JP2013058378A - Lithium ion secondary battery, and method for manufacturing the same - Google Patents

Lithium ion secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2013058378A
JP2013058378A JP2011195792A JP2011195792A JP2013058378A JP 2013058378 A JP2013058378 A JP 2013058378A JP 2011195792 A JP2011195792 A JP 2011195792A JP 2011195792 A JP2011195792 A JP 2011195792A JP 2013058378 A JP2013058378 A JP 2013058378A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
positive electrode
lithium ion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011195792A
Other languages
Japanese (ja)
Other versions
JP5686076B2 (en
Inventor
Satoshi Nakagawa
敏 中川
Masataka Nakanishi
正孝 仲西
Tomoya Sato
友哉 佐藤
Kazuhito Kawasumi
一仁 川澄
Junichi Niwa
淳一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011195792A priority Critical patent/JP5686076B2/en
Publication of JP2013058378A publication Critical patent/JP2013058378A/en
Application granted granted Critical
Publication of JP5686076B2 publication Critical patent/JP5686076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology to improve the production efficiency of a lithium ion secondary battery.SOLUTION: A lithium ion secondary battery comprises a battery structure 18 where a plurality of pairs of a positive electrode 6 and a negative electrode 4 disposed on opposite sides of a separator 5 is laminated. A negative electrode collector 20X of the negative electrode 4X is provided with a first through hole 30. A positive electrode collector 26 of the positive electrode 6 is provided with a second through hole 32. A negative electrode collector 20Y of the negative electrode 4Y is provided with a third through hole 34. The percentage of the opening area of the negative electrode collector 20X of the negative electrode 4X disposed at the end of the battery structure 18 in the lamination direction is higher than the percentage of the opening area of the negative electrode collector 20Y of the negative electrode 4Y and the percentage of the opening area of the positive electrode collector 26 of the positive electrode 6.

Description

本発明は、リチウムイオン二次電池とその製造方法に関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.

リチウムイオン二次電池では、電池容量を向上させるために、正極電極及び負極電極で使用する材料の検討が活発に行われている。リチウム元素を含まない材料で正極電極及び負極電極を製造すると、リチウムイオン二次電池の電池容量を向上させることができることが知られている。典型的に、正極電極は正極集電体と正極活物質で構成されており、負極電極は負極集電体と負極活物質で構成されている。ここで上記知見をより正確に表現すると、正極活物質及び負極活物質で使用する材料をリチウム元素を含まない材料とすれば、リチウムイオン二次電池の電池容量を向上させることができる。   In the lithium ion secondary battery, in order to improve battery capacity, studies on materials used for the positive electrode and the negative electrode are actively conducted. It is known that the battery capacity of a lithium ion secondary battery can be improved by manufacturing a positive electrode and a negative electrode using a material that does not contain lithium element. Typically, the positive electrode is composed of a positive electrode current collector and a positive electrode active material, and the negative electrode is composed of a negative electrode current collector and a negative electrode active material. To express the above knowledge more accurately, if the material used for the positive electrode active material and the negative electrode active material is a material that does not contain lithium element, the battery capacity of the lithium ion secondary battery can be improved.

しかしながら、正極活物質及び負極活物質の双方がリチウム元素を含まない材料である場合、少なくとも正極活物質及び負極活物質の一方にリチウムイオンをドーピングすることが必要である。この場合、正極電極及び/又は負極電極とともにリチウム金属を電解液内に配置し、正極活物質及び/又は負極活物質にリチウムイオンをドーピングする。なお、以下の説明では、正極電極と負極電極に共通する特徴を説明する場合に、単に「電極」と称する場合がある。同様に、正極集電体と負極集電体を単に「集電体」と称し、正極活物質と負極活物質を単に「活物質」と称することがある。   However, when both the positive electrode active material and the negative electrode active material are materials that do not contain lithium element, it is necessary to dope lithium ions into at least one of the positive electrode active material and the negative electrode active material. In this case, lithium metal is disposed in the electrolyte together with the positive electrode and / or the negative electrode, and the positive electrode active material and / or the negative electrode active material is doped with lithium ions. In the following description, the features common to the positive electrode and the negative electrode may be simply referred to as “electrode”. Similarly, the positive electrode current collector and the negative electrode current collector may be simply referred to as “current collector”, and the positive electrode active material and the negative electrode active material may be simply referred to as “active material”.

特許文献1には、正極活物質及び負極活物質の双方がリチウム元素を含まない材料で構成されているリチウムイオン二次電池が開示されている。特許文献1では、負極活物質にリチウムイオンをドーピングする。貫通孔を有する正極集電体と貫通孔を有する負極集電体を用いて電池構造体を作製し、リチウム箔と負極電極を電気的に接続した状態で電解液に浸す。リチウム箔からリチウムイオンが放出され、リチウムイオンが、上記した貫通孔を通過して負極活物質にドーピングされる。   Patent Document 1 discloses a lithium ion secondary battery in which both a positive electrode active material and a negative electrode active material are made of a material that does not contain a lithium element. In Patent Document 1, the negative electrode active material is doped with lithium ions. A battery structure is prepared using a positive electrode current collector having a through hole and a negative electrode current collector having a through hole, and immersed in an electrolytic solution in a state where the lithium foil and the negative electrode are electrically connected. Lithium ions are released from the lithium foil, and the lithium ions pass through the above-described through holes and are doped into the negative electrode active material.

特開2010−40370号公報JP 2010-40370 A

リチウムイオン二次電池の生産効率を向上させるためには、活物質に対するリチウムイオンのドーピング速度を速くすることが好ましい。集電体の開孔率を大きくすれば、リチウムイオンのドーピング速度を速くすることができると考えられる。しかしながら、集電体の開孔率を大きくすると、集電体の強度が低下し、電極が破損することがある。そのため、従来の技術では、集電体の開孔率を大きくすることには限界があり、生産効率を十分に向上させることができない。本明細書は、活物質に対するリチウムイオンのドーピング速度を速くすることにより、リチウムイオン二次電池の生産効率を向上させる技術を提供することを目的とする。   In order to improve the production efficiency of the lithium ion secondary battery, it is preferable to increase the doping rate of lithium ions to the active material. It is considered that the doping rate of lithium ions can be increased by increasing the aperture ratio of the current collector. However, when the aperture ratio of the current collector is increased, the strength of the current collector is reduced and the electrode may be damaged. Therefore, in the conventional technique, there is a limit to increasing the aperture ratio of the current collector, and the production efficiency cannot be sufficiently improved. This specification aims at providing the technique which improves the production efficiency of a lithium ion secondary battery by making the doping rate of the lithium ion with respect to an active material quick.

本発明者らの研究の結果、リチウムイオンのドーピング速度は、積層方向の端部に配置されている集電体の開孔率に大きく依存することが判明した。換言すると、リチウムイオンの移動速度は、積層方向の中間に配置されている集電体(積層方向の端部以外に配置されている集電体)の開孔率にはほとんど依存しないことが判明した。すなわち、積層方向の端部に配置されている集電体の開孔率のみを大きくすれば、積層方向の中間に配置されている集電体の開孔率を小さくしても、リチウムイオンのドーピング速度が速くなるという知見を得た。積層方向の中間では集電体の開孔率を大きくする必要がないので、積層方向の中間の電極の強度は維持される。その結果、電池構造体の全体としては強度を維持することができる。   As a result of the study by the present inventors, it has been found that the doping rate of lithium ions greatly depends on the aperture ratio of the current collector disposed at the end in the stacking direction. In other words, it turns out that the moving speed of lithium ions hardly depends on the hole area ratio of the current collector arranged in the middle of the stacking direction (the current collector placed other than the end in the stacking direction). did. That is, if only the aperture ratio of the current collector disposed at the end in the stacking direction is increased, the lithium ion The knowledge that the doping rate becomes faster was obtained. Since it is not necessary to increase the aperture ratio of the current collector in the middle of the stacking direction, the strength of the intermediate electrode in the stacking direction is maintained. As a result, the strength of the battery structure as a whole can be maintained.

