiving blade 10, a metal material or resin material having a spring property (including a rigid nonwoven fabric) and paper (including a rigid material having a water repellent effect) are preferably used. Here, it is assumed that the wind receiving blade 10 is made of a metal material. There is no restriction | limiting in the length L3 of the wind-receiving blade 10, For example, several centimeters, several tens of centimeters, several meters, several tens of meters can be arbitrarily set by the installation place and the installation purpose. The shape of the receiving blade 10 (that is, the lengths L1, L2, and L3 of each side), the thickness, and the interior angle θ efficiently generate vibrations of the receiving blade 10 that will be described later in consideration of the characteristics of the material used. It is set as appropriate.

なお、図3では、受風翼10として1枚の板部材を二つ折りにした形態を示したが、例えば、短辺の長さがL1、L2で、長さがL3の2枚の板部材をその長辺で接合することにより、受風翼10を形成してもよい。受風翼10はその厚みが薄い場合には、折り曲げ板金加工により二つ折りにすることができるが、厚みが厚いものの場合には、鋳造等により製造することができる。また、受風翼として樹脂製のものを用いる場合には、その厚みが薄い場合には、弾性フィルムを折り曲げ加工することにより、一方、その厚みが厚い場合には射出成形や押し出し成形等により、所望の受風翼を製造することができる。   FIG. 3 shows a configuration in which one plate member is folded in half as the wind vane 10, but for example, two plate members having short sides of L1 and L2 and a length of L3 The wind-receiving blade 10 may be formed by joining the long edges of the two. When the thickness of the wind receiving blade 10 is small, it can be folded in half by bending sheet metal processing, but when the thickness is large, it can be manufactured by casting or the like. Also, when using a resin blade as the wind receiving blade, if the thickness is thin, by bending the elastic film, on the other hand, if the thickness is thick, by injection molding or extrusion molding, A desired wind receiving blade can be manufactured.

図4に受風翼10の振動形態を模式的に示す説明図を示す。ここで、受風翼10が静止しているときの受風翼10の長手方向、つまり受風翼10における折り曲げ部の長さ方向軸をZ軸とし、受風翼10の内角θを2等分する方向軸をX軸とし、X軸およびZ軸と直交する方向軸をY軸と定めることとする。また、受風翼10の開放端側における受風翼10の折り曲げ部をP点とする。   FIG. 4 is an explanatory diagram schematically showing the vibration form of the wind receiving blade 10. Here, the longitudinal direction of the wind receiving blade 10 when the wind receiving blade 10 is stationary, that is, the longitudinal axis of the bent portion of the wind receiving blade 10 is the Z axis, and the internal angle θ of the wind receiving blade 10 is 2 etc. The direction axis to be divided is defined as the X axis, and the direction axis perpendicular to the X axis and the Z axis is defined as the Y axis. Further, a bent portion of the wind receiving blade 10 on the open end side of the wind receiving blade 10 is set as a point P.

受風翼10は、風がX方向から受風翼10の内角θ側の面に向けてあたるときに、最も効率よく風力エネルギーをうけることができる。すなわち、受風翼10が静止している状態ではP点は、X軸とY軸の交点(Z軸上)に位置している。そして、受風翼10にX方向から風力を受けると、受風翼10は受けた風を逃がそうとするために、受風翼10には、受風翼10の固定端側がバネとして機能して受風翼10の開放端側のP点がX−Y平面上のP1点とP2点との間を往復しながらZ軸回りに回動するような「ねじれ振動」、が生ずる。このとき、振動エネルギーが、連結部材12を通して振動板11aを撓ませ、主にY軸方向の振動成分により屈曲する圧電効果によって電気を発生する。即ち、この撓みのY軸成分は、発電板11aのY軸方向の振動成分として取り出すことができる。さらに、振動板11a、連結部13を介して、ねじれ振動は、振動板11bに伝達され、振動板11bを撓ませ、主にX軸方向の振動成分により屈曲圧電効果により電気を発生する。即ち、この撓みのX軸成分は、発電部11bのX軸方向の振動成分として取り出すことが出来る。これら振動成分を利用した圧電板による発電を利用することができる。なお、P1点とP2点の位置は、風があたる向きや風速(風力)によって異なる。連結部材13は、振動版11aと振動板11bを連結し、所定のねじれ振動を発電板11bに伝達することができる所定の硬さを有していればよく、その形状は、任意でよいが、例えば、幅方向に直角に折り曲げられた長尺矩形、又は、棒状円柱体が良い。その材質は、例えば、金属材料、樹脂材料、セラミックス材料、これらの材料からなる複合材料等で剛性のあるものを用いることができる。   The wind receiving blade 10 can receive wind energy most efficiently when the wind hits the surface on the inner angle θ side of the wind receiving blade 10 from the X direction. That is, when the wind receiving blade 10 is stationary, the point P is located at the intersection of the X axis and the Y axis (on the Z axis). When the wind receiving blade 10 receives wind force from the X direction, the wind receiving blade 10 tries to release the received wind, so the fixed end side of the wind receiving blade 10 functions as a spring. As a result, “torsional vibration” is generated in which the point P on the open end side of the wind receiving blade 10 rotates around the Z axis while reciprocating between the points P1 and P2 on the XY plane. At this time, the vibration energy deflects the diaphragm 11a through the connecting member 12, and generates electricity by the piezoelectric effect that is bent mainly by the vibration component in the Y-axis direction. That is, the Y-axis component of this deflection can be extracted as a vibration component in the Y-axis direction of the power generation plate 11a. Further, the torsional vibration is transmitted to the vibration plate 11b through the vibration plate 11a and the connecting portion 13, and the vibration plate 11b is bent, and electricity is generated mainly by the bending piezoelectric effect by the vibration component in the X-axis direction. That is, the X-axis component of this bending can be extracted as a vibration component in the X-axis direction of the power generation unit 11b. Power generation by a piezoelectric plate using these vibration components can be used. The positions of points P1 and P2 differ depending on the direction of wind and the wind speed (wind power). The connecting member 13 only needs to have a predetermined hardness capable of connecting the vibration plate 11a and the vibration plate 11b and transmitting a predetermined torsional vibration to the power generation plate 11b, and the shape thereof may be arbitrary. For example, a long rectangle bent at a right angle in the width direction or a rod-like cylinder is preferable. As the material, for example, a metal material, a resin material, a ceramic material, a composite material made of these materials, or the like having rigidity can be used.

