JP2013074435A - Reception device, reception method, and reception program - Google Patents

Reception device, reception method, and reception program Download PDF

Info

Publication number
JP2013074435A
JP2013074435A JP2011211477A JP2011211477A JP2013074435A JP 2013074435 A JP2013074435 A JP 2013074435A JP 2011211477 A JP2011211477 A JP 2011211477A JP 2011211477 A JP2011211477 A JP 2011211477A JP 2013074435 A JP2013074435 A JP 2013074435A
Authority
JP
Japan
Prior art keywords
unit
path
channel
reception
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211477A
Other languages
Japanese (ja)
Inventor
Katsuya Kato
勝也 加藤
Naoki Okamoto
直樹 岡本
Takashi Yoshimoto
貴司 吉本
Ryota Yamada
良太 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011211477A priority Critical patent/JP2013074435A/en
Priority to PCT/JP2012/074088 priority patent/WO2013047324A1/en
Publication of JP2013074435A publication Critical patent/JP2013074435A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an amount of calculation and power consumption by improving path extraction in MIMO communication.SOLUTION: A MIMO reception device comprises: path extraction units; and channel impulse response estimation units which individually estimates a channel impulse response on the basis of path information extracted by the path extraction unit. The MIMO reception device is configured to have the path extraction units less than the channel impulse response estimating units.

Description

本発明は、受信装置、受信方法および受信プログラムに関する。   The present invention relates to a receiving device, a receiving method, and a receiving program.

無線通信においては、特に広帯域伝送の場合、先行して受信するパスに加え、大型の建物や山などの障害物から反射または回折して到来する幾つものパスが存在する。それに加えて、高速伝送では、サンプリング周波数が高くなるため、パスが増大する。
図22は、このようなパスが複数あるマルチパスの影響を説明する図である。
図22において、基地局2201から送信される電波は、例えば、伝搬経路2207を経由して、移動端末2202へ先行して到来する。その他に、基地局2201から送信された電波は、途中の例えば建物2203〜2206に当たって反射してから、移動端末2202へ遅延して到来する。この場合の伝搬経路を、図22において符号2208〜2211を付して示す。
基地局2201から伝搬経路2208〜2211を経由して移動端末2202へ到達する電波を、素波(Component Wave)と言う。図22では、素波が5つしか描かれていないが、実際には多くの素波が存在し、それぞれが移動端末2202において重ね合わされて受信される。
このように、基地局2201から移動端末2202へ直接に到達する素波(直接波)と、建物などの障害物から反射または回折して到来する素波(反射波)とでは、遅延があるのみならず、反射または回折による位相回転も加わるので、移動端末2202で受信後の信号は、基地局2201から送信される信号とは異なるところの歪みの生じた信号となる。したがって、基地局2201と移動端末2202との間の無線通信には誤りが生じることになる。
In wireless communication, in particular, in the case of broadband transmission, in addition to a path that is received in advance, there are several paths that arrive after being reflected or diffracted from an obstacle such as a large building or a mountain. In addition, in high-speed transmission, the sampling frequency increases, so the path increases.
FIG. 22 is a diagram for explaining the influence of a multipath having a plurality of such paths.
In FIG. 22, the radio wave transmitted from the base station 2201 arrives in advance at the mobile terminal 2202 via the propagation path 2207, for example. In addition, the radio wave transmitted from the base station 2201 hits the buildings 2203 to 2206 on the way, is reflected, and arrives at the mobile terminal 2202 with a delay. The propagation path in this case is shown with reference numerals 2208 to 2211 in FIG.
A radio wave that reaches the mobile terminal 2202 from the base station 2201 via the propagation paths 2208 to 2211 is referred to as an elementary wave (Component Wave). In FIG. 22, only five elementary waves are depicted, but in reality, many elementary waves exist, and each of them is received by being superimposed on the mobile terminal 2202.
As described above, there is only a delay between the elementary wave (direct wave) that directly reaches the mobile terminal 2202 from the base station 2201 and the elementary wave (reflected wave) that is reflected or diffracted from an obstacle such as a building. In addition, since phase rotation due to reflection or diffraction is also added, the signal received by the mobile terminal 2202 is a signal with distortion different from the signal transmitted from the base station 2201. Therefore, an error occurs in the wireless communication between the base station 2201 and the mobile terminal 2202.

近年、長遅延環境における高精度な伝搬路推定の必要性が高まっている。
直交周波数分割多重(OFDM、Orthogonal Frequency Division Multiplexing)方式を用いた無線通信においては、ガードインターバル(Guard Interval; GI)を超える長遅延環境で発生する干渉を抑圧できる受信方式がいろいろと提案されている。しかし、その実現のためには、時間領域の伝搬路特性であるチャネルインパルス応答を高精度に推定する必要がある。
In recent years, the need for highly accurate propagation path estimation in a long delay environment has increased.
In wireless communication using the Orthogonal Frequency Division Multiplexing (OFDM) method, various reception methods that can suppress interference generated in a long delay environment exceeding a guard interval (GI) have been proposed. . However, in order to realize this, it is necessary to estimate the channel impulse response, which is a propagation path characteristic in the time domain, with high accuracy.

特開2010−119070号公報JP 2010-1119070 A

電子情報通信学会技術報告RCS2010−257「OFDMターボ等化受信における情報量基準を用いた高効率タップ選択チャネル推定」IEICE technical report RCS2010-257 “Efficient tap selection channel estimation using information criterion in OFDM turbo equalization reception”

特許文献1および非特許文献1には、チャネルインパルス応答を推定する方法が記載されている。その方法は、パス抽出と推定の二段階の処理から成る。
しかしながら、MIMO(Multiple Input Multiple Output、多入力/多出力)においては、送信アンテナと受信アンテナの間の複数のチャネル毎に、伝搬路推定を行う必要がある。
パスを抽出する従来技術は、多くの計算を必要とするため、特に、MIMOのように送信アンテナの数および受信アンテナの数が多い場合には、計算量の増加を招き、装置が肥大化し、装置の電力消費も増大する。
したがって、本発明の実施形態は、上述の従来技術の欠点を解消することを課題とする。
Patent Document 1 and Non-Patent Document 1 describe a method for estimating a channel impulse response. The method consists of two stages of path extraction and estimation.
However, in MIMO (Multiple Input Multiple Output), it is necessary to perform channel estimation for each of a plurality of channels between a transmission antenna and a reception antenna.
Since the conventional technique for extracting the path requires a lot of calculations, particularly when the number of transmitting antennas and the number of receiving antennas are large as in the case of MIMO, the amount of calculation increases, and the apparatus becomes enlarged. The power consumption of the device also increases.
Accordingly, an object of the embodiment of the present invention is to eliminate the above-described drawbacks of the prior art.

(1)本発明は、上述の課題を解決するためになされたもので、本発明の受信装置は、パス抽出部とパス抽出部が抽出したパス情報を基にチャネルインパルス応答を推定するチャネルインパルス応答推定部を備えるMIMO受信装置であって、チャネルインパルス応答推定部よりパス抽出部の数が少ないことを特徴とする。 (1) The present invention has been made to solve the above-described problem, and the receiving apparatus of the present invention estimates a channel impulse response based on path information extracted by the path extraction unit and the path extraction unit. A MIMO receiving apparatus including a response estimation unit, wherein the number of path extraction units is smaller than that of a channel impulse response estimation unit.

(2)また、本発明の受信装置は、上述の受信装置であって、1つの受信アンテナの受信信号に含まれる送信ストリームの内の1つを用いてパス抽出を行い、他のストリームはそのパス情報を用いてチャネルインパルス応答を推定することを特徴とする。 (2) The receiving apparatus of the present invention is the above-described receiving apparatus, and performs path extraction using one of the transmission streams included in the reception signal of one receiving antenna, and the other streams A channel impulse response is estimated using path information.

(3)また、本発明の受信装置は、上述の受信装置であって、全ての受信アンテナの受信信号に含まれる1つの送信ストリームのうち、1つの受信アンテナを用いてパス抽出を行い、他のアンテナの該当ストリームについては、そのパス情報を用いてチャネルインパルス応答を推定することを特徴とする。 (3) Moreover, the receiving apparatus of the present invention is the above-described receiving apparatus, and performs path extraction using one receiving antenna out of one transmission stream included in the reception signals of all receiving antennas. With respect to the corresponding stream of the antenna, channel impulse response is estimated using the path information.

(4)また、本発明の受信装置は、上述の受信装置であって、全チャネルのうち、1つのチャネルを用いてパス抽出を行い、他のチャネルはそのパス情報を用いてチャネルインパルス応答を推定することを特徴とする。 (4) Moreover, the receiving apparatus of the present invention is the above-described receiving apparatus, and performs path extraction using one channel among all channels, and the other channel performs channel impulse response using the path information. It is characterized by estimating.

(5)また、本発明の受信装置は、上述の受信装置であって、全チャネルを、パス情報を共有するグループに分け、グループ内の1つのチャネルを用いてパス抽出を行い、そのパス情報を用いて他のチャネルのチャネルインパルス応答を推定することを特徴とする。 (5) Moreover, the receiving apparatus of the present invention is the above-described receiving apparatus, and divides all channels into groups sharing path information, performs path extraction using one channel in the group, and the path information. Is used to estimate the channel impulse response of other channels.

(6)また、本発明の受信装置は、上述の受信装置であって、複数のチャネルを用いて1つのパス抽出を行うことを特徴とする。 (6) Moreover, the receiving apparatus of the present invention is the above-described receiving apparatus, and is characterized by performing one path extraction using a plurality of channels.

(7)また、本発明の受信装置は、上述の受信装置であって、受信装置の移動速度が所定の閾値を上回る場合は、パス抽出部の数を増加させることを特徴とする。 (7) In addition, the receiving device of the present invention is the above-described receiving device, wherein the number of path extracting units is increased when the moving speed of the receiving device exceeds a predetermined threshold.

(8)また、本発明の受信装置は、上述の受信装置であって、信号対雑音電力比が閾値を上回る場合は、パス抽出部を動作させないことを特徴とする。 (8) Moreover, the receiving apparatus of the present invention is the above-described receiving apparatus, and is characterized in that the path extraction unit is not operated when the signal-to-noise power ratio exceeds a threshold value.

(9)また、本発明の受信装置は、上述の受信装置であって、受信装置が待機モードの場合は、パス抽出部を動作させないことを特徴とする。 (9) In addition, the receiving device of the present invention is the above-described receiving device, wherein the path extracting unit is not operated when the receiving device is in the standby mode.

(10)本発明は、上述の課題を解決するためになされたもので、本発明の受信方法は、パス抽出過程とパス抽出過程が抽出したパス情報を基にチャネルインパルス応答を推定するチャネルインパルス応答推定過程を備えるMIMO受信方法であって、チャネルインパルス応答推定過程よりパス抽出過程の数が少ないことを特徴とする。 (10) The present invention has been made to solve the above-described problems. The reception method of the present invention is a channel extraction process for estimating a channel impulse response based on path extraction processes and path information extracted by the path extraction processes. A MIMO reception method including a response estimation process, wherein the number of path extraction processes is smaller than that of a channel impulse response estimation process.

(11)本発明は、上述の課題を解決するためになされたもので、本発明の受信プログラムは、上記(10)に記載の受信方法をコンピュータに実行させることを特徴とする。
(追って補充)
(11) The present invention has been made to solve the above-described problems, and a reception program according to the present invention causes a computer to execute the reception method described in (10) above.
(Replenished later)

本発明によれば、MIMO伝送の受信に際して、受信信号を取得する際の計算量を大きく削減し、回路規模を大きく削減し、装置の電力消費を大きく低減することができる。   According to the present invention, when receiving a MIMO transmission, it is possible to greatly reduce the amount of calculation when acquiring a received signal, greatly reduce the circuit scale, and greatly reduce the power consumption of the apparatus.

第1の実施形態に係る通信システムを示す。1 shows a communication system according to a first embodiment. 送信装置の構成を示す。The structure of a transmitter is shown. パイロットシンボルとデータのマッピングの例を示す。An example of pilot symbol and data mapping is shown. 受信装置の構成を示す。The structure of a receiver is shown. 伝搬路推定部の構成を示す。The structure of a propagation path estimation part is shown. 受信装置が受信する受信信号を簡略化して示す。The reception signal which a receiving apparatus receives is simplified and shown. パス抽出部の構成を示す。The structure of a path | pass extraction part is shown. パス抽出の処理を示すフローチャートである。It is a flowchart which shows the process of path | pass extraction. CIR推定部の構成を示す。The structure of a CIR estimation part is shown. CIR推定部の処理を示すフローチャートである。It is a flowchart which shows the process of a CIR estimation part. 受信装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a receiver. 第2の実施形態の受信装置の構成を示す。The structure of the receiver of 2nd Embodiment is shown. 伝搬路推定部の構成を示す。The structure of a propagation path estimation part is shown. 受信装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a receiver. 第3の実施形態に係る通信システムを示す。The communication system which concerns on 3rd Embodiment is shown. 受信装置の構成を示す。The structure of a receiver is shown. 伝搬路推定部の構成を示す。The structure of a propagation path estimation part is shown. 受信装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a receiver. 変形例の伝搬路推定部の構成を示す。The structure of the propagation path estimation part of a modification is shown. パス抽出部の構成を示す図である。It is a figure which shows the structure of a path | pass extraction part. パス抽出の処理を示すフローチャートである。It is a flowchart which shows the process of path | pass extraction. マルチパスの影響を示す図である。It is a figure which shows the influence of multipath.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る無線通信システム1の概要を示す図である。
無線通信システム1は、送信装置1aおよび受信装置1bを備える。送信装置1aは、例えば、移動通信システムの基地局(「基地局装置」と言うことがある。)であり、受信装置1bは、当該システムの端末(「端末装置」、「移動局」または「移動局装置」と言うことがある。)である。その代わりに、送信装置1aは、移動通信システム1の端末であり、受信装置1bは、当該システムの基地局であってもよい。
送信装置1aは、T個の送信アンテナ1a−1〜1a−Tを備え、そして受信装置1bは、R個の受信アンテナ1b−1〜1b−Rを備える。したがって、無線通信システム1は、T×R MIMO、特に、T×Rのシングルユーザー MIMOを構成する。なお、MIMOのことを「マイモ」と言うことがある。
無線通信システム1は、送信アンテナの数がT=2で受信アンテナの数がR=2の2×2 MIMOであってもよいし、送信アンテナの数がT=4で受信アンテナの数がR=4の4×4 MIMOであってもよいし、または送信アンテナの数がT=8で受信アンテナの数がR=8の8×8 MIMOであってもよい。
<First Embodiment>
FIG. 1 is a diagram showing an overview of a wireless communication system 1 according to the first embodiment of the present invention.
The wireless communication system 1 includes a transmission device 1a and a reception device 1b. The transmission device 1a is, for example, a base station of a mobile communication system (sometimes referred to as a “base station device”), and the reception device 1b is a terminal (“terminal device”, “mobile station”, or “ Mobile station apparatus ”). Instead, the transmission device 1a may be a terminal of the mobile communication system 1, and the reception device 1b may be a base station of the system.
The transmission apparatus 1a includes T transmission antennas 1a-1 to 1a-T, and the reception apparatus 1b includes R reception antennas 1b-1 to 1b-R. Therefore, the wireless communication system 1 constitutes T × R MIMO, in particular, T × R single-user MIMO. Note that MIMO is sometimes referred to as “Mimo”.
The radio communication system 1 may be 2 × 2 MIMO in which the number of transmission antennas is T = 2 and the number of reception antennas is R = 2, or the number of transmission antennas is T = 4 and the number of reception antennas is R. 4 × 4 MIMO with 4 = 4, or 8 × 8 MIMO with T = 8 transmit antennas and R = 8 receive antennas.

図2は、送信装置1aの構成を示す概略ブロック図である。
送信装置1aは、パイロット生成部201−t、符号部202−t、変調部203−t、マッピング部204−t、IFFT部205−t、GI挿入部206−tおよび送信部207−tを備える。ここで、t=1、2、・・・、Tである。図2では、送信アンテナ1a−tを併せて示す。図2では、t=1、t=2、t=Tの3つの場合のみを簡略化して示す。
FIG. 2 is a schematic block diagram illustrating the configuration of the transmission device 1a.
The transmission apparatus 1a includes a pilot generation unit 201-t, an encoding unit 202-t, a modulation unit 203-t, a mapping unit 204-t, an IFFT unit 205-t, a GI insertion unit 206-t, and a transmission unit 207-t. . Here, t = 1, 2,..., T. In FIG. 2, the transmission antennas 1a-t are also shown. In FIG. 2, only three cases of t = 1, t = 2, and t = T are shown in a simplified manner.