リチウムイオンを活物質にドーピングする場合、電池構造体の外側にリチウムイオンを供給する材料(以下、リチウムイオン供給体と称する)を配置し、電極(正極電極又は負極電極)とリチウムイオン供給体の間に電圧を印加する。あるいは、リチウムイオン供給体と電池構造体の端部の電極とを直接接触(短絡)させ、活物質にリチウムイオンをドーピングする。リチウムイオンは、電池構造体の外側から内側へ向けて、集電体の貫通孔を通過しながら移動する。リチウムイオンが電池構造体の内部に向けて移動する際に、積層方向の端部に配置されている集電体は、全てのリチウムイオンを通過させることが必要である。そのため、リチウムイオンの移動抵抗を減少させるために、積層方向の端部に配置されている集電体の開孔率は、大きい程好ましい。   When doping an active material with lithium ions, a material for supplying lithium ions (hereinafter referred to as a lithium ion supplier) is disposed outside the battery structure, and an electrode (positive electrode or negative electrode) and the lithium ion supplier A voltage is applied between them. Alternatively, the lithium ion supplier and the electrode at the end of the battery structure are brought into direct contact (short circuit), and the active material is doped with lithium ions. Lithium ions move from the outside to the inside of the battery structure while passing through the through holes of the current collector. When the lithium ions move toward the inside of the battery structure, it is necessary for the current collector disposed at the end in the stacking direction to pass all the lithium ions. Therefore, in order to reduce the movement resistance of lithium ions, it is preferable that the aperture ratio of the current collector disposed at the end in the stacking direction is larger.

リチウムイオンの一部が積層方向端部の活物質に留まるので、電池構造体の内部では、集電体に到達するリチウムイオンの数が少ない。そのため、積層方向の中間に配置する集電体は、積層方向端部の集電体のように大きな貫通孔を形成しなくても、リチウムイオンの移動抵抗を増大させない。積層方向の中間に配置されている集電体は、電極の強度を維持するために、積層方向の端部に配置されている集電体よりも開孔率を小さくすることができる。   Since some of the lithium ions remain in the active material at the end in the stacking direction, the number of lithium ions that reach the current collector is small inside the battery structure. Therefore, the current collector arranged in the middle of the stacking direction does not increase the lithium ion transfer resistance even if a large through hole is not formed unlike the current collector at the end of the stacking direction. In order to maintain the strength of the electrode, the current collector disposed in the middle in the stacking direction can have a smaller opening ratio than the current collector disposed at the end in the stacking direction.

本明細書で開示する技術は、上記知見に基づいて完成したものである。本明細書で開示するリチウムイオン二次電池は、セパレータを介して正極電極と負極電極が対向している正負極の対が複数積層されている。また、正極電極の集電体及び負極電極の集電体の各々には、厚み方向に貫通する孔が形成されている。さらに、積層方向の端部に配置されている端部電極の集電体の開孔率が、端部電極の間に配置されている中間電極の集電体の開孔率よりも大きい。   The technology disclosed in this specification has been completed based on the above findings. In the lithium ion secondary battery disclosed in this specification, a plurality of positive and negative electrode pairs in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween are stacked. Each of the positive electrode current collector and the negative electrode current collector has a hole penetrating in the thickness direction. Furthermore, the aperture ratio of the current collector of the end electrode disposed at the end portion in the stacking direction is larger than the aperture ratio of the current collector of the intermediate electrode disposed between the end electrodes.

上記したリチウムイオン二次電池では、正極電極と負極電極を交互に積層することにより、積層型の電池構造体を形成している。上記したように、端部電極の集電体の開孔率を大きくし、中間電極の集電体の開孔率を小さくすることにより、リチウムイオンのドーピング速度を速くしつつ、電池構造体の強度を維持することができる。なお、全ての集電体が貫通孔を有しているので、電池構造体の積層方向の中間に配置されている活物質にもリチウムイオンがドーピングされている。   In the above-described lithium ion secondary battery, a stacked battery structure is formed by alternately stacking positive electrodes and negative electrodes. As described above, by increasing the aperture ratio of the current collector of the end electrode and decreasing the aperture ratio of the current collector of the intermediate electrode, the lithium ion doping rate is increased, and the battery structure The strength can be maintained. Since all the current collectors have through holes, the active material disposed in the middle in the stacking direction of the battery structure is also doped with lithium ions.

上記したように、端部電極の集電体の開孔率を大きくすると、端部電極の強度が低下する虞がある。そのため、端部電極の集電体が、他の電極の集電体よりも厚いことが好ましい。端部電極の強度の低下をも抑制することができる。   As described above, when the aperture ratio of the current collector of the end electrode is increased, the strength of the end electrode may be reduced. Therefore, it is preferable that the current collector of the end electrode is thicker than the current collectors of the other electrodes. A decrease in strength of the end electrode can also be suppressed.

上記のリチウムイオン二次電池では、リチウムイオンが正極活物質にドーピングされていても、負極活物質にドーピングされていてもよい。しかしながら、リチウムイオンは、負極活物質にドーピングされていることが好ましい。リチウムイオンが正極活物質にドーピングされているよりもリチウムイオンが負極活物質にドーピングされている方が、負極の電位が低下するので、電池容量を高くすることができる。この場合、端部電極が負極電極であれば、端部電極の活物質にリチウムイオンの一部が留まるので、中間電極におけるリチウムイオンの移動抵抗が増大することを抑制することができる。   In the above lithium ion secondary battery, lithium ions may be doped in the positive electrode active material or the negative electrode active material. However, lithium ions are preferably doped in the negative electrode active material. Since the potential of the negative electrode is lowered when the negative electrode active material is doped with lithium ions than when the positive electrode active material is doped with lithium ions, the battery capacity can be increased. In this case, if the end electrode is a negative electrode, a part of the lithium ions stays in the active material of the end electrode, so that it is possible to suppress an increase in lithium ion migration resistance in the intermediate electrode.

上記のように、本明細書で開示するリチウムイオン二次電池は、セパレータを介して正極と負極が対向している電極対が複数積層されている電池構造体を備える。本明細書では、そのリチウムイオン二次電池の製造方法をも提供する。その製造方法は、電極形成工程と、積層工程と、配置工程と、ドーピング工程を備える。電極形成工程では、厚み方向に貫通する孔が形成された集電体を用いて、正極電極と負極電極を形成する。積層工程では、正極電極と負極電極を交互に積層して電池構造体を作製する。配置工程では、容器内に電池構造体を配置し、電池構造体の積層方向の外側にリチウムイオン供給体を配置する。ドーピング工程では、リチウムイオンを、正極電極と負極電極の少なくとも一方にドーピングする。上記積層形成工程では、他の電極の集電体よりも開孔率が大きな集電体を用いて作成した電極を、電池構造体の積層方向端部に配置する。なお、リチウムイオン供給体として、単体のリチウム金属(Li)、リチウム化合物等を利用することができる。リチウム化合物の例として、LiFeO2、LiCoO2、LiNiO2、LiMn24、Li5FeO4、Li2MnO3、LiFePO4、LiV24等が挙げられる。 As described above, the lithium ion secondary battery disclosed in the present specification includes a battery structure in which a plurality of electrode pairs in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween. In this specification, the manufacturing method of the lithium ion secondary battery is also provided. The manufacturing method includes an electrode formation process, a lamination process, an arrangement process, and a doping process. In the electrode forming step, the positive electrode and the negative electrode are formed using a current collector in which holes penetrating in the thickness direction are formed. In the stacking step, a battery structure is manufactured by alternately stacking positive electrodes and negative electrodes. In the arranging step, the battery structure is arranged in the container, and the lithium ion supplier is arranged outside the battery structure in the stacking direction. In the doping step, at least one of the positive electrode and the negative electrode is doped with lithium ions. In the stack formation step, an electrode created using a current collector having a larger opening ratio than the current collectors of the other electrodes is disposed at the end of the battery structure in the stacking direction. In addition, a single lithium metal (Li), a lithium compound, etc. can be utilized as a lithium ion supply body. Examples of the lithium compound include LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 5 FeO 4 , Li 2 MnO 3 , LiFePO 4 , LiV 2 O 4 and the like.