このようなねじれ振動を効率的に受風翼10に生じさせるためには、受風翼10はX軸について対称な構造を有していることが好ましく、また、受風翼10の内角θは、45度〜135度の問に設定することが好ましく、90度近傍とすることがより好ましい。   In order to efficiently generate such torsional vibrations in the wind receiving blade 10, the wind receiving blade 10 preferably has a symmetric structure with respect to the X axis, and the internal angle θ of the wind receiving blade 10 is It is preferable to set the question between 45 degrees and 135 degrees, more preferably around 90 degrees.

図1には、発電装置1を示す。受風翼10の内角θ側の面を風向き(X軸)とした受風翼に対して、振動板11aをX軸方向に略平行に設置し、前記板状発電部のうち、上段部分の振動方向が風向に対して略直角(Y軸方向)となり、振動板11bをX軸方向に略直角に設置し、下段部分の振動方向が風向に対して略平行(X軸方向)となるように設置した例である。本発明の実施例(c)と、振動板をY軸方向に平行に設置し、前記板状発電部の振動方向が風向に対して略直角となるように設置した参考例(a)、振動板をX軸方向に平行に設置し、前記板状発電部の振動方向が風向に対して略平行となるように設置した参考例(b)とを示し、これらと対比して実施例である風力発電装置を示した。図2には、両者における受風翼と板状圧電部の位置関係を対比した。90度の内角θをもつ受風翼の実施例では、同様の受風翼の参考例に比べて風速が変化しない定常風のとき、参考例(a)の約3.0倍の振動エネルギーを取り出すことができた。実施例(c)では、受風翼からの風のエネルギーを上段の板状発電部11aの振動エネルギーへと変換する際に、受風翼10の固定端側がバネとして機能して受風翼10が一体となった変曲点をもたない連続的なひずみを生じ、受風翼の開放端側のP点がX−Y平面上のP1点とP2点との間を回動して往復する「ねじれ振動」のY軸成分は、板状発電部のY軸方向の振動成分として取り出すことができる。更に、下段の板状発電部11bは、受風翼の所定のねじれ振動を受ける上段部の板状発電部の振動を更に受け継ぎ振動することによって発電する。一方、参考例(a)では、X軸方向の風と板状発電部の振動方向が、略平行となって、X軸方向の振動運動を風自体のエネルギーが打ち消す方向に働くこととなる。この打ち消し効果は、略一定速度の風のエネルギーを電力に変換するときに、顕著である。参考例(b)では、風向のひずみ成分を振動エネルギーとして有効に活用できない。 FIG. 1 shows a power generator 1. With respect to the wind receiving blade whose inner angle θ side surface of the wind receiving blade 10 is in the wind direction (X axis), the diaphragm 11a is installed substantially parallel to the X axis direction. The vibration direction is substantially perpendicular to the wind direction (Y-axis direction), the diaphragm 11b is installed substantially perpendicular to the X-axis direction, and the vibration direction of the lower part is substantially parallel to the wind direction (X-axis direction). It is an example installed in. Example (c) of the present invention, a reference example (a) in which a vibration plate is installed in parallel to the Y-axis direction, and the vibration direction of the plate-like power generation unit is substantially perpendicular to the wind direction, vibration A reference example (b) in which a plate is installed in parallel to the X-axis direction and the vibration direction of the plate-like power generation unit is set to be substantially parallel to the wind direction is shown, and in contrast to these, it is an example. A wind power generator is shown. In FIG. 2, the positional relationship between the wind-receiving blade and the plate-like piezoelectric portion is compared. In the embodiment of the receiving blade having an internal angle θ of 90 degrees, when the wind speed does not change compared to the reference example of the similar receiving blade, vibration energy about 3.0 times that of the reference example (a) is extracted. I was able to. In the embodiment (c), when the energy of the wind from the wind receiving blade is converted into the vibration energy of the upper plate-like power generation unit 11a, the fixed end side of the wind receiving blade 10 functions as a spring, and the wind receiving blade 10 Causes a continuous strain that does not have an inflection point, and the P point on the open end side of the wind vane rotates between P1 and P2 points on the XY plane. The Y-axis component of the “torsional vibration” can be extracted as a vibration component in the Y-axis direction of the plate-shaped power generation unit. Further, the lower plate-like power generation unit 11b generates power by further receiving and vibrating the vibration of the upper plate-like power generation unit that receives a predetermined torsional vibration of the wind receiving blade. On the other hand, in the reference example (a), the wind in the X-axis direction and the vibration direction of the plate-like power generation unit are substantially parallel, and the vibration motion in the X-axis direction works in a direction in which the energy of the wind itself cancels out. This canceling effect is significant when wind energy having a substantially constant speed is converted into electric power. In the reference example (b), the distortion component of the wind direction cannot be effectively used as vibration energy.

図5は上下の振動板11の両側に設置した圧電板11a・11bからの集電を行う集電回路90の一例を示す説明図である。集電回路90は、圧電板11の両側に設置した11a・11bが発生した電気(交流)を整流する整流回路91と、整流回路91によって整流された電力の一部を貯蔵するとともに、貯蔵した電力を負荷92へ供給する充放電回路93と、を有している。整流回路91は、ダイオード94がホイートストンブリッジ型に接続された構成を有する。また、充放電回路93は、電力を貯蔵/放出するコンデンサや二次電池等の電力貯蔵体95を備えている。   FIG. 5 is an explanatory diagram showing an example of a current collecting circuit 90 that collects current from the piezoelectric plates 11a and 11b installed on both sides of the upper and lower diaphragms 11. FIG. The current collecting circuit 90 rectifies the electricity (alternating current) generated by 11a and 11b installed on both sides of the piezoelectric plate 11, and stores a part of the electric power rectified by the rectifying circuit 91. And a charge / discharge circuit 93 for supplying electric power to a load 92. The rectifier circuit 91 has a configuration in which a diode 94 is connected in a Wheatstone bridge type. The charge / discharge circuit 93 includes a power storage body 95 such as a capacitor or a secondary battery for storing / releasing power.

