JP2013076132A - High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same - Google Patents

High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same Download PDF

Info

Publication number
JP2013076132A
JP2013076132A JP2011216932A JP2011216932A JP2013076132A JP 2013076132 A JP2013076132 A JP 2013076132A JP 2011216932 A JP2011216932 A JP 2011216932A JP 2011216932 A JP2011216932 A JP 2011216932A JP 2013076132 A JP2013076132 A JP 2013076132A
Authority
JP
Japan
Prior art keywords
steel sheet
less
thin steel
bake hardenability
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011216932A
Other languages
Japanese (ja)
Inventor
Taro Kizu
太郎 木津
Yoshimasa Funakawa
義正 船川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011216932A priority Critical patent/JP2013076132A/en
Priority to MYPI2012003446A priority patent/MY173703A/en
Priority to RU2012132863/02A priority patent/RU2514743C2/en
Priority to BR102012019139A priority patent/BR102012019139A2/en
Priority to ZA2012/05762A priority patent/ZA201205762B/en
Publication of JP2013076132A publication Critical patent/JP2013076132A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength thin steel sheet having excellent bake hardenability and formability having a high strength of TS≥340 MPa, and satisfying BH≥30 MPa, uniform elongation≥18%, and YP-EI≤1.0% after accelerated aging.SOLUTION: The high strength thin steel sheet has a composition including, by mass, C: 0.0010 to 0.0040%, Si: 0.05% or less, Mn: 0.1 to 1.0%, P: 0.10% or less, S: 0.03% or less, Al: 0.01 to 0.10%, N: 0.0050% or less, and Ti: 0.005 to 0.050%, while satisfying relations: (Ti-3.4×N-1.5×S)/C≤6.0 and Mn/C≥100, and the remainder being Fe and an inevitable impurities. Symbols for elements in the relations denote their respective contents (mass%) in the steel.

Description

本発明は、自動車のドアやフードなどのパネル部品をはじめとして、自販機、デスク、家電・OA機器および建材など、焼付塗装を行う部品に適用して最適な焼付硬化性と成形性に優れた高強度薄鋼板およびその製造方法に関するものである。
なお、本発明で対象とする薄鋼板には、冷延鋼板の他に、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気亜鉛めっきなどのめっき鋼板、さらには、その上に化成処理などを施した表面処理鋼板などが含まれる。
The present invention is applied to parts to be baked, such as vending machines, desks, home appliances / OA equipment and building materials, as well as panel parts such as automobile doors and hoods. The present invention relates to a strength thin steel sheet and a method for producing the same.
In addition to the cold-rolled steel sheet, the thin steel sheet that is the subject of the present invention is plated steel sheet such as hot dip galvanized, alloyed hot dip galvanized, and electrogalvanized, and further subjected to chemical conversion treatment, etc. Surface-treated steel sheets are included.

近年、地球環境に対する関心の高まりを受けて、鋼板の製造の際にCO2排出量の大きい鋼板の使用量を削減したいという要請が強まっている。さらに、自動車の分野などでは車体を軽くすることによって、燃費を向上させると共に排ガスを減らしたいというニーズがますます大きくなっている。 In recent years, in response to growing interest in the global environment, there has been an increasing demand for reducing the amount of steel sheets used for producing large amounts of CO 2 when manufacturing steel sheets. Furthermore, in the field of automobiles and the like, there is a growing need to improve fuel efficiency and reduce exhaust gas by reducing the body weight.

上記の要請に応えるためには、鋼板を高強度化して薄肉化することが有効であるが、一方で鋼板を大幅に高強度化すると、プレス時に、スプリングバックによる形状不良や、均一伸びが不足することによる歪の集中で割れが発生するなどの問題が生じる。
また、薄鋼板のプレス部品の中には、プレス加工後に焼付塗装されるものが多く、このような部品に関しては、焼付け時の熱を利用してプレス加工後にさらに高強度化できる焼付硬化型の高強度鋼板に対するニーズが非常に大きい。
In order to meet the above requirements, it is effective to increase the strength of the steel sheet and make it thinner, but on the other hand, if the strength of the steel sheet is significantly increased, the shape defect due to springback and uniform elongation are insufficient during pressing. Problems such as cracks occur due to the concentration of strain due to the operation.
In addition, many stamped parts of thin steel plates are baked and painted after pressing, and for these parts, a bake-hardening type that can be further strengthened after pressing using the heat during baking. There is a great need for high-strength steel sheets.

従来、焼付硬化性に優れた鋼板として、例えば特許文献1には、質量%でC≦0.01%の鋼において、B/N=0.5〜1.6の範囲のB添加によりNを固定して時効性を改善すると共に、NbとCの比Nb/Cを0.5〜4の範囲に調整することで固溶Cを残留させて焼付硬化性を付与する技術が開示されている。
また、特許文献2には、質量%でC:0.001〜0.0035%、Ti≧0.005%の鋼において、(Ti/48)/(S/32+N/14)≦1.0を満足させることによってTiをS,Nで固定し、添加したCが全量固溶Cとなるよう制御することで、焼付硬化性を付与する技術が開示されている。
Conventionally, as a steel plate excellent in bake hardenability, for example, in Patent Document 1, in steel with mass% of C ≦ 0.01%, N is fixed by adding B in the range of B / N = 0.5 to 1.6, and aging is achieved. A technique for improving the bake hardenability by allowing the solid solution C to remain by adjusting the ratio Nb / C of Nb to C in the range of 0.5 to 4 is disclosed.
Further, Patent Document 2 discloses that Ti is S, by satisfying (Ti / 48) / (S / 32 + N / 14) ≦ 1.0 in a steel of mass% C: 0.001 to 0.0035% and Ti ≧ 0.005%. A technique for imparting bake hardenability by fixing with N and controlling the added C to be a solid solution C in total is disclosed.

特平昭58-84929号公報Japanese Patent Publication No.58-84929 特開平2-197549号公報Japanese Unexamined Patent Publication No. 2-197549

しかしながら、特許文献1に記載の技術では、高強度化することが難しいという問題があった。
また、特許文献2に記載の技術では、均一伸びが確保できないという問題があった。
However, the technique described in Patent Document 1 has a problem that it is difficult to increase the strength.
Further, the technique described in Patent Document 2 has a problem that uniform elongation cannot be secured.

本発明は、上記の問題を有利に解決するもので、TS≧340MPaという高強度と共に、BH≧30MPa、均一伸び≧18%、促進時効後のYP-El≦1.0%を満足する焼付硬化性と成形性に優れた高強度薄鋼板を、その有利な製造方法と共に提供することを目的とする。   The present invention advantageously solves the above problems, and has high strength of TS ≧ 340 MPa, BH ≧ 30 MPa, uniform elongation ≧ 18%, bake hardenability satisfying YP-El ≦ 1.0% after accelerated aging, An object is to provide a high-strength thin steel sheet excellent in formability together with its advantageous production method.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.0010〜0.0040%、
Si:0.05%以下、
Mn:0.1〜1.0%、
P:0.10%以下、
S:0.03%以下、
Al:0.01〜0.10%、
N:0.0050%以下および
Ti:0.005〜0.050%
を含有し、かつ
(Ti−3.4×N−1.5×S)/C≦6.0、
Mn/C≧100
の関係を満足し、残部はFeおよび不可避的不純物の組成からなり、引張強さ(TS)が340 MPa以上、焼付硬化量(BH)が30MPa以上、均一伸び(El)が18%以上、促進時効後の降伏点伸び(YP-El)が1.0%以下であることを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板。
ただし、上記数式中における元素記号は、それぞれの元素の鋼中の含有量(質量%)を表す。なお、本明細書中の数式中の元素記号はすべて同じ意味を表すものとする。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.0010 to 0.0040%,
Si: 0.05% or less,
Mn: 0.1-1.0%
P: 0.10% or less,
S: 0.03% or less,
Al: 0.01-0.10%,
N: 0.0050% or less and
Ti: 0.005-0.050%
And (Ti-3.4 × N-1.5 × S) /C≦6.0,
Mn / C ≧ 100
The balance is composed of Fe and inevitable impurities, and the tensile strength (TS) is 340 MPa or more, the bake hardening (BH) is 30 MPa or more, and the uniform elongation (El) is 18% or more. A high-strength steel sheet with excellent bake hardenability and formability, characterized by a yield point elongation (YP-El) of 1.0% or less after aging.
However, the element symbol in the above formula represents the content (% by mass) of each element in steel. In addition, all the element symbols in the numerical formula in this specification shall represent the same meaning.