ドーピング工程では、電池構造体の端部の電極とリチウムイオン供給体を短絡させ、活物質にリチウムイオンをドーピングしてもよい。あるいは、正極電極又は負極電極と、リチウムイオン供給体の間に電圧を印加してリチウムイオンをドーピングしてもよい。リチウムイオン供給体と電極(正極電極又は負極電極)との電位差を調整することができるという観点から、後者の方法がより好ましい。リチウムイオン供給体と電極との電位差を調整することにより、ドーピング速度を調整することができる。   In the doping step, the active material may be doped with lithium ions by short-circuiting the electrode at the end of the battery structure and the lithium ion supplier. Alternatively, lithium ions may be doped by applying a voltage between the positive electrode or the negative electrode and the lithium ion supplier. From the viewpoint that the potential difference between the lithium ion supplier and the electrode (positive electrode or negative electrode) can be adjusted, the latter method is more preferable. The doping rate can be adjusted by adjusting the potential difference between the lithium ion supplier and the electrode.

上記したように、正極活物質及び負極活物質の双方がリチウム元素を含まない材料である場合、いずれかの活物質にリチウムイオンをドーピングすることが必要である。そのため、本明細書に開示する技術は、正極活物質及び負極活物質の双方がリチウム元素を含まない材料である場合に特に有用である。しかしながら、正極活物質及び負極活物質の少なくとも一方がリチウム元素を含む材料である場合でも、電池容量を向上させるために、リチウムイオンを活物質にドーピングすることがある。本明細書で開示する技術は、リチウムイオンが活物質にドーピングされたリチウムイオン二次電池であれば、正極活物質及び負極活物質の材料に限定されることなく適用することができる。   As described above, when both the positive electrode active material and the negative electrode active material are materials not containing lithium element, it is necessary to dope lithium ions into one of the active materials. Therefore, the technology disclosed in this specification is particularly useful when both the positive electrode active material and the negative electrode active material are materials that do not contain lithium element. However, even when at least one of the positive electrode active material and the negative electrode active material is a material containing lithium element, lithium ions may be doped into the active material in order to improve battery capacity. The technology disclosed in the present specification can be applied without being limited to the materials of the positive electrode active material and the negative electrode active material as long as the lithium ion secondary battery is obtained by doping lithium ions into the active material.

本明細書で開示される技術によると、リチウムイオン二次電池の生産効率を向上させることができる。   According to the technology disclosed in this specification, the production efficiency of the lithium ion secondary battery can be improved.

リチウムイオン二次電池の要部断面図を示す。The principal part sectional drawing of a lithium ion secondary battery is shown. 電池構造体の部分拡大図を示す。The elements on larger scale of a battery structure are shown. 端部電極の集電体の平面図を示す。The top view of the electrical power collector of an edge part electrode is shown. 中間電極の集電体の平面図を示す。The top view of the electrical power collector of an intermediate electrode is shown. 中間電極の集電体の変形例を示す。The modification of the collector of an intermediate electrode is shown. 端部電極の集電体の変形例を示す。The modification of the electrical power collector of an edge part electrode is shown. リチウムイオン二次電池の製造工程を説明する図を示す(1)。The figure explaining the manufacturing process of a lithium ion secondary battery is shown (1). リチウムイオン二次電池の製造工程を説明する図を示す(2)。The figure explaining the manufacturing process of a lithium ion secondary battery is shown (2). 実験に用いた電池構造体の基本構造を示す。The basic structure of the battery structure used in the experiment is shown.

図1に示すリチウムイオン二次電池100は、積層型の電池構造体18を備えている。電池構造体18は、正極電極6と負極電極4が対向している電極対(正負極の対)7を複数個備える。電極対7は、正極電極6とセパレータ5と負極電極4を備えている。正極電極6と負極電極4は、セパレータ5を介して対向している。セパレータ5によって、正極電極6と負極電極4が絶縁されている。電池構造体18では、正極電極6と負極電極4が交互に積層されている。全ての正極電極6が正極端子12に電気的に接続されており、全ての負極電極4が負極端子2に電気的に接続されている。電池構造体18は、電解液とともに電池ケース16内に配置されている。電解液は、電池ケース16内の空間14を満たしているとともに、電池構造体18が有する隙間も満たしている。   A lithium ion secondary battery 100 shown in FIG. 1 includes a stacked battery structure 18. The battery structure 18 includes a plurality of electrode pairs (positive and negative electrode pairs) 7 in which the positive electrode 6 and the negative electrode 4 face each other. The electrode pair 7 includes a positive electrode 6, a separator 5, and a negative electrode 4. The positive electrode 6 and the negative electrode 4 are opposed to each other with the separator 5 interposed therebetween. The positive electrode 6 and the negative electrode 4 are insulated by the separator 5. In the battery structure 18, the positive electrodes 6 and the negative electrodes 4 are alternately stacked. All the positive electrodes 6 are electrically connected to the positive terminal 12, and all the negative electrodes 4 are electrically connected to the negative terminal 2. The battery structure 18 is disposed in the battery case 16 together with the electrolytic solution. The electrolytic solution fills the space 14 in the battery case 16 and also fills the gaps of the battery structure 18.

図1では、積層方向の端部に配置されている負極電極4Xと、積層方向の中間部に配置さている負極電極4Yを区別している。負極電極4Yと正極電極6は、負極電極4Xの間に配置されている。負極電極4Xは、電池構造体18の端部電極ということができる。負極電極4Yと正極電極6は、電池構造体18の中間電極ということができる。   In FIG. 1, the negative electrode 4X disposed at the end in the stacking direction is distinguished from the negative electrode 4Y disposed at the intermediate in the stacking direction. The negative electrode 4Y and the positive electrode 6 are disposed between the negative electrode 4X. The negative electrode 4 </ b> X can be referred to as an end electrode of the battery structure 18. The negative electrode 4Y and the positive electrode 6 can be said to be intermediate electrodes of the battery structure 18.

図2は、電池構造体18の部分拡大図を示す。図2に示すように、正極電極6は、正極集電体26と正極活物質24を備えている。正極活物質24は、正極集電体26の両面に設けられている。負極電極4は、負極集電体20と負極活物質22を備えている。積層方向端部の負極電極4Xでは、負極活物質22が、負極集電体20Xの片面に設けられている。積層方向中間部の負極電極4Yでは、負極活物質22が、負極集電体20Yの両面に設けられている。負極活物質22には、リチウムイオンがドーピングされている。   FIG. 2 shows a partially enlarged view of the battery structure 18. As shown in FIG. 2, the positive electrode 6 includes a positive electrode current collector 26 and a positive electrode active material 24. The positive electrode active material 24 is provided on both surfaces of the positive electrode current collector 26. The negative electrode 4 includes a negative electrode current collector 20 and a negative electrode active material 22. In the negative electrode 4X at the end in the stacking direction, the negative electrode active material 22 is provided on one surface of the negative electrode current collector 20X. In the negative electrode 4Y in the intermediate portion in the stacking direction, the negative electrode active material 22 is provided on both surfaces of the negative electrode current collector 20Y. The negative electrode active material 22 is doped with lithium ions.

正極活物質24と負極活物質22が、セパレータ5を介して対向している。第1貫通孔30が負極集電体20Xに形成されており,第2貫通孔32が正極集電体26に形成されており、第3貫通孔34が負極集電体20Yに形成されている。第1貫通孔30は、負極集電体20Xを厚み方向に貫通している。第2貫通孔32は、正極集電体26を厚み方向に貫通している。第3貫通孔34は、負極集電体20Yを厚み方向に貫通している。詳細は後述するが、第1貫通孔30のサイズは、第2貫通孔32及び第3貫通孔34のサイズよりも大きい。なお、第2貫通孔32及び第3貫通孔34のサイズは等しい。   The positive electrode active material 24 and the negative electrode active material 22 face each other with the separator 5 interposed therebetween. The first through hole 30 is formed in the negative electrode current collector 20X, the second through hole 32 is formed in the positive electrode current collector 26, and the third through hole 34 is formed in the negative electrode current collector 20Y. . The first through hole 30 penetrates the negative electrode current collector 20X in the thickness direction. The second through hole 32 penetrates the positive electrode current collector 26 in the thickness direction. The third through hole 34 penetrates the negative electrode current collector 20Y in the thickness direction. Although details will be described later, the size of the first through hole 30 is larger than the sizes of the second through hole 32 and the third through hole 34. The second through hole 32 and the third through hole 34 are equal in size.