このような集電回路90によれば、整流回路91により整流された電力のうち負荷92へ必要な電力をリアルタイムに送ることができる。一方、負荷92で必要とされない余剰電力を電力貯蔵体95に貯蔵することができるために、例えば、受風翼10が動作しない無風時等には、この電力貯蔵体95に貯蔵された電力を用いて発光ダイオードを含む負荷92を動作させることができる。なお、発電電力が大きい場合には、例えば、電力会社へ給電することができる。   According to such a current collecting circuit 90, it is possible to send necessary power to the load 92 in real time among the power rectified by the rectifying circuit 91. On the other hand, surplus power that is not required by the load 92 can be stored in the power storage body 95. For example, when the wind receiving blade 10 does not operate, the power stored in the power storage body 95 is It is possible to operate a load 92 including a light emitting diode. In addition, when generated electric power is large, it can supply electric power to an electric power company, for example.

風力発電装置1の構成は種々に変形することができる。圧電素子として単板の圧電板11a・11bを示したが、バイモルフ素子21や、公知のユニモルフ素子や積層型バイモルフ素子(マルチモルフ素子)を用いてもよい。   The configuration of the wind turbine generator 1 can be variously modified. Although the single-plate piezoelectric plates 11a and 11b are shown as the piezoelectric elements, a bimorph element 21, a known unimorph element, or a stacked bimorph element (multimorph element) may be used.

振動運動によって、圧電素子に加えられる力による無振動時を基準とした変位とその圧電素子の起電力変化について説明すると、風力という外力により振動子が揺れ始め、変位の速度が最大の瞬間をスタートにとり、風による振動運動させると、変位は、強い風を受けたときに極大変位速度となり、不定期の周期で間歇的または連続的ではあるが、強弱のある外力を受けながら減衰を繰り返すサインカーブを描いて変化する。或いはこれらサインカーブの合成波が生ずる。上下の発電振動板から得られるブリッジ回路による半波整流波形(サインカーブの負の部分をすべて正の部分に折り返した図形)は、位相が90度ずれることにより、両者を組み合わせると谷のない(整流電流値がゼロとなることとのない)直流成分を得ることができる。   Explaining the displacement based on the no-vibration caused by the force applied to the piezoelectric element and the change in electromotive force of the piezoelectric element due to the vibration movement. The vibrator starts to shake due to the external force of wind force and starts the moment when the displacement speed is maximum. However, when oscillating by wind, the displacement becomes maximum displacement speed when receiving strong wind, and it is intermittent or continuous at irregular intervals, but it is a sine curve that repeats attenuation while receiving strong and weak external force. It changes by drawing. Alternatively, a composite wave of these sine curves is generated. The half-wave rectified waveform (figure in which the negative part of the sine curve is turned back into a positive part) obtained by the bridge circuit obtained from the upper and lower power generation diaphragms is 90 degrees out of phase, so there is no valley when the two are combined ( A DC component (with no rectified current value being zero) can be obtained.

次に、本発明の風力発電装置の実施形態についてさらに詳細に説明する。図6(a)に風力発電装置2の概略構造を示す側面図を示し、図6(b)にその平面図を示す。この風力発電装置2は、受風翼10と、発電部たるバイモルフ素子21、22と、受風翼10とバイモルフ素子21とを連結する連結部材12と、バイモルフ素子21とバイモルフ素子22を連結する連結部材14と、バイモルフ素子22を保持する保持部材40と、を備えている。   Next, an embodiment of the wind power generator of the present invention will be described in more detail. FIG. 6 (a) shows a side view showing a schematic structure of the wind turbine generator 2, and FIG. 6 (b) shows a plan view thereof. This wind turbine generator 2 is connected to the wind receiving blade 10, the bimorph elements 21 and 22 that are power generation units, the connecting member 12 that connects the wind receiving blade 10 and the bimorph element 21, and the bimorph element 21 and the bimorph element 22. The connecting member 14 and a holding member 40 that holds the bimorph element 22 are provided.

受風翼10は、図1に示したものと同じである。バイモルフ素子21は、周知の通り、金属板等の補強板21aに圧電板21b・21cが貼り付けられた構造を有している。連結部材22は、受風翼10の振動をバイモルフ素子21に伝達する部材であり、できるだけ振動を減衰させないように、例えば、金属やセラミックスで構成される。上下段の板状発電部21,22は、平面図でみて略直交する位置関係である。受風翼10と連結部材12との接合、上下段の板状発電部の連結部材13、バイモルフ素子21と支持部材40との接合には、これらを構成する材料を考慮して、溶接や樹脂接着剤による方法が採られる。樹脂接着剤を用いる場合には、エポキシ樹脂等の硬質樹脂を用いることが好ましい。   The wind receiving blade 10 is the same as that shown in FIG. As is well known, the bimorph element 21 has a structure in which piezoelectric plates 21b and 21c are attached to a reinforcing plate 21a such as a metal plate. The connecting member 22 is a member that transmits the vibration of the wind receiving blade 10 to the bimorph element 21, and is made of, for example, metal or ceramics so as not to attenuate the vibration as much as possible. The upper and lower plate-like power generation units 21 and 22 are in a positional relationship that is substantially orthogonal as seen in a plan view. For joining of the wind receiving blade 10 and the connecting member 12, connecting member 13 of the upper and lower plate-like power generation units, and joining of the bimorph element 21 and the support member 40, welding and resin are considered in consideration of the materials constituting them. A method using an adhesive is employed. When using a resin adhesive, it is preferable to use a hard resin such as an epoxy resin.