2.さらに質量%で、B:0.0005〜0.0030%を含有することを特徴とする前記1に記載の焼付硬化性と成形性に優れた高強度薄鋼板。 2. 2. The high-strength thin steel sheet excellent in bake hardenability and formability as described in 1 above, further comprising, by mass%, B: 0.0005 to 0.0030%.

3.さらに質量%で、V,Ta,WおよびMoのうちから選んだ1種または2種以上をそれぞれ0.005〜0.050%含有することを特徴とする前記1または2に記載の焼付硬化性と成形性に優れた高強度薄鋼板。 3. Further, the bake hardenability and formability as described in 1 or 2 above, containing 0.005 to 0.050% of one or more selected from V, Ta, W and Mo in mass%. Excellent high-strength thin steel sheet.

4.さらに質量%で、Cr,NiおよびCuのうちから選んだ1種または2種以上をそれぞれ0.01〜0.10%含有することを特徴とする前記1ないし3のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。 4). The bake hardenability and formability as described in any one of 1 to 3 above, further comprising 0.01 to 0.10% of one or more selected from Cr, Ni and Cu, respectively, by mass% Excellent high strength thin steel sheet.

5.さらに質量%で、Sb:0.005〜0.050%を含有することを特徴とする前記1ないし4のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。 5). The high-strength thin steel sheet excellent in bake hardenability and formability as described in any one of 1 to 4 above, further containing, by mass%, Sb: 0.005 to 0.050%.

6.さらに質量%で、CaおよびREMのうちから選んだ1種または2種をそれぞれ0.0005〜0.01%含有することを特徴とする1ないし5のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。 6). Furthermore, the high bake hardenability and moldability according to any one of 1 to 5, characterized by containing 0.0005 to 0.01% of one or two selected from Ca and REM, respectively, by mass%. Strength thin steel plate.

7.前記薄鋼板の表面にめっき層を有することを特徴とする前記1ないし6のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。 7). The high strength thin steel sheet excellent in bake hardenability and formability according to any one of 1 to 6, wherein the thin steel sheet has a plating layer on the surface thereof.

8.前記1ないし6のいずれかに記載の組成からなる鋼スラブを、熱間圧延後、コイルに巻き取り、ついで酸洗後、冷間圧延したのち、焼鈍を施し、その後調質圧延を行って薄鋼板を製造するに当たり、
前記熱間圧延後の巻取り温度を550℃以上にすると共に、焼鈍に際し、500℃から均熱温度までの加熱を、0.1℃/sまたは{0.2×(Ti−3.4×N−1.5×S)/C}℃/sのうちのより大きい加熱速度以上で行い、均熱温度を650℃または{650+20×(Ti−3.4×N−1.5×S)/C}℃のうちのより高い温度以上かつ 900℃以下、均熱時間を10〜1000sとし、さらに調質圧延を(0.8×Mn)〜(2+Mn)%の板厚減少率で行うことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。
8). The steel slab having the composition described in any one of 1 to 6 above is hot-rolled, wound around a coil, then pickled, cold-rolled, annealed, and then subjected to temper rolling and thinned. In manufacturing steel sheets,
The coiling temperature after the hot rolling is set to 550 ° C. or higher, and during annealing, heating from 500 ° C. to a soaking temperature is 0.1 ° C./s or {0.2 × (Ti−3.4 × N−1.5 × S) At a higher heating rate of / C} ° C./s, the soaking temperature is 650 ° C. or higher than {650 + 20 × (Ti−3.4 × N−1.5 × S) / C} ° C. 900 ° C or less, soaking time is 10 to 1000 s, and temper rolling is performed at a sheet thickness reduction rate of (0.8 × Mn) to (2 + Mn)%. A manufacturing method of high strength steel sheet.

9.前記8に記載の製造方法において、焼鈍後に前記鋼板の表面にめっき処理を施すことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。 9. 9. The method for producing a high-strength thin steel sheet excellent in bake hardenability and formability, wherein the steel sheet surface is plated after annealing in the production method described in 8 above.

10.前記9に記載の製造方法において、めっき処理に引き続きめっき層に合金化処理を施すことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。 Ten. 10. The method for producing a high-strength thin steel sheet having excellent bake hardenability and formability, wherein the plating layer is subjected to an alloying treatment subsequent to the plating treatment.

本発明に従い、C,Mn,Ti量を制御した鋼スラブを素材とし、熱延での巻取り温度、冷延後の焼鈍時における加熱速度と均熱温度、さらには調質圧延時の板厚減少率を制御して、析出物と固溶C量および歪の導入形態を制御することにより、高TS、高BH、促進時効後の低YP-Elを維持しつつ均一伸びを向上させた薄鋼板を得ることができ、工業上、極めて有効な効果がもたらされる。   In accordance with the present invention, steel slabs with controlled amounts of C, Mn, and Ti are used as raw materials. By controlling the reduction rate, the amount of precipitates and the amount of solute C and strain are controlled, and the thin film has improved uniform elongation while maintaining high TS, high BH, and low YP-El after accelerated aging. A steel plate can be obtained, and an extremely effective effect is brought about industrially.

BHに及ぼすTi*/Cの影響を示す図である。It is a figure which shows the influence of Ti * / C which acts on BH. YP-Elに及ぼすMn/Cの影響を示す図である。It is a figure which shows the influence of Mn / C which acts on YP-El. 均一伸びに及ぼす調圧率(調質圧延における板厚減少率)の影響を示す図である。It is a figure which shows the influence of the pressure regulation rate (plate | board thickness reduction | decrease rate in temper rolling) which has on uniform elongation.

以下、本発明を具体的に説明する。
まず、本発明において、薄鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.0010〜0.0040%
Cは、Tiと微細な炭化物を形成することにより、高強度化に寄与すると共に、固溶Cとしても存在することで、焼付硬化性を向上させることができる。そのため、C量は0.0010%以上含有させる必要がある。一方、多量のCは、炭化物や固溶Cの増加により均一伸びが低下するだけでなく、特に固溶Cとして多く存在する場合には促進時効後のYP-Elが大きくなる不利が生じる。そのため、C量は0.0040%以下とする必要がある。好ましくは0.0030%以下、より好ましくは0.0025%以下、さらに好ましくは0.0020%以下である。
Hereinafter, the present invention will be specifically described.
First, the reason why the composition of the thin steel plate is limited to the above range in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.0010-0.0040%
C contributes to high strength by forming fine carbides with Ti, and can also improve the bake hardenability by being present as solid solution C. Therefore, the C amount needs to be 0.0010% or more. On the other hand, a large amount of C not only decreases the uniform elongation due to an increase in carbides or solid solution C, but also has a disadvantage that YP-El after accelerated aging increases, especially when a large amount exists as solid solution C. Therefore, the C amount needs to be 0.0040% or less. Preferably it is 0.0030% or less, More preferably, it is 0.0025% or less, More preferably, it is 0.0020% or less.

Si:0.05%以下
Siは、多量に添加すると、硬質化により加工性が劣化し、また焼鈍時のSi酸化物の生成によりめっき性が阻害される。従って、Siは0.05%以下とする必要がある。好ましくは0.03%以下、より好ましくは0.02%以下、さらに好ましくは0.01%以下である。
Si: 0.05% or less
If Si is added in a large amount, the workability deteriorates due to hardening, and the plating property is hindered by the formation of Si oxide during annealing. Therefore, Si needs to be 0.05% or less. Preferably it is 0.03% or less, More preferably, it is 0.02% or less, More preferably, it is 0.01% or less.

Mn:0.1〜1.0%
Mnは、固溶強化により高強度化に寄与するだけでなく、固溶Cとの相互作用により、固溶Cに起因した促進時効後のYP-Elの上昇を抑制することができる。また、焼鈍時における加熱途中の回復を抑制することで、均熱時に均一な再結晶粒として均一伸びを向上させる効果もある。このような効果を得るため、Mnは0.1%以上とする必要がある。一方、多量のMnは、硬質化により均一伸びが低下するだけでなく、焼鈍時のMn酸化物の生成によりめっき性が阻害される。そのため、Mn量は1.0%以下とする必要がある。
Mn: 0.1-1.0%
Mn not only contributes to increase in strength by solid solution strengthening, but also can suppress an increase in YP-El after accelerated aging caused by solid solution C due to interaction with solid solution C. Further, by suppressing recovery during heating during annealing, there is also an effect of improving uniform elongation as uniform recrystallized grains during soaking. In order to obtain such an effect, Mn needs to be 0.1% or more. On the other hand, a large amount of Mn not only lowers the uniform elongation due to hardening, but also inhibits plating properties due to the formation of Mn oxide during annealing. Therefore, the amount of Mn needs to be 1.0% or less.