負極集電体20及び正極集電体26について説明する。図3は負極集電体20Xの平面図を示し、図4は負極集電体20Y及び正極集電体26の平面図を示す。図3に示すように、複数の第1貫通孔30が負極集電体20Xに形成されており、並列に並んでいる。なお、ここでいう「並列に並ぶ」とは、隣接する4個の第1貫通孔30の中心を結ぶ線が矩形40を形成するように、第1貫通孔30を並べることである。第2貫通孔32及び第3貫通孔34も並列に並んでいる(図4を参照)。   The negative electrode current collector 20 and the positive electrode current collector 26 will be described. 3 shows a plan view of the negative electrode current collector 20X, and FIG. 4 shows a plan view of the negative electrode current collector 20Y and the positive electrode current collector 26. As shown in FIG. 3, a plurality of first through holes 30 are formed in the negative electrode current collector 20X, and are arranged in parallel. Here, “aligned in parallel” means that the first through holes 30 are arranged such that a line connecting the centers of the four adjacent first through holes 30 forms a rectangle 40. The second through hole 32 and the third through hole 34 are also arranged in parallel (see FIG. 4).

図3及び図4に示すように、集電体20X,20Y及び26の単位面積当たりに形成されている貫通孔の数は等しい。一方、第1貫通孔30のサイズは、第2貫通孔32及び第3貫通孔34のサイズよりも大きい。そのため、負極集電体20Xの開孔率は、負極集電体20Y及び正極集電体26の開孔率よりも大きい。第1貫通孔30の径R30は、100〜500μmであることが好ましい。一方、第2貫通孔32の径R32及び第3貫通孔34の径R34は、50〜300μmであることが好ましい。また、負極集電体20Xの開孔率は10〜60%であることが好ましく、負極集電体20Y及び正極集電体26の開孔率は10〜60%であることが好ましい。   As shown in FIGS. 3 and 4, the number of through holes formed per unit area of the current collectors 20X, 20Y and 26 is equal. On the other hand, the size of the first through hole 30 is larger than the sizes of the second through hole 32 and the third through hole 34. Therefore, the aperture ratio of the negative electrode current collector 20X is larger than the aperture ratios of the negative electrode current collector 20Y and the positive electrode current collector 26. The diameter R30 of the first through hole 30 is preferably 100 to 500 μm. On the other hand, the diameter R32 of the second through hole 32 and the diameter R34 of the third through hole 34 are preferably 50 to 300 μm. Further, the aperture ratio of the negative electrode current collector 20X is preferably 10 to 60%, and the aperture ratios of the negative electrode current collector 20Y and the positive electrode current collector 26 are preferably 10 to 60%.

なお、リチウムイオン二次電池100では、負極集電体20Xの開孔率が、負極集電体20Y及び正極集電体26の開孔率よりも大きければよい。そのため、必ずしも第1貫通孔30のサイズを、第2貫通孔32及び第3貫通孔34のサイズよりも大きくする必要はない。例えば、図5に示すように、負極集電体20Y及び正極集電体26に、第2貫通孔32a及び第3貫通孔34aを形成してもよい。第2貫通孔32aの径R32a及び第3貫通孔34aの径R34aは、第1貫通孔30の径R30と等しい(図3を参照)。図5に示す負極集電体20Y及び正極集電体26の場合、集電体20Y及び26の単位面積当たりに形成されている貫通孔32a及び34aの数が、負極集電体20Xに形成されている第1貫通孔30の数よりも少ない。   In the lithium ion secondary battery 100, it is sufficient that the aperture ratio of the negative electrode current collector 20X is larger than the aperture ratios of the negative electrode current collector 20Y and the positive electrode current collector 26. Therefore, the size of the first through hole 30 is not necessarily larger than the sizes of the second through hole 32 and the third through hole 34. For example, as shown in FIG. 5, the second through hole 32a and the third through hole 34a may be formed in the negative electrode current collector 20Y and the positive electrode current collector 26. The diameter R32a of the second through hole 32a and the diameter R34a of the third through hole 34a are equal to the diameter R30 of the first through hole 30 (see FIG. 3). In the case of the negative electrode current collector 20Y and the positive electrode current collector 26 shown in FIG. 5, the number of through holes 32a and 34a formed per unit area of the current collectors 20Y and 26 is formed in the negative electrode current collector 20X. The number of first through holes 30 is smaller.

なお、集電体20X,20Y及び26に形成する貫通孔は、必ずしも並列に並べる必要はない。例えば、図6に示すように、複数の第1貫通孔30を、千鳥状に並べてもよい。「千鳥状に並べる」とは、隣接する4個の第1貫通孔30の中心を結ぶ線が菱形42を形成するように、第1貫通孔30を並べることである。換言すると、隣接する3個の第1貫通孔30の中心を結ぶ線が正三角形を形成するように、第1貫通孔30を並べることである。   Note that the through holes formed in the current collectors 20X, 20Y, and 26 are not necessarily arranged in parallel. For example, as shown in FIG. 6, a plurality of first through holes 30 may be arranged in a staggered manner. “Arranging in a staggered manner” means arranging the first through holes 30 such that a line connecting the centers of the four adjacent first through holes 30 forms a rhombus 42. In other words, the first through holes 30 are arranged so that lines connecting the centers of the three adjacent first through holes 30 form an equilateral triangle.

上記したように、負極集電体20Xの開孔率は、負極集電体20Y及び正極集電体26の開孔率よりも大きい。そのため、負極集電体20Xは、負極集電体20Y及び正極集電体26よりもリチウムイオンが通過し易い。なお、リチウムイオンが集電体20X,20Y及び26を通過するのは、主に製造過程であり、負極集電体20にリチウムイオンをドーピングする工程である。リチウムイオン二次電池100が使用(充放電)されているときは、リチウムイオンは、セパレータ5を通って正極活物質24と負極活物質22の間を移動する。   As described above, the aperture ratio of the negative electrode current collector 20X is larger than the aperture ratios of the negative electrode current collector 20Y and the positive electrode current collector 26. Therefore, lithium ions are more easily passed through the negative electrode current collector 20X than the negative electrode current collector 20Y and the positive electrode current collector 26. The lithium ions pass through the current collectors 20X, 20Y, and 26 are mainly manufacturing processes, and are steps of doping the negative electrode current collector 20 with lithium ions. When the lithium ion secondary battery 100 is used (charge / discharge), the lithium ions move between the positive electrode active material 24 and the negative electrode active material 22 through the separator 5.

ここで、図7及び図8を参照し、リチウムイオン二次電池100の製造方法を説明する。まず、貫通孔30,32,34を有する集電体20X,26,20Yを用いて、正極電極6と負極電極4を形成する(電極形成工程)。電極形成工程は、集電体20X,26,20Yに貫通孔30,32,34を形成する貫通孔形成工程と、集電体20X,26,20Yに活物質22,24を塗布する活物質塗布工程を備える。貫通孔形成工程では、正極集電体26に第2貫通孔32を形成し、負極集電体20Yに第2貫通孔32と同じサイズの第3貫通孔34を形成する。そして、負極集電体20Yよりも厚みが厚い負極集電体20Xに、第2貫通孔32及び第3貫通孔34よりも大きな第1貫通孔30を形成する。   Here, with reference to FIG.7 and FIG.8, the manufacturing method of the lithium ion secondary battery 100 is demonstrated. First, the positive electrode 6 and the negative electrode 4 are formed using the current collectors 20X, 26, and 20Y having the through holes 30, 32, and 34 (electrode formation step). The electrode forming step includes a through hole forming step for forming the through holes 30, 32, 34 in the current collectors 20X, 26, 20Y, and an active material application for applying the active materials 22, 24 to the current collectors 20X, 26, 20Y A process is provided. In the through hole forming step, the second through hole 32 is formed in the positive electrode current collector 26, and the third through hole 34 having the same size as the second through hole 32 is formed in the negative electrode current collector 20Y. And the 1st through-hole 30 larger than the 2nd through-hole 32 and the 3rd through-hole 34 is formed in the negative electrode collector 20X thicker than the negative electrode collector 20Y.