このような構造を有する風力発電装置では、受風翼10が風力を受けて上段の板状発電部が該二等分面に対して略直角方向の振動を起こし、更に下段の板状発電部が、接合部材を通じて上段の板状発電部の振動を受けて、バイモルフ素子21、22が屈曲して発電し、これにより、電気エネルギーを得ることができる。このとき、連結材22をピアノ線24等の線材等で延長して、受風翼の中心線上に設置すると、受風翼10の強度を高め、耐久性を高めることができる。さらに、受風翼を「木の葉」とすると、図示しない線材等の補強部材を受風翼10に「葉脈」状に固着させることにより、耐久性を持たせ、より柔軟かつ軽量な素材を受風翼10に使用でき、より設計の幅を広げることが可能となる。例えば、軽量な合成樹脂製の受風翼10を用い、ピアノ線等の線状金属、樹脂を「広葉樹の網目模様」に固着することにより、耐久性が金属性受風翼と同等で、より軽量な受風翼が得られる。また、網目の配置を受風翼下部に集中させて、風力エネルギーを効率的に受けることができ、耐久性の優れた受風翼とすることもできる。   In the wind power generator having such a structure, the wind receiving blade 10 receives wind force, and the upper plate-shaped power generation section vibrates in a direction substantially perpendicular to the bisector, and further the lower plate-shaped power generation section. However, the bimorph elements 21 and 22 are bent by receiving vibration of the upper plate-shaped power generation section through the joining member, and thereby electric energy can be obtained. At this time, if the connecting member 22 is extended with a wire such as the piano wire 24 and installed on the center line of the wind receiving blade, the strength of the wind receiving blade 10 can be increased and the durability can be increased. Furthermore, if the wind vane is “leaves”, reinforcing members such as wires (not shown) are fixed to the wind vane 10 in a “leaf vein” shape, thereby providing durability and receiving a more flexible and lightweight material. It can be used for the wing 10 and the design range can be further expanded. For example, by using a lightweight synthetic resin wind vane 10 and fixing a linear metal such as a piano wire or resin to a `` hardwood tree pattern '', the durability is equivalent to a metal wind vane, and more A lightweight wind vane is obtained. Further, the arrangement of the mesh can be concentrated on the lower part of the wind receiving blades so that the wind energy can be received efficiently and the wind receiving blades having excellent durability can be obtained.

風力発電装置2のように、受風翼10が連結部材22で支持された構造の場合には、発電部としてバイモルフ素子21に代えて、電磁誘導により発電する発電コイルを用いることもできる。図7(a)に発電コイル32、34を備えた風力発電装置3の模式図を示す。発電コイル32、34に対応して磁石33、35が配置されている。磁石35は、発電板の後ろにあり、図示されていない。この場合、受風翼10のねじれ振動により連結部材14を通して発電板31であるバネ材に生ずる往復回動運動を利用して、発電コイル32を駆動する。発電板31であるバネ材は、風向に対して略直角に振動して、Y軸方向の振動成分の風力エネルギーを効率良く取り出すことができる。特に、受風翼10の長さが数メートルから数十メートルに達するような大型発電装置の場合には、受風翼10を保持するために発電部にも高い機械的強度が必要とされる。このような発電部として、発電コイル32は好適に用いられる。発電コイル32がバネ板31の運動にともない、磁石33から受ける磁束が変化することにより、当コイルに起電力が生ずることとなる。さらに、連結材15で連結された発電板上のコイル34があるので、これに生ずる受風翼の往復回動運動由来のX軸方向の振動成分の風力エネルギーを捨てずに取り出すことが出来る。図7(b)に発電部として電磁誘導により発電する巻線発電機37及び偏心ロッド36をさらに含み、前記受風翼のねじれ振動により、前記巻線発電機37を通して動作させて発電装置を示す。さらに図7(c)に板状発電部の代わりに棒状弾性体38を用い、巻線発電機37と偏心ロッド36で発電させる発電装置を示す。   In the case where the wind receiving blade 10 is supported by the connecting member 22 as in the wind power generator 2, a power generation coil that generates power by electromagnetic induction can be used as the power generation unit instead of the bimorph element 21. FIG. 7 (a) shows a schematic diagram of the wind turbine generator 3 including the power generation coils 32 and 34. FIG. Magnets 33 and 35 are arranged corresponding to the power generating coils 32 and 34, respectively. The magnet 35 is behind the power generation plate and is not shown. In this case, the power generating coil 32 is driven by utilizing the reciprocating rotational motion generated in the spring material that is the power generating plate 31 through the connecting member 14 due to the torsional vibration of the wind receiving blade 10. The spring material that is the power generation plate 31 vibrates substantially at right angles to the wind direction, and can efficiently extract the wind energy of the vibration component in the Y-axis direction. In particular, in the case of a large power generator in which the length of the wind receiving blade 10 reaches several meters to several tens of meters, high mechanical strength is also required for the power generation unit to hold the wind receiving blade 10. . As such a power generation unit, the power generation coil 32 is preferably used. As the power generating coil 32 moves with the spring plate 31, the magnetic flux received from the magnet 33 changes, so that an electromotive force is generated in the coil. Furthermore, since there is the coil 34 on the power generation plate connected by the connecting member 15, the wind energy of the vibration component in the X-axis direction derived from the reciprocating rotational motion of the wind receiving blades generated thereby can be taken out without discarding. FIG. 7 (b) further shows a power generator that includes a winding generator 37 and an eccentric rod 36 that generate power by electromagnetic induction as a power generation unit, and is operated through the winding generator 37 by torsional vibration of the wind-receiving blade. . Further, FIG. 7 (c) shows a power generation apparatus that uses a rod-shaped elastic body 38 instead of the plate-shaped power generation section to generate power with the winding generator 37 and the eccentric rod 36.

図8に示す受風翼30は、長尺状で、その長さ方向に垂直な断面の形状が略弧状であり、かつ、その一端の弧の長さと他端の弧の長さが異なる形状を有している。長尺が、最大直径の3倍以上あること、固定端側直径は、最大直径より小さいことが形状に関する要件である。受風翼30の弧の長さが短い方の端部は、連結部材に連結されている。受風翼30は、受風翼10と同様に、バネ性を有する金属材料または樹脂材料で構成される。 The wind-receiving blade 30 shown in FIG. 8 is long and has a substantially arc shape in cross section perpendicular to the length direction, and the arc length at one end is different from the arc length at the other end. have. It is a requirement regarding the shape that the length is three times or more of the maximum diameter, and the fixed end side diameter is smaller than the maximum diameter. The end of the wind receiving blade 30 with the shorter arc length is connected to the connecting member. The wind receiving blade 30 is made of a metal material or resin material having a spring property, like the wind receiving blade 10.