P:0.10%以下
Pは、粒界に偏析して、延性や靭性を劣化させることから、0.10%以下とする必要がある。下限はとくに設定しないが、高強度化に有効に作用することから、0.03%程度とすることが好ましい。より好ましくは0.05%以上である。
P: 0.10% or less P needs to be 0.10% or less because it segregates at grain boundaries and deteriorates ductility and toughness. Although the lower limit is not particularly set, it is preferably about 0.03% because it effectively works to increase the strength. More preferably, it is 0.05% or more.

S:0.03%以下
Sは、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大なTiSを形成することにより、延性を低下させる。これらの問題は、S量が0.03%を超えると顕著となるので、S量は0.03%以下とする必要がある。好ましくは0.02%以下、より好ましくは0.01%以下である。
S: 0.03% or less S causes hot cracking by significantly reducing hot ductility, and significantly deteriorates surface properties. Further, S hardly contributes to the strength, but also reduces the ductility by forming coarse TiS as an impurity element. These problems become prominent when the S content exceeds 0.03%, so the S content needs to be 0.03% or less. Preferably it is 0.02% or less, More preferably, it is 0.01% or less.

Al:0.01〜0.10%
Alは、脱酸元素として添加され、生成したアルミ酸化物はスラグとして除去されるが、残留Al量が0.01%を下回る場合には、脱酸が不十分となることから、Alは0.01%以上添加する必要がある。好ましくは0.03%以上である。一方、多量のAlは、鋼中アルミ酸化物の増加を招き、延性が低下することから、0.10%以下とする必要がある。
Al: 0.01-0.10%
Al is added as a deoxidizing element, and the generated aluminum oxide is removed as slag. However, if the residual Al content is less than 0.01%, deoxidation becomes insufficient, so Al is 0.01% or more. It is necessary to add. Preferably it is 0.03% or more. On the other hand, a large amount of Al causes an increase in the aluminum oxide in the steel and decreases the ductility.

N:0.0050%以下
Nは、固溶Nとして存在する場合には促進時効後のYP-Elの上昇を招くばかりでなく、多量に含有されると、熱間圧延中にスラブ割れを伴い、表面疵が発生するおそれがある。また、Tiと粗大な窒化物を形成することによってTiを多量に消費してしまう。従って、Nは0.0050%以下とする必要がある。好ましくは0.0030%以下、より好ましくは0.0020%以下である。
N: 0.0050% or less When N is present as solid solution N, not only does it cause an increase in YP-El after accelerated aging, but if it is contained in a large amount, N is accompanied by slab cracking during hot rolling. There is a risk of wrinkles. Moreover, a large amount of Ti is consumed by forming coarse nitrides with Ti. Therefore, N needs to be 0.0050% or less. Preferably it is 0.0030% or less, More preferably, it is 0.0020% or less.

Ti:0.005〜0.050%
Tiは、Cと微細な炭化物を形成することで硬質化に寄与することができる。さらに、Tiの微細な炭化物は、焼鈍時における加熱途中の回復を抑制することで、均熱時に均一な再結晶粒として均一伸びを向上させることができる。そのため、Tiは0.005%以上添加する必要がある。好ましくは0.010%以上である。一方、多量のTi添加は、固溶Cを減少させることで焼付硬化性を低下させるだけでなく、熱間での変形抵抗値を上げて圧延を困難にする。従って、Tiは0.050%以下とする必要がある。好ましくは0.030%以下、より好ましくは0.020%以下、さらに好ましくは0.015%以下である。
Ti: 0.005-0.050%
Ti can contribute to hardening by forming fine carbides with C. Furthermore, the fine carbide of Ti can improve the uniform elongation as uniform recrystallized grains during soaking by suppressing recovery during heating during annealing. Therefore, it is necessary to add 0.005% or more of Ti. Preferably it is 0.010% or more. On the other hand, the addition of a large amount of Ti not only lowers the bake hardenability by reducing the solid solution C, but also raises the resistance to hot deformation and makes rolling difficult. Therefore, Ti needs to be 0.050% or less. Preferably it is 0.030% or less, More preferably, it is 0.020% or less, More preferably, it is 0.015% or less.

以上、各基本成分についてその適正組成範囲について説明したが、本発明では、各基本成分を上記の範囲に調整するだけでは不十分で、C,Ti,NおよびSについては以下の関係式を満足させる必要がある。
(Ti−3.4×N−1.5×S)/C≦6.0、
上掲式は、所定量の固溶Cを確保するのに必要な関係式である。
すなわち、Tiは、炭化物よりも高温で窒化物や硫化物を形成することから、Cに対し、窒化物または硫化物を形成しているTi以外のTi量である(Ti−3.4×N−1.5×S)の比が大きいと、炭化物が形成されやすく、所定量の固溶Cを残留させることが困難となってしまう。そのため、(Ti−3.4×N−1.5×S)/Cは6.0以下とする必要がある。好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは2.0以下である。なお、この式の下限は特に設けないが、(Ti−3.4×N−1.5×S)/Cが小さいと、Nによる促進時効後のYP-El上昇を招いたり、Tiの炭化物による硬質化の効果を得ることができなくなったりする。従って、(Ti−3.4×N−1.5×S)/Cは−10.0以上とすることが好ましい。より好ましくは−5.0以上、さらに好ましくは−2.0以上、最も好ましくは0以上である。
As mentioned above, although the appropriate composition range was demonstrated about each basic component, in this invention, it is not enough to adjust each basic component to said range, and the following relational expressions are satisfied about C, Ti, N, and S It is necessary to let
(Ti-3.4 × N-1.5 × S) /C≦6.0,
The above expression is a relational expression necessary for securing a predetermined amount of solid solution C.
That is, since Ti forms nitrides and sulfides at a higher temperature than carbides, it is a Ti amount other than Ti forming nitrides or sulfides relative to C (Ti-3.4 × N-1.5). If the ratio of (× S) is large, carbides are easily formed, and it becomes difficult to leave a predetermined amount of solute C. Therefore, (Ti−3.4 × N−1.5 × S) / C needs to be 6.0 or less. Preferably it is 4.0 or less, More preferably, it is 3.5 or less, More preferably, it is 2.0 or less. Although there is no particular lower limit for this formula, if (Ti-3.4 × N-1.5 × S) / C is small, YP-El increases after accelerated aging by N, or hardening by Ti carbides. You may not be able to get the effect. Therefore, (Ti−3.4 × N−1.5 × S) / C is preferably set to −10.0 or more. More preferably, it is -5.0 or more, More preferably, it is -2.0 or more, Most preferably, it is 0 or more.

また、本発明では、C,Mnについて、以下の関係式を満足させる必要がある。
Mn/C≧100
上掲式は、促進時効後のYP-Elの上昇を抑制するために必要な関係式である。
すなわち、Cに対するMnの比を大きくすることで、固溶Cとの相互作用による促進時効後のYP-Elの上昇を抑制することができる。この効果を得るため、Mn/Cは100以上とする必要がある。好ましくは150以上、より好ましくは200以上である。なお、この式の上限は特に設けないが、600程度とすることが好適である。
In the present invention, it is necessary to satisfy the following relational expressions for C and Mn.
Mn / C ≧ 100
The above formula is a relational expression necessary for suppressing the increase of YP-El after accelerated aging.
That is, by increasing the ratio of Mn to C, an increase in YP-El after accelerated aging due to interaction with solute C can be suppressed. In order to obtain this effect, Mn / C needs to be 100 or more. Preferably it is 150 or more, More preferably, it is 200 or more. The upper limit of this formula is not particularly set, but is preferably about 600.

以上、基本成分および基本成分相互間の関係式について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることができる。
B:0.0005〜0.0030%
Bは、粒界に偏析して耐二次加工脆性を向上させることができる。このような効果を得るためにはBを0.0005%以上添加することが好ましい。一方、多量のB添加は、熱間での変形抵抗値を上げて圧延を困難にしてしまう。従って、Bを添加する場合には0.0030%以下とすることが好ましい。より好ましくは0.0020%以下である。
As described above, the basic component and the relational expression between the basic components have been described. However, in the present invention, other elements described below can be appropriately contained as necessary.
B: 0.0005-0.0030%
B segregates at the grain boundary and can improve secondary work brittleness resistance. In order to obtain such an effect, 0.0005% or more of B is preferably added. On the other hand, the addition of a large amount of B increases the hot deformation resistance value and makes rolling difficult. Therefore, when adding B, it is preferable to make it 0.0030% or less. More preferably, it is 0.0020% or less.