活物質塗布工程では、負極集電体20の表面に負極活物質22を塗布し、正極集電体26の表面に正極活物質24を塗布する。活物質の塗布方法は公知なので説明を省略する。このときに、負極集電体20Xに塗布する負極活物質22の厚みを、負極集電体20Yに塗布する負極活物質22の厚みと等しくなるように調整する。なお、電極形成工程では、貫通孔を有する市販の集電体を購入し、その集電体の表面に活物質を塗布してもよい。   In the active material application step, the negative electrode active material 22 is applied to the surface of the negative electrode current collector 20, and the positive electrode active material 24 is applied to the surface of the positive electrode current collector 26. Since the application method of an active material is well-known, description is abbreviate | omitted. At this time, the thickness of the negative electrode active material 22 applied to the negative electrode current collector 20X is adjusted to be equal to the thickness of the negative electrode active material 22 applied to the negative electrode current collector 20Y. In the electrode forming step, a commercially available current collector having a through hole may be purchased and an active material may be applied to the surface of the current collector.

次に、セパレータ5を介して、正極電極6と負極電極4を交互に積層して、電池構造体18を作製する(積層工程)。積層工程では、負極電極4Xを、積層方向の両端に配置する。すなわち、他の電極(正極電極6及び負極電極4Y)よりも集電体の開孔率が大きい負極電極4Xを、積層方向の両端に配置する。正極電極6及び負極電極4Yは、積層方向において、負極電極4Xに挟まれた位置に配置する。なお、図7は、電池構造体18の積層方向の一端だけを示している。   Next, the positive electrode 6 and the negative electrode 4 are alternately laminated via the separator 5 to produce a battery structure 18 (lamination process). In the stacking step, the negative electrode 4X is disposed at both ends in the stacking direction. That is, the negative electrode 4X having a current collector with a higher hole area ratio than the other electrodes (the positive electrode 6 and the negative electrode 4Y) is disposed at both ends in the stacking direction. The positive electrode 6 and the negative electrode 4Y are arranged at a position between the negative electrode 4X in the stacking direction. Note that FIG. 7 shows only one end of the battery structure 18 in the stacking direction.

次に、容器(図示省略)内に電池構造体18を配置し、電池構造体18の両端にリチウム箔36を配置する(配置工程)。リチウム箔36は、リチウムイオン供給体の一例である。リチウム箔36は、セパレータ5を介して負極集電体20Xに対向する位置に配置する。その後、容器内に電解液を供給する。   Next, the battery structure 18 is placed in a container (not shown), and the lithium foil 36 is placed on both ends of the battery structure 18 (placement step). The lithium foil 36 is an example of a lithium ion supplier. The lithium foil 36 is disposed at a position facing the negative electrode current collector 20X with the separator 5 interposed therebetween. Thereafter, an electrolytic solution is supplied into the container.

次に、図8に示すように、リチウム箔36を外部電源37の負極に接続し、負極電極4を外部電源37の正極に接続する。その後、負極電極4とリチウム箔36の間に電圧を印加する(ドーピング工程)。負極電極4が高電位になるので、リチウム箔36から負極電極4(負極電極4X及び負極電極4Y)に向けてリチウムイオン38が移動する。すなわち、リチウムイオン38が、電池構造体18の内部に向けて移動する。これにより、リチウムイオン38が、負極活物質22にドーピングされる。ドーピング工程の詳細については後述する。ドーピング工程が終了した後、残存したリチウム箔36を除去し、電池構造体18を電解液とともに電池ケース16内に配置する。その後、電池ケース16を密封することにより、図1に示すリチウムイオン二次電池100が完成する。なお、ドーピング工程は、電池ケース16内で実施してもよいし、電池ケース16とは別の容器内で実施してもよい。   Next, as shown in FIG. 8, the lithium foil 36 is connected to the negative electrode of the external power source 37, and the negative electrode 4 is connected to the positive electrode of the external power source 37. Thereafter, a voltage is applied between the negative electrode 4 and the lithium foil 36 (doping process). Since the negative electrode 4 has a high potential, the lithium ions 38 move from the lithium foil 36 toward the negative electrode 4 (the negative electrode 4X and the negative electrode 4Y). That is, the lithium ions 38 move toward the inside of the battery structure 18. Thereby, the lithium ions 38 are doped into the negative electrode active material 22. Details of the doping step will be described later. After the doping process is completed, the remaining lithium foil 36 is removed, and the battery structure 18 is placed in the battery case 16 together with the electrolytic solution. Thereafter, the battery case 16 is sealed to complete the lithium ion secondary battery 100 shown in FIG. The doping process may be performed in the battery case 16 or in a container different from the battery case 16.

ドーピング工程について、さらに詳細に説明する。図8に示すように、リチウム箔36と負極集電体20Xの間には、セパレータ5が介在するだけである。そのため、通電を開始すると、多くのリチウムイオン38が、リチウム箔36から負極集電体20Xに到達する。負極集電体20Xは開孔率が大きいので、リチウムイオン38は、負極集電体20Xをスムーズに通過することができる。すなわち、負極集電体20Xは、多量のリチウムイオン38を電池構造体18の内部に通過させることができる。負極集電体20Xを通過したリチウムイオン38の一部は、負極電極4Xの負極活物質22に留まる。   The doping process will be described in more detail. As shown in FIG. 8, only the separator 5 is interposed between the lithium foil 36 and the negative electrode current collector 20X. Therefore, when energization is started, many lithium ions 38 reach the negative electrode current collector 20 </ b> X from the lithium foil 36. Since the negative electrode current collector 20X has a high hole area ratio, the lithium ions 38 can smoothly pass through the negative electrode current collector 20X. That is, the negative electrode current collector 20 </ b> X can pass a large amount of lithium ions 38 into the battery structure 18. A part of the lithium ions 38 that have passed through the negative electrode current collector 20X remains in the negative electrode active material 22 of the negative electrode 4X.

負極電極4Xの負極活物質22を通過し、さらに電池構造体18の内部に移動するリチウムイオン38も存在する。これらのリチウムイオン38は、セパレータ5,正極活物質24を通過して正極集電体26に達する。正極集電体26に達するまでに、リチウムイオン38の移動速度は低下している。また、負極電極4Xの負極活物質22に留まったリチウムイオン38の分だけ、正極集電体26に達するリチウムイオン38の数は減少している。そのため、正極集電体26の開孔率が負極集電体20Xの開孔率よりも小さくても、リチウムイオン38は、正極集電体26をスムーズに通過することができる。同様に、負極集電体20Yの開孔率が負極集電体20Xの開孔率よりも小さくても、リチウムイオン38は、負極集電体20Yをスムーズに通過することができる。   There are also lithium ions 38 that pass through the negative electrode active material 22 of the negative electrode 4 </ b> X and move into the battery structure 18. These lithium ions 38 pass through the separator 5 and the positive electrode active material 24 and reach the positive electrode current collector 26. By the time the cathode current collector 26 is reached, the moving speed of the lithium ions 38 has decreased. Further, the number of lithium ions 38 reaching the positive electrode current collector 26 is reduced by the amount of lithium ions 38 remaining on the negative electrode active material 22 of the negative electrode 4X. Therefore, even if the aperture ratio of the positive electrode current collector 26 is smaller than the aperture ratio of the negative electrode current collector 20X, the lithium ions 38 can pass through the positive electrode current collector 26 smoothly. Similarly, even if the aperture ratio of the negative electrode current collector 20Y is smaller than the aperture ratio of the negative electrode current collector 20X, the lithium ions 38 can smoothly pass through the negative electrode current collector 20Y.