受風翼30の内側曲面が風力を受けることによって、受風翼30には受風翼10と同様のねじれ振動が発生し、連結部を通して、発電部に伝達される。受風翼30の長さ、厚さ、端部の曲率および弧の長さは、このような振動が効率よく生ずるように、設定される。   When the inner curved surface of the wind receiving blade 30 receives wind force, torsional vibration similar to that of the wind receiving blade 10 is generated in the wind receiving blade 30 and transmitted to the power generation unit through the connecting portion. The length, thickness, end curvature, and arc length of the wind receiving blade 30 are set so that such vibration is efficiently generated.

ところで、本発明の風力発電装置を構成する受風翼は、上記受風翼10・30に限定されるものではなく、長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化していればよい。図9(b)に示すように、端部が中心部よりも細く、幅方向で二つ折りにされた構造であってもよい。受風翼10aでは、さらにその解放端の端面が直線的でなく曲線的であってもよい。また、図9(a)に斜視図で示す受風翼30aのように、固定端から解放端に向かってその幅が徐々に広くなった後に、先細りとなるような形状を有するものであってもよい。台形上部は、台形部の長尺程度までは、これを開放端側に伸長してもねじれ振動を生ずる。また、二つ折り線又は二等分面を対称線又は対称面として、左右対称とすることが特に好ましい。   By the way, the wind receiving blades constituting the wind power generator of the present invention are not limited to the wind receiving blades 10 and 30, and when the wind force is received with one end in the longitudinal direction fixed, a predetermined twist is generated. The width may be changed in the longitudinal direction so as to generate vibration. As shown in FIG. 9 (b), the end may be narrower than the center and may be folded in half in the width direction. In the wind receiving blade 10a, the end face of the open end may be curved instead of linear. Further, like a wind receiving blade 30a shown in a perspective view in FIG. 9 (a), it has a shape that tapers after its width gradually increases from the fixed end toward the release end. Also good. The trapezoidal upper part generates torsional vibration up to the length of the trapezoidal part even if it extends to the open end side. Further, it is particularly preferable that the fold line or the bisector is symmetrical with respect to the symmetry line or symmetry plane.

本発明に係る風力発電装置は、勿論、単体で設置することが可能であるが、請求項1から請求項6のいずれかに記載の風力発電装置を複数用いて構成される風力発電システムであって、複数の前記受風翼が所定間隔で並べられ、複数の前記発電部で発生する電気エネルギーを直列および/または並列で集電する集電装置を具備することを特徴とする風力発電システムとすることができる。即ち、複数の上記受風翼を所定間隔で並べて配置し、各受風翼の二等分面に略直角方向と略平行方向の各方向に振動するエネルギーを主にして各発電部で発生させた電気エネルギーを直列および/または並列で集電するユニットを構成し、このようなユニットを単独でまたは複数組み合わせて、風力発電システムを構成することが好ましい。   The wind turbine generator according to the present invention can of course be installed alone, but is a wind turbine generator system configured by using a plurality of wind turbine generators according to any one of claims 1 to 6. A wind power generation system comprising: a plurality of wind receiving blades arranged at predetermined intervals; and a current collector that collects electric energy generated by the plurality of power generation units in series and / or in parallel. can do. That is, a plurality of the above-described wind-receiving blades are arranged at a predetermined interval, and energy that vibrates in each direction of a substantially perpendicular direction and a substantially parallel direction is generated in each bifurcated surface of each wind-receiving blade mainly in each power generation unit. It is preferable to configure a unit that collects electric energy in series and / or in parallel, and to configure a wind power generation system by combining such units singly or in combination.

以下に、風力発電ユニットの実施形態について説明する。図10に複数の受風翼10aを用いて構成された受風ユニットの種々の例を示す説明図を示す。図10(a)に示す受風ユニット61は、複数の受風翼10aを含む請求項1乃至6の発電装置が棒状の保持部材71に一列で一定の間隔で取り付けられた構造を有する。図10(b)に示す受風ユニット62は、複数の受風翼10aが全体的な形状が略扇型となるように複数の受風翼10aを含む請求項1乃至6の発電装置が円板状の保持部材72に放射状に取り付けられた構造を有する。図10(c)に示す受風ユニット63は、複数の受風翼10aを含む請求項1乃至6の発電装置が全体的な形状が円形となるように放射状に保持部材72に取り付けられた構造を有する。   Hereinafter, embodiments of the wind power generation unit will be described. FIG. 10 is an explanatory diagram showing various examples of a wind receiving unit configured using a plurality of wind receiving blades 10a. The wind receiving unit 61 shown in FIG. 10 (a) has a structure in which the power generators according to claims 1 to 6 including a plurality of wind receiving blades 10a are attached to a rod-shaped holding member 71 in a row at a constant interval. The wind receiving unit 62 shown in FIG. 10B includes a plurality of wind receiving blades 10a so that the overall shape of the plurality of wind receiving blades 10a is substantially a fan shape. The plate-like holding member 72 has a structure attached radially. A wind receiving unit 63 shown in FIG. 10 (c) has a structure in which the power generation device of claims 1 to 6 including a plurality of wind receiving blades 10a is radially attached to the holding member 72 so that the overall shape is circular. Have

これら受風ユニット61〜63では、各受風翼10aはその内角側の面が同じ方向を向いていることが好ましい。なお、このような各種の発電ユニットには、その長さが数メートル〜1mまたはこれ以下の受風翼が好適に用いられる。   In these wind receiving units 61 to 63, it is preferable that the surfaces of the wind receiving blades 10a face the same direction. In addition, a wind receiving blade having a length of several meters to 1 m or less is suitably used for such various power generation units.

次に、このような受風ユニットを用いた発電システムの実施形態について説明する。図11、12に複数の受風ユニット61からなる風力発電システムの概略構成を示す説明図を示す。   Next, an embodiment of a power generation system using such a wind receiving unit will be described. 11 and 12 are explanatory views showing a schematic configuration of a wind power generation system including a plurality of wind receiving units 61. FIG.