V,Ta,WおよびMoのうちから選んだ1種または2種以上をそれぞれ0.005〜0.050%
V,Ta,WおよびMoはいずれも、微細析出物を形成することですることで高強度化に寄与することができる。このような効果を得るためには、単独添加または複合添加いずれの場合においても、それぞれ0.005%以上添加することが好ましい。一方、多量に添加すると延性が大きく低下することから、それぞれ0.050%以下とすることが好ましい。
0.005 to 0.050% of one or more selected from V, Ta, W and Mo
V, Ta, W and Mo can all contribute to high strength by forming fine precipitates. In order to obtain such an effect, it is preferable to add 0.005% or more in each case of single addition or composite addition. On the other hand, if added in a large amount, the ductility is greatly reduced.

Cr,NiおよびCuのうちから選んだ1種または2種以上をそれぞれ0.01〜0.10%
Cr,NiおよびCuはいずれも、組織を細粒化することで高強度化に寄与する元素である。このような効果を得るためには、単独添加または複合添加いずれの場合においても、それぞれ0.01%以上添加することが好ましい。一方、多量に添加すると延性が大きく低下することから、それぞれ0.10%以下とすることが好ましい。
0.01% to 0.10% of one or more selected from Cr, Ni and Cu
Cr, Ni, and Cu are all elements that contribute to high strength by refining the structure. In order to obtain such an effect, it is preferable to add 0.01% or more in each case of single addition or composite addition. On the other hand, if added in a large amount, the ductility is greatly reduced, so each content is preferably 0.10% or less.

Sb:0.005〜0.050%
Sbは、熱間圧延時の加熱において、表面に偏析しスラブが窒化するのを防止することでNによる時効劣化を抑制することができる。このような効果を得るためには、Sbは0.005%以上添加することが好ましい。一方、多量にSbを添加すると製造コストが上昇することから、Sbを添加する場合は0.050%以下とすることが好ましい。
Sb: 0.005 to 0.050%
Sb can suppress aging deterioration due to N by preventing segregation on the surface and nitriding of the slab during heating during hot rolling. In order to obtain such an effect, it is preferable to add 0.005% or more of Sb. On the other hand, when a large amount of Sb is added, the production cost increases. Therefore, when Sb is added, the content is preferably 0.050% or less.

CaおよびREMのうちから選んだ1種または2種をそれぞれ0.0005〜0.01%
CaおよびREMはそれぞれ、硫化物の形態を制御することで延性を向上させることができる。このような効果を得るためにCa、REMを添加する場合には、単独添加または複合添加いずれの場合も、それぞれ0.0005%以上添加することが好ましい。一方、多量の添加は製造コストが上昇することから、それぞれ0.01%以下とすることが好ましい
0.0005% to 0.01% of one or two selected from Ca and REM
Each of Ca and REM can improve ductility by controlling the form of sulfide. In order to obtain such an effect, when adding Ca and REM, it is preferable to add 0.0005% or more in each case of single addition or combined addition. On the other hand, the addition of a large amount increases the manufacturing cost, so each content is preferably 0.01% or less.

その他、Sn,Mg,Co,As,Pb,ZnおよびOなどの不純物を含んでいても、合計で0.5%以下であれば特性的には問題ない。
なお、本発明において、残部はFeおよび不可避的不純物であるが、本発明の作用・効果を損なわない限り、他の微量元素の含有を拒むものではない。
In addition, even if impurities such as Sn, Mg, Co, As, Pb, Zn and O are included, there is no problem in terms of characteristics as long as the total is 0.5% or less.
In the present invention, the balance is Fe and inevitable impurities, but it does not refuse to contain other trace elements unless the effects and effects of the present invention are impaired.

そして、本発明鋼板においては、以下の特性を満足していることが重要である。
引張強度(TS):340MPa以上
本発明の高強度薄鋼板は、引張強度(TS)が340MPa以上であることを特徴とする。TSを340MPa以上とすることで、強度が必要な部材に対し鋼板を薄肉化することができるからである。ここで、上記TSは、圧延直角方向よりJIS5引張り試験片を切り出し、JIS Z 2241に準拠した引張り試験によって測定することができる。
And in this invention steel plate, it is important to satisfy the following characteristics.
Tensile strength (TS): 340 MPa or more The high-strength thin steel sheet of the present invention is characterized by a tensile strength (TS) of 340 MPa or more. This is because by setting TS to 340 MPa or more, the steel sheet can be thinned with respect to a member that requires strength. Here, the TS can be measured by cutting a JIS5 tensile test piece from the direction perpendicular to the rolling direction and performing a tensile test based on JIS Z 2241.

焼付硬化量(BH):30MPa以上
本発明の高強度薄鋼板は、焼付硬化量(BH)が30MPa以上であることを特徴とする。BHを30MPa以上とすることで、プレス成型時の荷重を小さくするとともに、プレス成型後の強度を上昇させることができるからである。ここで、上記BHは、圧延直角方向よりJIS5引張り試験片を切り出し、JIS G 3135に準拠した塗装焼付硬化量試験方法によって測定することができる。
Bake hardening amount (BH): 30 MPa or more The high strength thin steel sheet of the present invention has a bake hardening amount (BH) of 30 MPa or more. This is because by setting BH to 30 MPa or more, the load at the time of press molding can be reduced and the strength after press molding can be increased. Here, the BH can be measured by a paint bake hardening amount test method based on JIS G 3135 by cutting out a JIS 5 tensile test piece from the direction perpendicular to the rolling.

均一伸び:18%以上
本発明の高強度薄鋼板は、均一伸びが18%以上であることを特徴とする。均一伸びを18%以上とすることで、プレス成型時に歪が集中するのを抑制し、割れの発生を抑制できるからである。
Uniform elongation: 18% or more The high-strength thin steel sheet of the present invention is characterized by a uniform elongation of 18% or more. This is because by setting the uniform elongation to 18% or more, it is possible to suppress the concentration of strain during press molding and to suppress the occurrence of cracks.

促進時効後の降伏伸び(YP-El):1.0%以下
本発明の高強度薄鋼板は、促進時効後の降伏伸び(YP-El)が1.0%以下であることを特徴とする。促進時効後の降伏伸びを1.0%以下とすることで、プレス成型時のしわの発生を抑制することができるからである。ここで、促進時効後のYP-Elは、圧延直角方向よりJIS5引張り試験片を切り出し、100℃で6時間保持した後に引張り試験を行ったときの降伏点伸びとして測定することができる。
Yield elongation after accelerated aging (YP-El): 1.0% or less The high strength thin steel sheet of the present invention is characterized in that the yield elongation after accelerated aging (YP-El) is 1.0% or less. This is because the generation of wrinkles during press molding can be suppressed by setting the yield elongation after accelerated aging to 1.0% or less. Here, YP-El after accelerated aging can be measured as the elongation at yield when a JIS5 tensile test piece is cut out from the direction perpendicular to the rolling direction and held at 100 ° C. for 6 hours and then a tensile test is performed.

次に、本発明の製造条件について説明する。
本発明では、上記の好適成分組成に調整した鋼スラブを、熱間圧延後、コイルに巻き取り、ついで酸洗後、冷間圧延したのち、焼鈍を施し、その後調質圧延を行って薄鋼板とする。本発明では、上記の各工程中、特に熱間圧延後のコイル巻取り温度と焼鈍条件および調質圧延条件が重要である。
Next, the manufacturing conditions of the present invention will be described.
In the present invention, the steel slab adjusted to the above-mentioned preferred component composition is hot-rolled, wound into a coil, then pickled, cold-rolled, annealed, and then temper-rolled to obtain a thin steel plate And In the present invention, the coil winding temperature, the annealing condition, and the temper rolling condition after the hot rolling are particularly important during the above steps.

熱間圧延後のコイル巻取り温度:550℃以上
熱間圧延後のコイルの巻取り温度が低いと、TiCの析出が抑制され、熱間圧延鋼板の段階で固溶Cが残留するようになる。熱間圧延鋼板段階で固溶Cが残留していると、冷間圧延時に剪断歪が多く導入される結果、均一伸びが著しく低下してしまう。さらに、アシキュラーフェライトの生成により、鋼板が硬質化し、その後の冷間圧延時における荷重も高くなってしまうため、操業上の困難を伴う。従って、熱間圧延後の巻取り温度は550℃以上とする必要がある。好ましくは600℃以上である。なお、巻取り温度の上限は特に設けないが、巻取り温度があまりに高いとスケール生成が促進され鋼板歩留りが低下するだけでなく、酸洗時のスケール残りに起因した表面欠陥などが発生することから、750℃以下とすることが好ましい。より好ましくは700℃以下、さらに好ましくは650℃以下である。
Coil winding temperature after hot rolling: 550 ° C or higher If the coil winding temperature after hot rolling is low, precipitation of TiC is suppressed, and solid solution C remains at the stage of the hot rolled steel sheet. . If solid solution C remains in the hot-rolled steel sheet stage, a large amount of shear strain is introduced during cold rolling, and as a result, uniform elongation is significantly reduced. Furthermore, the generation of acicular ferrite hardens the steel sheet, and the load during subsequent cold rolling also increases, resulting in operational difficulties. Therefore, the coiling temperature after hot rolling needs to be 550 ° C. or higher. Preferably it is 600 degreeC or more. The upper limit of the coiling temperature is not particularly set, but if the coiling temperature is too high, not only the scale generation is promoted and the steel plate yield is lowered, but also surface defects due to the remaining scale during pickling occur. Therefore, the temperature is preferably 750 ° C. or lower. More preferably, it is 700 degrees C or less, More preferably, it is 650 degrees C or less.

焼鈍における500℃から均熱温度までの加熱速度:0.1℃/sまたは{0.2×(Ti−3.4×N−1.5×S)/C}℃/sのうちのより大きい加熱速度以上
焼鈍時の均熱温度までの加熱速度が小さいと、加熱途中で回復が促進され、均熱時に粗大な回復粒がそのまま残留し、均一な再結晶が抑制されることで、均一伸びが低下してしまう。また、加工転位が減少することで、析出物が安定化してしまい、その後の均熱時にTiCの再固溶が抑制されるため、固溶Cが少なくなる結果、焼付硬化性が低下してしまう。このため、500℃から均熱温度までの加熱速度は0.1℃/s以上とする必要がある。
さらに、加熱途中での回復は500℃以上で顕著となり、またこのような作用はCに対する(Ti−3.4×N−1.5×S)の比(Ti−3.4×N−1.5×S)/Cが大きくなるほど顕在化することから、500℃から均熱温度までの加熱速度は{0.2×(Ti−3.4×N−1.5×S)/C}℃/s以上とする必要がある。
従って、本発明では、500℃から均熱温度までの加熱は、0.1℃/sまたは{0.2×(Ti−3.4×N−1.5×S)/C}℃/sのうちのより大きい加熱速度以上の速度で行うものとした。好ましくは0.2℃/sまたは{0.4×(Ti−3.4×N−1.5×S)/C} ℃/sのうちより大きい速度以上、より好ましくは0.3℃/sまたは{0.6×(Ti−3.4×N−1.5×S)/C} ℃/sのうちより大きい速度以上、さらに好ましくは0.5℃/sまたは{1.0×(Ti−3.4×N−1.5×S)/C} ℃/sのうちより大きい速度以上である。
なお、加熱速度の上限は特に設けず、IHなどを使って100℃/s以上で加熱しても構わないが、特別な加熱装置を用いない場合には30℃/s以下で十分である。
Heating rate from 500 ° C. to soaking temperature in annealing: greater than 0.1 ° C./s or {0.2 × (Ti−3.4 × N−1.5 × S) / C} ° C./s, soaking rate during annealing When the heating rate up to the heat temperature is low, recovery is promoted during heating, coarse recovery grains remain as they are during soaking, and uniform recrystallization is suppressed, thereby reducing uniform elongation. In addition, by reducing the work dislocation, the precipitate is stabilized, and TiC re-solution is suppressed during the subsequent soaking, so that the solid solution C is reduced, and the bake hardenability is lowered. . For this reason, the heating rate from 500 ° C. to the soaking temperature needs to be 0.1 ° C./s or more.
Furthermore, recovery during heating becomes remarkable at 500 ° C. or more, and such an effect is obtained by the ratio of (Ti−3.4 × N−1.5 × S) to C (Ti−3.4 × N−1.5 × S) / C. Since it becomes more apparent as it increases, the heating rate from 500 ° C. to the soaking temperature needs to be at least 0.2 × (Ti−3.4 × N−1.5 × S) / C} ° C./s.
Therefore, in the present invention, the heating from 500 ° C. to the soaking temperature is 0.1 ° C./s or more than a larger heating rate of {0.2 × (Ti−3.4 × N−1.5 × S) / C} ° C./s. It was supposed to be performed at a speed of. Preferably 0.2 ° C./s or {0.4 × (Ti−3.4 × N−1.5 × S) / C} More than a higher rate among ° C / s, more preferably 0.3 ° C./s or {0.6 × (Ti−3.4 × N−1.5 × S) / C} greater than or equal to 0.5 ° C./s, more preferably 0.5 ° C./s or more than {1.0 × (Ti−3.4 × N−1.5 × S) / C} ° C./s More than a large speed.
The upper limit of the heating rate is not particularly set, and heating may be performed at 100 ° C./s or higher using IH or the like, but 30 ° C./s or lower is sufficient when no special heating device is used.

焼鈍における均熱温度:650℃または{650+20×(Ti−3.4×N−1.5×S)/C}℃のうちより高い温度以上 かつ900℃以下
均熱温度が低いと、再結晶が完了しないだけでなく、TiCの再固溶が抑制されるため、固溶Cが少なくなる結果、焼付硬化性が低下してしまう。このため、焼鈍における均熱温度は650℃以上とする必要がある。また、このような作用は、Cに対する(Ti−3.4×N−1.5×S)の比(Ti−3.4×N −1.5×S)/Cが大きくなるほど顕在化することから、均熱温度は{650+20×(Ti−3.4×N−1.5×S)/C}℃以上とする必要がある。
従って、本発明では、均熱処理は、650℃または{650+20×(Ti−3.4×N−1.5×S)/C}℃のうちのより高い温度以上で行うものとした。好ましくは660℃または{650+30×(Ti−3.4×N−1.5×S)/C}℃のうちより高い温度以上、より好ましくは670℃または{650+40×(Ti−3.4×N−1.5×S)/C}℃のうちより高い温度以上である。一方、均熱温度があまりに高くなると、フェライト粒が粗大化し、強度が低下するとだけでなく、TiCの再固溶が促進されて固溶Cが多くなりすぎる結果、均一伸びの低下や促進時効後のYP-Elの上昇を招いてしまう。従って 、均熱温度は900℃以下とする必要がある。好ましくは860℃以下、より好ましくは840℃以下である。
Soaking temperature in annealing: higher than 650 ° C or {650 + 20 × (Ti-3.4 × N-1.5 × S) / C} ° C and not more than 900 ° C If soaking temperature is low, recrystallization will not be completed In addition, since TiC re-dissolution is suppressed, the amount of solid solution C is reduced, resulting in a decrease in bake hardenability. For this reason, the soaking temperature in annealing needs to be 650 degreeC or more. Moreover, since such an effect becomes more apparent as the ratio of (Ti−3.4 × N−1.5 × S) to C (Ti−3.4 × N−1.5 × S) / C increases, the soaking temperature is { 650 + 20 × (Ti−3.4 × N−1.5 × S) / C} ° C. or higher is necessary.
Therefore, in the present invention, the soaking is performed at a temperature higher than 650 ° C. or {650 + 20 × (Ti−3.4 × N−1.5 × S) / C} ° C. Preferably it is higher than 660 ° C. or {650 + 30 × (Ti−3.4 × N−1.5 × S) / C} ° C., more preferably 670 ° C. or {650 + 40 × (Ti−3.4 × N−1.5 × S) The temperature is higher than / C} ° C. On the other hand, if the soaking temperature becomes too high, the ferrite grains become coarser and the strength decreases, and not only the TiC re-solid solution is promoted but also the solid solution C increases, resulting in a decrease in uniform elongation or after accelerated aging. YP-El will rise. Therefore, the soaking temperature needs to be 900 ° C. or less. Preferably it is 860 degrees C or less, More preferably, it is 840 degrees C or less.

焼鈍における均熱時間:10〜1000s
均熱時間が短いと、再結晶が完了せず均一伸びが大幅に低下するため、均熱時間は10s以上とする必要がある。好ましくは30s以上、より好ましくは100s以上である。一方、均熱時間が長いと、フェライト粒が粗大化し、強度が低下するため、均熱時間は1000s以下とする必要がある。好ましくは500s以下、より好ましくは300s以下、さらに好ましくは200s以下である。
Soaking time in annealing: 10-1000s
If the soaking time is short, the recrystallization is not completed and the uniform elongation is greatly reduced, so the soaking time needs to be 10 s or more. Preferably it is 30 seconds or more, More preferably, it is 100 seconds or more. On the other hand, if the soaking time is long, the ferrite grains become coarse and the strength decreases, so the soaking time needs to be 1000 s or less. Preferably it is 500 s or less, More preferably, it is 300 s or less, More preferably, it is 200 s or less.

調質圧延における板厚減少率:(0.8×Mn)〜(2+Mn)%
上記の焼鈍後に調質圧延を行うことで、YP-Elを小さくし、プレス成型時のしわの発生を抑制することができる。さらに、Mnを添加して粒内強度を高めた鋼では、調質圧延時に導入される歪を粒界近傍に集中させることで、加工時の粒内変形を促進させることができ、均一伸びを向上させることができる。このような作用を得るには、Mnが多いほどより多くの歪を必要とすることから、調質圧延における板厚減少率は(0.8×Mn)%以上とする必要がある。一方、調質圧延による板厚減少率が大きくなると、加工歪による均一伸びは低下するが、Mnが少ないほどより少ない歪で均一伸びの低下が顕著となることから、板厚減少率は(2+Mn)%以下とする必要がある。なお、この調質圧延においては、圧延ロールによる圧下を加えてもよいし、鋼板にテンションを加えた引張りによる加工を加えてもよい。さらに、圧延と引張り加工の複合でもよい。
Sheet thickness reduction rate in temper rolling: (0.8 x Mn) to (2 + Mn)%
By performing temper rolling after the above annealing, YP-El can be reduced, and the generation of wrinkles during press molding can be suppressed. Furthermore, in steel with increased intragranular strength by adding Mn, the strain introduced during temper rolling can be concentrated in the vicinity of the grain boundary to promote intragranular deformation during processing, resulting in uniform elongation. Can be improved. In order to obtain such an effect, the greater the amount of Mn, the more strain is required. Therefore, the sheet thickness reduction rate in temper rolling must be (0.8 × Mn)% or more. On the other hand, when the plate thickness reduction rate by temper rolling increases, the uniform elongation due to processing strain decreases. However, the smaller the Mn, the more the decrease in uniform elongation becomes less with less strain. Therefore, the plate thickness reduction rate is (2 + Mn). )% Or less. In this temper rolling, rolling by a rolling roll may be applied, or processing by tension by applying tension to a steel sheet may be added. Further, it may be a combination of rolling and pulling.

本発明の実施に当たり、溶製方法は、通常の転炉法、電炉法等を適宜適用することができる。溶製された鋼は、スラブに鋳造後、そのまま、あるいは温片や冷片のスラブを再加熱して、熱間圧延を施す。熱間圧延で加熱する場合には、1100〜1250℃程度の加熱温度とすればよい。粗圧延後の仕上げ圧延では、オーステナイト域で圧延を終了することが好ましい。仕上げ圧延後、巻取りまでの冷却速度は、特に限定されず、空冷以上の冷速があれば十分であるが、20℃/s以上の急冷や100℃/s以上の超急冷を行ってもよい。その後、通常の酸洗後に、冷間圧延を行うに際しては、50〜80%程度の圧下率で圧延を行えばよい。焼鈍に際しては、500℃ までの加熱過程における加熱速度は任意ではあるが、あまりに遅いと作業効率が低下するため3℃/s以上の加熱速度で焼鈍することが好ましい。また、均熱後の冷却速度も任意であるが、あまりに遅いと作業効率が低下するため5℃/s以上の速度で冷却することが好ましい。冷却途中において、300〜450℃の温度域で30〜600s保持する、いわゆる過時効処理を行っても特に問題はない。   In carrying out the present invention, a normal converter method, an electric furnace method, or the like can be appropriately applied as the melting method. The molten steel is hot-rolled after being cast into a slab as it is or by reheating a hot piece or cold piece slab. When heating by hot rolling, the heating temperature may be about 1100 to 1250 ° C. In finish rolling after rough rolling, it is preferable to finish rolling in the austenite region. The cooling rate from finish rolling to winding is not particularly limited, and a cooling rate higher than air cooling is sufficient, but even if quenching at 20 ° C / s or higher or ultra-rapid cooling at 100 ° C / s or higher is performed. Good. Then, when performing cold rolling after normal pickling, the rolling may be performed at a rolling reduction of about 50 to 80%. In the annealing, the heating rate in the heating process up to 500 ° C. is arbitrary, but if it is too slow, the working efficiency is lowered, so it is preferable to anneal at a heating rate of 3 ° C./s or more. Also, the cooling rate after soaking is arbitrary, but if it is too slow, the working efficiency is lowered, so it is preferable to cool at a rate of 5 ° C./s or more. There is no particular problem even if a so-called overaging treatment is performed in the middle of cooling for 30 to 600 s in a temperature range of 300 to 450 ° C.

さらに、上記の冷却途中において、必要に応じて420〜500℃の亜鉛めっき浴に浸漬させて溶融亜鉛めっきを行ってもよい。さらには、めっき浴浸漬後に、460〜570℃程度の温度まで再加熱し、1s以上好ましくは5s以上保持して亜鉛と鉄を合金化させる、いわゆる合金化処理を行ってもよい。
なお、めっきに際しては、亜鉛以外に、Alめっきや亜鉛−Al複合めっきなどを行ってもよい。また、焼鈍途中でめっきを施さなかった場合には、その後に電気亜鉛めっきや電気Niめっきなどを行ってもよい。さらに、冷延鋼板やめっき鋼板の上に、化成処理などにより皮膜を付けてもよい。
Furthermore, during the above cooling, hot dip galvanization may be performed by immersing in a galvanizing bath at 420 to 500 ° C. as necessary. Furthermore, after the immersion in the plating bath, a so-called alloying treatment may be performed in which reheating is performed to a temperature of about 460 to 570 ° C., and zinc and iron are alloyed by holding for 1 s or more, preferably 5 s or more.
In plating, in addition to zinc, Al plating, zinc-Al composite plating, or the like may be performed. Moreover, when plating is not performed in the middle of annealing, electrogalvanizing or electronickel plating may be performed thereafter. Furthermore, a film may be formed on a cold-rolled steel plate or a plated steel plate by chemical conversion treatment or the like.

上記の成分組成範囲および製造条件を満足させることにより、本発明で所期した、TS≧340MPa、BH≧30MPa、均一伸び≧18%および促進時効後のYP-El≦1.0%を満足する焼付硬化性と成形性に優れた高強度薄鋼板を得ることができる。   By satisfying the above component composition range and manufacturing conditions, bake hardening satisfying TS ≧ 340 MPa, BH ≧ 30 MPa, uniform elongation ≧ 18%, and YP-El ≦ 1.0% after accelerated aging, as expected in the present invention. A high-strength thin steel sheet having excellent properties and formability can be obtained.

ここに、本発明によってとくに均一伸びが制御できるメカニズムは、まだ明確に解明されたわけではないが、発明者らは次のように考えている。
すなわち、熱間圧延、冷間圧延後の焼鈍過程において、Mn添加量の増大と加熱時の加熱速度を大きくすることで回復が抑制され、均熱時に均一な再結晶粒が形成されると共に、焼鈍後の調質圧延において、Mn添加により粒内強度を高め歪を粒界近傍に集中させることにより、加工時の粒内変形が促進されて、均一伸びが向上するものと考えている。
Here, the mechanism by which uniform elongation can be particularly controlled by the present invention has not yet been clearly elucidated, but the inventors consider as follows.
That is, in the annealing process after hot rolling and cold rolling, recovery is suppressed by increasing the Mn addition amount and increasing the heating rate during heating, and uniform recrystallized grains are formed during soaking, In temper rolling after annealing, it is considered that the intragranular deformation during processing is promoted and the uniform elongation is improved by increasing the intragranular strength by adding Mn and concentrating strain in the vicinity of the grain boundary.

以下、本発明の実施例について説明する。
表1に示す化学組成になる供試体を、表2に示す製造条件で処理することにより、薄鋼板とした。
かくして得られた供試体の特性値を、表3に示す。
表1中、Ti*は(Ti−3.4×N−1.5×S)の値を示す。また、表1中、供試体1〜28および供試体38〜42は本発明の鋼の成分組成を有する適合鋼である(ただし、供試体38〜42は表2に示すように本発明の製造方法から外れている)。また、供試体29〜37は本発明の鋼の成分組成から外れた比較鋼である。また、表2中、加熱速度は500℃から均熱温度までの平均速度である。さらに、めっきに関し、GAは合金化溶融亜鉛めっき、GIは溶融亜鉛めっき、EGは電気亜鉛めっきであり、またGA、GIは焼鈍時の冷却途中で、EGは焼鈍後、室温まで冷却した後にめっきを行った。
引張り試験は、圧延直角方向よりJIS5号引張り試験片を切り出し、JIS Z 2241に準拠して行った。BHは、2%の予歪付与後に170℃で20分の保持を行い、予歪による加工硬化後の降伏点の上昇量とした。促進時効後のYP-Elは、100℃で6h保持することで、25℃で6ヶ月相当時効させた状態を模擬して測定した。
Examples of the present invention will be described below.
A specimen having the chemical composition shown in Table 1 was processed under the production conditions shown in Table 2 to obtain a thin steel plate.
Table 3 shows the characteristic values of the specimens thus obtained.
In Table 1, Ti * indicates a value of (Ti−3.4 × N−1.5 × S). In Table 1, Specimens 1 to 28 and Specimens 38 to 42 are compatible steels having the composition of the steel of the present invention (however, Specimens 38 to 42 are manufactured according to the present invention as shown in Table 2). Is out of the way). Specimens 29 to 37 are comparative steels that deviate from the composition of the steel of the present invention. In Table 2, the heating rate is an average rate from 500 ° C. to the soaking temperature. Furthermore, regarding plating, GA is galvannealed alloy, GI is hot dip galvanized, EG is electrogalvanized, and GA and GI are in the middle of cooling during annealing, and EG is plated after cooling to room temperature after annealing. Went.
The tensile test was performed in accordance with JIS Z 2241 after cutting out a JIS No. 5 tensile test piece from the direction perpendicular to the rolling. BH was held at 170 ° C. for 20 minutes after applying 2% pre-strain, and the amount of increase in the yield point after work hardening due to pre-strain. YP-El after accelerated aging was measured by simulating a state of aging for 6 months at 25 ° C. by holding at 100 ° C. for 6 hours.

Figure 2013076132
Figure 2013076132

Figure 2013076132
Figure 2013076132

Figure 2013076132
Figure 2013076132

表3に示したとおり、本発明に従い得られた発明例はいずれも、TS≧340MPa、BH≧30MPa、均一伸び≧18%および促進時効後のYP-El≦1.0%の全てを満足していた。
これに対し、成分組成や製造条件が本発明の適正範囲から外れた比較例はいずれも、TS、BH、均一伸びおよび促進時効後のYP-Elのうちの少なくともいずれかの特性が目標特性から外れている。
As shown in Table 3, all the inventive examples obtained according to the present invention satisfied all of TS ≧ 340 MPa, BH ≧ 30 MPa, uniform elongation ≧ 18%, and YP-El ≦ 1.0% after accelerated aging. .
On the other hand, in any of the comparative examples in which the component composition and manufacturing conditions are outside the appropriate range of the present invention, at least one of the characteristics of TS, BH, uniform elongation, and YP-El after accelerated aging is out of the target characteristics. It is off.

図1に、供試体No.1〜22、35、36について、BHに及ぼすTi*/Cの影響について調べた結果を、整理して示す。
図1に示したとおり、Ti*/C≦6.0とすることによって、BH≧30MPaが達成できることが分かる。
FIG. 1 shows the results of examining the effects of Ti * / C on BH for specimens Nos. 1 to 22, 35, and 36.
As shown in FIG. 1, it can be seen that BH ≧ 30 MPa can be achieved by setting Ti * / C ≦ 6.0.

同じく、図2に、供試体No.1〜22、30、37について、YP-Elに及ぼすMn/Cの影響について調べた結果を、整理して示す。
図2に示したとおり、Mn/C≧100とすることによって、YP-El≦1.0%が達成されることが分かる。
Similarly, FIG. 2 shows the results of examining the effects of Mn / C on YP-El for specimens Nos. 1 to 22, 30, and 37.
As shown in FIG. 2, it is understood that YP-El ≦ 1.0% is achieved by setting Mn / C ≧ 100.

同じく、図3に、供試体No.1〜22、40、41について、均一伸びに及ぼす調圧率の影響について調べた結果を、整理して示す。なお、図3の横軸は(調圧率−0.8×Mn)/((2+Mn)−0.8×Mn)で示す。この値が0〜1の範囲にあれば、調圧率が(0.8×Mn)〜(2+Mn)%の範囲を満足している。
図3に示したとおり、調圧率を(0.8×Mn)〜(2+Mn)%の範囲とすることによって、均一伸び≧18%を達成できることが分かる。
Similarly, FIG. 3 shows the results of examining the effect of the pressure regulation rate on the uniform elongation for specimen Nos. 1 to 22, 40, and 41. The horizontal axis of FIG. 3 is indicated by (pressure regulation rate−0.8 × Mn) / ((2 + Mn) −0.8 × Mn). If this value is in the range of 0 to 1, the pressure regulation rate satisfies the range of (0.8 × Mn) to (2 + Mn)%.
As shown in FIG. 3, it is understood that uniform elongation ≧ 18% can be achieved by setting the pressure regulation rate in the range of (0.8 × Mn) to (2 + Mn)%.

また、供試体No.23、24、42に示すように、加熱速度が本発明の適正範囲を外れる場合には、均一伸び、さらにはYP-El(%) が本発明の要求特性を満足しないことが分かる。
さらに、供試体No.25、26、27に示すように、均熱温度が本発明の適正範囲を外れる場合には、TSや均一伸び、BH、YP-Elなどが本発明の目標特性に達しないことが分かる。
In addition, as shown in specimen Nos. 23, 24, and 42, when the heating rate is out of the proper range of the present invention, uniform elongation, and YP-El (%) does not satisfy the required characteristics of the present invention. I understand that.
Furthermore, as shown in specimen Nos. 25, 26 and 27, when the soaking temperature is outside the appropriate range of the present invention, TS, uniform elongation, BH, YP-El, etc. reach the target characteristics of the present invention. I understand that I don't.

Claims (10)

質量%で、
C:0.0010〜0.0040%、
Si:0.05%以下、
Mn:0.1〜1.0%、
P:0.10%以下、
S:0.03%以下、
Al:0.01〜0.10%、
N:0.0050%以下および
Ti:0.005〜0.050%
を含有し、かつ
(Ti−3.4×N−1.5×S)/C≦6.0、
Mn/C≧100
の関係を満足し、残部はFeおよび不可避的不純物の組成からなり、引張強さ(TS)が340 MPa以上、焼付硬化量(BH)が30MPa以上、均一伸び(El)が18%以上、促進時効後の降伏点伸び(YP-El)が1.0%以下であることを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板。
ただし、上記数式中における元素記号は、それぞれの元素の鋼中の含有量(質量%)を表す。
% By mass
C: 0.0010 to 0.0040%,
Si: 0.05% or less,
Mn: 0.1-1.0%
P: 0.10% or less,
S: 0.03% or less,
Al: 0.01-0.10%,
N: 0.0050% or less and
Ti: 0.005-0.050%
And (Ti-3.4 × N-1.5 × S) /C≦6.0,
Mn / C ≧ 100
The balance is composed of Fe and inevitable impurities, and the tensile strength (TS) is 340 MPa or more, the bake hardening (BH) is 30 MPa or more, and the uniform elongation (El) is 18% or more. A high-strength steel sheet with excellent bake hardenability and formability, characterized by a yield point elongation (YP-El) of 1.0% or less after aging.
However, the element symbol in the above formula represents the content (% by mass) of each element in steel.
さらに質量%で、B:0.0005〜0.0030%を含有することを特徴とする請求項1に記載の焼付硬化性と成形性に優れた高強度薄鋼板。   The high-strength thin steel sheet excellent in bake hardenability and formability according to claim 1, further comprising B: 0.0005 to 0.0030% in mass%. さらに質量%で、V,Ta,WおよびMoのうちから選んだ1種または2種以上をそれぞれ0.005〜0.050%含有することを特徴とする請求項1または2に記載の焼付硬化性と成形性に優れた高強度薄鋼板。   The bake hardenability and formability according to claim 1 or 2, further comprising 0.005 to 0.050% of one or more selected from V, Ta, W and Mo in mass%. Excellent high strength thin steel sheet. さらに質量%で、Cr,NiおよびCuのうちから選んだ1種または2種以上をそれぞれ0.01〜0.10%含有することを特徴とする請求項1ないし3のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。   The bake hardenability and molding according to any one of claims 1 to 3, further comprising 0.01 to 0.10% of one or more selected from Cr, Ni and Cu, respectively, by mass%. High strength thin steel sheet with excellent properties. さらに質量%で、Sb:0.005〜0.050%を含有することを特徴とする請求項1ないし4のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。   The high strength thin steel sheet having excellent bake hardenability and formability according to any one of claims 1 to 4, further comprising Sb: 0.005 to 0.050% by mass. さらに質量%で、CaおよびREMのうちから選んだ1種または2種をそれぞれ0.0005〜0.01%含有することを特徴とする1ないし5のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。   Furthermore, the high bake hardenability and moldability according to any one of 1 to 5, characterized by containing 0.0005 to 0.01% of one or two selected from Ca and REM, respectively, by mass%. Strength thin steel plate. 前記薄鋼板の表面にめっき層を有することを特徴とする請求項1ないし6のいずれかに記載の焼付硬化性と成形性に優れた高強度薄鋼板。   The high strength thin steel sheet excellent in bake hardenability and formability according to any one of claims 1 to 6, further comprising a plating layer on a surface of the thin steel sheet. 請求項1ないし6のいずれかに記載の組成からなる鋼スラブを、熱間圧延後、コイルに巻き取り、ついで酸洗後、冷間圧延したのち、焼鈍を施し、その後調質圧延を行って薄鋼板を製造するに当たり、
前記熱間圧延後の巻取り温度を550℃以上にすると共に、焼鈍に際し、500℃から均熱温度までの加熱を、0.1℃/sまたは{0.2×(Ti−3.4×N−1.5×S)/C}℃/sのうちのより大きい加熱速度以上で行い、均熱温度を650℃または{650+20×(Ti−3.4×N−1.5×S)/C}℃のうちのより高い温度以上かつ 900℃以下、均熱時間を10〜1000sとし、さらに調質圧延を(0.8×Mn)〜(2+Mn)%の板厚減少率で行うことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。ただし、前記数式中の元素記号はそれぞれの元素の鋼中の含有量(質量%)を表す。
The steel slab having the composition according to any one of claims 1 to 6 is hot-rolled, wound on a coil, then pickled, cold-rolled, annealed, and then temper-rolled. In manufacturing thin steel plates,
The coiling temperature after the hot rolling is set to 550 ° C. or higher, and during annealing, heating from 500 ° C. to a soaking temperature is 0.1 ° C./s or {0.2 × (Ti−3.4 × N−1.5 × S) At a higher heating rate of / C} ° C./s, the soaking temperature is 650 ° C. or higher than {650 + 20 × (Ti−3.4 × N−1.5 × S) / C} ° C. 900 ° C or less, soaking time is 10 to 1000 s, and temper rolling is performed at a sheet thickness reduction rate of (0.8 × Mn) to (2 + Mn)%. A manufacturing method of high strength steel sheet. However, the element symbol in the said numerical formula represents content (mass%) in steel of each element.
請求項8に記載の製造方法において、焼鈍後に前記鋼板の表面にめっき処理を施すことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。   The manufacturing method according to claim 8, wherein the surface of the steel sheet is plated after annealing, and the method for manufacturing a high-strength thin steel sheet excellent in bake hardenability and formability. 請求項9に記載の製造方法において、めっき処理に引き続きめっき層に合金化処理を施すことを特徴とする焼付硬化性と成形性に優れた高強度薄鋼板の製造方法。   The method for producing a high strength thin steel sheet having excellent bake hardenability and formability, wherein the plating layer is subjected to an alloying treatment subsequent to the plating treatment.
JP2011216932A 2011-09-30 2011-09-30 High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same Withdrawn JP2013076132A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011216932A JP2013076132A (en) 2011-09-30 2011-09-30 High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
MYPI2012003446A MY173703A (en) 2011-09-30 2012-07-31 High-strength steel sheet having excellent bake hardenability and formability and method for manufacturing the same
RU2012132863/02A RU2514743C2 (en) 2011-09-30 2012-07-31 High-strength steel sheet of higher thermal hardening and forming capacity and method of its production
BR102012019139A BR102012019139A2 (en) 2011-09-30 2012-07-31 high strength steel plate having excellent bake hardening capacity and forming capacity and method for producing it
ZA2012/05762A ZA201205762B (en) 2011-09-30 2012-08-02 High-strength steel sheet having excellent bake hardenability and formability and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216932A JP2013076132A (en) 2011-09-30 2011-09-30 High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013076132A true JP2013076132A (en) 2013-04-25

Family

ID=48479803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216932A Withdrawn JP2013076132A (en) 2011-09-30 2011-09-30 High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP2013076132A (en)
BR (1) BR102012019139A2 (en)
MY (1) MY173703A (en)
RU (1) RU2514743C2 (en)
ZA (1) ZA201205762B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754328A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 A kind of anti-room temperature ageing type baking hardening steel plate and its manufacturing method
EP4261305A1 (en) * 2020-12-11 2023-10-18 POSCO Co., Ltd High strength plated steel sheet having excellent formability and surface property, and method for manufacturing same
EP4261321A4 (en) * 2020-12-11 2024-05-29 Posco Co Ltd High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571229B1 (en) * 2000-02-29 2007-04-11 JFE Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
DE60121234T2 (en) * 2000-05-26 2006-11-09 Jfe Steel Corp. Cold rolled steel sheet and zinc sheet with strain age properties and process for its production
EP1291447B1 (en) * 2000-05-31 2005-05-04 JFE Steel Corporation Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
RU2233904C1 (en) * 2003-05-12 2004-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Cold-rolled steel for deep drawing
CN100473741C (en) * 2005-06-29 2009-04-01 宝山钢铁股份有限公司 Soft tin-plate and making process thereof
RU2313583C2 (en) * 2006-01-24 2007-12-27 Открытое акционерное общество "Северсталь" Method for producing of cold-rolled steel for cold pressing
RU2330887C1 (en) * 2006-10-30 2008-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of producing cold-rolled steel for deep-drawing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754328A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 A kind of anti-room temperature ageing type baking hardening steel plate and its manufacturing method
EP4261305A1 (en) * 2020-12-11 2023-10-18 POSCO Co., Ltd High strength plated steel sheet having excellent formability and surface property, and method for manufacturing same
EP4261305A4 (en) * 2020-12-11 2024-05-22 Posco Co Ltd High strength plated steel sheet having excellent formability and surface property, and method for manufacturing same
EP4261321A4 (en) * 2020-12-11 2024-05-29 Posco Co Ltd High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor

Also Published As

Publication number Publication date
BR102012019139A2 (en) 2015-10-27
MY173703A (en) 2020-02-17
RU2514743C2 (en) 2014-05-10
RU2012132863A (en) 2014-02-10
ZA201205762B (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
US20070095444A1 (en) High strength steel sheet excellent in formability and method for producing the same
US11965222B2 (en) Method for producing hot-rolled steel sheet and method for producing cold-rolled full hard steel sheet
JPWO2013061545A1 (en) Manufacturing method of high-strength steel sheet with excellent workability
KR20060042036A (en) High strength cold rolled steel sheet and method for manufacturing the same
WO2016152135A1 (en) High-strength steel sheet and method for manufacturing same
JP2013064169A (en) High-strength steel sheet and plated steel sheet excellent in bake-hardenability and formability, and method for production thereof
JP2013224476A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2013224477A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
WO2016194342A1 (en) High strength steel sheet and method for producing same
JP5151227B2 (en) High strength steel plate and manufacturing method thereof
CN112226674A (en) Aging-resistant cold-rolled hot-galvanized steel plate for household appliances and production method thereof
KR102403647B1 (en) Bake hardening hot-dip galvannealed steel sheet having excellent powdering and method for manufacturing the same
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP2005281743A (en) Cold rolled steel sheet having excellent curing performance for baked paint and cold delayed aging property and production method therefor
JP2003321714A (en) Method of producing galvanized cold rolled steel sheet having excellent strain aging hardening property

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202