正極集電体26及び負極集電体20Yの開孔率を小さくすることにより、正極電極6及び負極電極4Yの強度が低下することを抑制することができる。なお、負極電極4Xは、負極集電体20Xの厚みt20Xを正極集電体26の厚みt26及び負極集電体20Yの厚みt20Yよりも厚くすることにより、強度が低下することを抑制している(図2を参照)。また、負極集電体20Y及び正極集電体26の開孔率を小さくすると、上記した活物質塗布工程において、負極活物質22及び正極活物質24の表面に凹凸が生じることを抑制することができる。活物質22,24の表面に凹凸が存在すると、電流が電極間を偏って流れ、電池寿命が低下することがある。負極集電体20Y及び正極集電体26の開孔率を小さくすることにより、電極間に流れる電流を均一にすることができるので、電池寿命の低下を抑制することができる。   By reducing the aperture ratio of the positive electrode current collector 26 and the negative electrode current collector 20Y, it is possible to suppress the strength of the positive electrode 6 and the negative electrode 4Y from being lowered. Note that the negative electrode 4X suppresses the strength from decreasing by making the thickness t20X of the negative electrode current collector 20X thicker than the thickness t26 of the positive electrode current collector 26 and the thickness t20Y of the negative electrode current collector 20Y. (See FIG. 2). Further, when the porosity of the negative electrode current collector 20Y and the positive electrode current collector 26 is reduced, it is possible to suppress the occurrence of irregularities on the surfaces of the negative electrode active material 22 and the positive electrode active material 24 in the active material application step described above. it can. If there are irregularities on the surfaces of the active materials 22, 24, current flows unevenly between the electrodes, and the battery life may be reduced. By reducing the open area ratio of the negative electrode current collector 20Y and the positive electrode current collector 26, the current flowing between the electrodes can be made uniform, so that a reduction in battery life can be suppressed.

上記したように、電池構造体18の端部に配置されている負極集電体20Xには、多くのリチウムイオン38が供給される。そのため、負極集電体20Xの開孔率を正極集電体26及び負極集電体20Yの開孔率と同程度にすると、負極集電体20Xが抵抗となり、リチウムイオン38が電池構造体18内に速やかに移動することができない。その結果、電池構造体18の中間部に配置されている負極活物質22に対して、リチウムイオン38が速やかにドーピングされない。電池構造体18に対するリチウムイオン38のドーピング速度が低下する。それにより、リチウムイオン二次電池100の生産効率が低下する。積層方向の端部に配置する負極集電体20Xの開孔率を他の集電体(正極集電体26,負極集電体20Y)の開孔率よりも大きくすることにより、強度及び電池寿命の低下を抑制しつつ、生産効率を向上させることができる。   As described above, many lithium ions 38 are supplied to the negative electrode current collector 20 </ b> X disposed at the end of the battery structure 18. Therefore, when the hole area ratio of the negative electrode current collector 20X is set to the same degree as the hole area ratios of the positive electrode current collector 26 and the negative electrode current collector 20Y, the negative electrode current collector 20X becomes a resistance, and the lithium ions 38 become the battery structure 18. Cannot move quickly in. As a result, the lithium ion 38 is not rapidly doped into the negative electrode active material 22 disposed in the middle portion of the battery structure 18. The doping rate of the lithium ions 38 to the battery structure 18 decreases. Thereby, the production efficiency of the lithium ion secondary battery 100 decreases. By making the aperture ratio of the negative electrode current collector 20X arranged at the end in the stacking direction larger than the aperture ratios of the other current collectors (the positive electrode current collector 26 and the negative electrode current collector 20Y), the strength and the battery Production efficiency can be improved while suppressing a decrease in the service life.

上記ドーピング工程では、負極電極4とリチウム箔36の間に電圧を印加して、リチウムイオンを負極活物質22にドーピングする。この方法は、負極電極4とリチウム箔36の電位差を調整できるという点で有用な方法である。しかしながら、負極集電体20Xとリチウム箔36を直接接触させ、両者を短絡させることによりリチウムイオンをドーピングする方法を採用してもよい。この方法は、外部電源37を必要としない簡便なドーピング方法である。   In the doping step, a voltage is applied between the negative electrode 4 and the lithium foil 36 to dope the negative electrode active material 22 with lithium ions. This method is useful in that the potential difference between the negative electrode 4 and the lithium foil 36 can be adjusted. However, a method of doping lithium ions by directly contacting the negative electrode current collector 20X and the lithium foil 36 and short-circuiting them may be employed. This method is a simple doping method that does not require the external power source 37.

なお、正極集電体26の開孔率と負極集電体20Yの開孔率は異なっていてもよい。重要なことは、積層方向の端部に配置されている負極集電体20Xの開孔率が、積層方向の中間部に配置されている正極集電体26及び負極集電体20Yの開孔率よりも大きいことである。また、正極集電体26の厚みと負極集電体20Yの厚みは異なっていてもよい。正極集電体26の厚みと負極集電体20Yの厚みは、リチウムイオン二次電池の特性に併せて適宜選択することができる。さらに、負極集電体20Xの厚みが負極集電体20Yの厚みと同じであってもよい。負極電極4Xの強度が負極電極4Yの強度よりも弱くなる可能性があるものの、負極電極4Y及び正極電極6が十分な強度を有していれば、電池構造体18の全体としては強度が維持される。   Note that the hole area ratio of the positive electrode current collector 26 and the hole area ratio of the negative electrode current collector 20Y may be different. What is important is that the aperture ratio of the negative electrode current collector 20X disposed at the end portion in the stacking direction is equal to that of the positive electrode current collector 26 and the negative electrode current collector 20Y disposed in the intermediate portion in the stack direction. Is greater than the rate. Further, the thickness of the positive electrode current collector 26 and the thickness of the negative electrode current collector 20Y may be different. The thickness of the positive electrode current collector 26 and the thickness of the negative electrode current collector 20Y can be appropriately selected according to the characteristics of the lithium ion secondary battery. Furthermore, the thickness of the negative electrode current collector 20X may be the same as the thickness of the negative electrode current collector 20Y. Although the strength of the negative electrode 4X may be weaker than that of the negative electrode 4Y, if the negative electrode 4Y and the positive electrode 6 have sufficient strength, the overall strength of the battery structure 18 is maintained. Is done.

(実験例)
複数の電池構造体60を作製し、活物質に対するリチウムイオンのドーピング速度について実験を行った。図9は、実験で用いた電池構造体60の基本的な構造を示す。電池構造体60では、負極電極54を積層方向の両端に配置した。3個の負極電極54と2個の正極電極56を、セパレータ58を介して交互に積層した。負極電極54の外側にリチウム箔52を配置し、負極電極54を外部電源50の正極に接続し、リチウム箔52を外部電源50の負極に接続した。なお、本実験では、負極電極54の集電体と正極電極56の集電体の全てに、0.3mmのパンチング孔(貫通孔)を形成した。
(Experimental example)
A plurality of battery structures 60 were produced, and experiments were conducted on the lithium ion doping rate for the active material. FIG. 9 shows a basic structure of the battery structure 60 used in the experiment. In the battery structure 60, the negative electrodes 54 are disposed at both ends in the stacking direction. Three negative electrodes 54 and two positive electrodes 56 were alternately stacked via separators 58. Lithium foil 52 was disposed outside negative electrode 54, negative electrode 54 was connected to the positive electrode of external power supply 50, and lithium foil 52 was connected to the negative electrode of external power supply 50. In this experiment, 0.3 mm punching holes (through holes) were formed in all of the current collector of the negative electrode 54 and the current collector of the positive electrode 56.

本実験では、負極電極54の開孔率、正極電極56の開孔率、負極電極54及び正極電極56の貫通孔の配置位置を変化させて電池構造体60を作製した。そして、負極電極54とリチウム箔52の間に電圧を加え、リチウムイオンのドーピング速度を測定した。得られた結果について、リチウムイオンのドーピング速度を目的変数(基準変数)とし、負極電極54の開孔率、正極電極56の開孔率、負極電極54及び正極電極56の貫通孔の配置位置を説明変数として多変量解析を行った。なお、貫通孔の配置位置(質的変数)については、千鳥を1とし、並列を2とした。実験で用いた試料を表1に示す。   In this experiment, the battery structure 60 was manufactured by changing the hole area ratio of the negative electrode 54, the hole area ratio of the positive electrode 56, and the arrangement positions of the through holes of the negative electrode 54 and the positive electrode 56. A voltage was applied between the negative electrode 54 and the lithium foil 52, and the doping rate of lithium ions was measured. With respect to the obtained results, the doping rate of lithium ions was used as a target variable (reference variable), and the opening ratio of the negative electrode 54, the opening ratio of the positive electrode 56, and the arrangement positions of the through holes of the negative electrode 54 and the positive electrode 56 were as follows. Multivariate analysis was performed as an explanatory variable. In addition, about the arrangement | positioning position (qualitative variable) of a through-hole, staggered was set to 1 and parallel was set to 2. Table 1 shows the samples used in the experiment.