パイロット生成部201−tは、パイロットシンボル(または「パイロット信号系列」であってもよい。)を生成し、マッピング部204−tに出力する。
符号部202−tには、送信する情報ビットが入力する。送信する情報ビットのことを「データ」と言うことがある。
符号部202−tは、この情報ビットを、畳込み符号、ターボ符号、LDPC(Low Density Parity Check; 低密度パリティ検査)符号などの誤り訂正符号を用いて、符号化し、符号化ビットを生成する。符号部202−tは、生成した符号化ビットを変調部203−tに出力する。
変調部203−tは、符号化ビットを、PSK(Phase Shift Keying; 位相変調)やQAM(Quadrature Amplitude Modulation; 直交振幅変調)などの変調方式を用いて変調して、変調シンボルを生成する。
変調部203−tは、生成した変調シンボルをマッピング部204−tに出力する。
Pilot generating section 201-t generates a pilot symbol (or may be a “pilot signal sequence”) and outputs the pilot symbol to mapping section 204-t.
Information bits to be transmitted are input to the encoding unit 202-t. Information bits to be transmitted are sometimes referred to as “data”.
The encoding unit 202-t encodes this information bit using an error correction code such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code to generate a coded bit. . The encoding unit 202-t outputs the generated encoded bits to the modulation unit 203-t.
The modulation unit 203-t modulates the coded bits using a modulation scheme such as PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) to generate a modulation symbol.
The modulation unit 203-t outputs the generated modulation symbol to the mapping unit 204-t.

マッピング部204−tは、パイロット生成部201−tが出力するパイロットシンボルおよび変調部203−tが出力する変調シンボルを、予め定められたマッピング情報に基づいて複数のリソースエレメントにマッピングして、周波数領域の信号を生成する。マッピング部204−tは、生成した周波数領域の信号をIFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部205−tに出力する。
なお、リソースエレメントとは、送信装置1aが送信する1個のフレームにおいて、周波数軸上の1つのサブキャリアと時間軸上の1つのシンボル区間とから成る単位である。
マッピング情報は、送信装置1aが決定し、送信装置1aから受信装置1bへ予め通知される。マッピング情報は、受信装置1bが決定して、このマッピング情報を送信装置1aへ通知してもよい。
The mapping unit 204-t maps the pilot symbols output from the pilot generation unit 201-t and the modulation symbols output from the modulation unit 203-t to a plurality of resource elements based on predetermined mapping information. Generate a region signal. The mapping unit 204-t outputs the generated frequency domain signal to an IFFT (Inverse Fast Fourier Transform) unit 205-t.
The resource element is a unit composed of one subcarrier on the frequency axis and one symbol section on the time axis in one frame transmitted by the transmission apparatus 1a.
The mapping information is determined by the transmission device 1a and is notified in advance from the transmission device 1a to the reception device 1b. The mapping apparatus may determine the mapping information and notify the mapping apparatus 1a of the mapping information.

図3は、送信アンテナ数TがT=4である場合であって、アンテナ1〜4から4ストリームを送信するときに、パイロットシンボルとデータと、をマッピング部204−tにおいてマッピングする際の4つのマッピング図を示す。なお、ストリームの数のことを「レイヤ数」または「ランク数」と言うことがある。
アンテナ1〜4の系列の各マッピング図において、横軸は時間軸であり、縦軸は周波数軸である。横軸には、14個のシンボル区間を示し、縦軸には12個のサブキャリアを示す。各シンボル区間の各サブキャリアを示す四角(□)が、リソースエレメントを表す。
白い四角のリソースエレメントには、データが割り当てられ、点でハッチングした四角のリソースエレメントには、パイロットシンボルが割り当てられる。斜線でハッチングした四角のリソースエレメントは、ヌル(データおよびパイロットシンボルの両方が割り当てられないこと)を表す。
1つのFFT区間において、或るストリームでパイロットシンボルを挿入するリソースエレメントについては、他のストリームにおいてはヌルとすることで、ストリーム毎のパイロットサブキャリアにおける周波数応答の推定を可能にする。なお、パイロットサブキャリアとは、パイロットシンボルが挿入されるリソースエレメントのことである。
FIG. 3 shows a case where the number T of transmission antennas is T = 4, and when 4 streams are transmitted from the antennas 1 to 4, the pilot symbols and data are mapped by the mapping unit 204-t in 4. Two mapping diagrams are shown. Note that the number of streams may be referred to as “number of layers” or “number of ranks”.
In each mapping diagram of the series of antennas 1 to 4, the horizontal axis is the time axis, and the vertical axis is the frequency axis. The horizontal axis represents 14 symbol intervals, and the vertical axis represents 12 subcarriers. A square (□) indicating each subcarrier in each symbol section represents a resource element.
Data is assigned to white square resource elements, and pilot symbols are assigned to square resource elements hatched with dots. Square resource elements hatched with diagonal lines represent nulls (both data and pilot symbols are not allocated).
In one FFT interval, a resource element in which a pilot symbol is inserted in a certain stream is set to be null in another stream, thereby enabling estimation of a frequency response in a pilot subcarrier for each stream. A pilot subcarrier is a resource element into which a pilot symbol is inserted.

図2に戻って、IFFT部205−tは、マッピング部204−tから入力される周波数領域の信号を周波数−時間変換し、時間領域の信号を生成する。ここで、IFFTを行う単位の時間区間をFFT区間と言う。IFFT部205−tは、生成した時間領域の信号をGI挿入部206−tに出力する。
GI挿入部206−tは、IFFT部205−tが出力する時間領域の信号に対して、FFT区間の信号毎にガードインターバルを付加する。ガードインターバルとは、FFT区間の信号の後方の一部を複製したものを、FFT区間の信号の前方に付加した部分を言う。ガードインターバルのことを「GI」と言うことがある。
FFT区間と、ガードインターバルの時間区間(「GI区間」と言うことがある。)とを合わせて、OFDMシンボル区間と言う。また、OFDMシンボル区間の信号をOFDMシンボルと言う。GI挿入部206−tは、ガードインターバルを付加した信号を送信部207−tに出力する。
Returning to FIG. 2, the IFFT unit 205-t performs frequency-time conversion on the frequency domain signal input from the mapping unit 204-t to generate a time domain signal. Here, a unit time interval for performing IFFT is referred to as an FFT interval. The IFFT unit 205-t outputs the generated time domain signal to the GI insertion unit 206-t.
The GI insertion unit 206-t adds a guard interval for each signal in the FFT interval to the time domain signal output from the IFFT unit 205-t. The guard interval is a portion obtained by duplicating a part of the rear part of the signal in the FFT section and adding it in front of the signal in the FFT section. The guard interval is sometimes referred to as “GI”.
The FFT interval and the time interval of the guard interval (sometimes referred to as “GI interval”) are collectively referred to as an OFDM symbol interval. A signal in the OFDM symbol section is called an OFDM symbol. The GI insertion unit 206-t outputs a signal with the guard interval added to the transmission unit 207-t.

送信部207−tは、GI挿入部206−tが出力する信号をディジタル−アナログ変換(「D/A変換」と言うことがある。)し、変換したアナログ信号を波形整形する。また、送信部207−tは、波形整形した信号をベースバンドから無線周波数帯にアップコンバートし、次に送信アンテナ1a−tから受信装置1bへ無線波として送信する。   The transmission unit 207-t performs digital-analog conversion (sometimes referred to as “D / A conversion”) on the signal output from the GI insertion unit 206-t, and shapes the waveform of the converted analog signal. Further, the transmission unit 207-t up-converts the waveform-shaped signal from the baseband to the radio frequency band, and then transmits the signal as a radio wave from the transmission antenna 1a-t to the reception device 1b.

図4は、本発明の第1の実施形態に係る受信装置1bの構成を示す概略ブロック図である。
図4において、受信装置1bは、受信部402−r、GI除去部403−r、FFT部404−r、デマッピング部405−r、伝搬路推定部406、MIMO検出部407および復号部408−tを備える。ここで、r=1、2、・・・、Rである。t=1、2、・・・、Tである。図4では、受信アンテナ1b−rをも併せて示す。図4では、r=1、r=2、r=Rの3つの場合、およびt=1、t=2、t=Tの3つの場合のみを簡略化して示す。
FIG. 4 is a schematic block diagram showing the configuration of the receiving device 1b according to the first embodiment of the present invention.
In FIG. 4, the receiving apparatus 1b includes a receiving unit 402-r, a GI removing unit 403-r, an FFT unit 404-r, a demapping unit 405-r, a propagation path estimating unit 406, a MIMO detecting unit 407, and a decoding unit 408-. t. Here, r = 1, 2,..., R. t = 1, 2,... In FIG. 4, the receiving antenna 1b-r is also shown. In FIG. 4, only three cases of r = 1, r = 2, r = R and three cases of t = 1, t = 2, and t = T are shown in a simplified manner.

受信部402−rは、送信装置1aが送信した送信信号を、受信アンテナ1b−rを介して受信する。この送信信号は、T個のストリームから成る。受信部402−rは、受信した信号に対して、ベースバンドへの周波数変換を行い、次にアナログ−ディジタル変換(「A/D変換」と言うことがある。)を行ってから、GI除去部403−rに出力する。
GI除去部403−rは、受信部402−rから入力される信号からGIを除去し、GIを除去した信号をFFT部404−rに出力する。
FFT部404−rは、GI除去部403−rが出力する時間領域の信号に対して時間−周波数変換を行い、変換した周波数領域の信号をデマッピング部405−rに出力する。
デマッピング部405−rは、この周波数領域の信号を、パイロットシンボルとデータとに分離する。デマッピング部405−rは、分離したデータをMIMO検出部407に出力し、そして分離したパイロットシンボルを伝搬路推定部406に出力する。
The reception unit 402-r receives the transmission signal transmitted by the transmission device 1a via the reception antenna 1b-r. This transmission signal consists of T streams. The receiving unit 402-r performs frequency conversion to the baseband on the received signal, then performs analog-digital conversion (sometimes referred to as “A / D conversion”), and then performs GI removal. Output to the unit 403-r.
The GI removing unit 403-r removes the GI from the signal input from the receiving unit 402-r, and outputs the signal from which the GI has been removed to the FFT unit 404-r.
The FFT unit 404-r performs time-frequency conversion on the time domain signal output from the GI removal unit 403-r, and outputs the converted frequency domain signal to the demapping unit 405-r.
The demapping unit 405-r separates this frequency domain signal into pilot symbols and data. Demapping section 405-r outputs the separated data to MIMO detection section 407, and outputs the separated pilot symbols to propagation path estimation section 406.

図5は、伝搬路推定部406の構成を示す概略ブロック図である。
伝搬路推定部406は、CFR推定部501−r、チャネル選択部502−r、パス抽出部503−r、CIR推定部504−rおよびFFT部505−t−rを備える。CFR推定部のことを「周波数応答推定部」と言うことがある。また、CIR推定部のことを「チャネルインパルス応答推定部」と言うことがある。なお、図5には、デマッピング部405−rおよびMIMO検出部407を併せて示す。
FIG. 5 is a schematic block diagram illustrating the configuration of the propagation path estimation unit 406.
The propagation path estimation unit 406 includes a CFR estimation unit 501-r, a channel selection unit 502-r, a path extraction unit 503-r, a CIR estimation unit 504-r, and an FFT unit 505-tr. The CFR estimator may be referred to as a “frequency response estimator”. Further, the CIR estimation unit may be referred to as a “channel impulse response estimation unit”. In FIG. 5, the demapping unit 405-r and the MIMO detection unit 407 are shown together.

CFR推定部501−rは、デマッピング部405−rが出力するパイロットシンボルを用いて、パイロットサブキャリアの周波数応答を推定する。CFR推定部501−rは、r番目の受信アンテナにおける受信信号に含まれるT個のストリームすべてに対して、周波数応答推定値を算出する。CFR推定部501−rは、T個の周波数応答推定値をチャネル選択部502−rに出力する。
チャネル選択部502−rは、CFR推定部401−rが出力するT個の周波数応答推定値のうち、最も良いと判断した一つの周波数応答推定値を選択して、この選択した1つの周波数応答推定値をパス抽出部503−rに出力する。
チャネル選択部502−rの動作の詳細は、後述する。
また、チャネル選択部502−rは、選択しなかった周波数応答推定値をCIR推定部504−rに出力する。この選択しなかった周波数応答推定値は、(T-1)個ある。
The CFR estimator 501-r estimates the frequency response of pilot subcarriers using the pilot symbols output from the demapping unit 405-r. The CFR estimator 501-r calculates frequency response estimation values for all T streams included in the received signal at the r-th receiving antenna. CFR estimation section 501-r outputs T frequency response estimation values to channel selection section 502-r.
The channel selection unit 502-r selects one frequency response estimation value determined to be the best from the T frequency response estimation values output by the CFR estimation unit 401-r, and selects the selected one frequency response. The estimated value is output to the path extraction unit 503-r.
Details of the operation of the channel selector 502-r will be described later.
Further, the channel selection unit 502-r outputs the frequency response estimation value that has not been selected to the CIR estimation unit 504-r. There are (T-1) frequency response estimation values not selected.

パス抽出部503−rは、チャネル選択部502−rが出力する周波数応答推定値を用いて、パス抽出を行う。パス抽出部503−rの動作の詳細は、後述する。
パス抽出部503−rは、抽出したパス情報(「パス番号」とか「遅延数」とかと言うことがある。)をCIR推定部504−rに出力する。また、パス抽出部503−rは、チャネル選択部502−rから受け取った一つの周波数応答推定値を、そのままCIR推定部504−rに出力する。
The path extraction unit 503-r performs path extraction using the frequency response estimation value output from the channel selection unit 502-r. Details of the operation of the path extraction unit 503-r will be described later.
The path extraction unit 503-r outputs the extracted path information (sometimes referred to as “path number” or “delay number”) to the CIR estimation unit 504-r. In addition, the path extraction unit 503-r outputs one frequency response estimation value received from the channel selection unit 502-r to the CIR estimation unit 504-r as it is.

CIR推定部504−rは、チャネル選択部502−rとパス抽出部503−rとから受け取った全体でT個の周波数応答推定値と、パス抽出部502−rから受け取ったパス情報とを用いて、T個のチャネルインパルス応答を推定する。周波数応答推定値は周波数の関数であるが、チャネルインパルス応答は、時間の関数である。CIR推定部504−rの動作の詳細は、後述する。なお、パス抽出部503−rは、パス抽出と同時にチャネルインパルス応答推定値を算出することができる。その場合は、算出したチャネルインパルス応答推定値をCIR推定部504−rへ送出し、CIR推定部504−rは、このチャネルインパルス応答推定値をそのまま用いることができる。   CIR estimation section 504-r uses T frequency response estimation values received from channel selection section 502-r and path extraction section 503-r as a whole, and path information received from path extraction section 502-r. Thus, T channel impulse responses are estimated. The frequency response estimate is a function of frequency, while the channel impulse response is a function of time. Details of the operation of the CIR estimation unit 504-r will be described later. Note that the path extraction unit 503-r can calculate a channel impulse response estimated value simultaneously with path extraction. In that case, the calculated channel impulse response estimated value is sent to the CIR estimating unit 504-r, and the CIR estimating unit 504-r can use the channel impulse response estimated value as it is.

CIR推定部504−rは、T個のチャネルインパルス応答推定値を、FFT部505−t−rに出力する。
例えば、CIR推定部504−2は、送信アンテナt=1に関するチャネルインパルス応答推定値をFFT部505−1−2に出力する。CIR推定部504−2は、送信アンテナt=Tに関するチャネルインパルス応答推定値をFFT部505−T−2に出力する。
The CIR estimation unit 504-r outputs T channel impulse response estimation values to the FFT unit 505-tr.
For example, the CIR estimation unit 504-2 outputs a channel impulse response estimation value related to the transmission antenna t = 1 to the FFT unit 505-1-2. CIR estimating section 504-2 outputs a channel impulse response estimated value for transmitting antenna t = T to FFT section 505-T-2.

FFT部505−t−rは、CIR推定部504−rが出力するチャネルインパルス応答推定値に時間−周波数変換を施して、復調用周波数応答推定値に変換し、次にこのTR個の復調用周波数応答推定値をMIMO検出部407に出力する。   The FFT unit 505-tr performs time-frequency conversion on the channel impulse response estimated value output from the CIR estimating unit 504-r to convert it to a demodulated frequency response estimated value, and then uses the TR demodulated values. The frequency response estimation value is output to MIMO detection section 407.