風力発電システム80、81は、同一方向に受風翼を配置し、同一平面に受風ユニットを収める形態であり、複数の受風ユニット61が支柱に配置された構造を有している。   The wind power generation systems 80 and 81 are configured such that the wind receiving blades are arranged in the same direction and the wind receiving units are housed in the same plane, and a plurality of wind receiving units 61 are arranged on the support.

この風力発電システムは、尾翼79aと、受風ユニットと尾翼79aとを連結する連結部材79bと、連結部材79bを回転自在に支持する支持機構79cと、を具備している。この風力発電システムでは、尾翼79aが風力を受けると、尾翼79a及び連結部材79bが風向に一致し、受風ユニットの受風翼は風向きに一致する。つまり、風見鶏のような動きをする。したがって、風力発電システムでは、風向きが変わっても、受風ユニットがの受風翼の二等分面が常に風向きに平行となり、発電部がその振動方向が風向きに略直角となるように配置されているので、稼働効率が高くなる。   This wind power generation system includes a tail blade 79a, a connection member 79b that connects the wind receiving unit and the tail blade 79a, and a support mechanism 79c that rotatably supports the connection member 79b. In this wind power generation system, when the tail blade 79a receives wind force, the tail blade 79a and the connecting member 79b match the wind direction, and the wind receiving blade of the wind receiving unit matches the wind direction. In other words, it moves like a weathercock. Therefore, in the wind power generation system, even if the wind direction changes, the bisector of the wind receiving blade of the wind receiving unit is always parallel to the wind direction, and the power generation unit is arranged so that the vibration direction is substantially perpendicular to the wind direction. As a result, operating efficiency increases.

このような受風ユニット61〜63では、各受風翼が同時に風向に略平行となるが、同一振幅で振動することは稀であると考えられるために、ユニット集電装置としては、受風翼ごとに整流回路91が設けられ、各整流回路91から出力された電気エネルギーを直列および/または並列に接続して集電する構造のものが好適に用いられる。図13では、受風ユニット63が、支持部材79cと尾翼79aとの作用で、その受風翼が風向に対してその二等分面が平行となり、発電効率を上げた発電システムを示す。   In such wind receiving units 61 to 63, each of the wind receiving blades is substantially parallel to the wind direction at the same time, but it is considered rare that the blades vibrate with the same amplitude. A structure in which a rectifier circuit 91 is provided for each blade and electrical energy output from each rectifier circuit 91 is connected in series and / or in parallel to collect current is preferably used. FIG. 13 shows a power generation system in which the wind receiving unit 63 is improved in power generation efficiency by the action of the support member 79c and the tail wing 79a so that the bifurcated plane of the wind receiving wing is parallel to the wind direction.

こうして所定の場所に設けられた風力発電装置等によって作り出された電気エネルギーは、好ましくはその風力発電装置等が配置されている場所の近傍における家庭用電力や道路・街頭照明用電力として、直接にまたは所定の充電装置に充電されて用いられる。   The electrical energy produced by the wind power generators, etc. provided in the predetermined place is preferably directly used as household power or road / street lighting power in the vicinity of the place where the wind power generators are arranged. Or it is used by being charged in a predetermined charging device.

本発明の風力発電装置および風力発電システムは、大型のものは大電力発電装置として好適であり、中・小型のものは小型発電装置として、各種電気機器の運転や充電装置として好適である。   As for the wind power generation apparatus and the wind power generation system of the present invention, a large one is suitable as a high power power generation apparatus, a medium / small one is suitable as a small power generation apparatus, and an operation and charging apparatus for various electric devices.

風力発電装置の概略構造を示す斜視図。The perspective view which shows schematic structure of a wind power generator. 図1に示す風力発電装置の概略平面図。FIG. 2 is a schematic plan view of the wind power generator shown in FIG. 受風翼の説明図Explanatory drawing of wind receiving blade 図1に示す受風翼の振動形態を模式的に示す説明図。FIG. 2 is an explanatory diagram schematically showing a vibration form of the wind receiving blade shown in FIG. 圧電板からの集電を行う集電回路の一例を示す説明図。Explanatory drawing which shows an example of the current collection circuit which collects current from a piezoelectric plate. 別の風力発電装置の概略構造を示す正面図および側面図。The front view and side view which show schematic structure of another wind power generator. さらに別の風力発電装置の概略構成を示す説明図。Furthermore, explanatory drawing which shows schematic structure of another wind power generator. 別の受風翼の概略構造を示す斜視図。The perspective view which shows schematic structure of another wind receiving blade. さらに別の受風翼の概略構造を示す斜視図。Furthermore, the perspective view which shows schematic structure of another wind receiving blade. 複数の風力発電装置を用いて構成された発電システムの例を示す説明図。Explanatory drawing which shows the example of the electric power generation system comprised using the several wind power generator. 複数の受風翼を用いて構成された発電システムの例を示す説明図。Explanatory drawing which shows the example of the electric power generation system comprised using the several wind-receiving blade. 複数の受風翼を用いて構成された発電システムの別の例を示す説明図。Explanatory drawing which shows another example of the electric power generation system comprised using the several wind-receiving blade. 複数の受風翼を用いて構成された発電システムのさらに別の例を示す説明図。Explanatory drawing which shows another example of the electric power generation system comprised using the several wind-receiving blade.

符号の説明Explanation of symbols

1・2・3・4・5;風力発電装置
10・10a・30・30a;受風翼
11・11a・11b・21b・21c・31;振動板又は圧電板
12・13・14・15;連結部材
21;圧電バイモルフ素子
21a・22a;補強板
32・34;発電コイル
33・35;磁石
36;偏心ロッド
37;巻線発電機
38;棒状弾性体
40・50・71・72;保持部材
61・62・63;風力発電システム
78a;主支柱
79a;尾翼
79b;連結部材
79c;支持機構
80・81・82;風力発電システム
90;集電回路
91;整流回路
92;負荷
93;充放電回路
94;ダイオード
95;電力貯蔵体
1, 2, 3, 4, 5; wind power generator
10, 10a, 30, 30a;
11, 11a, 11b, 21b, 21c, 31; diaphragm or piezoelectric plate
12,13,14,15; connecting member
21; Piezoelectric bimorph element
21a, 22a; reinforcing plate
32 ・ 34 ; Generation coil
33 ・ 35 ; Magnet
36; eccentric rod
37; Winding generator
38; Rod-like elastic body
40 ・ 50 ・ 71 ・ 72 ; Holding member
61 ・ 62 ・ 63; Wind power generation system
78a; main strut
79a; tail
79b; connecting member
79c; Support mechanism
80, 81, 82; wind power generation system
90; current collecting circuit
91; Rectifier circuit
92; Load
93; charge / discharge circuit
94; Diode
95; Electricity storage

Claims (9)

長尺状でその幅方向に所定角度で二つ折りされた形状を有し、その長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化している受風翼と、
前記受風翼の振動によって振動して発電する板状発電部と、
前記発電部からの電気を取り出す電気回路と、
を具備する風力発電装置であって、
前記板状発電部が、その板を含む平面と前記受風翼の該二つ折りされた所定角の二等分面とが平行であり、その振動方向が該二等分面に対して略直角となるものと、
その板を含む平面と前記受風翼の該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする風力発電装置。
It is long and has a shape that is folded in half in the width direction at a predetermined angle, and its width is long so that a predetermined torsional vibration occurs when receiving wind force with one end in the length direction fixed. A receiving wing that is changing in direction,
A plate-shaped power generation section that generates power by vibrating by the vibration of the wind receiving blades;
An electric circuit for extracting electricity from the power generation unit;
A wind turbine generator comprising:
In the plate-like power generation unit, a plane including the plate and the bisecting plane of the folded predetermined angle of the wind receiving blade are parallel, and the vibration direction is substantially perpendicular to the bisecting plane. And what
The plane including the plate and the bisecting plane of the wind receiving blade are perpendicular to each other, and the vibration direction is substantially parallel to the bisecting plane. Wind power generator characterized by.
前記受風翼は、対向する短辺の長さが互いに異なる略短冊状の2枚の板部材が、所定の角度をなし、かつ、長手方向の一端が他端よりも幅広となるように、その長辺で接合された構造を有することを特徴とする請求項1記載の風力発電装置。   The wind-receiving blade has two substantially strip-shaped plate members having opposite short sides that are different from each other at a predetermined angle, so that one end in the longitudinal direction is wider than the other end. The wind power generator according to claim 1, wherein the wind power generator has a structure joined at its long side. 前記受風翼の前記二つ折りの折れ線部又は前記接合部に、ピアノ線等の補強部材を有することを特徴とする請求項1乃至2に記載の風力発電装置。   3. The wind power generator according to claim 1, wherein a reinforcing member such as a piano wire is provided in the folded folding line part or the joint part of the wind receiving blade. 長尺状で、その長さ方向に垂直な断面の形状が略円弧状であり、その長手方向の一端が固定された状態で風力を受けた際に所定のねじれ振動を生ずるように、その幅が長手方向において変化している受風翼と、
前記受風翼の振動によって振動して発電する板状発電部と、
前記発電部からの電気を取り出す電気回路と、
を具備する風力発電装置であって、
前記板状発電部が、その板を含む平面と該受風翼の断面形状である円弧の二等分点を垂直方向に連ねた線と該円弧の円の中心を鉛直方向に連ねた線とを含む二等分面とが平行であり、その振動方向が該二等分面に対して略直角となるものと、
その板を含む平面と該二等分面とが垂直であり、その振動方向が該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする風力発電装置。
It is long and has a cross section perpendicular to the length direction of a substantially arc shape, and its width so as to generate a predetermined torsional vibration when receiving wind force with one end in the longitudinal direction fixed. A wind receiving wing whose longitudinal direction changes,
A plate-shaped power generation section that generates power by vibrating by the vibration of the wind receiving blades;
An electric circuit for extracting electricity from the power generation unit;
A wind turbine generator comprising:
The plate-like power generation unit includes a line that connects a plane including the plate and a bisection point of an arc that is a cross-sectional shape of the wind receiving blade in a vertical direction, and a line that connects a center of a circle of the arc in a vertical direction. And a bisection plane including the plane, and a vibration direction thereof is substantially perpendicular to the bisection plane;
A plane including the plate and the bisecting plane is perpendicular to each other, and the direction of vibration is substantially parallel to the bisecting plane. Power generation device.
前記発電部は屈曲することによって発電する板状圧電素子を有し、
前記圧電素子は、屈曲方向が前記受風翼の該二等分面対して略垂直となるように、前記受風翼に取り付けられているものと、屈曲方向が前記受風翼の該二等分面対して略平行となるように、前記受風翼に取り付けられているものとを有することを特徴とする請求項1から請求項4のいずれか1項に記載の風力発電装置。
The power generation unit has a plate-like piezoelectric element that generates power by bending,
The piezoelectric element is attached to the wind receiving blade such that the bending direction is substantially perpendicular to the bisecting surface of the wind receiving blade, and the piezoelectric element is bent in the second direction of the wind receiving blade. 5. The wind turbine generator according to claim 1, wherein the wind turbine generator is attached to the wind receiving blade so as to be substantially parallel to the dividing plane.
前記発電部は電磁誘導により発電する発電コイルを有する板状発電部たるバネ材及び磁石を含み、
前記受風翼のねじれ振動により、前記発電コイルを通して動作させて発電させることを特徴とする請求項1から請求項4のいずれか1項に記載の風力発電装置。
The power generation unit includes a spring material and a magnet as a plate-shaped power generation unit having a power generation coil that generates power by electromagnetic induction,
5. The wind power generator according to claim 1, wherein the wind power generator is operated by the torsional vibration of the wind receiving blade to generate electric power through the power generating coil.
前記発電部は電磁誘導により発電する巻線発電機及び偏心ロッドをさらに含み、
前記受風翼のねじれ振動により、前記巻線発電機を通して動作させて発電させることを特徴とする請求項1から請求項6のいずれか1項に記載の風力発電装置。
The power generation unit further includes a winding generator for generating power by electromagnetic induction and an eccentric rod,
7. The wind power generator according to claim 1, wherein the wind power generator is operated by the torsional vibration of the wind receiving blades to generate electric power through the winding generator.
請求項1から請求項7のいずれかに記載の風力発電装置を複数用いて構成される風力発電システムであって、
複数の前記受風翼が所定間隔で並べられ、
複数の前記発電部で発生する電気エネルギーを直列および/または並列で集電する集電
装置を具備することを特徴とする風力発電システム。
A wind power generation system configured by using a plurality of wind power generation devices according to any one of claims 1 to 7,
A plurality of the wind receiving blades are arranged at a predetermined interval,
A wind power generation system comprising a current collector that collects electric energy generated in a plurality of the power generation units in series and / or in parallel.
所定数の前記受風翼が、風を受ける面が同じ方向を向くように、縦列もしくは並列または縦並列または放射状に並べられた構成を有する受風ユニットと、
尾翼と、
前記受風ユニットと前記尾翼とを連結する連結部材と、
前記連結部材を回転自在に支持する支持機構と、
を具備し、
前記尾翼が風力を受けることによって、
前記受風ユニットの各板状発電部の板を含む平面と該二等分面とが平行となり、その振動が該二等分面に対して略垂直となるものと、
その板を含む平面と該二等分面とが略垂直であり、その振動方向が該二等分面に対して略平行となるものと、を含むように設置されていることを特徴とする請求項8に記載の風力発電システム。
A wind receiving unit having a configuration in which a predetermined number of the wind receiving blades are arranged in a row, in parallel, in a longitudinal parallel, or in a radial manner so that the surfaces receiving the wind face the same direction;
The tail,
A connecting member for connecting the wind receiving unit and the tail,
A support mechanism for rotatably supporting the connecting member;
Comprising
By receiving wind power from the tail,
A plane including the plate of each plate-like power generation unit of the wind receiving unit and the bisecting plane are parallel, and the vibration is substantially perpendicular to the bisecting plane;
The plane including the plate and the bisector are approximately perpendicular to each other, and the vibration direction is substantially parallel to the bisector. The wind power generation system according to claim 8.
JP2005235807A 2005-08-16 2005-08-16 Wind power generator Active JP4562617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235807A JP4562617B2 (en) 2005-08-16 2005-08-16 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235807A JP4562617B2 (en) 2005-08-16 2005-08-16 Wind power generator

Publications (2)

Publication Number Publication Date
JP2007051561A JP2007051561A (en) 2007-03-01
JP4562617B2 true JP4562617B2 (en) 2010-10-13

Family

ID=37916174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235807A Active JP4562617B2 (en) 2005-08-16 2005-08-16 Wind power generator

Country Status (1)

Country Link
JP (1) JP4562617B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243189B2 (en) * 2008-10-31 2013-07-24 太平洋セメント株式会社 Piezoelectric power generation module, wireless transmission system using the same, and wind speed monitoring system
JP5549164B2 (en) * 2009-09-15 2014-07-16 スミダコーポレーション株式会社 Piezoelectric generator
KR101282141B1 (en) * 2011-05-12 2013-07-04 이진용 Power generation apparatus using piezoelectric element
KR101562788B1 (en) 2014-02-27 2015-10-23 가톨릭관동대학교산학협력단 Wind power generator
CN105024586B (en) * 2015-07-02 2017-03-15 南京航空航天大学 A kind of oscillating mode wind generator system
KR101857579B1 (en) * 2016-11-29 2018-05-14 한국도로공사 Energy harvester system for tollgate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2000320443A (en) * 1999-01-12 2000-11-21 Sozoan:Kk Motion conversion device
JP2004166442A (en) * 2002-11-15 2004-06-10 Taiheiyo Cement Corp Generator and power generation system
JP2004358054A (en) * 2003-06-06 2004-12-24 Nissin Electric Co Ltd Piezoelectric light-emitting fan, piezoelectric light-emitting cheering goods, and piezoelectric light-emitting display goods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2000320443A (en) * 1999-01-12 2000-11-21 Sozoan:Kk Motion conversion device
JP2004166442A (en) * 2002-11-15 2004-06-10 Taiheiyo Cement Corp Generator and power generation system
JP2004358054A (en) * 2003-06-06 2004-12-24 Nissin Electric Co Ltd Piezoelectric light-emitting fan, piezoelectric light-emitting cheering goods, and piezoelectric light-emitting display goods

Also Published As

Publication number Publication date
JP2007051561A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4651015B2 (en) Wind power generator
WO2006109362A1 (en) Wind turbine generator and wind turbine generating system
US7573143B2 (en) Generator utilizing fluid-induced oscillations
JP4562617B2 (en) Wind power generator
US7884490B1 (en) Resonating blade for electric power generation
US8519554B2 (en) Device and method for harvesting energy from flow-induced oscillations
US20100308592A1 (en) Energy converter with transducers for converting fluid-induced movements or stress to electricity
JP3951438B2 (en) Piezoelectric wind power generator
JP2020522229A5 (en)
US8198788B2 (en) Self-contained U or V shaped piezoelectric device for generating voltage
JP2010512132A (en) Generator using fluid-induced vibration
CN108847788B (en) One kind being based on multistable piezoelectric harvester
CN104022617B (en) Noise power generator
JP2008180118A (en) Wind power generation device using piezoelectric element
CN103532433B (en) Multi-direction broadband energy collecting device
JP5760561B2 (en) Piezoelectric power generator and electronic device including the piezoelectric power generator
CN209948994U (en) Cable energy collecting device
JP2001275370A (en) Piezoelectric hydraulic power generator
CN108266327B (en) Novel wind power generation device
JP2006226153A (en) Wind power generation light emission device
CN110401326B (en) Cable energy collecting device
JP2008295275A (en) Piezoelectric power generation device
JP5243189B2 (en) Piezoelectric power generation module, wireless transmission system using the same, and wind speed monitoring system
JP5080331B2 (en) Wind power generator
JP5961991B2 (en) Power generation element and monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250