Figure 2013058378
Figure 2013058378

多変量解析の結果、下記式1に示す回帰式が得られた。下記式1に示すように、回帰式では、負極電極54に関する説明変数のみが採用された。なお、下記回帰式の相関係数は98%であった。下記式1より、リチウムイオンのドーピング速度は、負極電極の開孔率、及び、負極電極の貫通孔の配置位置に依存することが明らかとなった。
(ドーピング速度)=8.7×(負極の開孔率)-108×(負極の貫通孔の配置位置)・・(式1)
As a result of multivariate analysis, the regression equation shown in the following equation 1 was obtained. As shown in the following formula 1, in the regression formula, only explanatory variables related to the negative electrode 54 are employed. In addition, the correlation coefficient of the following regression equation was 98%. From the following formula 1, it became clear that the doping rate of lithium ions depends on the hole area ratio of the negative electrode and the arrangement position of the through holes of the negative electrode.
(Doping rate) = 8.7 × (opening ratio of negative electrode) −108 × (positioning position of through hole of negative electrode)

上記回帰式1では、正極電極56に関する説明変数は採用されなかった。これは、積層方向の中間部に配置されている電極(集電体)の場合、開孔率,貫通孔の配置位置を変化させても、リチウムイオンのドーピング速度に影響を与えないことを示している。また、上記回帰式1から明らかなように、負極の開孔率を大きくすれば、リチウムイオンのドーピング速度が速くなることが確認された。すなわち、端部に配置する電極(上記実験の場合は負極)の集電体の開孔率を大きくすれば、中間部に配置される集電体の開孔率に係らず、リチウムイオンのドーピング速度が速くなることが確認された。   In the regression equation 1, the explanatory variable related to the positive electrode 56 was not adopted. This indicates that, in the case of an electrode (current collector) arranged in the middle part of the stacking direction, changing the hole area ratio and the arrangement position of the through holes does not affect the doping rate of lithium ions. ing. Further, as is clear from the above regression equation 1, it was confirmed that the lithium ion doping rate was increased by increasing the porosity of the negative electrode. That is, if the aperture ratio of the collector of the electrode disposed at the end (the negative electrode in the case of the above experiment) is increased, lithium ion doping is performed regardless of the aperture ratio of the collector disposed at the intermediate section. It was confirmed that the speed increased.

上記した実施形態のリチウムイオン二次電池では、端部電極の集電体の開孔率が中間電極の集電体の開孔率よりも大きければよく、リチウムイオン二次電池を構成する部品の材料は様々なものを使用することができる。以下に、リチウムイオン二次電池の構成部品について、好ましい材料の一例を示す。   In the lithium ion secondary battery according to the above-described embodiment, it is sufficient that the aperture ratio of the current collector of the end electrode is larger than the aperture ratio of the current collector of the intermediate electrode. Various materials can be used. Below, an example of a preferable material is shown about the component of a lithium ion secondary battery.

(負極集電体)
負極集電体として、アルミニウム(Al)、ニッケル(Ni)、銅(Cu)等、又はそれらの複合材料を用いることができる。特に、銅又は銅を含む複合材料であることが好ましい。
(Negative electrode current collector)
As the negative electrode current collector, aluminum (Al), nickel (Ni), copper (Cu), or a composite material thereof can be used. In particular, copper or a composite material containing copper is preferable.

(負極活物質)
負極活物質は、リチウムイオンが侵入及び脱離可能な材料を用いる。電池容量を向上させるため、リチウム(Li)を含まない材料であることが好ましく、例えば、天然黒鉛,メソカーボンマイクロビーズ,高配向性グラファイト,ハードカーボン,ソフトカーボン等の炭素材料,酸化ケイ素(SiO)等を用いることができる。負極活物質は、必要に応じて導電材,結着剤等とともに負極集電体に塗布される。なお、リチウム,ナトリウム等のアルカリ金属を使用することもできる。
(Negative electrode active material)
As the negative electrode active material, a material in which lithium ions can enter and leave is used. In order to improve battery capacity, it is preferable that the material does not contain lithium (Li). For example, carbon materials such as natural graphite, mesocarbon microbeads, highly oriented graphite, hard carbon, and soft carbon, silicon oxide (SiO 2) ) Etc. can be used. A negative electrode active material is apply | coated to a negative electrode collector with a electrically conductive material, a binder, etc. as needed. Alkali metals such as lithium and sodium can also be used.

(正極集電体)
正極集電体として、アルミニウム、ニッケル、チタン等、又はそれらの複合材料を用いることができる。特に、アルミニウム又はアルミニウムを含む複合材料であることが好ましい。
(Positive electrode current collector)
As the positive electrode current collector, aluminum, nickel, titanium, or a composite material thereof can be used. In particular, aluminum or a composite material containing aluminum is preferable.

(正極活物質)
正極活物質は、リチウムイオンが侵入及び脱離可能な材料を用いる。電池容量を向上させるため、リチウム(Li)を含まない材料であることが好ましく、例えば、天然黒鉛,メソカーボンマイクロビーズ,高配向性グラファイト,ハードカーボン,ソフトカーボン等の炭素材料,硫黄変性ポリアクリロニトリル等を用いることができる。正極活物質は、必要に応じて導電材,結着剤等とともに正極集電体に塗布される。なお、リチウム,ナトリウム等のアルカリ金属を使用することもできる。
(Positive electrode active material)
As the positive electrode active material, a material in which lithium ions can enter and leave is used. In order to improve battery capacity, it is preferable that the material does not contain lithium (Li). For example, carbon materials such as natural graphite, mesocarbon microbeads, highly oriented graphite, hard carbon, and soft carbon, sulfur-modified polyacrylonitrile Etc. can be used. The positive electrode active material is applied to the positive electrode current collector together with a conductive material, a binder and the like as necessary. Alkali metals such as lithium and sodium can also be used.

(セパレータ)
セパレータは、絶縁性を有する多孔質を用いる。セパレータとして、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、あるいは、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布または不織布を使用することができる。
(Separator)
As the separator, a porous porous material is used. As the separator, a porous film made of a polyolefin-based resin such as polyethylene (PE) or polypropylene (PP), or a woven or non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methyl cellulose or the like can be used.

(電解液)
電解液は、非水系の溶媒に支持塩(電解質)を溶解させた非水電解液であることが好ましい。非水系の溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等、又はこれらの混合液を使用することができる。また、支持塩(電解質)として、例えば、LiPF、LiBF、LiAsF等を使用することができる。
(Electrolyte)
The electrolytic solution is preferably a nonaqueous electrolytic solution in which a supporting salt (electrolyte) is dissolved in a nonaqueous solvent. As the non-aqueous solvent, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), or a mixture thereof can be used. Moreover, as a supporting salt (electrolyte), for example, can be used LiPF 6, LiBF 4, LiAsF 6, and the like.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. In addition, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in the present specification or the drawings can achieve a plurality of objects at the same time, and has technical utility by achieving one of the objects.