図4に戻って、MIMO検出部407は、デマッピング部405−rの出力(データがマッピングされたサブキャリアの受信信号)と、伝搬路推定部406のFFT部505−t−rが出力するTR個の復調用周波数応答推定値と、を用いて、MIMO分離を行う。
具体的には、このMIMO分離は、ZF(Zero Forcing)基準、MMSE(Minimum Mean Square Error)基準等を用いた線形処理とか、MLD(Maximum Likelihood Detection)等の非線形処理とか、の公知技術を用いて行う。
この結果得られるT個の復調結果を、復号部408−tに出力する。
Returning to FIG. 4, MIMO detection section 407 outputs the output of demapping section 405-r (the received signal of the subcarrier to which the data is mapped) and the FFT section 505-tr of propagation path estimation section 406. MIMO separation is performed using the TR frequency response estimation values for demodulation.
Specifically, the MIMO separation uses a known technique such as linear processing using a ZF (Zero Forcing) standard, MMSE (Minimum Mean Square Error) standard, or non-linear processing such as MLD (Maximum Likelihood Detection). Do it.
The T demodulation results obtained as a result are output to decoding section 408-t.

復号部408−tは、MIMO検出部407が出力する復調結果を用いて復号を行う。具体的には、復号部408−tは、最尤復号法、最大事後確率推定(MAP; Maximum A posteriori Probability)、log−MAP、Max−log−MAP、SOVA(Soft Output Viterbi Algorithm)等を用いて、復号処理を行い、情報ビットを出力する。
なお、ZF処理とかMMSE処理とかを用いる場合は、MIMO検出部407は、MIMO分離と、その後の符号化ビットの対数尤度比を求める復調処理と、を行う。MLD処理の場合は、MIMO分離により得られる情報は、符号化ビットの対数尤度比となり、したがって、MIMO検出部407においてMIMO分離と復調処理とが併せて行われる。
The decoding unit 408-t performs decoding using the demodulation result output from the MIMO detection unit 407. Specifically, the decoding unit 408-t uses a maximum likelihood decoding method, maximum a posteriori probability (MAP), log-MAP, Max-log-MAP, SOVA (Soft Output Viterbi Algorithm), or the like. The decoding process is performed and information bits are output.
When ZF processing or MMSE processing is used, MIMO detection section 407 performs MIMO separation and subsequent demodulation processing for obtaining a log likelihood ratio of coded bits. In the case of MLD processing, information obtained by MIMO separation is a log likelihood ratio of coded bits, and therefore, MIMO separation and demodulation processing are performed together in MIMO detection section 407.

以下、受信装置1bの受信部402−r、FFT部404−r、MIMO検出部407および伝播路推定部406の動作を、数式を交えて、さらに詳細に説明する。
まず、図4において、受信アンテナ401−rを介して受信部402−rが受信した第iOFDMシンボルにおける第k離散時間の受信信号ri,k,r(k=0、1、・・・、N+N−1)は、次式(1)、(2)で表される。
Hereinafter, the operations of the reception unit 402-r, the FFT unit 404-r, the MIMO detection unit 407, and the propagation path estimation unit 406 of the reception device 1b will be described in more detail using mathematical expressions.
First, in FIG. 4, the received signals r i, k, r (k = 0, 1,...) In the i- th OFDM symbol received by the receiving unit 402-r via the receiving antenna 401-r. N g + N−1) is expressed by the following formulas (1) and (2).

Figure 2013074435
Figure 2013074435

Figure 2013074435
Figure 2013074435

ここで、Dは、最大遅延数である。hi,d,k,r,tは、第d遅延パスの第k離散時間における第tアンテナから第rアンテナへの複素振幅である。si,k,tは、第t送信アンテナからの時間領域の送信信号であり、そしてZi,k,rは、時間領域の雑音である。また、Nは、FFT区間のポイント数である。Si,n,tは、第nサブキャリアの第tアンテナからの変調シンボルである。Nは、GI区間のポイント数である。jは、虚数単位である。なお、各変数の添字iは、OFDMシンボルが第i番目のものであることを示す。 Here, D is the maximum number of delays. hi , d, k, r, and t are complex amplitudes from the t-th antenna to the r-th antenna at the k-th discrete time of the d-th delay path. s i, k, t are time domain transmission signals from the t th transmit antenna, and Z i, k, r are time domain noise. N is the number of points in the FFT interval. S i, n, t are modulation symbols from the t-th antenna of the n-th subcarrier. N g is the number of points in the GI section. j is an imaginary unit. The subscript i of each variable indicates that the OFDM symbol is the i-th symbol.

図6は、受信装置1bが受信する受信信号を説明する簡略化した図である。
説明を簡素化するために、ここでは、T=R=1で説明する。つまり、送信アンテナの個数がT=1で、受信アンテナの個数がR=1の場合について、説明をする。そのため、この例についての説明では、tとrの添字は省略する。
図6において、上から順に直達波(「遅延数d=0の遅延波」と言うことがある。)、d=1の遅延波、d=2の遅延波およびd=3の遅延波(「最大遅延数の遅延波」と言うことがある。)を示す。
FIG. 6 is a simplified diagram for explaining a reception signal received by the reception device 1b.
In order to simplify the explanation, here, T = R = 1 will be described. That is, the case where the number of transmission antennas is T = 1 and the number of reception antennas is R = 1 will be described. Therefore, in the description of this example, the subscripts t and r are omitted.
In FIG. 6, direct waves from the top (sometimes referred to as “delayed wave with delay number d = 0”), d = 1 delayed wave, d = 2 delayed wave, and d = 3 delayed wave (“ This is sometimes referred to as the “delayed wave with the maximum number of delays”).

図6において、横に8個並んだ白の四角(□)の集合は、FFT区間を表す。また、横に2個並んだ小さな点でハッチングした四角の集合は、ガード区間GIを表す。横に何個か並んだ斜線でハッチングした四角の集合は、先行または後行のFFT区間の一部分を表す。GI区間のポイント数は、N=2であり、FFT区間のポイント数は、N=8であり、そして最大遅延数は、D=3である。つまり、GI区間は、2つの離散時間を占有し、FFT区間は、8つの離散時間を占有し、そしてパスは、4個である。 In FIG. 6, a set of eight white squares (□) arranged side by side represents an FFT interval. A set of squares hatched by two small dots arranged side by side represents the guard section GI. A set of squares hatched with diagonal lines arranged side by side represents a part of the preceding or succeeding FFT section. The number of points in the GI section is N g = 2, the number of points in the FFT section is N = 8, and the maximum number of delays is D = 3. That is, the GI section occupies two discrete times, the FFT section occupies eight discrete times, and there are four paths.

図6において、離散時間k=5における遅延数0〜3の4つの遅延波を、枠601で囲んで示す。枠601内の受信信号hi,0,5i,5〜hi,3,5i,2の和が、式(1)の左辺のri,5,rを表す。 In FIG. 6, four delayed waves having a delay number of 0 to 3 at a discrete time k = 5 are shown surrounded by a frame 601. The sum of the received signals h i, 0,5 s i, 5 to h i, 3,5 s i, 2 in the frame 601 represents r i, 5, r on the left side of Equation (1).

図4へ戻って、FFT区間(図6では、離散時間k=2〜9の区間)の受信信号ri,k,rに対して、FFT部404−rにおいて時間−周波数変換を行った後の第nサブキャリアの受信信号Ri,n,rは、次式(3)〜(5)で表される。 Returning to FIG. 4, after time-frequency conversion is performed in the FFT unit 404-r on the received signals r i, k, r in the FFT interval (interval of discrete time k = 2 to 9 in FIG. 6). The received signals R i, n, r of the n-th subcarrier are expressed by the following equations (3) to (5).

Figure 2013074435
Figure 2013074435

Figure 2013074435
Figure 2013074435

Figure 2013074435
Figure 2013074435

ここで、Hi,n,r,tは、第iシンボルにおける第nサブキャリアの第t送信アンテナから第r受信アンテナへの周波数応答である。Z’i,n,rは、シンボル間干渉(ISI; Inter Symbol Interference)およびキャリア間干渉(ICI; Inter Carrier Interference)の和である。Zi,n,rは、周波数領域の雑音である。なお、最大遅延数Dの場合の遅延時間がGI区間Nを超えず、OFDMシンボル内での伝搬路変動が無い場合(すなわち、hi,d,k,r,t=hi,d,r,tと書ける場合)は、Z’i,n,rはゼロになる。
なお、max(Ng,d)は、Ngとdのうち、大きい方という意味である。しあがって、d≦Ng、すなわち、遅延数がGI長以内のパスについては、k=NgからNg+N−1までの和となる。d>NgのGI超えパスについては、k=dからNg+N−1までの和となる。
伝搬路推定部406の動作の詳細は、後述する。
次に、復調用周波数応答推定値が得られているものとして、MIMO検出部407の説明を行う。なお、復調用周波数応答推定値については、既に、伝搬路推定部406の詳細を示す図5に関連して言及した。
Here, Hi, n, r, and t are frequency responses from the t-th transmitting antenna to the r-th receiving antenna of the n-th subcarrier in the i-th symbol. Z ′ i, n, r is the sum of inter symbol interference (ISI) and inter carrier interference (ICI). Z i, n, r is noise in the frequency domain. Note that the delay time in the case of the maximum delay number D does not exceed the GI interval N g and there is no propagation path variation in the OFDM symbol (that is, hi , d, k, r, t = hi , d, Z ′ i, n, r is zero when r, t can be written).
Note that max (Ng, d) means the larger of Ng and d. Accordingly, d ≦ Ng, that is, for a path whose delay number is within the GI length, the sum is from k = Ng to Ng + N−1. For a GI exceeding path where d> Ng, the sum is from k = d to Ng + N−1.
Details of the operation of the propagation path estimation unit 406 will be described later.
Next, the MIMO detection unit 407 will be described assuming that a demodulation frequency response estimation value is obtained. Note that the demodulation frequency response estimation value has already been described in relation to FIG. 5 showing the details of the propagation path estimation unit 406.

MIMO検出部407では、例えばMMSE規範のMIMO分離を用いる場合、復調シンボルS’i,n,tは、次式(6)、(7)のようになる。 In the MIMO detection unit 407, for example, when MIMO separation based on the MMSE standard is used, demodulated symbols S ′ i, n, t are expressed by the following equations (6) and (7).

Figure 2013074435
Figure 2013074435

Figure 2013074435
Figure 2013074435

ただし、Ri,n,rは、第nサブキャリアの受信信号であって、式(3)で示されるものである。Hi,nは、R×Tの行列であり、その要素であるH’’i,n,r,tは、後述する伝播路推定部406における伝搬路推定処理で得られるTR個の復調用周波数応答推定値である。行列(またはベクトル)Xに対して、Xは、Xの転置を表す。
σは、雑音ならびにISIおよびICIの電力である。
また、MIMO検出部407では、上記の復調シンボルS’i,n,tを用いてビット対数尤度比を算出する処理を行う。この処理には、等価振幅利得が用いられる。
具体的には、QPSK(4相位相変調)の場合、次式(8)で表される第nサブキャリアの等価振幅利得μi,n,tに対して、ビット対数尤度比λは、次式(9)、(10)で表される。
Here, R i, n, r are received signals of the n-th subcarrier, and are represented by Expression (3). H i, n is an R × T matrix, and its element H ″ i, n, r, t is for TR demodulation obtained by the channel estimation process in the channel estimation unit 406 described later. Frequency response estimate. For matrices (or vectors) X, X T represents a transpose of X.
σ 2 is noise and ISI and ICI power.
Also, the MIMO detection unit 407 performs a process of calculating a bit log likelihood ratio using the demodulated symbols S ′ i, n, t described above. For this process, an equivalent amplitude gain is used.
Specifically, in the case of QPSK (4-phase phase modulation), the bit log likelihood ratio λ is equal to the equivalent amplitude gain μ i, n, t of the n-th subcarrier expressed by the following equation (8): It represents with following Formula (9) and (10).

Figure 2013074435
Figure 2013074435

ただし、式(8)のdiagは、行列の対角要素を縦に並べたベクトルを生成する演算子である。
ここで、式(9)は、QPSKの1ビット目のビットbi,n,t,0のビット対数尤度比λ(bi,n,t,0)である。式(10)は、QPSKの2ビット目のビットbi,n,t,1のビット対数尤度比λ(bi,n,t,1)である。
However, “diag” in Expression (8) is an operator that generates a vector in which diagonal elements of a matrix are arranged vertically.
Here, Equation (9) is the bit log likelihood ratio λ (b i, n, t, 0 ) of the first bit b i, n, t, 0 of QPSK. Equation (10) is the bit log likelihood ratio λ (b i, n, t, 1 ) of the second bit b i, n, t, 1 of QPSK.

Figure 2013074435
Figure 2013074435

Figure 2013074435
Figure 2013074435

次に、再び図5を参照して、伝搬路推定部406の説明を詳細に行う。
CFR推定部501−rは、デマッピング部405−rから出力されるパイロットサブキャリアの受信信号を用いて、パイロットサブキャリアの周波数応答推定値を算出する。具体的には、パイロットサブキャリアの周波数応答推定値は、受信信号を既知のパイロットシンボルで除算することによって得られる。
なお、図3のようなパイロットシンボルの配置の場合、或る送信アンテナのパイロットシンボルが挿入されているサブキャリアにおいて、他の送信アンテナの信号はヌルであるので、周波数応答推定値H’i,n,r,t(t=1,・・・,T)は、次式に示すように、式(3)のRi,n,rを式(3)の右辺で用いるSi,n,tで除算する演算によって、得ることができる。
Next, the propagation path estimation unit 406 will be described in detail with reference to FIG. 5 again.
The CFR estimator 501-r calculates the pilot subcarrier frequency response estimation value using the pilot subcarrier received signal output from the demapping unit 405-r. Specifically, the frequency response estimate of the pilot subcarrier is obtained by dividing the received signal by a known pilot symbol.
In the case of the pilot symbol arrangement as shown in FIG. 3, since the signals of the other transmission antennas are null in the subcarrier in which the pilot symbol of a certain transmission antenna is inserted, the frequency response estimation value H ′ i, n, r, t (t = 1,..., T) are expressed as follows , where R i, n, r in the expression (3) is used on the right side of the expression (3) . It can be obtained by an operation dividing by t .

Figure 2013074435
Figure 2013074435

なお、式(11)の周波数応答推定値H’i,n,r,tおよび式(7)右辺の周波数応答推定値H‘’i,n,r,tは、パイロットサブキャリアにおいて、後者が前者よりも周波数領域の雑音の影響が低減されている点を除けば、同一である。 The frequency response estimate H of the formula (11) 'i, n, r, t and (7) the right-hand side of the frequency response estimate H''i, n, r , t , in the pilot subcarriers, the latter It is the same except that the influence of noise in the frequency domain is reduced as compared with the former.

チャネル選択部502−rでは、CFR推定部501−rから入力されるT個の周波数応答推定値H’i,n,r,t(t=1,・・・,T)のうち、最も良いものを選択する。具体的には、例えば、電力の合計値Pi,r,tが最も大きくなるものを選択する。なお、このとき算出した電力の平均値からパイロットシンボルの電力を減算したものを雑音電力とし、この雑音電力をMIMO検出部407で用いる。 The channel selection unit 502-r is the best of the T frequency response estimation values H ′ i, n, r, t (t = 1,..., T) input from the CFR estimation unit 501-r. Choose one. Specifically, for example, the power having the largest total value P i, r, t is selected. Note that the noise power is obtained by subtracting the pilot symbol power from the power average value calculated at this time, and this noise power is used in the MIMO detection section 407.

Figure 2013074435
Figure 2013074435

ただし、nはa番目のパイロットサブキャリアを表し、Nはパイロットサブキャリアの数である。a=0、・・・、Np−1である。
また、これらのチャネル選択およびパス抽出の処理は一定間隔で更新すればよく、例えば、図3において14個のOFDMシンボルが描かれているが、1つ目のOFDMシンボルで行い、残りの13個のOFDMシンボルでは1つ目のOFDMシンボルにおけるパス抽出結果を用いるようにしてもよい。続いて受信される次の14個のOFDMシンボルにおいても同様の動作を行うようにすればよい。なお、1つ目のOFDMシンボルではt=3、4のパイロットサブキャリアが存在しないが、2つ目のOFDMシンボルのものを代用するようにしてもよいし、14個のOFDMシンボルの間は伝搬路変動はないとして、全てのパイロットサブキャリアを用いてもよい。
However, n a represents the a-th pilot subcarriers, N P is the number of pilot subcarriers. a = 0,..., Np-1.
These channel selection and path extraction processes may be updated at regular intervals. For example, 14 OFDM symbols are drawn in FIG. 3, but the first OFDM symbol is used, and the remaining 13 In the OFDM symbol, the path extraction result in the first OFDM symbol may be used. The same operation may be performed for the next 14 OFDM symbols received subsequently. Note that t = 3 and 4 pilot subcarriers do not exist in the first OFDM symbol, but the second OFDM symbol may be used instead, and propagation may occur between the 14 OFDM symbols. All pilot subcarriers may be used on the assumption that there is no path variation.

パス抽出部503−rでは、チャネル選択部502−rから1つの周波数応答推定値が入力される。この周波数応答推定値は、複数のパスを含む。パス抽出部503−rは、この複数のパスから一つ又は若干のパスを抽出する。   In the path extraction unit 503-r, one frequency response estimation value is input from the channel selection unit 502-r. This frequency response estimation value includes a plurality of paths. The path extraction unit 503-r extracts one or some paths from the plurality of paths.

図7は、パス抽出部503−rの構成を示す概略的ブロック図である。
パス抽出部503−rは、伝搬路適合度算出部701、不要候補パス除去部702、判断部703およびパス決定部704を備える。なお、図7には、チャネル選択部502−rおよびCIR推定部504−rを併せて示す。また、パス抽出部503−rは、一次記憶場所(図面を見やすくするために図示せず)として、「選択したパス(selected_path)」、「候補パス(candidate_path)」、「1つ前の伝搬路適合度(channel_match_prev)」、「伝搬路適合度(channel_match)」および「伝搬路(channel)」を備える。
FIG. 7 is a schematic block diagram illustrating the configuration of the path extraction unit 503-r.
The path extraction unit 503-r includes a propagation path fitness calculation unit 701, an unnecessary candidate path removal unit 702, a determination unit 703, and a path determination unit 704. In FIG. 7, a channel selection unit 502-r and a CIR estimation unit 504-r are shown together. In addition, the path extraction unit 503-r uses “selected path (selected_path)”, “candidate path (candidate_path)”, “previous propagation path” as primary storage locations (not shown for easy viewing). “Compatibility (channel_match_prev)”, “propagation channel match (channel_match)”, and “propagation channel (channel)”.

伝搬路適合度算出部701、不要候補パス除去部702および判断部703は、縦続に接続される。
伝搬路適合度算出部701には、既述のように、チャネル選択部502−rから、選択された1つのストリームにおける周波数応答推定値が入力される。この周波数応答推定値は、既述のように、複数のパスを含む。
The propagation path adaptability calculation unit 701, the unnecessary candidate path removal unit 702, and the determination unit 703 are connected in cascade.
As described above, the channel response calculation unit 701 receives the frequency response estimation value in one selected stream from the channel selection unit 502-r. This frequency response estimation value includes a plurality of paths as described above.

伝搬路適合度算出部701は、「候補パス(candidate_path)」の要素と、パス決定部704から入力された「選択したパス(selected_path)」の要素と、に基づいて、チャネルインパルス応答を推定し、次いで、各場合の伝搬路適合度を計算して、「伝搬路適合度(channel_match)」に保存する。伝搬路適合度の算出の詳細は、後述する。   The propagation path fitness calculation unit 701 estimates the channel impulse response based on the element of “candidate_path” and the element of “selected path (selected_path)” input from the path determination unit 704. Next, the channel matching degree in each case is calculated and stored in “channel matching (channel_match)”. Details of the calculation of the propagation path suitability will be described later.

伝搬路適合度算出部701は、算出した伝搬路適合度を不要候補パス除去部702に出力する。
不要候補パス除去部702は、入力された伝搬路適合度を「1つ前の伝搬路適合度(channel_match_prev)」の要素と比較して、前者が後者より小さい場合は、その小さな伝搬路適合度を「伝搬路適合度(channel_match_prev)」の内容から削除する。また、不要候補パス除去部702は、その小さな伝播路適合度に対応する「候補パス(candidate_path)」の要素も削除する。
The propagation path fitness calculation unit 701 outputs the calculated propagation path fitness to the unnecessary candidate path removal unit 702.
The unnecessary candidate path removal unit 702 compares the input channel matching degree with the element of the “preceding channel matching level (channel_match_prev)”, and if the former is smaller than the latter, the small channel matching degree Are deleted from the content of “propagation channel match (channel_match_prev)”. Further, the unnecessary candidate path removal unit 702 also deletes the element of “candidate path (candidate_path)” corresponding to the small propagation path fitness.

不要候補パス除去部702は、「選択したパス(selected_path)」に保存されている選択パスのパス番号を抽出して、判断部703に出力する。また、不要候補パス除去部702は、「候補パス(candidate_path)」に保存されている候補パスを抽出して、判断部703に出力する。
判断部703は、不要候補パス除去部702の出力に候補パスが存在しない場合、すなわち「候補パス(candidate_path)」の内容が空である場合、選択パスのパス番号をCIR推定部504−rに出力する。判断部703は、不要候補パス除去部702の出力に候補パスが存在する場合、「伝搬路適合度(channel_match)」に保存されている伝播路適合度を抽出して、パス決定部704へ出力する。
パス決定部704は、判断部703から入力された伝播路適合度のうち一番大きなものを選択して、「1つ前の伝搬路適合度(channel_match_prev)」に重ね書きする。したがって、「1つ前の伝搬路適合度(channel_match_prev)」に保存されている内容は、この一番大きな伝播路適合度になる。
The unnecessary candidate path removal unit 702 extracts the path number of the selected path stored in the “selected path (selected_path)” and outputs the extracted path number to the determination unit 703. The unnecessary candidate path removal unit 702 extracts candidate paths stored in the “candidate path (candidate_path)” and outputs the candidate paths to the determination unit 703.
When there is no candidate path in the output of the unnecessary candidate path removal unit 702, that is, when the content of the “candidate path (candidate_path)” is empty, the determination unit 703 sends the path number of the selected path to the CIR estimation unit 504-r. Output. When there is a candidate path in the output of the unnecessary candidate path removal unit 702, the determination unit 703 extracts the propagation path fitness stored in the “propagation channel matching (channel_match)” and outputs it to the path determination unit 704. To do.
The path determination unit 704 selects the largest one of the propagation path matching degrees input from the determination unit 703 and overwrites it on the “preceding channel matching degree (channel_match_prev)”. Therefore, the content stored in the “preceding channel matching level (channel_match_prev)” is the largest channel matching level.

パス決定部704は、この一番大きな伝播路適合度に対応する「伝搬路適合度(channel_match)」の要素を「選択したパス(selected_path)」に移動する。したがって、この要素は、「伝搬路適合度(channel_match)」の内容から削除される。
パス決定部704は、「選択したパス(selected_path)」の要素を抽出して、伝搬路適合度算出部701へ出力する。
The path determination unit 704 moves the element of “propagation channel match (channel_match)” corresponding to the largest propagation channel match to “selected path (selected_path)”. Therefore, this element is deleted from the content of “propagation channel match (channel_match)”.
The path determination unit 704 extracts the element of “selected path (selected_path)” and outputs the extracted element to the propagation path fitness calculation unit 701.

図8は、パス抽出部503−rにおけるパス抽出の処理を示すフローチャートである。Lは、パス抽出部503−rが想定する最大遅延度である。
(ステップS801)
初期値として、一次記憶場所の「選択したパス(selected_path)」を空とし、一次記憶場所の「候補パス(candidate_path)」を0〜Lとし、一次記憶場所の「1つ前の伝搬路適合度(channel_match_prev)」を小さい値(例えば、負の無限大)とする。また、一次記憶場所の「伝搬路適合度(channel_match)」と「伝搬路(channel)」の初期値として、任意の値(例えばゼロ)を設定する。その後、ステップS802に進む。
(ステップS802)
「選択したパス(selected_path)」に保存されているパスに、「候補パス(candidate_path)」の1つのパスを加えた場合の、チャネルインパルス応答hを推定する。この操作を複数回だけ行う。具体的には、チャネルインパルス応答hは、次式により算出する。
FIG. 8 is a flowchart showing a path extraction process in the path extraction unit 503-r. L is the maximum delay assumed by the path extraction unit 503-r.
(Step S801)
As an initial value, the “selected path (selected_path)” of the primary storage location is emptied, the “candidate_path” of the primary storage location is set to 0-L, and the “previous propagation path suitability” of the primary storage location Let (channel_match_prev) "be a small value (eg, negative infinity). Also, an arbitrary value (for example, zero) is set as an initial value of “propagation channel match (channel_match)” and “propagation channel (channel)” in the primary storage location. Thereafter, the process proceeds to step S802.
(Step S802)
The channel impulse response hq is estimated when one path of “candidate_path” is added to the path stored in “selected path (selected_path)”. This operation is performed only several times. Specifically, the channel impulse response h q is calculated by the following equation.

Figure 2013074435
Figure 2013074435

ただし、qは、「選択したパス(selected_path)」のパスに、「候補パス(candidate_path)」に保存されている(L+1)個の候補パスの中で削除されていないうちの1個を、追加したパスの集合である。
は、CFR推定部501−rで得られる周波数応答推定値を縦に並べたベクトルであって、次式で与えられる。
However, q adds one of the (L + 1) candidate paths stored in the “candidate_path” that has not been deleted to the “selected path (selected_path)”. A set of paths.
H P is a vector obtained by arranging frequency response estimates obtained by the CFR estimator 501-r on the vertical, is given by the following equation.

Figure 2013074435
Figure 2013074435

は、次式で与えられるフーリエ変換行列である。 F q is a Fourier transform matrix given by the following equation.

Figure 2013074435
Figure 2013074435

ただし、nは、a番目のパイロットサブキャリアを表す。また、lは、qのb番目の要素を表す。
次に、パス抽出部503−rは、スカラー量として表される伝搬路適合度Bを次式のように算出する。
However, n a represents an a-th pilot subcarrier. Further, l b denotes the b-th element of q.
Next, the path extraction unit 503-r calculates the propagation path fitness B q expressed as a scalar quantity as in the following equation.

Figure 2013074435
Figure 2013074435

ただし、|q|はqの要素数、すなわちその時点で抽出されているパス数である。Nはパイロットサブキャリアの数である。
伝搬路適合度Bは、式(13)のチャネルインパルス応答hが式(14)の周波数応答推定値のベクトルHにどれだけ適合しているかを表す量である。
なお、上式は、ベイズ情報量規準を伝搬路適合度として用いた場合の式である。
パス抽出部503−rは、このチャネルインパルス応答推定値の算出と伝搬路適合度の算出とを、候補パスの数だけ行い、この伝播路適合度を一次記憶場所の「伝搬路適合度(channel_match)」に保存する。その後、ステップS803に進む。なお、チャネルインパルス応答の推定に、ステップS805で得られるchannelの値を用いて計算量を削減してもよい。
However, | q | is the number of elements of q, that is, the number of paths extracted at that time. N P is the number of pilot sub-carriers.
Channel match value B q is an amount representing how channel impulse response h q of formula (13) is adapted much the vector H P frequency response estimate of Formula (14).
Note that the above expression is an expression when the Bayes information criterion is used as the propagation path adaptability.
The path extraction unit 503-r performs the calculation of the channel impulse response estimation value and the calculation of the channel matching degree as many as the number of candidate paths, and calculates the channel matching degree as “channel matching (channel_match) of the primary storage location. ) ". Thereafter, the process proceeds to step S803. Note that the amount of calculation may be reduced by using the channel value obtained in step S805 to estimate the channel impulse response.

(ステップS803)
ステップS803では「伝搬路適合度(channel_match)」に保存された伝搬路適合度が、「1つ前の伝搬路適合度(channel_match_prev)」に保存されているパスのみによる伝搬路適合度より小さい場合は、その小さなパスは、候補パスから除去する。すなわち、対応するパス番号を、一次記憶場所の「候補パス(candidate_path)から削除する。また、「伝搬路適合度(channel_match)」からも対応するものを削除する。その後、ステップS804に進む。
(ステップS804)
ステップS803によって候補パスが無くなった場合、すなわち一次記憶場所の「候補パス(candidate_path)」が空になった場合、処理を終了する。候補パスが残っている場合はステップS805に進む。
(Step S803)
In step S803, when the channel match stored in “channel match (channel_match)” is smaller than the channel match based only on the path stored in “previous channel match (channel_match_prev)” The small path is removed from the candidate path. That is, the corresponding path number is deleted from “candidate_path” of the primary storage location. Also, the corresponding path number is deleted from “propagation channel match (channel_match)”. Thereafter, the process proceeds to step S804.
(Step S804)
If there is no candidate path in step S803, that is, if the “candidate_path” of the primary storage location is empty, the process ends. If a candidate path remains, the process proceeds to step S805.

(ステップS805)
得られた伝搬路適合度(channel_match)のうち、最大のものに対応する「候補パス(candidate_path)」の要素を、新たな選択パスとして「選択したパス(selected_path)」に移動して保存する。したがって、その要素は、「候補パス(candidate_path)」から削除される。また、このときのチャネルインパルス応答を一次記憶場所の「チャネル(channel)」に保存する。また、このときの伝搬路適合度を、一次記憶場所の「1つ前の伝搬路適合度(channel_match_prev)」に保存する。その後、ステップS806に進む。
(ステップS806)
ステップS805によって候補パスが無くなった場合、すなわち、一時記憶場所の「候補パス(candidate_path)」が空になった場合、処理を終了する。候補パスが残っている場合はステップS802に戻る。
(Step S805)
The element of the “candidate_path” corresponding to the largest one of the obtained channel match (channel_match) is moved to the “selected path (selected_path)” as a new selected path and stored. Therefore, the element is deleted from the “candidate_path”. Further, the channel impulse response at this time is stored in the “channel” of the primary storage location. Further, the channel matching degree at this time is stored in “previous channel matching degree (channel_match_prev)” in the primary storage location. Thereafter, the process proceeds to step S806.
(Step S806)
If there is no candidate path in step S805, that is, if the “candidate_path” in the temporary storage location becomes empty, the process ends. If a candidate path remains, the process returns to step S802.

最終的に一次記憶場所の「選択したパス(selected_path)」に保存されているパス番号が選択パスであるので、これをCIR推定部504−rに出力する。
また、パス抽出を行ったチャネルに関しては、チャネルインパルス応答推定値も得られているので、これをそのままCIR推定部504−rに出力し、CIR推定部504−rにおけるチャネルインパルス応答推定処理を1つ省略してもよい。
CIR推定部504−rでは、チャネル選択部502−rから入力されるT個の周波数応答推定値とパス抽出部503−rから入力されるパス情報を用いてT個のチャネルインパルス応答を推定して、このT個のチャネルインパルス応答をFFT部505−t−rに出力する。
Since the path number finally stored in the “selected path (selected_path)” of the primary storage location is the selected path, this is output to the CIR estimation unit 504-r.
Further, since the channel impulse response estimation value is also obtained for the channel from which the path has been extracted, this is output to the CIR estimation unit 504 -r as it is, and the channel impulse response estimation process in the CIR estimation unit 504 -r is 1 May be omitted.
CIR estimation section 504-r estimates T channel impulse responses using T frequency response estimation values input from channel selection section 502-r and path information input from path extraction section 503-r. The T channel impulse responses are output to the FFT unit 505-tr.

図9は、CIR推定部504−rの構成を示す概略的ブロック図である。
CIR推定部504−rは、重み生成部901−r−t、分配部902−r、重み乗算部903−r−tから構成される。図9では、チャネル選択部502−r、パス抽出部503−rおよびFFT部505−t−rをも併せて示す。ここでt=1、2、・・・、Tである。図9では、t=1、t=2、t=Tの3つの場合を簡略化して示す。
FIG. 9 is a schematic block diagram illustrating a configuration of the CIR estimation unit 504-r.
The CIR estimation unit 504-r includes a weight generation unit 901-rt, a distribution unit 902-r, and a weight multiplication unit 903-rt. In FIG. 9, a channel selection unit 502-r, a path extraction unit 503-r, and an FFT unit 505-tr are also shown. Here, t = 1, 2,..., T. In FIG. 9, three cases of t = 1, t = 2, and t = T are shown in a simplified manner.

重み生成部901−r−tは、パス抽出部503−rから入力されるパス情報qに基づいて、CIR(チャネルインパルス応答)を推定するための重み行列を生成する。
具体的には、第tストリームの重み行列W(t)は、次式(17)で表される。
The weight generation unit 901-rt generates a weight matrix for estimating the CIR (channel impulse response) based on the path information q input from the path extraction unit 503-r.
Specifically, the weight matrix W (t) of the t-th stream is expressed by the following equation (17).

Figure 2013074435
Figure 2013074435

ここで、F(t)は、式(15)で表されるフーリエ変換行列Fを構成するパイロットサブキャリアn、n、・・・nNP−1を、第tストリームのものに置き換えた行列である。
以上の点を図3を参照して説明をする。図3のマッピング図は、送信アンテナが4個存在する例である。図3の先頭の時間の処理を考える。すなわち、4個のマッピング図の時間軸上で一番左端のシンボルについて考える。式(17)の右辺で用いられているF(t)では、t=1〜4となる。t=1の送信アンテナ1では、周波数軸上で下から0、6、12、・・・番目のリソースエレメントにパイロットシンボルが配置される。したがって、式(17)のF(1)というものは、式(15)の右辺のn、n、・・・、を0、6、12、・・・にしたものである。同様にして、t=2の送信アンテナ2では、周波数軸上で下から3、9、15、・・・番目のリソースエレメントにパイロットシンボルが配置されているから、式(17)のF(2)というものは、式(15)の右辺のn、n、・・・、を3、9、15、・・・にしたものである。
Here, F q (t) is the pilot subcarriers n 0 , n 1 ,..., N NP-1 constituting the Fourier transform matrix F q represented by the equation (15), and the one of the t-th stream. This is the replaced matrix.
The above points will be described with reference to FIG. The mapping diagram of FIG. 3 is an example in which there are four transmission antennas. Consider processing at the beginning of FIG. That is, consider the leftmost symbol on the time axis of the four mapping diagrams. In F q (t) used on the right side of Expression (17), t = 1 to 4. In the transmission antenna 1 at t = 1, pilot symbols are arranged in the 0th, 6th, 12th,... resource elements from the bottom on the frequency axis. Therefore, F q (1) in Expression (17) is obtained by changing n 0 , n 1 ,... On the right side of Expression (15) to 0 , 6, 12,. Similarly, in the transmission antenna 2 at t = 2, since pilot symbols are arranged in the third, ninth, fifteenth,... Resource elements from the bottom on the frequency axis, F q ( 2) is obtained by changing n 0 , n 1 ,... On the right side of the formula (15) to 3, 9, 15,.

なお、t=3、4の送信アンテナ3、4では、時間軸上で一番左端のシンボルについてはパイロットシンボルが存在せず、左端から2番目のシンボルにパイロットシンボルが存在する。この場合は、例えば、先頭のシンボルとその次のシンボルの2つの時間を同時に処理をしてもよい。この場合、先頭のシンボルとその次のシンボルでは伝搬路変動はないものと仮定し、最終的に算出される復調用周波数応答推定値もこの2つのシンボルで共有することができる。
なお、パス抽出部503−rから入力されるパス番号は、重み生成部901−r−1〜901−r−Tに共通に入力される。すなち、このパス番号の集合は、式(17)の右辺で「q」として示されている。
Note that in the transmission antennas 3 and 4 at t = 3 and 4, no pilot symbol exists for the leftmost symbol on the time axis, and a pilot symbol exists for the second symbol from the leftmost. In this case, for example, two times of the first symbol and the next symbol may be processed simultaneously. In this case, it is assumed that there is no propagation path fluctuation in the first symbol and the next symbol, and the finally calculated frequency response estimation value for demodulation can be shared by these two symbols.
The path number input from the path extraction unit 503-r is input in common to the weight generation units 901-r-1 to 901-r-T. That is, the set of pass numbers is indicated as “q” on the right side of the equation (17).

分配部902−rは、チャネル選択部502−rから入力される選択しなかった(T−1)個の周波数応答推定値を受け取る。分配部902−rは、パス抽出部503−rから入力される選択した1個の周波数応答推定値を受け取る。分配器902−rは、この全体でT個の周波数応答推定値を、対応する重み乗算部903−r−tに分配する。
なお、チャネル選択部502−rは、選択したチャネルについても、その周波数応答推定値を出力するようにしてもよい。
The distribution unit 902-r receives (T−1) frequency response estimation values that are not selected and are input from the channel selection unit 502-r. The distribution unit 902-r receives one selected frequency response estimation value input from the path extraction unit 503-r. The distributor 902-r distributes the T frequency response estimation values in total to the corresponding weight multipliers 903-rt.
Note that the channel selection unit 502-r may output the frequency response estimation value for the selected channel.

重み乗算部903−r−tは、重み生成部901−r−tから入力される重み行列と、分配部902−rから入力される第tストリームの周波数応答推定値をベクトルとしたものを乗算し、第tストリームのチャネルインパルス応答推定値とする。これをFFT部505−t−rに出力する。   The weight multiplier 903-rt multiplies the weight matrix input from the weight generator 901-rt and the frequency response estimation value of the t-th stream input from the distributor 902-r as a vector. And the channel impulse response estimation value of the t-th stream. This is output to the FFT unit 505-tr.

図10は、CIR推定部504−rの処理を示すフローチャートである。
なお、図10が示す動作は、図9のパス抽出部503−rがパス情報をCIR推定部504−rに出力した後の処理である。
(ステップS1001)
重み生成部901−r−tは、パス抽出部503−rから入力されるパス情報を用いて、第tストリーム用の重み行列を生成する。その後、ステップS1002に進む。
FIG. 10 is a flowchart showing the processing of the CIR estimation unit 504-r.
The operation illustrated in FIG. 10 is a process after the path extraction unit 503-r in FIG. 9 outputs the path information to the CIR estimation unit 504-r.
(Step S1001)
The weight generation unit 901-rt uses the path information input from the path extraction unit 503-r to generate a weight matrix for the t-th stream. Thereafter, the process proceeds to step S1002.

(ステップS1002)
分配部902−rは、チャネル選択部502−rから入力される選択されなかった(T−1)個の周波数応答推定値およびパス抽出部503−rからの1個の周波数応答推定値を、対応する重み乗算部903−r−tに出力して、分配する。その後、ステップS1003に進む。
(ステップS1003)
重み乗算部903−r−tは、ステップS1001で得られる重み行列とステップS1002で得られる周波数応答推定値とを乗算し、CIR推定値を算出する。この推定値は、FFT部505−t−rに出力される。その後、CIR推定部504−rは動作を終了する。
(Step S1002)
The distribution unit 902-r receives (T−1) frequency response estimation values not selected from the channel selection unit 502-r and one frequency response estimation value from the path extraction unit 503-r, It outputs to corresponding weight multiplication part 903-rt, and distributes. Thereafter, the process proceeds to step S1003.
(Step S1003)
The weight multiplication unit 903-rt multiplies the weight matrix obtained in step S1001 and the frequency response estimated value obtained in step S1002 to calculate a CIR estimated value. This estimated value is output to FFT section 505-tr. Thereafter, the CIR estimation unit 504-r ends the operation.

FFT部505−t−rは、CIR推定部504−rから入力されたT個のチャネルインパルス応答に対して時間−周波数変換を施すことでチャネルインパルス応答を復調用周波数応答推定値に変換し、次いでこの復調用周波数応答推定値をMIMO検出部407に出力する。   The FFT unit 505-tr converts the channel impulse response into a demodulation frequency response estimation value by performing time-frequency conversion on the T channel impulse responses input from the CIR estimation unit 504-r, Next, this demodulation frequency response estimation value is output to MIMO detection section 407.

図11は、本実施形態に係る受信装置1bの動作を示すフローチャートである。
なお、図11が示す動作は、図4の受信部402−rが受信信号をGI除去部403−rに出力した後の処理である。
FIG. 11 is a flowchart showing the operation of the receiving device 1b according to this embodiment.
The operation illustrated in FIG. 11 is processing after the reception unit 402-r in FIG. 4 outputs the reception signal to the GI removal unit 403-r.

(ステップS1101)
GI除去部403−rは、受信信号からガードインターバルを除去する。その後、ステップS1102に進む。
(ステップS1102)
FFT部404−rは、ステップS1101で得られる信号に対して時間-周波数変換を行う。デマッピング部405−rは、得られた周波数領域の信号からデータとパイロットを分離する。デマッピング部405−rは、パイロットサブキャリアの受信信号を伝搬路推定部406に出力した後、ステップS1103に進む。
(ステップS1103)
(Step S1101)
The GI removal unit 403-r removes the guard interval from the received signal. Thereafter, the process proceeds to step S1102.
(Step S1102)
The FFT unit 404-r performs time-frequency conversion on the signal obtained in step S1101. The demapping unit 405-r separates data and pilot from the obtained frequency domain signal. The demapping section 405-r outputs the pilot subcarrier received signal to the propagation path estimation section 406, and then proceeds to step S1103.
(Step S1103)

伝搬路推定部406のCFR推定部501−rは、パイロットサブキャリアの受信信号から、送信アンテナそれぞれについての周波数応答推定値を算出する。次に、チャネル選択部502−rは、その中から電力の総和が最大のものを選択する。その後、ステップS1104に進む。
(ステップS1104)
パス抽出部503−rは、ステップS1103で得られるチャネルにおける周波数応答推定値を用いてパス抽出を行う。その後、ステップS1105に進む。
The CFR estimator 501-r of the propagation path estimator 406 calculates a frequency response estimated value for each transmission antenna from the received signal of the pilot subcarrier. Next, channel selection section 502-r selects the one with the maximum total power from among them. Thereafter, the process proceeds to step S1104.
(Step S1104)
The path extraction unit 503-r performs path extraction using the frequency response estimation value in the channel obtained in step S1103. Thereafter, the process proceeds to step S1105.

(ステップS1105)
CIR推定部504−rは、ステップS1104で得られるパス情報を用いて、送信アンテナそれぞれについてのチャネルインパルス応答推定値を算出する。その後、ステップS1106に進む。
(ステップS1106)
ステップS1105で得られるチャネルインパルス応答推定値を、FFT部505−t−rにおいて復調用周波数応答推定値に変換した後、MIMO検出部407でMIMO分離を行う。その後、ステップS1107に進む。
(ステップS1107)
ステップS1106で得られるMIMO分離結果を用いて、復号を行う。その後、受信装置1bは動作を終了する。
(Step S1105)
The CIR estimation unit 504-r calculates a channel impulse response estimation value for each transmission antenna using the path information obtained in step S 1104. Thereafter, the process proceeds to step S1106.
(Step S1106)
The channel impulse response estimation value obtained in step S1105 is converted into a demodulation frequency response estimation value in the FFT section 505-tr, and then the MIMO detection section 407 performs MIMO separation. Thereafter, the process proceeds to step S1107.
(Step S1107)
Decoding is performed using the MIMO separation result obtained in step S1106. Thereafter, the receiving device 1b ends the operation.

このように、本実施形態によれば、受信装置1bは、TR個必要なパス抽出部をR個に抑えているため、計算量を大きく削減することができ、回路規模を大きく削減することができ、しかも受信装置の消費電力を大きく低減することができる。   As described above, according to the present embodiment, the receiving apparatus 1b reduces the number of TR required path extraction units to R, so that the amount of calculation can be greatly reduced and the circuit scale can be greatly reduced. In addition, the power consumption of the receiving apparatus can be greatly reduced.

<第2の実施形態>
第1の実施形態では、受信アンテナrにおける、T通りのチャネルのうち、1つのチャネルを用いてパス抽出を行い、その結果を用いて残りのT−1個のチャネルについてのチャネルインパルス応答を推定する方法について説明した。
第2の実施形態では、受信アンテナ毎の処理ではなく、送信アンテナ毎の処理を行う。
<Second Embodiment>
In the first embodiment, path extraction is performed using one channel among T channels in the receiving antenna r, and the channel impulse response for the remaining T-1 channels is estimated using the result. Explained how to do.
In the second embodiment, processing for each transmission antenna is performed instead of processing for each reception antenna.

第2の実施形態の通信システムは、送信装置2aおよび受信装置2bを備える。
第2の実施形態の送信装置2aの構成は、図2に示す第1の実施形態の送信装置1aの構成と同じである。したがって、その説明を省略する。
The communication system according to the second embodiment includes a transmission device 2a and a reception device 2b.
The configuration of the transmission device 2a of the second embodiment is the same as the configuration of the transmission device 1a of the first embodiment shown in FIG. Therefore, the description is omitted.

図12は、第2の実施形態の受信装置2bの構成を示す概略図である。
受信装置2bは、受信部402−r、GI除去部403−r、FFT部404−r、デマッピング部405−r、伝搬路推定部1206、MIMO検出部407および復号部408−tを備える。ここで、r=1、2、・・・、Rであり、そしてt=1、2、・・・、Tである。図12には、受信アンテナ1b−rを併せて示す。図12では、r=1、r=2、r=Rの3つの場合、そしてt=1、t=2、t=Tの3つの場合のみを簡略化して示す。
受信装置2bの構成を第1の実施形態の受信装置1bの構成と対比すると、後者の伝搬路推定部406が前者では伝搬路推定部1206となっていて相違する。しかし、他の構成(受信部402−r、GI除去部403−r、FFT部404−r、デマッピング部405−r、MIMO検出部407および復号部408−tの構成)は同一であるので、その説明を省略する。
FIG. 12 is a schematic diagram illustrating a configuration of the receiving device 2b according to the second embodiment.
The reception device 2b includes a reception unit 402-r, a GI removal unit 403-r, an FFT unit 404-r, a demapping unit 405-r, a propagation path estimation unit 1206, a MIMO detection unit 407, and a decoding unit 408-t. Here, r = 1, 2,..., R, and t = 1, 2,. FIG. 12 also shows the receiving antenna 1b-r. In FIG. 12, only three cases of r = 1, r = 2, and r = R, and three cases of t = 1, t = 2, and t = T are shown in a simplified manner.
When the configuration of the receiving device 2b is compared with the configuration of the receiving device 1b of the first embodiment, the latter channel estimation unit 406 is different from the former in that it is a channel estimation unit 1206. However, other configurations (configurations of the reception unit 402-r, the GI removal unit 403-r, the FFT unit 404-r, the demapping unit 405-r, the MIMO detection unit 407, and the decoding unit 408-t) are the same. The description is omitted.

図13は、伝搬路推定部1206の構成を示す概略ブロック図である。
伝搬路推定部1206は、CFR推定部1301−r、チャネル選択部1302−t、パス抽出部1303−t、CIR推定部1304−t、FFT部1305−t−rを備える。図13には、デマッピング部405−rおよびMIMO検出部407を併せて示す。
FIG. 13 is a schematic block diagram showing the configuration of the propagation path estimation unit 1206.
The propagation path estimation unit 1206 includes a CFR estimation unit 1301-r, a channel selection unit 1302-t, a path extraction unit 1303-t, a CIR estimation unit 1304-t, and an FFT unit 1305-tr. FIG. 13 shows the demapping unit 405-r and the MIMO detection unit 407 together.

CFR推定部1301−rは、デマッピング部405−rが出力するパイロットサブキャリアの受信信号を用いて、パイロットサブキャリアの周波数応答を推定する。CFR推定部1301−rは、r番目の受信アンテナにおける受信信号に含まれるT個のストリームすべてに対して、周波数応答推定値を算出する。
CFR推定部1301−rは、T個の周波数応答推定値をチャネル選択部1302−tに出力する。
CFR estimation section 1301-r estimates the pilot subcarrier frequency response using the received pilot subcarrier signal output from demapping section 405-r. The CFR estimator 1301-r calculates frequency response estimation values for all T streams included in the received signal at the r-th receiving antenna.
CFR estimation section 1301-r outputs T frequency response estimation values to channel selection section 1302-t.

例えば、チャネル選択部1302−1には、CFR推定部1301−1〜1301−Rから第1送信アンテナにおけるチャネルの周波数応答推定値が入力される。チャネル選択部1302−2には、CFR推定部1301−1〜1301−Rから第2送信アンテナにおけるチャネルの周波数応答推定値が入力される。チャネル選択部1302−Tには、CFR推定部1301−1〜1301−Rから第T送信アンテナにおけるチャネルの周波数応答推定値が入力される。すなわち、チャネル選択部1302−tには、CFR推定部1301−1〜1301−Rから合計でR個の周波数応答推定値が入力される。   For example, the channel response estimation value of the channel in the first transmission antenna is input to the channel selection unit 1302-1 from the CFR estimation units 1301-1 to 1301-R. Channel selection section 1302-2 receives the frequency response estimation value of the channel in the second transmission antenna from CFR estimation sections 1301-1 to 1301-R. Channel selection section 1302-T receives channel frequency response estimation values for the T-th transmitting antenna from CFR estimation sections 1301-1 to 1301-R. That is, a total of R frequency response estimation values are input to channel selection section 1302-t from CFR estimation sections 1301-1 to 1301-R.

チャネル選択部1302−tは、第1の実施形態と同様に、この入力の中からパイロットサブキャリアの伝搬路推定値の電力の総和が最大になるチャネルを選択し、その周波数応答推定値を、パス抽出部1303−tに出力する。
パス抽出部1303−tは、第1の実施形態と同様に、パス抽出を行う。パス抽出部1303−tは、抽出したパス情報をCIR推定部1304−tに出力する。
Similarly to the first embodiment, the channel selection unit 1302-t selects a channel in which the sum of the power of the propagation path estimation values of the pilot subcarriers is maximized from this input, and the frequency response estimation value is The data is output to the path extraction unit 1303-t.
The path extraction unit 1303-t performs path extraction as in the first embodiment. The path extraction unit 1303-t outputs the extracted path information to the CIR estimation unit 1304-t.

また、チャネル選択部1302−tは、R個の周波数応答推定値をCIR推定部1304−tに出力する。
CIR推定部1304−tは、チャネル選択部1302−tが出力するR個の周波数応答推定値と、パス抽出部1303−tが出力するパス情報とを用いて、チャネルインパルス応答推定値を算出する。
Channel selection section 1302-t outputs R frequency response estimation values to CIR estimation section 1304-t.
CIR estimation section 1304-t calculates a channel impulse response estimation value using R frequency response estimation values output from channel selection section 1302-t and path information output from path extraction section 1303-t. .

CIR推定部1304−tは、算出したチャネルインパルス応答推定値を、対応するFFT部1305−t−rに出力する。
例えば、CIR推定部1304−2は、受信アンテナr=1に関するチャネルインパルス応答推定値をFFT部1305−2−1に出力する。CIR推定部1304−2は、受信アンテナr=Rに関するチャネルインパルス応答推定値をFFT部1305−2−Rに出力する。
FFT部1305−t−rでは、第t送信アンテナから第r受信アンテナへのチャネルにおけるチャネルインパルス応答を復調用周波数応答推定値に変換する。FFT部1305−t−rは、復調用周波数応答推定値をMIMO検出部407に出力する。
The CIR estimation unit 1304-t outputs the calculated channel impulse response estimation value to the corresponding FFT unit 1305-tr.
For example, the CIR estimation unit 1304-2 outputs a channel impulse response estimation value related to the reception antenna r = 1 to the FFT unit 1305-2-1. CIR estimation section 1304-2 outputs a channel impulse response estimation value for reception antenna r = R to FFT section 1305-2-R.
The FFT unit 1305-tr converts the channel impulse response in the channel from the t-th transmitting antenna to the r-th receiving antenna into a frequency response estimation value for demodulation. The FFT unit 1305 -tr outputs the demodulation frequency response estimation value to the MIMO detection unit 407.

第1の実施形態では、受信アンテナrで観測されるT通りのチャネルのうち、1つのチャネルを用いてパス抽出を行い、その結果を用いて残りのT−1個のチャネルについてチャネルインパルス応答を推定する方法について説明した。第2の実施形態では、1つの受信アンテナで観測されるチャネルではなく、1つの送信アンテナからR個の受信アンテナへのR個のチャネルの中から1つのチャネルを用いてパス抽出を行い、これにより残りのR−1個のチャネルについてチャネルインパルス応答を推定する。   In the first embodiment, path extraction is performed using one channel among T channels observed by the receiving antenna r, and the channel impulse response is obtained for the remaining T-1 channels using the result. The estimation method was explained. In the second embodiment, path extraction is performed using one channel out of R channels from one transmission antenna to R reception antennas instead of a channel observed by one reception antenna. To estimate the channel impulse response for the remaining R-1 channels.

図14は、受信装置2bの動作を説明するフローチャートである。
図14が示す動作は、図12の受信部402−rが受信信号をGI除去部403−rに出力した後の処理である。
(ステップS1401)
GI除去部403−rは、受信信号からガードインターバルを除去する。その後、ステップS1402に進む。
(ステップS1402)
FFT部404−rは、ステップS1401で得られる信号に対して時間−周波数変換を行う。デマッピング部405−rは、得られた周波数領域の信号からデータとパイロットを分離する。デマッピング部405−rがパイロットサブキャリアの受信信号を伝搬路推定部1206に出力した後、ステップS1403に進む。
(ステップS1403)
CFR推定部1301−rは、得られたパイロットサブキャリアの受信信号から、送信アンテナそれぞれについての周波数応答推定値を算出する。そのうち、第t送信アンテナからのR個のチャネルにおける周波数応答推定値を、チャネル選択部1302−tに出力する。チャネル選択部1302−tは、その中から電力の総和が最大のものを選択する。その後、ステップS1404に進む。
(ステップS1404)
パス抽出部1303−tは、ステップS1403で得られるチャネルにおける周波数応答推定値を用いて、パス抽出を行う。その後、ステップS1405に進む。
(ステップS1405)
CIR推定部1304−tは、ステップS1404で得られるパス情報およびチャネル選択部1302−tからのR個の周波数応答推定値を用いて、受信アンテナそれぞれについてのチャネルインパルス応答推定値を算出する。その後、ステップS1406に進む。
(ステップS1406)
ステップS1405で得られるチャネルインパルス応答推定値を、FFT部1305−t−rにおいて復調用周波数応答推定値に変換した後、MIMO検出部407でMIMO分離を行う。その後、ステップS1407に進む。
(ステップS1407)
ステップS1406で得られるMIMO分離結果を用いて、復号を行う。その後、受信装置2bは動作を終了する。
このように、本実施形態によれば、図13に示した通り、TR個必要なパス抽出部をT個に抑えているため、計算量を大きく削減することができ、回路規模を大きく削減することができ、しかも消費電力を大きく低減することができる。
FIG. 14 is a flowchart for explaining the operation of the receiving device 2b.
The operation illustrated in FIG. 14 is processing after the reception unit 402-r in FIG. 12 outputs the reception signal to the GI removal unit 403-r.
(Step S1401)
The GI removal unit 403-r removes the guard interval from the received signal. Thereafter, the process proceeds to step S1402.
(Step S1402)
The FFT unit 404-r performs time-frequency conversion on the signal obtained in step S1401. The demapping unit 405-r separates data and pilot from the obtained frequency domain signal. The demapping unit 405-r outputs the pilot subcarrier reception signal to the propagation path estimation unit 1206, and then proceeds to step S1403.
(Step S1403)
The CFR estimator 1301-r calculates a frequency response estimation value for each of the transmission antennas from the obtained pilot subcarrier received signal. Among them, the frequency response estimation values in the R channels from the t-th transmission antenna are output to the channel selection unit 1302-t. The channel selection unit 1302-t selects the one having the maximum total power from among them. Thereafter, the process proceeds to step S1404.
(Step S1404)
The path extraction unit 1303-t performs path extraction using the frequency response estimation value in the channel obtained in step S1403. Thereafter, the process proceeds to step S1405.
(Step S1405)
CIR estimation section 1304-t calculates a channel impulse response estimation value for each receiving antenna, using the path information obtained in step S1404 and the R frequency response estimation values from channel selection section 1302-t. Thereafter, the process proceeds to step S1406.
(Step S1406)
The channel impulse response estimation value obtained in step S1405 is converted into a demodulation frequency response estimation value in the FFT section 1305-tr, and then the MIMO detection section 407 performs MIMO separation. Thereafter, the process proceeds to step S1407.
(Step S1407)
Decoding is performed using the MIMO separation result obtained in step S1406. Thereafter, the receiving device 2b ends the operation.
Thus, according to the present embodiment, as shown in FIG. 13, the number of TR path extraction units required is limited to T, so that the amount of calculation can be greatly reduced and the circuit scale can be greatly reduced. In addition, power consumption can be greatly reduced.

<第3の実施形態>
第1の実施形態では、受信アンテナ毎に1つのパス抽出を行う場合について説明し、第2の実施形態では、送信アンテナ毎に1つのパス抽出を行う場合について説明をした。
本実施形態では、送信装置の送信アンテナの個数をTとし、受信装置の受信アンテナの個数をR個とした場合の、TR個のチャネルから、パス情報を共有するチャネルをP個に分ける方法について説明する。
<Third Embodiment>
In the first embodiment, the case where one path is extracted for each reception antenna has been described, and in the second embodiment, the case where one path is extracted for each transmission antenna has been described.
In the present embodiment, a method of dividing a channel sharing path information into P channels from TR channels when the number of transmission antennas of the transmission device is T and the number of reception antennas of the reception device is R. explain.

図15は、第3の実施形態に係る無線通信システム3の概要を示す図である。
無線通信システム3は、送信装置3a−1〜3a−Pおよび受信装置3bを備える。送信装置3a−1〜3a−Pは、例えば、移動通信システムの基地局であり、受信装置3bは、当該システムの端末である。その代わりに、送信装置3a−1〜3a−Pは、移動通信システム3の端末であり、受信装置3bは、当該システムの基地局であってもよい。
FIG. 15 is a diagram illustrating an overview of the wireless communication system 3 according to the third embodiment.
The wireless communication system 3 includes transmission devices 3a-1 to 3a-P and a reception device 3b. The transmission devices 3a-1 to 3a-P are, for example, base stations of the mobile communication system, and the reception device 3b is a terminal of the system. Instead, the transmission devices 3a-1 to 3a-P may be terminals of the mobile communication system 3, and the reception device 3b may be a base station of the system.

送信装置3a−1〜送信装置3a−Pは、全体でT個の送信アンテナを有する。したがって、送信装置3a−pは、1個の送信アンテナを備える場合もあれば、複数個の送信アンテナを備える場合もあるが、図15では、図面を見やすくするために、1個の送信アンテナを備えるものとして示す。送信装置がそれぞれ2個の送信アンテナを備える場合は、送信装置の台数Pは、P=T/2である。送信装置がそれぞれ1個の送信アンテナを備える場合は、送信装置の台数Pは、P=Tである。
無線通信システム3は、T×R MIMO,特に、T×Rのマルチユーザー MIMOを構成する。
The transmission devices 3a-1 to 3a-P have T transmission antennas in total. Therefore, although the transmission apparatus 3a-p may include one transmission antenna or a plurality of transmission antennas, in FIG. 15, in order to make the drawing easy to see, one transmission antenna is provided. Shown as provided. When each transmission device includes two transmission antennas, the number P of transmission devices is P = T / 2. When each transmission apparatus is provided with one transmission antenna, the number P of transmission apparatuses is P = T.
The radio communication system 3 constitutes T × R MIMO, in particular, T × R multi-user MIMO.

送信装置3a―p(p=1、・・・、P)の構成は、アンテナの個数および送信装置の内部の経路の個数を除いて、図2に示す第1の実施形態の送信装置1aの構成と同じである。したがって、その説明を省略する。   The configuration of the transmitter 3a-p (p = 1,..., P) is the same as that of the transmitter 1a of the first embodiment shown in FIG. 2 except for the number of antennas and the number of paths inside the transmitter. Same as the configuration. Therefore, the description is omitted.

図16は、受信装置3bの構成を示す概略図である。
受信装置3bは、受信部402−r、GI除去部403−r、FFT部404−r、デマッピング部405−r、伝搬路推定部1606、MIMO検出部407および復号部408−tを備える。ここで、r=1、2、・・・、Rであり、そしてt=1、2、・・・、Tである。図16には、受信アンテナ3b−rを併せて示す。図16では、r=1、r=2、r=Rの3つの場合、そしてt=1、t=2、t=Tの3つの場合のみを簡略化して示す。
受信装置3bの構成を第1の実施形態の受信装置1b(図4)の構成と対比すると、後者の伝搬路推定部406が前者では伝搬路推定部1606となっていて相違する。しかし、他の構成(受信部402−r、GI除去部403−r、FFT部404−r、デマッピング部405−r、MIMO検出部407および復号部408−tの構成)は同一であるので、その説明を省略する。
FIG. 16 is a schematic diagram illustrating a configuration of the reception device 3b.
The reception device 3b includes a reception unit 402-r, a GI removal unit 403-r, an FFT unit 404-r, a demapping unit 405-r, a propagation path estimation unit 1606, a MIMO detection unit 407, and a decoding unit 408-t. Here, r = 1, 2,..., R, and t = 1, 2,. FIG. 16 also shows the receiving antenna 3b-r. In FIG. 16, only the three cases of r = 1, r = 2, and r = R, and the three cases of t = 1, t = 2, and t = T are shown in a simplified manner.
When the configuration of the receiving device 3b is compared with the configuration of the receiving device 1b (FIG. 4) of the first embodiment, the latter channel estimation unit 406 is different from the former in that it is a channel estimation unit 1606. However, other configurations (configurations of the reception unit 402-r, the GI removal unit 403-r, the FFT unit 404-r, the demapping unit 405-r, the MIMO detection unit 407, and the decoding unit 408-t) are the same. The description is omitted.

図17は、受信装置3bにおける伝搬路推定部1606の構成を示す概略ブロック図である。
伝搬路推定部1606は、CFR推定部1701−r、チャネル選択部1702−p、パス抽出部1703−p、CIR推定部1704−r、FFT部1705−t−r、グルーピング部1706および逆グルーピング部170−7を備える。ここで、r=1、2、・・・、Rであり、そしてt=1、2、・・・、Tであり、そしてp=1、2、・・・、Pである。図17には、デマッピング部405−rおよびMIMO検出部407を併せて示す。
図17では、CFR推定部1701−r、CIR推定部1704−rおよびFFT部1705−t−rについては、r=1、r=2、r=Rの3つの場合を簡略化して示す。チャネル選択部1702−pおよびパス抽出部1703−pについては、p=1、p=2、p=Pの3つの場合を簡略化して示す。
なお、図17には、デマッピング部405−rおよびMIMO検出部407も併せて示す。
FIG. 17 is a schematic block diagram illustrating a configuration of the propagation path estimation unit 1606 in the reception device 3b.
The propagation path estimation unit 1606 includes a CFR estimation unit 1701-r, a channel selection unit 1702-p, a path extraction unit 1703-p, a CIR estimation unit 1704-r, an FFT unit 1705-tr, a grouping unit 1706, and an inverse grouping unit. 170-7. Here, r = 1, 2,..., R, t = 1, 2,..., T, and p = 1, 2,. FIG. 17 shows the demapping unit 405-r and the MIMO detection unit 407 together.
In FIG. 17, the CFR estimator 1701-r, the CIR estimator 1704-r, and the FFT unit 1705-tr are shown in a simplified manner in three cases of r = 1, r = 2, and r = R. For the channel selector 1702-p and path extractor 1703-p, three cases of p = 1, p = 2, and p = P are shown in a simplified manner.
FIG. 17 also shows the demapping unit 405-r and the MIMO detection unit 407.

CFR推定部1701−rは、デマッピング部405−rが出力するパイロットサブキャリアの受信信号を用いて、パイロットサブキャリアの周波数応答を推定する。CFR推定部1701−rは、r番目の受信アンテナにおける受信信号に含まれるT個のストリームすべてに対して、周波数応答推定値を算出する。CFR推定部1701−rは、T個の周波数応答推定値をグルーピング部1706へ出力する。   CFR estimation section 1701-r estimates the pilot subcarrier frequency response using the received pilot subcarrier signal output from demapping section 405-r. The CFR estimator 1701-r calculates frequency response estimation values for all T streams included in the received signal at the r-th receiving antenna. The CFR estimation unit 1701-r outputs T frequency response estimation values to the grouping unit 1706.

グルーピング部1706は、TR個の周波数応答推定値をP組の群にグループ分けして、チャネル選択部1702−pへ出力する。例えば、P=T/2の場合は、グルーピング部1706は、2R個の周波数応答推定値をチャネル選択部1702−pへ出力する。P=Tの場合は、グルーピング部1706は、R個の周波数応答推定値をチャネル選択部1702−pへ出力する。
したがって、チャネル選択部1702−1〜1702−Pには、全体で、TR個の周波数応答推定値が入力する。
また、グルーピング部1706は、TR個の周波数応答推定値を逆グルーピング部1707へ出力する。
The grouping unit 1706 divides the TR frequency response estimation values into groups of P sets, and outputs them to the channel selection unit 1702-p. For example, when P = T / 2, the grouping unit 1706 outputs 2R frequency response estimation values to the channel selection unit 1702-p. When P = T, grouping section 1706 outputs R frequency response estimation values to channel selection section 1702-p.
Therefore, TR frequency response estimation values are input to channel selection sections 1702-1 to 1702-P as a whole.
Further, grouping section 1706 outputs TR frequency response estimation values to inverse grouping section 1707.

チャネル選択部1702−pの動作は,以下のとおりである。
まず、P=Tの場合、つまり送信装置3a−tがT台あって各送信装置が1個の送信アンテナを備える場合について、説明をする。
チャネル選択部1702−1は、送信アンテナ3a−1−1に関するR個の周波数応答推定値から、最も良いと判断した、すなわち、電力の総和が最大となると判断した1つの周波数応答推定値を選択してパス抽出部1703−1に出力する。また、チャネル選択部1702−2は、送信アンテナ3a−2−1に関するR個の周波数応答推定値から、最も良いと判断した1つの周波数応答推定値を選択してパス抽出部1703−2に出力する。また、チャネル選択部1702−Pは、送信アンテナ3a−P−1に関するR個の周波数応答推定値から、最も良いと判断した1つの周波数応答推定値を選択してパス抽出部1703−Pに出力する。
The operation of the channel selector 1702-p is as follows.
First, a case where P = T, that is, a case where there are T transmission apparatuses 3a-t and each transmission apparatus includes one transmission antenna will be described.
The channel selection unit 1702-1 selects one frequency response estimation value determined to be the best from the R frequency response estimation values related to the transmission antenna 3a-1-1, that is, the power sum is determined to be maximum. And output to the path extraction unit 1703-1. Further, the channel selection unit 1702-2 selects one frequency response estimation value determined to be the best from the R frequency response estimation values for the transmission antenna 3a-2-1 and outputs the selected frequency response estimation value to the path extraction unit 1703-2. To do. Further, channel selection section 1702-P selects one frequency response estimated value determined to be the best from R frequency response estimated values related to transmission antennas 3a-P-1, and outputs the selected frequency response estimated value to path extraction section 1703-P. To do.

つぎに、P=T/2の場合、つまり送信装置3a−tがT/2台あって各送信装置3a−pが2個の送信アンテナを備える場合について、説明をする。
チャネル選択部1702−1は、送信アンテナ3a−1−1および送信アンテナ3a−1−2に関する2R個の周波数応答推定値から、最も良いと判断した一つの周波数応答推定値を選択してパス抽出部1703−1に出力する。また、チャネル選択部1702は、送信アンテナ3a−2−1および3a−2−2に関する2R個の周波数応答推定値から、最も良いと判断した一つの周波数応答推定値を選択してパス抽出部1703−2に出力する。また、チャネル選択部1702−Pは、送信アンテナ3a−P−1および3a−P−2に関する2R個の周波数応答推定値から、最も良いと判断した一つの周波数応答推定値を選択してパス抽出部1403−Pに出力する。
Next, a case where P = T / 2, that is, a case where there are T / 2 transmission apparatuses 3a-t and each transmission apparatus 3a-p includes two transmission antennas will be described.
Channel selection section 1702-1 selects one frequency response estimated value determined to be the best from 2R frequency response estimated values related to transmitting antenna 3a-1-1 and transmitting antenna 3a-1-2, and performs path extraction. Output to the unit 1703-1. Also, the channel selection unit 1702 selects one frequency response estimation value determined to be the best from the 2R frequency response estimation values for the transmission antennas 3a-2-1 and 3a-2-2, and selects the path extraction unit 1703. Output to -2. Further, channel selection section 1702-P selects one frequency response estimated value determined to be the best from 2R frequency response estimated values for transmitting antennas 3a-P-1 and 3a-P-2, and performs path extraction. Part 1403-P.

以上説明をしたようにして、チャネル選択部1702−pは、TR個の周波数応答推定値を送信装置に関して任意のP組の群にグループ分けして、この群をパス抽出部1703−pに出力する。ただし、P≦Tである。このようなグループ分けは、マルチユーザMIMOの場合に有効であり、また、複数の基地局が連携してデータを送信している場合に有効である。   As described above, channel selection section 1702-p groups TR frequency response estimation values into arbitrary P sets of groups for the transmission apparatus, and outputs this group to path extraction section 1703-p. To do. However, P ≦ T. Such grouping is effective in the case of multiuser MIMO, and is effective in the case where a plurality of base stations transmit data in cooperation.

パス抽出部1703−pでは、第1の実施形態および第2の実施形態と同様にパス抽出を行い、パス抽出の結果を逆グルーピング部1707に出力する。
逆グルーピング部1707は、TR個の周波数応答推定値と、パス抽出部1703−pで得られるパス抽出の結果と、を対応するCIR推定部1704−rに出力する。
The path extraction unit 1703-p performs path extraction as in the first and second embodiments, and outputs the path extraction result to the reverse grouping unit 1707.
The inverse grouping unit 1707 outputs the TR frequency response estimation values and the path extraction result obtained by the path extraction unit 1703-p to the corresponding CIR estimation unit 1704-r.

CIR推定部1704−rは、TR個の周波数応答推定値と、パス抽出部1703−pで得られるパス抽出の結果と、を用いてチャネルインパルス応答を推定する。CIR推定部1704−rは、推定されたチャネルインパルス応答をFFT部1705−t−rに出力する。
FFT部1705−t−rは、第t送信アンテナから第r受信アンテナへのチャネルにおけるチャネルインパルス応答を復調用周波数応答推定値に変換する。FFT部1705−t−rは、復調用周波数応答推定値をMIMO検出部407に出力する。
The CIR estimation unit 1704-r estimates the channel impulse response using the TR frequency response estimation values and the path extraction result obtained by the path extraction unit 1703-p. The CIR estimation unit 1704-r outputs the estimated channel impulse response to the FFT unit 1705-tr.
FFT section 1705-tr converts the channel impulse response in the channel from the t-th transmitting antenna to the r-th receiving antenna into a frequency response estimation value for demodulation. The FFT unit 1705-tr outputs the demodulation frequency response estimation value to the MIMO detection unit 407.

図18は、本実施形態に係る受信装置3bの動作を示すフローチャート図である。
なお、この図が示す動作は、図16の受信部402−rが受信信号をGI除去部403−rに出力した後の処理である。
FIG. 18 is a flowchart showing the operation of the receiving device 3b according to this embodiment.
The operation shown in this figure is processing after the reception unit 402-r in FIG. 16 outputs the reception signal to the GI removal unit 403-r.

(ステップS1801)
GI除去部403−rは、受信信号からガードインターバルを除去する。その後、ステップS1802に進む。
(ステップS1802)
FFT部404−rは、ステップS1801で得られる信号に対して時間−周波数変換を行う。デマッピング部405−rは、得られた周波数領域の信号からデータとパイロットを分離する。デマッピング部405−rは、データがマッピングされたサブキャリアの受信信号をMIMO検出部407へ出力するとともに、パイロットサブキャリアの受信信号を伝搬路推定部1606に出力した後、ステップS1803に進む。
(Step S1801)
The GI removal unit 403-r removes the guard interval from the received signal. Thereafter, the process proceeds to step S1802.
(Step S1802)
The FFT unit 404-r performs time-frequency conversion on the signal obtained in step S1801. The demapping unit 405-r separates data and pilot from the obtained frequency domain signal. The demapping section 405-r outputs the subcarrier reception signal to which the data is mapped to the MIMO detection section 407 and outputs the pilot subcarrier reception signal to the propagation path estimation section 1606, and then proceeds to step S1803.

(ステップS1803)
ステップS1803では、CFR推定部1701−rは、得られたパイロットサブキャリアの受信信号から、送信アンテナそれぞれについての周波数応答推定値を算出し、次にこの周波数応答推定値をグルーピング部1706へ出力する。グルーピング部1706では、TR個の周波数応答推定値の中からパス情報を共有するチャネルを選択し、これをP組の群にグループ分けして、チャネル選択部1702−pへ出力する。
(ステップS1804)
チャネル選択部1702−pは、グルーピング部1706から入力されたものの中から、最も良いと判断した1つまたは若干の周波数応答推定値を選択するチャネル選択を行って、これをパス抽出部1703−pに出力する。
(Step S1803)
In step S1803, CFR estimation section 1701-r calculates a frequency response estimated value for each of the transmission antennas from the obtained pilot subcarrier received signal, and then outputs this frequency response estimated value to grouping section 1706. . The grouping unit 1706 selects channels sharing path information from the TR frequency response estimation values, groups them into P groups, and outputs them to the channel selection unit 1702-p.
(Step S1804)
The channel selection unit 1702-p performs channel selection for selecting one or some frequency response estimation values determined to be the best from those input from the grouping unit 1706, and uses this to select the path extraction unit 1703-p. Output to.

(ステップS1805)
パス抽出部1703−pは、ステップS1804で得られるチャネルにおける周波数応答推定値を用いてパス抽出を行い、次に抽出されたパスを逆グルーピング部1707へ出力する。その後、ステップS1806に進む。
(Step S1805)
The path extraction unit 1703-p performs path extraction using the frequency response estimation value in the channel obtained in step S1804, and outputs the extracted path to the inverse grouping unit 1707. Thereafter, the process proceeds to step S1806.

(ステップS1806)
逆グルーピング部1707では、ステップS1805で得られるパス情報を、グループ分けしたチャネルに割り当てる。該当する各グループに対して、周波数応答推定値とパス情報を組み合わせ、ステップS1807に進む。
(Step S1806)
The reverse grouping unit 1707 assigns the path information obtained in step S1805 to the grouped channels. For each corresponding group, the frequency response estimation value and the path information are combined, and the process proceeds to step S1807.

(ステップS1807)
CIR推定部1704−rは、ステップS1806で得られるパス情報とステップS1803で得られる周波数応答推定値とを用いて、チャネルインパルス応答推定値を算出する。その後、ステップS1808に進む。
(Step S1807)
The CIR estimation unit 1704-r calculates a channel impulse response estimated value using the path information obtained in step S1806 and the frequency response estimated value obtained in step S1803. Thereafter, the process proceeds to step S1808.

(ステップS1808)
ステップS1807で得られるチャネルインパルス応答推定値を、FFT部1705−t−rにおいて復調用周波数応答推定値に変換した後、MIMO検出部407でMIMO分離を行う。その後、ステップS1809に進む。
(ステップS1809)
ステップS1808で得られるMIMO分離結果を用いて、復号部408−tで復号を行う。その後、受信装置3bは動作を終了する。
(Step S1808)
The channel impulse response estimation value obtained in step S1807 is converted into a demodulation frequency response estimation value in the FFT section 1705-tr, and then the MIMO detection section 407 performs MIMO separation. Thereafter, the process proceeds to step S1809.
(Step S1809)
The decoding unit 408-t performs decoding using the MIMO separation result obtained in step S1808. Thereafter, the receiving device 3b ends the operation.

このように、本実施形態によれば、図9で示したように、パス抽出部の数をP個にすることができるため、計算量を大きく削減することができ、回路規模を大きく削減することができ、しかも消費電力を大きく低減することができる。また、第1の実施形態および第2の実施形態とは異なり、複数の基地局が協調しているような場合にも効果を発揮できる。     Thus, according to the present embodiment, as shown in FIG. 9, since the number of path extraction units can be P, the amount of calculation can be greatly reduced, and the circuit scale can be greatly reduced. In addition, power consumption can be greatly reduced. Also, unlike the first embodiment and the second embodiment, the effect can be exhibited even when a plurality of base stations cooperate.

<変形例>
第3の実施形態では、P組にグルーピングしたチャネルの中で、周波数応答推定値の電力の総和が最大のものをパス抽出に用いるチャネルとして選択した。
本変形例では、グルーピングしたチャネルを全て用いてパス抽出を行う場合について説明する。
<Modification>
In the third embodiment, among the channels grouped into P sets, the channel with the largest sum of power of the frequency response estimation values is selected as the channel used for path extraction.
In this modification, a case where path extraction is performed using all grouped channels will be described.

本変形例の無線通信システムの概略の構成は、図15に示す第3の実施形態の構成と同じであるので、これを援用する。すなわち、本変形例の無線通信システムは、複数台の送信装置および1台の受信装置を備える。
本変形例の各送信装置の構成は、アンテナの個数および送信装置の内部の経路の個数を除いて、図2に示す第1の実施形態の送信装置1aの構成と同じである。したがって、その説明を省略する。
The schematic configuration of the wireless communication system according to the present modification is the same as the configuration of the third embodiment shown in FIG. That is, the wireless communication system according to this modification includes a plurality of transmission apparatuses and one reception apparatus.
The configuration of each transmission apparatus of the present modification is the same as that of the transmission apparatus 1a of the first embodiment shown in FIG. 2 except for the number of antennas and the number of paths inside the transmission apparatus. Therefore, the description is omitted.

また、受信装置の構成も、図16の受信装置における伝搬路推定部1606が本変形例の伝搬路推定部と異なるだけで、その余の構成は同じである。したがって、本変形例の伝搬路推定部を以下で詳細に説明することとし、受信装置の他の構成の説明を省略する。   Also, the configuration of the receiving apparatus is the same as that of the receiving apparatus of FIG. 16 except that the propagation path estimation unit 1606 is different from the propagation path estimation unit of this modification. Therefore, the propagation path estimation unit of this modification will be described in detail below, and the description of the other configuration of the receiving apparatus will be omitted.

図19は、本変形例における伝搬路推定部の構成を示す概略ブロック図である。
この伝搬路推定部は、CFR推定部1701−r、パス抽出部1903−p、CIR推定部1704−r、FFT部1705−t−r、グルーピング部1706および逆グルーピング部1907を備える。図19には、デマッピング部405−rおよびMIMO検出部407も併せて示す。
FIG. 19 is a schematic block diagram showing the configuration of the propagation path estimation unit in this modification.
The propagation path estimation unit includes a CFR estimation unit 1701-r, a path extraction unit 1903-p, a CIR estimation unit 1704-r, an FFT unit 1705-tr, a grouping unit 1706, and an inverse grouping unit 1907. FIG. 19 also shows a demapping unit 405-r and a MIMO detection unit 407.

図19の伝搬路推定部と図17の伝搬路推定部1606を対比すると、前者のCFR推定部1701−r、グルーピング部1706、CIR推定部1704−rおよびFFT部1705−t−rは、後者のCFR推定部1701−r、グルーピング部1706、CIR推定部1704−rおよびFFT部1705−t−rと同じである。しかし、前者のパス抽出部1903−pおよび逆グルーピング部1907は、後者のパス抽出部1703−pおよび逆グルーピング部1707と相違する。また、前者では、後者のチャネル選択部1702−rに相当するものが存在しない。したがって、同じ構成要素のCFR推定部1701−r、グルーピング部1706、CIR推定部1704−t−rおよびFFT部1705−t−rの説明を省略する。   19 is compared with the propagation path estimation unit 1606 in FIG. 17, the former CFR estimation unit 1701-r, grouping unit 1706, CIR estimation unit 1704-r, and FFT unit 1705-tr are the latter. This is the same as the CFR estimator 1701-r, grouping unit 1706, CIR estimator 1704-r, and FFT unit 1705-tr. However, the former path extraction unit 1903-p and reverse grouping unit 1907 are different from the latter path extraction unit 1703-p and reverse grouping unit 1707. In the former, there is no equivalent to the latter channel selector 1702-r. Therefore, the description of the CFR estimator 1701-r, grouping unit 1706, CIR estimator 1704-tr, and FFT unit 1705-tr, which are the same components, is omitted.

グルーピング部1706は、グループ分けしたチャネルの周波数応答推定値を全てパス抽出部1903−pに出力する。
パス抽出部1903−pでは、グループ分けしたチャネル全てを用いてパス抽出を行う。
第pグループ内におけるチャネルの番号を、ここではg=1、2、・・・、Gとする。また、チャネルgにおける周波数応答推定ベクトルをH(g)とし、H(g)とパス集合qを用いて推定されるチャネルインパルス応答推定ベクトルをh(g)とする。h(g)は次式で表される。
The grouping unit 1706 outputs all the frequency response estimation values of the grouped channels to the path extraction unit 1903-p.
The path extraction unit 1903-p performs path extraction using all the grouped channels.
Here, g = 1, 2,..., G are channel numbers in the p-th group. Further, the frequency response estimation vector in channel g is denoted by H P (g), and the channel impulse response estimation vector estimated using H P (g) and path set q is denoted by h q (g). h q (g) is expressed by the following equation.

Figure 2013074435
Figure 2013074435

また、このときの伝搬路適合度を次式で表す。   Further, the propagation path adaptability at this time is expressed by the following equation.

Figure 2013074435
Figure 2013074435

上式(18)、(19)を、第1の実施形態における図7の説明中の式(15)、(16)の代わりに用いることで、既述のようにしてパス抽出を行うことができる。   By using the above equations (18) and (19) instead of the equations (15) and (16) in the description of FIG. 7 in the first embodiment, path extraction can be performed as described above. it can.

図20は、パス抽出部1903−pの構成を示す概略的ブロック図である。
パス抽出部1903−rは、伝搬路適合度算出合計部2001、不要候補パス除去部1702、判断部1703およびパス決定部1704を備える。なお、図20には、グルーピング部1706および逆グルーピング部1907を併せて示す。
FIG. 20 is a schematic block diagram showing the configuration of the path extraction unit 1903-p.
The path extraction unit 1903-r includes a propagation path fitness calculation total unit 2001, an unnecessary candidate path removal unit 1702, a determination unit 1703, and a path determination unit 1704. In FIG. 20, the grouping unit 1706 and the reverse grouping unit 1907 are shown together.

図20のパス抽出部1903−pと図7のパス抽出部503−rとを対しすると、後者の伝搬路適合度算出部701が前者では伝搬路適合度算出合計部2001となっている点が相違するだけで、他の構成(不要候補パス除去部1702、判断部1703およびパス決定部1704の構成)は同じである。したがって、伝搬路適合度算出合計部2001の説明を以下において行い、他の構成についての説明は、省略する。   When the path extraction unit 1903-p in FIG. 20 and the path extraction unit 503-r in FIG. 7 are paired, the latter propagation path suitability calculation unit 701 is the propagation path suitability calculation summation part 2001 in the former. The other configurations (the configurations of the unnecessary candidate path removal unit 1702, the determination unit 1703, and the path determination unit 1704) are the same except for the differences. Therefore, the propagation path fitness calculation totaling unit 2001 will be described below, and the description of other configurations will be omitted.

伝搬路適合度算出合計部2001は、「候補パス(candidate_path)」の要素のうち少なくとも1つと、グルーピング部1706から入力された「選択したパス(selected_path)」の要素全てと、に基づいて、チャネルインパルス応答を推定し、次いで、各場合の伝搬路適合度を計算して、「伝搬路適合度(channel_match)」に保存する。
伝搬路適合度算出合計部2001は、算出した伝搬路適合度を不要候補パス除去部702に出力する。
Based on at least one of the elements of “candidate_path” and all the elements of “selected path (selected_path)” input from the grouping unit 1706, the propagation path fitness calculation totaling unit 2001 The impulse response is estimated, and then the channel matching degree in each case is calculated and stored in “channel matching” (channel_match).
The propagation path fitness calculation totaling unit 2001 outputs the calculated propagation path fitness to the unnecessary candidate path removal unit 702.

図21は、本変形例に係る受信装置の動作を示すフローチャート図である。なお、この図が示す動作は、図19のグルーピング部1706、パス抽出部1903―p、逆グルーピング部1907およびCIR推定部1704−rまでの動作である。   FIG. 21 is a flowchart showing the operation of the receiving apparatus according to this modification. The operations shown in this figure are operations up to the grouping unit 1706, the path extraction unit 1903-p, the reverse grouping unit 1907, and the CIR estimation unit 1704-r in FIG.

(ステップS2101)
ステップS2101では、CFR推定部1701−1〜17−1−Rで得られるパイロットサブキャリアの周波数応答推定値のTR個を、P組の群にグループ分けして、パス抽出部1903−pに出力する。その後、ステップS2102へ進む。
(ステップS2102)
パス抽出部1903−pは、ステップS2101で得られる周波数応答推定値を全て用いてパス抽出を行い、次に抽出されたパスを逆グルーピング部1907へ出力する。その後、ステップS2103に進む。
(Step S2101)
In step S2101, TR frequency response estimation values of pilot subcarriers obtained by CFR estimation sections 1701-1 to 17-1-R are grouped into P groups and output to path extraction section 1903-p. To do. Then, it progresses to step S2102.
(Step S2102)
The path extraction unit 1903-p performs path extraction using all the frequency response estimation values obtained in step S2101 and outputs the extracted path to the inverse grouping unit 1907. Thereafter, the process proceeds to step S2103.

(ステップS2103)
ステップS2103では、ステップS2102で得られるパス情報を、グループ分けしたチャネルに割り当てる。該当する各グループに対して、周波数応答推定値とパス情報を組み合わせ、ステップS2104に進む。
(ステップS2104)
CIR推定部1704−rは、ステップS2102で得られるパス情報とステップS2101で得られる周波数応答推定値とを用いて、チャネルインパルス応答推定値を算出する。
(Step S2103)
In step S2103, the path information obtained in step S2102 is assigned to the grouped channels. For each corresponding group, the frequency response estimation value and the path information are combined, and the process proceeds to step S2104.
(Step S2104)
The CIR estimating unit 1704-r calculates a channel impulse response estimated value using the path information obtained in step S2102 and the frequency response estimated value obtained in step S2101.

このように、本変形例によれば、図19に示した通り、TR個必要なパス抽出部をP個に抑えているため、計算量を大きく削減することができ、回路規模を大きく削減することができ、しかも消費電力を大きく低減することができる。
また、第1〜第3の実施形態と異なるところの、グルーピングされたチャネル全てを用いてパス抽出を行うため、パス構造が実チャネルと合致しやすく、推定精度が向上する。
Thus, according to the present modification, as shown in FIG. 19, since the TR required path extraction units are limited to P, the amount of calculation can be greatly reduced, and the circuit scale can be greatly reduced. In addition, power consumption can be greatly reduced.
Further, since the path extraction is performed using all the grouped channels, which is different from the first to third embodiments, the path structure easily matches the actual channel, and the estimation accuracy is improved.

なお、第1〜第3の実施形態および変形例の説明では、TR個のチャネルより少ないパス抽出を行うことで、計算量を抑えつつ、伝搬路推定精度を向上させ、しかも消費電力を低減することができる処理について説明した。しかしながら、実際には、伝搬路推定精度を向上させるために、パス抽出のような計算量を必要とする処理を行う必要のない場合が存在する。   In the description of the first to third embodiments and the modified examples, by performing path extraction with fewer than TR channels, it is possible to improve propagation path estimation accuracy and reduce power consumption while suppressing the amount of calculation. A process that can be described. However, in practice, there is a case where it is not necessary to perform processing that requires a calculation amount such as path extraction in order to improve the propagation path estimation accuracy.

具体的には、受信装置が待機モードに入っていて、伝搬路推定精度がそれほど必要のない通信を行っている場合や、受信SN比が極端に大きいような場合である。このような場合は、パス抽出処理を省略し、遅延時間0〜Lのパスを全て推定することで、パス抽出処理にかかる処理を省略でき、消費電力を抑えることができる。   Specifically, this is the case where the receiving apparatus is in standby mode and performing communication that does not require so much propagation path estimation accuracy, or when the reception SN ratio is extremely large. In such a case, by omitting the path extraction process and estimating all paths having a delay time of 0 to L, the process related to the path extraction process can be omitted, and the power consumption can be suppressed.

また、受信装置の移動速度が速い場合には、グルーピング処理を省略して、TR個のチャネル全てでパス抽出を行うようにしてもよい。このようにすることで、高速移動時の伝搬路推定精度低下を抑えることができる。   Further, when the moving speed of the receiving apparatus is fast, the grouping process may be omitted and the path extraction may be performed on all TR channels. By doing so, it is possible to suppress a decrease in propagation path estimation accuracy during high-speed movement.

本発明は、マイモの移動通信および固定通信において利用することができる。   The present invention can be used in mimo mobile communication and fixed communication.

1a・・・第1の実施形態の送信装置、1a−1〜1aT・・・送信アンテナ、1b・・・第1の実施の受信装置、1b−1〜1b−R・・・受信アンテナ、406・・・伝搬路推定部、503−r・・・パス抽出部、504−r・・・CIR推定部、2b・・・第2の実施形態の受信装置、1206・・・伝搬路推定部、3a−1〜3a−P・・・第3の実施形態の送信装置、3a−1−1〜3a−T−1・・・送信アンテナ、3b・・・第3の実施形態の受信装置、3b−1〜3b−R・・・受信アンテナ、1606・・・伝搬路推定部、1903−p・・・変形例のパス抽出部、2201・・・基地局、2202・・・移動端末、2203〜2206・・・障害物
DESCRIPTION OF SYMBOLS 1a ... Transmission apparatus of 1st Embodiment, 1a-1 to 1aT ... Transmission antenna, 1b ... Reception apparatus of 1st Embodiment, 1b-1 to 1b-R ... Reception antenna, 406 ... propagation path estimation unit, 503-r ... path extraction unit, 504-r ... CIR estimation unit, 2b ... receiving device of the second embodiment, 1206 ... propagation path estimation unit, 3a-1 to 3a-P ... transmission device of the third embodiment, 3a-1-1 to 3a-T-1 ... transmission antenna, 3b ... reception device of the third embodiment, 3b -1 to 3b-R: receiving antenna, 1606 ... propagation path estimation unit, 1903-p ... modified path extracting unit, 2201 ... base station, 2202 ... mobile terminal, 2203 2206 ... Obstacle

Claims (11)

パス抽出部とパス抽出部が抽出したパス情報を基にチャネルインパルス応答を推定するチャネルインパルス応答推定部を備えるMIMO受信装置であって、チャネルインパルス応答推定部よりパス抽出部の数が少ないことを特徴とする受信装置。 A MIMO receiver including a channel impulse response estimation unit that estimates a channel impulse response based on path information extracted by the path extraction unit and the path extraction unit, and that the number of path extraction units is smaller than the channel impulse response estimation unit. A receiving device. 1つの受信アンテナの受信信号に含まれる送信ストリームの内の1つを用いてパス抽出を行い、他のストリームはそのパス情報を用いてチャネルインパルス応答を推定することを特徴とする請求項1に記載の受信装置。 The path extraction is performed using one of transmission streams included in a reception signal of one reception antenna, and the channel impulse response is estimated using the path information for the other streams. The receiving device described. 全ての受信アンテナの受信信号に含まれる1つの送信ストリームのうち、1つの受信アンテナを用いてパス抽出を行い、他のアンテナの該当ストリームについては、そのパス情報を用いてチャネルインパルス応答を推定することを特徴とする請求項1に記載の受信装置。 Of one transmission stream included in the reception signals of all reception antennas, path extraction is performed using one reception antenna, and channel impulse responses are estimated using the path information for the corresponding streams of other antennas. The receiving apparatus according to claim 1. 全チャネルのうち、1つのチャネルを用いてパス抽出を行い、他のチャネルはそのパス情報を用いてチャネルインパルス応答を推定することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein path extraction is performed using one channel among all channels, and channel impulse responses are estimated using path information for the other channels. 全チャネルを、パス情報を共有するグループに分け、グループ内の1つのチャネルを用いてパス抽出を行い、そのパス情報を用いて他のチャネルのチャネルインパルス応答を推定することを特徴とする請求項1に記載の受信装置。 6. All channels are divided into groups sharing path information, path extraction is performed using one channel in the group, and channel impulse responses of other channels are estimated using the path information. The receiving device according to 1. 複数のチャネルを用いて1つのパス抽出を行うことを特徴とする請求項5に記載の受信装置。 6. The receiving apparatus according to claim 5, wherein one path is extracted using a plurality of channels. 受信装置の移動速度が所定の閾値を上回る場合は、パス抽出部の数を増加させることを特徴とする請求項1〜6の受信装置。 The receiving apparatus according to claim 1, wherein when the moving speed of the receiving apparatus exceeds a predetermined threshold, the number of path extraction units is increased. 信号対雑音電力比が閾値を上回る場合は、パス抽出部を動作させないことを特徴とする請求項1〜6に記載の受信装置。 The receiving apparatus according to claim 1, wherein the path extraction unit is not operated when the signal-to-noise power ratio exceeds a threshold value. 受信装置が待機モードの場合は、パス抽出部を動作させないことを特徴とする請求項1〜6に記載の受信装置。 The receiving apparatus according to claim 1, wherein the path extracting unit is not operated when the receiving apparatus is in a standby mode. パス抽出過程とパス抽出過程が抽出したパス情報を基にチャネルインパルス応答を推定するチャネルインパルス応答推定過程を備えるMIMO受信方法であって、チャネルインパルス応答推定過程よりパス抽出過程の数が少ないことを特徴とする受信方法。 A MIMO reception method having a channel impulse response estimation process for estimating a channel impulse response based on path information extracted by the path extraction process and the path extraction process, and having a smaller number of path extraction processes than the channel impulse response estimation process. A characteristic reception method. 請求項10に記載の受信方法をコンピュータに実行させることを特徴とする受信プログラム。 A reception program for causing a computer to execute the reception method according to claim 10.
JP2011211477A 2011-09-27 2011-09-27 Reception device, reception method, and reception program Withdrawn JP2013074435A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011211477A JP2013074435A (en) 2011-09-27 2011-09-27 Reception device, reception method, and reception program
PCT/JP2012/074088 WO2013047324A1 (en) 2011-09-27 2012-09-20 Mimo reception apparatus, mimo reception method, and mimo reception program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211477A JP2013074435A (en) 2011-09-27 2011-09-27 Reception device, reception method, and reception program

Publications (1)

Publication Number Publication Date
JP2013074435A true JP2013074435A (en) 2013-04-22

Family

ID=47995356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211477A Withdrawn JP2013074435A (en) 2011-09-27 2011-09-27 Reception device, reception method, and reception program

Country Status (2)

Country Link
JP (1) JP2013074435A (en)
WO (1) WO2013047324A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204895A (en) * 2013-05-16 2017-11-16 華為技術有限公司Huawei Technologies Co.,Ltd. System and method of multiple input multiple output orthogonal frequency division multiplex communication for signal compensation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487339B (en) * 2013-04-29 2015-06-01 Univ Nat Chiao Tung Methods and systems for inter-carrier interference cancellation in ofdm-based systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014878B2 (en) * 2002-01-23 2007-11-28 三菱電機株式会社 Radio receiving apparatus and effective path selection method thereof
JP2004320599A (en) * 2003-04-18 2004-11-11 Sony Ericsson Mobilecommunications Japan Inc Receiving apparatus and its control method
JP4540434B2 (en) * 2004-09-08 2010-09-08 パナソニック株式会社 Path search processing apparatus and processing method
JP4836829B2 (en) * 2007-02-26 2011-12-14 富士通株式会社 Receiving device, path detecting device, method and computer program used in CDMA base station
JP5125916B2 (en) * 2008-09-10 2013-01-23 富士通株式会社 Reception device and communication control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204895A (en) * 2013-05-16 2017-11-16 華為技術有限公司Huawei Technologies Co.,Ltd. System and method of multiple input multiple output orthogonal frequency division multiplex communication for signal compensation

Also Published As

Publication number Publication date
WO2013047324A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5290396B2 (en) Wideband pilot channel estimation using reduced order FFT and hardware interpolator
JP5030279B2 (en) Wireless communication apparatus and wireless communication method
JP5053378B2 (en) Equalization structure and equalization method
JP5686427B2 (en) Transmitting apparatus, receiving apparatus, wireless communication system, transmission control method, reception control method, and processor
JP5221285B2 (en) Wireless communication apparatus and method
JP5320174B2 (en) Receiving apparatus and receiving method
US9100259B2 (en) Receiving device, receiving method, and receiving program
EP2409450B1 (en) Signal processor, receiver and signal processing method
US8666003B2 (en) Reception device, reception method, and reception program
JP2008205697A (en) Mimo receiver and reception method
JP2010502140A (en) Equalization structure and equalization method
JP5288622B2 (en) Wireless communication apparatus, wireless communication system, and communication method
JP2006222743A (en) Space multiplex signal detection circuit
WO2013047324A1 (en) Mimo reception apparatus, mimo reception method, and mimo reception program
JP2013030940A (en) Transmitter, receiver, and communication system
JP2010502142A (en) Equalization structure and equalization method
KR20090065061A (en) Mimo reciever and qr decomposition and multi dimensional detection used the mimo receiver
US8718162B2 (en) Reception device, reception method, and reception program
KR101347480B1 (en) Method of ofdm transmitting, receiving using multiple antenna and transmitter, receiver thereof
JP2013223177A (en) Receiver unit, reception method and reception program
JP5121552B2 (en) Receiver
JPWO2017204007A1 (en) Wireless communication apparatus and wireless communication method
JP2008053853A (en) Signal decoder, signal decoding method, program and information recording medium
Shenoy Compressive Sensing: Performance of Sparse Channel Estimation in Orthogonal Frequency Division Multiplexing
JP5535759B2 (en) Wireless communication system, transmission device, reception device, communication method, transmission method, and reception method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202