4:負極電極
5:セパレータ
6:正極電極
7:正負極の対(電極対)
18:電池構造体
20:負極集電体
26:正極集電体
100:リチウムイオン二次電池
4: Negative electrode 5: Separator 6: Positive electrode 7: Pair of positive and negative electrodes (electrode pair)
18: Battery structure 20: Negative electrode current collector 26: Positive electrode current collector 100: Lithium ion secondary battery

Claims (5)

セパレータを介して正極電極と負極電極が対向している正負極の対が複数積層されているリチウムイオン二次電池であって、
前記正極電極の集電体及び前記負極電極の集電体の各々には厚み方向に貫通する孔が形成されており、
積層方向の端部に配置されている端部電極の集電体の開孔率が、前記端部電極の間に配置されている中間電極の集電体の開孔率よりも大きいことを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery in which a plurality of positive and negative electrode pairs in which a positive electrode and a negative electrode are opposed via a separator are laminated,
Each of the current collector of the positive electrode and the current collector of the negative electrode has a hole penetrating in the thickness direction,
The aperture ratio of the current collector of the end electrode disposed at the end in the stacking direction is larger than the aperture ratio of the current collector of the intermediate electrode disposed between the end electrodes. Lithium ion secondary battery.
前記端部電極の集電体が、他の電極の集電体よりも厚いことを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein a current collector of the end electrode is thicker than a current collector of another electrode. 前記端部電極が、前記負極電極であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the end electrode is the negative electrode. セパレータを介して正極電極と負極電極が対向している正負極の対が複数積層されている電池構造体を備えるリチウムイオン二次電池の製造方法であり、
厚み方向に貫通する孔が形成された集電体を用いて前記正極電極と前記負極電極を形成する電極形成工程と、
前記正極電極と前記負極電極を交互に積層して電池構造体を作製する積層工程と、
容器内に前記電池構造体を配置し、前記電池構造体の積層方向の外側にリチウムイオン供給体を配置する配置工程と、
リチウムイオンを前記正極電極と前記負極電極の少なくとも一方にドーピングするドーピング工程と、を備え、
前記積層工程では、他の電極の集電体よりも開孔率が大きな集電体を用いて作成した電極を、前記電池構造体の積層方向端部に配置することを特徴とするリチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery comprising a battery structure in which a plurality of positive and negative electrode pairs in which a positive electrode and a negative electrode are opposed via a separator are laminated,
An electrode forming step of forming the positive electrode and the negative electrode using a current collector formed with a hole penetrating in the thickness direction;
A lamination step of alternately laminating the positive electrode and the negative electrode to produce a battery structure;
An arrangement step of arranging the battery structure in a container and arranging a lithium ion supplier outside the stacking direction of the battery structure;
A doping step of doping at least one of the positive electrode and the negative electrode with lithium ions,
In the laminating step, an electrode formed using a current collector having a larger porosity than the current collectors of the other electrodes is disposed at the end of the battery structure in the stacking direction. A method for manufacturing a secondary battery.
前記ドーピング工程では、前記正極電極又は前記負極電極と、前記リチウムイオン供給体との間に電圧を印加することを特徴とする請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein a voltage is applied between the positive electrode or the negative electrode and the lithium ion supplier in the doping step.
JP2011195792A 2011-09-08 2011-09-08 Method for producing lithium ion secondary battery Expired - Fee Related JP5686076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195792A JP5686076B2 (en) 2011-09-08 2011-09-08 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195792A JP5686076B2 (en) 2011-09-08 2011-09-08 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013058378A true JP2013058378A (en) 2013-03-28
JP5686076B2 JP5686076B2 (en) 2015-03-18

Family

ID=48134080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195792A Expired - Fee Related JP5686076B2 (en) 2011-09-08 2011-09-08 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5686076B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104127A1 (en) * 2012-12-27 2014-07-03 日新電機株式会社 Method for manufacturing electricity storage device
KR20140132104A (en) * 2013-05-07 2014-11-17 삼성전기주식회사 Chip supercapacitor and making method the same
WO2016035308A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage device
WO2016159058A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Lithium ion secondary battery and method of manufacturing same
JP2016181363A (en) * 2015-03-23 2016-10-13 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery, and precursor of lithium ion secondary battery
JPWO2017061468A1 (en) * 2015-10-05 2018-07-26 積水化学工業株式会社 Lithium ion secondary battery
EP3483950A1 (en) * 2017-11-10 2019-05-15 Sumitomo Rubber Industries, Ltd. Method of manufacturing lithium ion battery device and lithium ion battery device
US10910677B2 (en) * 2017-04-28 2021-02-02 Toyota Jidosha Kabushiki Kaisha Stacked battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2005038612A (en) * 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd Lithium ion secondary battery and manufacturing method of the same
JP2007128804A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Battery
JP2008300102A (en) * 2007-05-30 2008-12-11 Fuji Heavy Ind Ltd Power storage device and its manufacturing method
JP2010040370A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Energy storage device
JP2010199282A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2011108646A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Electrode assembly, and secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059672A1 (en) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2005038612A (en) * 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd Lithium ion secondary battery and manufacturing method of the same
JP2007128804A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Battery
JP2008300102A (en) * 2007-05-30 2008-12-11 Fuji Heavy Ind Ltd Power storage device and its manufacturing method
JP2010040370A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Energy storage device
JP2010199282A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2011108646A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Electrode assembly, and secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104127A1 (en) * 2012-12-27 2014-07-03 日新電機株式会社 Method for manufacturing electricity storage device
KR20140132104A (en) * 2013-05-07 2014-11-17 삼성전기주식회사 Chip supercapacitor and making method the same
KR102029472B1 (en) 2013-05-07 2019-10-07 삼성전기주식회사 Chip supercapacitor and making method the same
WO2016035308A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage device
JP2016181363A (en) * 2015-03-23 2016-10-13 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery, and precursor of lithium ion secondary battery
US10340527B2 (en) 2015-03-30 2019-07-02 Hitachi Chemical Company, Ltd. Lithium-ion secondary battery and method of manufacturing the same
JPWO2016159058A1 (en) * 2015-03-30 2018-02-01 日立化成株式会社 Lithium ion secondary battery and manufacturing method thereof
US20180083288A1 (en) * 2015-03-30 2018-03-22 Hitachi Chemical Company, Ltd. Lithium-ion secondary battery and method of manufacturing the same
CN107431236A (en) * 2015-03-30 2017-12-01 日立化成株式会社 Lithium rechargeable battery and its manufacture method
WO2016159058A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Lithium ion secondary battery and method of manufacturing same
JPWO2017061468A1 (en) * 2015-10-05 2018-07-26 積水化学工業株式会社 Lithium ion secondary battery
US10910677B2 (en) * 2017-04-28 2021-02-02 Toyota Jidosha Kabushiki Kaisha Stacked battery
EP3483950A1 (en) * 2017-11-10 2019-05-15 Sumitomo Rubber Industries, Ltd. Method of manufacturing lithium ion battery device and lithium ion battery device
CN109768214A (en) * 2017-11-10 2019-05-17 住友橡胶工业株式会社 The manufacturing method and lithium ion electric storage device of lithium ion electric storage device
JP2019091538A (en) * 2017-11-10 2019-06-13 住友ゴム工業株式会社 Method for manufacturing lithium ion storage device, and lithium ion storage device
JP7052304B2 (en) 2017-11-10 2022-04-12 住友ゴム工業株式会社 Manufacturing method of lithium-ion power storage device and lithium-ion power storage device
CN109768214B (en) * 2017-11-10 2024-03-15 住友橡胶工业株式会社 Method for manufacturing lithium ion power storage device, and lithium ion power storage device

Also Published As

Publication number Publication date
JP5686076B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5686076B2 (en) Method for producing lithium ion secondary battery
WO2016039263A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2007329050A (en) Sheet type battery and its manufacturing method
JP2011081931A (en) Lithium ion secondary battery
CN112864546B (en) Non-aqueous electrolyte secondary battery
JP2012195132A (en) Secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2019140054A (en) Positive electrode and non-aqueous electrolyte secondary battery
JP2013073763A (en) Secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
US10431846B2 (en) Energy storage device
JP6674885B2 (en) Secondary battery and method of manufacturing secondary battery
JP2013127845A (en) Electric device
JP5624507B2 (en) Assembled battery
WO2016039264A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2015018670A (en) Bipolar battery
KR102028167B1 (en) Secondary battery and manufacturing method using the same
JP2011048991A (en) Lithium ion secondary battery
JP2011054378A (en) Nonaqueous electrolyte secondary battery
JP2009123583A (en) Lithium ion secondary battery and battery pack using it
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2013084420A (en) Laminated lithium-ion battery
JP2012022792A (en) Nonaqueous electrolytic device for accumulating electric charge
JP6028916B2 (en) Secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R151 Written notification of patent or utility model registration

Ref document number: 5686076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees