JP2013051941A - Plant cultivation device - Google Patents

Plant cultivation device Download PDF

Info

Publication number
JP2013051941A
JP2013051941A JP2011194227A JP2011194227A JP2013051941A JP 2013051941 A JP2013051941 A JP 2013051941A JP 2011194227 A JP2011194227 A JP 2011194227A JP 2011194227 A JP2011194227 A JP 2011194227A JP 2013051941 A JP2013051941 A JP 2013051941A
Authority
JP
Japan
Prior art keywords
cultivation
nutrient solution
space
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194227A
Other languages
Japanese (ja)
Other versions
JP5839171B2 (en
Inventor
Fujio Tanabe
不二夫 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2011194227A priority Critical patent/JP5839171B2/en
Publication of JP2013051941A publication Critical patent/JP2013051941A/en
Application granted granted Critical
Publication of JP5839171B2 publication Critical patent/JP5839171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simplified and miniaturized plant cultivation device usable for cultivating various kinds of plants.SOLUTION: This plant cultivation device includes cooling or heating a cultivation nutrient solution L by a heat source means N to heat exchanging the cultivation nutrient solution with a space adjusting gas G by a heat exchange means 15 for adjusting the gas temperature, supplying the cultivation nutrient solution L after heat exchange to a cultivation tank 4, and supplying the space adjusting gas G after heat exchange to a cultivation space (cultivation area 6a) on the cultivation tank 4.

Description

本発明は、種々の葉野菜などを栽培する植物栽培装置に関し、詳しくは、槽内の栽培養液に根元部を浸漬させた状態で栽培植物を収容する栽培槽を備え、栽培養液を前記栽培槽に供給する給液手段、及び、空間調整気体を前記栽培槽上の栽培空間に供給する給気手段を備える植物栽培装置に関する。   The present invention relates to a plant cultivation apparatus for cultivating various leafy vegetables and the like. Specifically, the plant cultivation apparatus includes a cultivation tank that accommodates a cultivated plant in a state where the root portion is immersed in the cultivation nutrient solution in the tank, It is related with a plant cultivation apparatus provided with the liquid supply means supplied to a cultivation tank, and the air supply means which supplies space adjustment gas to the cultivation space on the said cultivation tank.

従来、上記の如き植物栽培装置において(図12参照)、栽培槽4に供給する栽培養液L、及び、その栽培槽4上の栽培空間6に供給する空間調整気体Gの夫々を冷却又は加熱して調温するには、栽培養液Lを冷却又は加熱する養液用の熱源手段Naと、空間調整気体Gを冷却又は加熱する気体用の熱源手段Nbとを各別に装備していた。   Conventionally, in the plant cultivation apparatus as described above (see FIG. 12), the culture nutrient solution L supplied to the cultivation tank 4 and the space adjustment gas G supplied to the cultivation space 6 on the cultivation tank 4 are cooled or heated. In order to adjust the temperature, the heat source means Na for the nutrient solution for cooling or heating the cultivation nutrient solution L and the heat source means Nb for the gas for cooling or heating the space adjustment gas G were separately provided.

即ち、この従来装置では、栽培槽4に供給する栽培養液Lの温度ti(給液温度)を栽培植物の育成に適した温度(即ち、栽培槽4内の養液Lを栽培植物の育成に適した温度状態に保ち得る温度)に調整し、また、栽培空間6に供給する空間調整気体Gの温度tgi(給気温度)を栽培植物の育成に適した温度(即ち、栽培空間6を栽培植物の育成に適した温度状態に保ち得る温度)に調整するのに、各熱源手段Na,Nbの冷却出力又は加熱出力を各別に調整することで、それら給液温度ti及び給気温度tgiの夫々を栽培植物の育成に適した温度に調整することができる。   That is, in this conventional apparatus, the temperature ti (liquid supply temperature) of the cultivation nutrient solution L supplied to the cultivation tank 4 is a temperature suitable for growing the cultivation plant (that is, the cultivation solution L in the cultivation vessel 4 is grown. The temperature tgi (supply temperature) of the space adjustment gas G supplied to the cultivation space 6 is adjusted to a temperature suitable for growing the cultivated plant (that is, the cultivation space 6 is adjusted). To adjust the cooling output or heating output of each heat source means Na, Nb separately to adjust to a temperature suitable for the growth of cultivated plants), the liquid supply temperature ti and the supply air temperature tgi Can be adjusted to a temperature suitable for growing cultivated plants.

特開2010−88425号公報JP 2010-88425 A

しかし、上記の従来装置では、養液用の熱源手段Naと気体用の熱源手段Nbとを各別に装備するため、装置の全体構成が複雑になるとともに大型化し、この為、装置コストが嵩むとともに装置設置に大きなスペースが必要となる問題があった。   However, in the above-mentioned conventional apparatus, since the heat source means Na for nutrient solution and the heat source means Nb for gas are separately provided, the overall configuration of the apparatus becomes complicated and the size increases, which increases the cost of the apparatus. There was a problem that a large space was required to install the device.

ちなみに、この問題に対する改良装置として、図11に示す如く、熱媒eを冷却又は加熱する共通の熱源手段Nを設けるとともに、この共通熱源手段Nにより冷却又は加熱した熱媒eと栽培槽4に供給する栽培養液Lとを熱交換させる養液調温用の熱交換手段15a、及び、共通熱源手段Nにより冷却又は加熱した熱媒eと栽培空間6に供給する空間調整気体Gとを熱交換させる気体調温用の熱交換手段15bを各別に装備する装置も考えられる。   Incidentally, as an improvement device for this problem, as shown in FIG. 11, a common heat source means N for cooling or heating the heat medium e is provided, and the heat medium e cooled and heated by the common heat source means N and the cultivation tank 4 are provided. Heat the nutrient solution temperature-adjusting heat exchange means 15a for exchanging the supplied cultivation nutrient solution L, the heat medium e cooled or heated by the common heat source means N, and the space adjustment gas G to be supplied to the cultivation space 6. A device equipped with heat exchange means 15b for gas temperature control to be exchanged can also be considered.

即ち、この改良装置では、各熱交換手段15a,15bに対する共通熱源手段Nからの熱媒供給流量を調整することで、上記給液温度ti及び給気温度tgiの夫々を調整することができる。   That is, in this improved apparatus, each of the supply liquid temperature ti and the supply air temperature tgi can be adjusted by adjusting the heat medium supply flow rate from the common heat source means N to the heat exchange means 15a and 15b.

しかし、この改良装置においても、養液調温用の熱交換手段15aと気体調温用の熱交換手段15bとを各別に装備するため、また、共通熱源手段Nと各熱交換手段15a,15bとを接続するのに並列な2系統の熱媒配管が必要になるため、装置の複雑化や大型化を十分には回避することができず、この為、一定の改善は見られるものの、やはり装置コストが嵩むとともに装置設置に大きなスペースが必要になる問題がある。   However, in this improved apparatus, the heat exchange means 15a for nutrient solution temperature adjustment and the heat exchange means 15b for gas temperature adjustment are separately provided, and the common heat source means N and the heat exchange means 15a, 15b are also provided. It is necessary to use two heat medium pipes in parallel to connect to each other, so it is not possible to sufficiently avoid the complexity and enlargement of the equipment. There is a problem that the apparatus cost increases and a large space is required for the apparatus installation.

この実情に鑑み、本発明の主たる課題は、合理的な装置構成を採ることで上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational device configuration.

本発明の第1特徴構成は、
槽内の栽培養液に根元部を浸漬させた状態で栽培植物を収容する栽培槽を備え、
栽培養液を前記栽培槽に供給する給液手段、及び、空間調整気体を前記栽培槽上の栽培空間に供給する給気手段を備える植物栽培装置であって、
前記給液手段により前記栽培槽に供給する栽培養液を冷却又は加熱する熱源手段を設けるとともに、
前記給気手段により前記栽培空間に供給する空間調整気体を熱媒と熱交換させて冷却又は加熱する気体調温用の熱交換手段を設け、
前記給液手段は、前記熱源手段により冷却又は加熱した栽培養液を前記熱媒として前記気体調温用の熱交換手段に通過させて空間調整気体と熱交換させ、この熱交換後の栽培養液を前記栽培槽に供給し、
前記給気手段は、前記気体調温用の熱交換手段で栽培養液と熱交換した後の空間調整気体を前記栽培空間に供給する構成にしてある点にある。
The first characteristic configuration of the present invention is:
With a cultivation tank that accommodates cultivated plants in a state where the root part is immersed in the cultivation nutrient solution in the tank,
It is a plant cultivation device comprising a liquid supply means for supplying a cultivation nutrient solution to the cultivation tank, and an air supply means for supplying a space adjustment gas to the cultivation space on the cultivation tank,
While providing a heat source means for cooling or heating the cultivation nutrient solution supplied to the cultivation tank by the liquid supply means,
A heat exchange means for adjusting the temperature of the gas that is cooled or heated by heat exchange of the space adjustment gas supplied to the cultivation space by the air supply means with a heat medium,
The liquid supply means causes the cultivation nutrient solution cooled or heated by the heat source means to pass through the heat exchange means for gas temperature control as the heat medium to exchange heat with the space adjustment gas, and the cultivation cultivation after this heat exchange Supplying the liquid to the cultivation tank,
The said air supply means exists in the point which is set as the structure which supplies the space adjustment gas after heat-exchanging with cultivation nutrient solution by the said heat exchange means for gas temperature control to the said cultivation space.

この構成によれば、栽培槽に供給する栽培養液の温度(給液温度)、及び、栽培槽上の栽培空間に供給する空間調整気体の温度(給気温度)の夫々について、栽培植物の育成に適した温度(即ち、栽培槽内の養液やその槽上の栽培空間を栽培植物の育成に適した温度状態に保つことができる養液温度や気体温度)が栽培条件や調温負荷などにより異なるにしても、気体調温用の熱交換手段での熱交換条件(例えば、栽培養液及び空間調整気体夫々の温度、流量、流速など)を状況に応じたものに設定にすれば、熱源手段により冷却又は加熱した栽培養液を先ず熱媒として気体調温用の熱交換手段に通過させることで、空間調整気体を気体調温用の熱交換手段での栽培養液との熱交換により所要温度まで冷却又は加熱することができ、これにより、栽培空間に供給する空間調整気体の温度(給気温度)を栽培植物の育成に適した温度(つまり、栽培空間の調温負荷を処理して栽培空間を栽培植物の育成に適した温度状態に保つことができる気体温度)に調整することができる。   According to this structure, about each of the temperature (supply temperature) of the cultivation nutrient solution supplied to a cultivation tank, and the temperature (supply temperature) of the space adjustment gas supplied to the cultivation space on a cultivation tank, Temperature suitable for growth (that is, nutrient solution temperature and gas temperature that can maintain the nutrient solution in the cultivation tank and the cultivation space on the vessel in a temperature state suitable for cultivation plant cultivation) If the heat exchange conditions (for example, the temperature, flow rate, flow rate, etc. of each of the cultivation nutrient solution and the space adjustment gas) are set according to the situation, even if they differ depending on the temperature First, the cultivation nutrient solution cooled or heated by the heat source means is first passed through the heat exchange means for gas temperature adjustment as a heat medium, so that the space adjustment gas is heated with the cultivation nutrient solution in the heat exchange means for gas temperature adjustment. It can be cooled or heated to the required temperature by replacement, The temperature of the space adjustment gas supplied to the cultivation space (the supply air temperature) is the temperature suitable for growing the cultivated plant (that is, the temperature state suitable for growing the cultivated plant by processing the temperature control load of the cultivation space Gas temperature that can be maintained at a low temperature).

また同時に、栽培養液を気体調温用の熱交換手段での上記熱交換に伴い所要温度幅だけ温度変化させる(即ち、空間調整気体の冷却に伴い所要温度幅だけ温度上昇させる、又は、空間調整気体の加熱に伴い所要温度幅だけ温度降下させる)ことができ、これにより、栽培槽に供給する栽培養液の温度(給液温度)も栽培植物の育成に適した温度(つまり、栽培槽内の養液の調温負荷を処理して栽培槽内の養液を栽培植物の育成に適した温度状態に保つことができる養液温度)に調整することができる。   At the same time, the temperature of the cultivating nutrient solution is changed by the required temperature range in accordance with the heat exchange in the gas temperature adjustment heat exchange means (that is, the temperature is increased by the required temperature range as the space adjustment gas is cooled, or the space The temperature can be lowered by the required temperature range as the conditioning gas is heated), so that the temperature of the nutrient solution supplied to the cultivation tank (liquid supply temperature) is also suitable for growing the cultivated plant (that is, the cultivation tank) The nutrient solution in the cultivation tank can be adjusted to a nutrient solution temperature that can keep the nutrient solution in the cultivation tank in a temperature state suitable for the cultivation of the cultivated plant.

そして、この構成であれば、栽培養液を気体調温用の熱媒に兼用する形態を採るから、熱源手段については栽培養液を冷却又は加熱する熱源手段を設けるだけで済むとともに、調温用の熱交換手段についても気体調温用の熱交換手段を装備するだけで済み、また、熱源手段と調温用の熱交換手段との接続も本来の養液用の配管で済ませることができる。   And if it is this structure, since it takes the form which uses a cultivation nutrient solution as a heat medium for gas temperature control, about a heat source means, it is only necessary to provide the heat source means which cools or heats a cultivation nutrient solution, and temperature regulation It is only necessary to equip the heat exchanging means for gas temperature adjustment with the heat exchange means for gas, and the connection between the heat source means and the heat exchanging means for temperature adjustment can be done with the piping for the original nutrient solution. .

したがって、養液用の熱源手段と気体用の熱源手段とを各別に装備する先述の従来装置に比べ、また、共通熱源手段の装備に対し養液調温用の熱交換手段と気体調温用の熱交換手段とを各別に装備する先述の改良装置と比べても、装置の全体構成を効果的に簡素化及び小型化することができて、装置コストを大きく低減し得るとともに、装置設置に必要なスペースも大きく縮減することができる。   Therefore, compared with the above-mentioned conventional apparatus equipped with a heat source means for nutrient solution and a heat source means for gas separately, the heat exchange means for nutrient solution temperature adjustment and gas temperature adjustment for the equipment of the common heat source means Compared with the above-described improved apparatus equipped with a separate heat exchange means, the overall configuration of the apparatus can be effectively simplified and reduced in size, and the apparatus cost can be greatly reduced and the apparatus can be installed. The required space can also be greatly reduced.

なお、この構成の実施にあたり、気体調温用の熱交換手段として、栽培養液と空間調整気体とが伝熱壁を介さずに直接に熱交換する形式の熱交換手段(例えば、栽培養液の散布域に対して空間調整気体を通過させる形式の熱交換手段など)を採用すれば、栽培空間に供給する空間調整気体の湿度(具体的には、その空間調整気体が含有する栽培養液蒸気の濃度)を高めることができ、これにより、栽培空間を湿度面からも栽培植物の育成に適した空間に調整することができる。   In carrying out this configuration, as a heat exchange means for gas temperature control, a heat exchange means of a type in which the cultivation nutrient solution and the space adjustment gas directly exchange heat without passing through the heat transfer wall (for example, the cultivation nutrient solution) If the heat exchange means in the form of allowing the space-adjusted gas to pass through the spray area, etc., the humidity of the space-adjusted gas supplied to the cultivation space (specifically, the cultivation nutrient solution contained in the space-adjusted gas) (Concentration of steam) can be increased, so that the cultivation space can be adjusted to a space suitable for growing cultivated plants from the aspect of humidity.

上記構成の実施において、給気手段により栽培空間に供給する空間調整気体は、空気に限らず、二酸化炭素ガスや二酸化炭素ガス富裕空気などの栽培用ガスであってもよい。   In the implementation of the above configuration, the space adjustment gas supplied to the cultivation space by the air supply means is not limited to air but may be a cultivation gas such as carbon dioxide gas or carbon dioxide gas rich air.

また、省エネルギ化の観点からは、給気手段による空間調整気体の供給に伴い栽培空間から排出される空間内気体の全部又は一部を、気体調温用の熱交換手段において再び温度調整した上で空間調整気体として栽培空間に循環供給する方式を採るのが望ましいが、場合によっては、空間調整気体を栽培空間に一過的に供給する方式を採用して、栽培空間から排出される空間内気体を全て外部に放出するようにしてもよい。   Further, from the viewpoint of energy saving, all or part of the space gas discharged from the cultivation space with the supply of the space adjustment gas by the air supply means is temperature-adjusted again in the heat exchange means for gas temperature control. It is desirable to adopt a system that circulates and supplies the space adjustment gas to the cultivation space as described above, but in some cases, a space that is exhausted from the cultivation space by adopting a method that temporarily supplies the space adjustment gas to the cultivation space. All the internal gas may be discharged to the outside.

また同様に、省エネルギ化の観点からは、給液手段による栽培養液の供給に伴い栽培槽から排出される栽培養液の全部又は一部を、熱源手段において再び冷却又は加熱した上で気体調温用の熱交換手段を通じて栽培槽に循環供給する方式を採るのが望ましいが、場合によっては、栽培養液を栽培槽に一過的に供給する方式を採用して、栽培槽から排出される栽培養液を全て外部に放出するようにしてもよい。   Similarly, from the viewpoint of energy saving, all or a part of the cultivation nutrient solution discharged from the cultivation tank accompanying the supply of the cultivation nutrient solution by the liquid supply unit is cooled or heated again by the heat source unit, and then the air is discharged. It is desirable to adopt a system that circulates and supplies the cultivation tank to the cultivation tank through a heat exchange means for body temperature, but in some cases, a system that temporarily supplies the cultivation nutrient solution to the cultivation tank is adopted and discharged from the cultivation tank. You may make it discharge | release all the cultivation nutrient liquids to the exterior.

本発明の第2特徴構成は、
前記気体調温用の熱交換手段を、栽培養液の通液方向における上流側が空間調整気体の通気方向における下流側となる対向流方式の熱交換器にしてある点にある。
The second characteristic configuration of the present invention is:
The heat exchange means for adjusting the gas temperature is a counter flow type heat exchanger in which the upstream side in the flow direction of the cultivation nutrient solution is the downstream side in the ventilation direction of the space adjustment gas.

この構成によれば、気体調温用の熱交換手段を対向流方式の熱交換器にしてあることから、熱源手段で冷却した栽培養液を気体調温用の熱交換手段で空間調整気体と熱交換させて空間調整気体を冷却する場合、気体調温用の熱交換手段を通過した熱交換後の空間調整気体の温度(即ち、前記給気温度)を、気体調温用の熱交換手段を通過した熱交換後の栽培養液の温度(即ち、前記給液温度)より低い温度にすることもできる。   According to this configuration, since the heat exchange means for gas temperature adjustment is a counter-flow type heat exchanger, the cultivation nutrient solution cooled by the heat source means and the space adjustment gas by the heat exchange means for gas temperature adjustment. When the space adjustment gas is cooled by heat exchange, the temperature of the space adjustment gas after passing through the heat exchange means for gas temperature adjustment (that is, the supply air temperature) is changed to the heat exchange means for gas temperature adjustment. It is also possible to make the temperature lower than the temperature of the cultivation nutrient solution after the heat exchange that has passed through (that is, the liquid supply temperature).

また同様に、熱源手段で加熱した栽培養液を気体調温用の熱交換手段で空間調整気体と熱交換させて空間調整気体を加熱する場合では、気体調温用の熱交換手段を通過した熱交換後の空間調整気体の温度(給気温度)を、気体調温用の熱交換手段を通過した熱交換後の栽培養液の温度(給液温度)より高い温度にすることもできる。   Similarly, in the case where the cultivation medium heated by the heat source means is heat-exchanged with the space adjustment gas by the heat exchange means for gas temperature adjustment and the space adjustment gas is heated, it passes through the heat exchange means for gas temperature adjustment. The temperature of the space adjustment gas after heat exchange (supply temperature) can be made higher than the temperature (supply temperature) of the cultivation nutrient solution after heat exchange that has passed through the heat exchange means for gas temperature control.

したがって、この構成によれば、気体調整用の熱交換手段として、栽培養液の通液方向における上流側が空間調整気体の通気方向における上流側となる並行流方式の熱交換器を用いるのに比べ、栽培空間に供給する空間調整気体の温度(給気温度)、及び、栽培槽に供給する栽培養液の温度(給液温度)夫々の選択可能範囲を拡大することができ、その分、栽培条件や調温負荷の変動などに対する対応性を一層高く確保することができる。   Therefore, according to this configuration, as a heat exchange means for gas adjustment, compared to using a parallel flow type heat exchanger in which the upstream side in the flow direction of the cultivation nutrient solution is the upstream side in the ventilation direction of the space adjustment gas The temperature of the space adjustment gas supplied to the cultivation space (supply temperature) and the temperature of the cultivation nutrient solution supplied to the cultivation tank (supply temperature) can be expanded. Higher responsiveness to fluctuations in conditions and temperature control load can be secured.

本発明の第3特徴構成は、
温度センサにより検出される前記栽培空間の温度に基づいて前記熱源手段の冷却出力又は加熱出力を調整する空間制御手段を設け、
この空間制御手段は、前記熱源手段の冷却出力又は加熱出力の調整により、前記熱源手段から前記気体調温用の熱交換手段に供給する栽培養液の温度を調整することで、前記栽培空間の温度を設定空間温度に調整する構成にしてある点にある。
The third characteristic configuration of the present invention is:
Providing a space control means for adjusting the cooling output or heating output of the heat source means based on the temperature of the cultivation space detected by a temperature sensor;
This space control means adjusts the temperature of the cultivation nutrient solution supplied from the heat source means to the heat exchange means for gas temperature adjustment by adjusting the cooling output or heating output of the heat source means, thereby The temperature is adjusted to the set space temperature.

この構成によれば、調温負荷の変動にかかわらず栽培空間の温度が空間制御手段により自動的に設定空間温度に調整され保たれるから、その設定空間温度として栽培植物の育成に適した空間温度を設定しておくだけで、栽培植物を一層良好かつ安定的に栽培することができる。   According to this configuration, since the temperature of the cultivation space is automatically adjusted and maintained at the set space temperature by the space control means regardless of the variation in the temperature control load, the space suitable for growing the cultivated plant as the set space temperature. Only by setting the temperature, the cultivated plant can be cultivated more satisfactorily and stably.

また、熱源手段から気体調温用の熱交換手段に供給する栽培養液の温度を調整することで栽培空間の温度を調整するから、換言すれば、気体調温用の熱交換手段に供給する栽培養液の温度を栽培空間における調温負荷の変動分だけ調整するから、この調整の実行によって、気体調温用の熱交換手段を通過した熱交換後における栽培養液の温度(給液温度)が大きく変化することはなく、このことからも、栽培植物を一層良好かつ安定的に栽培することができる。   Further, the temperature of the cultivation space is adjusted by adjusting the temperature of the cultivation nutrient solution supplied from the heat source means to the heat exchange means for gas temperature adjustment. In other words, the temperature is supplied to the heat exchange means for gas temperature adjustment. Since the temperature of the cultivation nutrient solution is adjusted by the fluctuation of the temperature adjustment load in the cultivation space, the temperature of the cultivation nutrient solution after the heat exchange that has passed through the heat exchange means for gas temperature adjustment (feed temperature) ) Does not change greatly, and from this it is possible to cultivate cultivated plants better and more stably.

本発明の第4特徴構成は、
前記熱源手段で冷却して前記気体調温用の熱交換手段に供給する栽培養液の温度toを10℃〜14℃とし、
前記気体調温用の熱交換手段での空間調整気体との熱交換による栽培養液の温度上昇幅Δtを3℃deg〜7℃degとしてある点にある。
The fourth characteristic configuration of the present invention is:
The temperature to of the cultivation nutrient solution cooled by the heat source means and supplied to the heat exchange means for gas temperature control is set to 10 ° C. to 14 ° C.,
The temperature increase width Δt of the cultivation nutrient solution due to heat exchange with the space adjustment gas in the heat exchange means for gas temperature adjustment is in the range of 3 ° C. to 7 ° C.

この構成によれば、気体調温用の熱交換手段から栽培空間に供給する空間調整気体の温度(給気温度)、及び、気体調温用の熱交換手段から栽培槽に供給する栽培養液の温度(給液温度)の夫々を、レタスなどの一般葉野菜の育成に適した温度(即ち、栽培空間及び栽培槽内の養液をレタスなどの一般葉野菜の育成に適した温度状態に保つことができる気体温度及び養液温度)にすることができる。   According to this structure, the temperature (supply temperature) of the space adjustment gas supplied from the heat exchange means for gas temperature adjustment to the cultivation space, and the cultivation nutrient solution supplied to the cultivation tank from the heat exchange means for gas temperature adjustment Each of the temperature (feeding temperature) is adjusted to a temperature suitable for growing general leafy vegetables such as lettuce (ie, the nutrient solution in the cultivation space and the cultivation tank to a temperature state suitable for growing general leafy vegetables such as lettuce). Gas temperature and nutrient solution temperature).

即ち、設計値として上記のto=10℃〜14℃,Δt=3℃deg〜7℃deg(最も望ましくはto=12℃、Δt=5℃)を採用すれば、レタスなどの一般葉野菜の栽培に好適な装置にすることができる。   That is, if the above-mentioned to = 10 ° C. to 14 ° C. and Δt = 3 ° C. deg to 7 ° C. deg (most preferably to = 12 ° C., Δt = 5 ° C.) are adopted as the design values, It can be set as an apparatus suitable for cultivation.

本発明の第5特徴構成は、
前記熱源手段で冷却又は加熱した栽培養液の一部を、前記気体調温用の熱交換手段に対し迂回させて前記栽培槽に供給する迂回給液路を設けるとともに、
前記熱源手段で冷却又は加熱した栽培養液のうち前記迂回給液路を通じて前記栽培槽に供給する栽培養液が占める流量比率を調整するための給液比率調整弁を設けてある点にある。
The fifth characteristic configuration of the present invention is:
While providing a detour supply liquid path for supplying a part of the cultivation nutrient solution cooled or heated by the heat source means to the cultivation tank by detouring to the heat exchange means for gas temperature control,
A liquid supply ratio adjusting valve is provided for adjusting a flow rate ratio of the cultivation nutrient solution supplied to the cultivation tank through the detour supply fluid path in the cultivation nutrient solution cooled or heated by the heat source means.

この構成によれば、迂回給液路を通じて栽培槽に供給する栽培養液が、気体調温用の熱交換手段での空間調整気体との熱交換による温度変化の無いままで栽培槽に供給される栽培養液であることから、熱源手段において栽培養液を冷却する場合では、熱源手段で冷却した栽培養液のうち迂回給液路を通じて栽培槽に供給する栽培養液が占める流量比率を、給液比率調整弁により増大側へ調整することで、迂回給液路を通じて栽培槽に供給する栽培養液と気体調整用の熱交換器を通じて栽培槽に供給する栽培養液とを合わせた平均の給液温度を低下側に調整することができる。   According to this configuration, the cultivation nutrient solution supplied to the cultivation tank through the detour supply liquid path is supplied to the cultivation tank without any temperature change due to heat exchange with the space adjustment gas in the heat exchange means for gas temperature control. In the case of cooling the cultivation nutrient solution in the heat source means, the flow rate ratio occupied by the cultivation nutrient solution supplied to the cultivation tank through the detour supply liquid path among the cultivation nutrient solutions cooled by the heat source means is By adjusting to the increase side with the feed ratio adjustment valve, the average of the cultivation nutrient solution supplied to the cultivation tank through the detour supply fluid path and the cultivation nutrient solution to be fed to the cultivation tank through the heat exchanger for gas adjustment The liquid supply temperature can be adjusted to the lower side.

また、熱源手段において栽培養液を加熱する場合では、熱源手段で加熱した栽培養液のうち迂回給液路を通じて栽培槽に供給する栽培養液が占める流量比率を、給液比率調整弁により増大側へ調整することで、上記平均の給液温度を上昇側に調整することができる。   In addition, when heating the cultivation nutrient solution in the heat source means, the flow rate ratio occupied by the cultivation nutrient solution supplied to the cultivation tank through the detour supply liquid path in the cultivation nutrient solution heated by the heat source means is increased by the supply ratio adjustment valve. By adjusting to the side, the average liquid supply temperature can be adjusted to the rising side.

即ち、この構成によれば、栽培槽に供給する栽培養液の温度(上記平均の給液温度)を給液比率調整弁による流量比率の調整で容易に調整することができ、これにより、栽培条件や調温負荷の変動などに対する対応性を一層高めることができる。   That is, according to this configuration, the temperature of the cultivation nutrient solution supplied to the cultivation tank (the above-described average feeding temperature) can be easily adjusted by adjusting the flow rate ratio by the feeding rate adjustment valve, thereby It is possible to further improve the responsiveness to fluctuations in conditions and temperature control load.

本発明の第6特徴構成は、
前記給液手段による栽培養液の供給に伴い前記栽培槽から排出される栽培養液を前記熱源手段に戻す還液路を設けるとともに、
前記栽培槽から排出される栽培養液の一部を、前記熱源手段及び前記気体調温用の熱交換手段に対し迂回させて前記栽培槽に供給する迂回循環路を設け、
前記栽培槽から排出される栽培養液のうち前記迂回循環路を通じて前記栽培槽に供給する栽培養液が占める流量比率を調整するための循環液比率調整弁を設けてある点にある。
The sixth characteristic configuration of the present invention is:
While providing a return liquid path for returning the cultivation nutrient solution discharged from the cultivation tank with the supply of the cultivation nutrient solution by the liquid supply means to the heat source means,
Providing a detour circulation path for supplying a part of the cultivation nutrient solution discharged from the cultivation tank to the cultivation tank by bypassing the heat source means and the heat exchange means for gas temperature control;
In the cultivation nutrient solution discharged from the cultivation tank, a circulating fluid ratio adjustment valve is provided for adjusting a flow rate ratio occupied by the cultivation nutrient solution supplied to the cultivation tank through the bypass circulation path.

この構成によれば、迂回循環液路を通じて栽培槽に供給する栽培養液が、熱源手段での再度の冷却又は加熱の無いままで栽培槽に再供給する栽培養液であることから、熱源手段において栽培養液を冷却する場合では、栽培槽から排出される栽培養液のうち迂回循環液路を通じて栽培槽に再供給する栽培養液が占める流量比率を循環液比率調整弁により増大側へ調整することで、迂回循環液路を通じて栽培槽に再供給する栽培養液と還液路から熱源手段及び気体調整用の熱交換器を通じて栽培槽に再供給する栽培養液とを合わせた平均の給液温度を上昇側に調整することができる。   According to this configuration, the cultivation nutrient solution supplied to the cultivation tank through the detour circulation liquid path is a cultivation nutrient solution resupplied to the cultivation tank without re-cooling or heating in the heat source means. In the case of cooling the cultivation nutrient solution, the flow rate ratio of the cultivation nutrient solution drained from the cultivation tank to the cultivation tank re-supplied to the cultivation tank through the detour circulation fluid path is adjusted to the increase side by the circulating fluid ratio adjustment valve Thus, the average supply of the cultivation nutrient solution to be re-supplied to the cultivation tank through the detour circulation channel and the cultivation nutrient solution to be re-supplied to the cultivation vessel through the heat source means and the heat exchanger for gas adjustment from the return fluid passage. The liquid temperature can be adjusted to the rising side.

また、熱源手段において栽培養液を加熱する場合では、栽培槽から排出される栽培養液のうち迂回循環液路を通じて栽培槽に再供給する栽培養液が占める流量比率を循環液比率調整弁により増大側へ調整することで、上記平均の給液温度を低下側に調整することができる。   In addition, when the cultivation nutrient solution is heated in the heat source means, the flow rate ratio occupied by the cultivation nutrient solution re-supplied to the cultivation tank through the detour circulation channel among the cultivation nutrient solution discharged from the cultivation tank is determined by the circulating fluid ratio adjustment valve. By adjusting to the increase side, the average liquid supply temperature can be adjusted to the decrease side.

即ち、この構成によれば、栽培槽に供給する栽培養液の温度(上記平均の給液温度)を循環液比率調整弁による流量比率の調整で容易に調整することができ、これにより、栽培条件や調温負荷の変動などに対する対応性を一層高めることができる。   That is, according to this configuration, the temperature of the cultivation nutrient solution supplied to the cultivation tank (the above-mentioned average feeding temperature) can be easily adjusted by adjusting the flow rate ratio with the circulating fluid ratio adjustment valve. It is possible to further improve the responsiveness to fluctuations in conditions and temperature control load.

本発明の第7特徴構成は、
槽内の栽培養液に根元部を浸漬させた状態で栽培植物を収容する栽培槽を備え、
栽培養液を前記栽培槽に供給する給液手段、及び、空間調整気体を前記栽培槽上の栽培空間に供給する給気手段を備える植物栽培装置であって、
前記給気手段により前記栽培空間に供給する空調調整気体を冷却又は加熱する熱源手段を設けるとともに、
前記給液手段により前記栽培槽に供給する栽培養液を熱媒と熱交換させて冷却又は加熱する養液調温用の熱交換手段を設け、
前記給気手段は、前記熱源手段により冷却又は加熱した空間調整気体を前記熱媒として前記養液調温用の熱交換手段に通過させて栽培養液と熱交換させ、この熱交換後の空間調整気体を前記栽培空間に供給し、
前記給液手段は、前記養液調温用の熱交換手段で空間調整気体と熱交換した後の栽培養液を前記栽培槽に供給する構成にしてある点にある。
The seventh characteristic configuration of the present invention is:
With a cultivation tank that accommodates cultivated plants in a state where the root part is immersed in the cultivation nutrient solution in the tank,
It is a plant cultivation device comprising a liquid supply means for supplying a cultivation nutrient solution to the cultivation tank, and an air supply means for supplying a space adjustment gas to the cultivation space on the cultivation tank,
While providing a heat source means for cooling or heating the air conditioning gas supplied to the cultivation space by the air supply means,
A heat exchange means for adjusting the temperature of the nutrient solution for cooling or heating the culture nutrient solution to be supplied to the cultivation tank by the liquid supply means and heat exchange with the heat medium,
The air supply means allows the space adjustment gas cooled or heated by the heat source means to pass through the heat exchange means for adjusting the nutrient solution temperature as the heat medium to exchange heat with the cultivation nutrient solution, and the space after this heat exchange Supplying a conditioning gas to the cultivation space;
The said liquid supply means exists in the point which has the structure which supplies the cultivation nutrient solution after heat-exchanging with space adjustment gas with the heat exchange means for the said nutrient solution temperature control to the said cultivation tank.

この構成によれば、栽培槽に供給する栽培養液の温度(給液温度)、及び、栽培槽上の栽培空間に供給する空間調整気体の温度(給気温度)の夫々について、栽培植物の育成に適した温度(即ち、栽培槽内の養液やその槽上の栽培空間を栽培植物の育成に適した温度状態に保つことができる養液温度や気体温度)が栽培条件や調温負荷などにより異なるにしても、養液調温用の熱交換手段での熱交換条件(例えば、栽培養液及び空間調整気体夫々の温度、流量、流速など)を状況に応じたものに設定にすれば、熱源手段により冷却又は加熱した空間調整気体を先ず熱媒として養液調温用の熱交換手段に通過させることで、栽培養液を養液調温用の熱交換手段での空間調整気体との熱交換により所要温度まで冷却又は加熱することができ、これにより、栽培槽に供給する栽培養液の温度(給液温度)を栽培植物の育成に適した温度(つまり、栽培槽内の養液の調温負荷を処理して栽培槽内の養液を栽培植物の育成に適した温度状態に保つことができる養液温度)に調整することができる。   According to this structure, about each of the temperature (supply temperature) of the cultivation nutrient solution supplied to a cultivation tank, and the temperature (supply temperature) of the space adjustment gas supplied to the cultivation space on a cultivation tank, Temperature suitable for growth (that is, nutrient solution temperature and gas temperature that can maintain the nutrient solution in the cultivation tank and the cultivation space on the vessel in a temperature state suitable for cultivation plant cultivation) The heat exchange conditions (for example, the temperature, flow rate, flow rate, etc. of the cultivation nutrient solution and the space adjustment gas) should be set according to the situation. For example, the space adjustment gas cooled or heated by the heat source means is first passed through the heat exchange means for adjusting the nutrient solution temperature as the heating medium, so that the cultivation solution is adjusted in the heat exchange means for adjusting the nutrient solution temperature. It can be cooled or heated to the required temperature by heat exchange with Therefore, the temperature of the cultivation nutrient solution supplied to the cultivation tank (supply temperature) is a temperature suitable for the cultivation of the cultivated plant (that is, the temperature adjustment load of the nutrient solution in the cultivation tank is processed to obtain the nutrient solution in the cultivation tank) The nutrient solution temperature can be adjusted to a temperature suitable for growing cultivated plants.

また同時に、空間調整気体を養液調温用の熱交換手段での上記熱交換に伴い所要温度幅だけ温度変化させる(即ち、栽培養液の冷却に伴い所要温度幅だけ温度上昇させる、又は、栽培養液の加熱に伴い所要温度幅だけ温度降下させる)ことができ、これにより、栽培空間に供給する空間調整気体の温度(給気温度)も栽培植物の育成に適した温度(つまり、栽培空間の温調負荷を処理して栽培空間を栽培植物の育成に適した温度状態に保つことができる気体温度)に調整することができる。   At the same time, the space adjustment gas is changed in temperature by the required temperature range along with the heat exchange in the heat exchange means for adjusting the nutrient solution temperature (that is, the temperature is increased by the required temperature range as the cultivation nutrient solution is cooled, or The temperature can be lowered by the required temperature range as the cultivation nutrient solution is heated, and the temperature of the space adjustment gas supplied to the cultivation space (supply temperature) is also suitable for growing the cultivation plant (that is, cultivation) The temperature control load of the space can be processed to adjust the cultivation space to a gas temperature that can be maintained at a temperature suitable for growing the cultivated plant.

そして、この構成であれば、空間調整気体を養液調温用の熱媒に兼用する形態を採るから、熱源手段については空間調整気体を冷却又は加熱する熱源手段を設けるだけで済むとともに、調温用の熱交換手段についても養液調温用の熱交換手段を装備するだけで済み、また、熱源手段と調温用の熱交換手段との接続も本来の空間調整気体用の配管で済ませることができる。   In this configuration, since the space adjustment gas is used as a heat medium for adjusting the nutrient solution temperature, it is only necessary to provide the heat source means for cooling or heating the space adjustment gas and adjusting the heat source means. As for the heat exchange means for temperature, it is only necessary to equip the heat exchange means for adjusting the nutrient solution temperature, and the connection between the heat source means and the heat exchange means for temperature adjustment can be done with the original space adjustment gas piping. be able to.

したがって、養液用の熱源手段と気体用の熱源手段とを各別に装備する先述の従来装置に比べ、また、共通熱源手段の装備に対し養液調温用の熱交換手段と気体調温用の熱交換手段とを各別に装備する先述の改良装置と比べても、装置の全体構成を効果的に簡素化及び小型化することができて、装置コストを大きく低減し得るとともに、装置設置に必要なスペースも大きく縮減することができる。   Therefore, compared with the above-mentioned conventional apparatus equipped with a heat source means for nutrient solution and a heat source means for gas separately, the heat exchange means for nutrient solution temperature adjustment and gas temperature adjustment for the equipment of the common heat source means Compared with the above-described improved apparatus equipped with a separate heat exchange means, the overall configuration of the apparatus can be effectively simplified and reduced in size, and the apparatus cost can be greatly reduced and the apparatus can be installed. The required space can also be greatly reduced.

なお、この構成の実施にあたり、養液調温用の熱交換手段として、栽培養液と空間調整気体とが伝熱壁を介さずに直接に熱交換する形式の熱交換手段(例えば、栽培養液の散布域に対して空間調整気体を通過させる形式の熱交換手段など)を採用すれば、栽培空間に供給する空間調整気体の湿度(具体的には、その空間調整気体が含有する栽培養液蒸気の濃度)を高めることができ、これにより、栽培空間を湿度面からも栽培植物の育成に適した空間に調整することができる。   In carrying out this configuration, as a heat exchange means for adjusting the nutrient solution temperature, a heat exchange means of a type in which the cultivation nutrient solution and the space adjustment gas directly exchange heat without passing through the heat transfer wall (for example, cultivation cultivation If a heat exchange means of a type that allows the space-adjusted gas to pass through the liquid spray area, etc., the humidity of the space-adjusted gas supplied to the cultivation space (specifically, the cultivation that the space-adjusted gas contains) (Concentration of liquid vapor) can be increased, so that the cultivation space can be adjusted to a space suitable for growing cultivated plants from the aspect of humidity.

上記構成の実施においも、給気手段により栽培空間に供給する空間調整気体は、空気に限らず、二酸化炭素ガスや二酸化炭素ガス富裕空気などの栽培用ガスであってもよい。   Also in the implementation of the above configuration, the space adjustment gas supplied to the cultivation space by the air supply means is not limited to air but may be a cultivation gas such as carbon dioxide gas or carbon dioxide gas rich air.

また、省エネルギ化の観点からは、給気手段による空間調整気体の供給に伴い栽培空間から排出される空間内気体の全部又は一部を、熱源手段において再び冷却又は加熱した上で、空間調整気体として養液調温用の熱交換手段を通じ栽培空間に循環供給する方式を採るのが望ましいが、場合によっては、空間調整気体を栽培空間に一過的に供給する方式を採用して、栽培空間から排出される空間内気体を全て外部に放出するようにしてもよい。   Further, from the viewpoint of energy saving, all or a part of the space gas discharged from the cultivation space with the supply of the space adjustment gas by the air supply means is cooled or heated again in the heat source means, and then the space adjustment is performed. It is desirable to adopt a system that circulates and supplies the cultivation space as a gas to the cultivation space through the heat exchange means for adjusting the nutrient solution temperature. You may make it discharge | release all the gas in the space discharged | emitted from space outside.

また同様に、省エネルギ化の観点からは、給液手段による栽培養液の供給に伴い栽培槽から排出される栽培養液の全部又は一部を、養液調温用の熱交換手段において再び温度調整した上で栽培槽に循環供給する方式を採るのが望ましいが、場合によっては、栽培養液を栽培槽に一過的に供給する方式を採用して、栽培槽から排出される栽培養液を全て外部に放出するようにしてもよい。   Similarly, from the viewpoint of energy saving, all or a part of the cultivation nutrient solution discharged from the cultivation tank with the supply of the cultivation nutrient solution by the fluid supply unit is again used in the heat exchange means for adjusting the nutrient solution temperature. It is desirable to use a system that circulates and feeds the cultivation tank after adjusting the temperature. You may make it discharge | release all the liquids outside.

また、この構成の実施においては、第2、第3、第5、第6特徴構成と同様の次の如き付加構成を採用してもよい。   In the implementation of this configuration, the following additional configuration similar to the second, third, fifth, and sixth feature configurations may be employed.

つまり、前記養液調温用の熱交換手段を、栽培養液の通液方向における上流側が空間調整気体の通気方向における下流側となる対向流方式の熱交換器にしてもよい。   That is, the heat exchange means for adjusting the temperature of the nutrient solution may be a counter flow type heat exchanger in which the upstream side in the flowing direction of the cultivation nutrient solution is the downstream side in the flowing direction of the space adjustment gas.

温度センサにより検出される前記栽培空間の温度に基づいて前記熱源手段の冷却出力又は加熱出力を調整する空間制御手段を設け、
この空間制御手段は、前記熱源手段の冷却出力又は加熱出力の調整により、前記熱源手段から前記養液調温用の熱交換手段に供給する空間調整気体の温度を調整することで、前記栽培空間の温度を設定空間温度に調整する構成にしてもよい。
Providing a space control means for adjusting the cooling output or heating output of the heat source means based on the temperature of the cultivation space detected by a temperature sensor;
This space control means adjusts the temperature of the space adjustment gas supplied from the heat source means to the heat exchange means for nutrient solution temperature adjustment by adjusting the cooling output or heating output of the heat source means, thereby the cultivation space. The temperature may be adjusted to the set space temperature.

前記熱源手段で冷却又は加熱した空間調整気体の一部を、前記養液調温用の熱交換手段に対し迂回させて前記栽培空間に供給する迂回給気路を設けるとともに、
前記熱源手段で冷却又は加熱した空間調整気体のうち前記迂回給気路を通じて前記栽培空間に供給する空間調整気体が占める流量比率を調整するための給気比率調整手段を設けてもよい。
While providing a bypass air supply path that bypasses a part of the space adjustment gas cooled or heated by the heat source means to the heat exchange means for adjusting the nutrient solution temperature and supplies the cultivation space,
You may provide the air supply ratio adjustment means for adjusting the flow rate ratio which the space adjustment gas supplied to the said cultivation space through the said bypass air supply path among the space adjustment gas cooled or heated with the said heat-source means.

そしてまた、前記給気手段による空間調整気体の供給に伴い前記栽培空間から排出される空間内気体を前記熱源手段に戻す還気路を設けるとともに、
前記栽培空間から排出される空間内気体の一部を、前記熱源手段及び前記養液調温用の熱交換手段に対し迂回させて前記栽培空間に供給する迂回循環路を設け、
前記栽培空間から排出される空間内気体のうち前記迂回循環路を通じて前記栽培空間に供給する空間調整気体が占める流量比率を調整するための循環気比率調整手段を設けてもよい。
In addition, while providing a return air path for returning the space gas discharged from the cultivation space with the supply of the space adjustment gas by the air supply means to the heat source means,
Providing a detour circulation path that bypasses a part of the space gas discharged from the cultivation space to the heat source means and the heat exchange means for adjusting the nutrient solution temperature and supplies the cultivation space;
Circulating air ratio adjusting means may be provided for adjusting the flow rate ratio occupied by the space adjusting gas supplied to the cultivation space through the bypass circulation path in the space gas discharged from the cultivation space.

植物栽培棚装置の斜視図Perspective view of plant cultivation shelf device 植物栽培棚装置の正面視断面図Front view sectional view of plant cultivation shelf device 植物栽培棚装置の分解斜視図Exploded perspective view of plant cultivation shelf device 棚上栽培空間の天井部の分解斜視図Exploded perspective view of the ceiling of the shelf cultivation space 厚板状ブロック体の分解斜視図Disassembled perspective view of thick plate block 植物栽培棚装置の平面視断面図Plan view sectional view of plant cultivation shelf device 植物栽培棚装置の配管系統図Piping system diagram of plant cultivation shelf equipment 別実施形態を示す概略装置構成図Schematic device configuration diagram showing another embodiment 他の別実施形態を示す概略装置構成図Schematic device configuration diagram showing another embodiment 他の別実施形態を示す概略装置構成図Schematic device configuration diagram showing another embodiment 改良装置を示す概略装置構成図Schematic device configuration diagram showing improved device 従来装置を示す概略装置構成図Schematic device configuration diagram showing a conventional device

図1及び図2は本発明による植物栽培装置の一例である植物栽培棚装置を示し、この装置では図3に示す如く、支柱1に各種の横フレーム2を横架して棚格子3を形成し、この棚格子3の上に棚上栽培槽4を載設して栽培棚5を構成してある。   1 and 2 show a plant cultivation shelf apparatus as an example of a plant cultivation apparatus according to the present invention. In this apparatus, as shown in FIG. And the cultivation shelf 5 is comprised by mounting the shelf cultivation tank 4 on this shelf lattice 3. As shown in FIG.

栽培棚5は上下に複数段(図では3段)設けてあり、各段の栽培棚5において、棚上栽培槽4の上には棚上栽培空間6を確保し、この棚上栽培空間6の天井部には栽培照明灯7を装備してある。   The cultivation shelf 5 is provided with a plurality of stages (three stages in the figure) at the top and bottom, and in the cultivation shelf 5 of each stage, a shelf cultivation space 6 is secured on the shelf cultivation tank 4, and this shelf cultivation space 6. The ceiling part of the plant is equipped with cultivation light 7.

棚上栽培槽4に貯留する栽培養液Lの液面上には栽培プレート8を配設してあり、この栽培プレート8に行列配置で形成した多数の栽培孔に栽培植物(図示省略)の根元部を挿入することで、レタスに代表される葉野菜などの多数の栽培植物を、それらの根元部が槽内の栽培養液Lに浸漬する状態にして栽培する。   A cultivation plate 8 is disposed on the surface of the cultivation nutrient solution L stored in the shelf cultivation tank 4, and cultivation plants (not shown) are formed in a number of cultivation holes formed in a matrix arrangement on the cultivation plate 8. By inserting the root part, a large number of cultivated plants such as leafy vegetables represented by lettuce are cultivated in a state in which the root part is immersed in the cultivation nutrient solution L in the tank.

栽培照明灯7を装備する棚上栽培空間6の天井部は、金具を介して上段の棚格子3に支持させた厚板状ブロック体9で形成してあり、棚上栽培空間6の両側部には棚上栽培槽4の側縁部と厚板状ブロック体9の側縁部とにわたる縦壁部材10を設け、この縦壁部材10により棚上栽培空間6の両側部を閉塞することで、棚上栽培空間6をトンネル状の空間にしてある。   The ceiling part of the shelf cultivation space 6 equipped with the cultivation lighting lamps 7 is formed by thick plate-like block bodies 9 supported on the upper shelf lattice 3 via metal fittings, and both sides of the shelf cultivation space 6. Is provided with a vertical wall member 10 that extends between the side edge of the shelf cultivation tank 4 and the side edge of the thick plate-like block body 9, and the vertical wall member 10 closes both sides of the shelf cultivation space 6. The shelf cultivation space 6 is a tunnel-like space.

棚上栽培空間6の床部を形成する棚上栽培槽4、棚上栽培空間6の天井部を形成する厚板状ブロック体9、並びに、棚上栽培空間6の両側部を閉塞する縦壁部材10はいずれも発泡スチロールで形成してあり、これにより、これら棚上栽培槽4、厚板状ブロック体9、縦壁部材10の製作加工並びに組み付けを容易にするとともに、発泡スチロールが備える高い断熱性をもって棚上栽培空間6に対する効果的な断熱効果を得ることができる。   The shelf cultivation tank 4 that forms the floor portion of the shelf cultivation space 6, the thick plate block 9 that forms the ceiling portion of the shelf cultivation space 6, and the vertical wall that closes both sides of the shelf cultivation space 6 All the members 10 are made of foamed polystyrene, thereby facilitating the production processing and assembly of the shelf cultivation tank 4, the thick plate-like block body 9, and the vertical wall member 10, and high thermal insulation provided by the foamed polystyrene. With this, an effective heat insulation effect for the shelf cultivation space 6 can be obtained.

栽培照明灯7については、厚板状ブロック体9の下面部(即ち、天井面部)に、横断面形状が伏椀状の下拡がり形状で棚上栽培空間6に向かって下向きに開口する溝状の下向き凹部11を形成し、この溝状の下向き凹部11の上底部に、その溝状構造の全長にわたらせて栽培照明灯7を配置してある。   As for the cultivation illumination lamp 7, a groove shape that opens downward toward the shelf cultivation space 6 in the lower surface portion (that is, the ceiling surface portion) of the thick plate-like block body 9 and having a cross-sectional shape of a prone shape is spread downward. A downward-facing recess 11 is formed, and the cultivation illumination lamp 7 is arranged on the upper bottom of the groove-shaped downward recess 11 over the entire length of the groove-like structure.

この溝状の下向き凹部11の内面には光反射層11aを設けてあり、これにより、下向き凹部11を照明反射板とする形態で、栽培照明灯7の発生光のうち下向き凹部11の内面に向うものを反射させて棚上栽培空間6を効率的に照明する。   A light reflecting layer 11a is provided on the inner surface of the groove-like downward recess 11 so that the downward recess 11 serves as an illumination reflector, and the inner surface of the downward recess 11 in the generated light of the cultivation lighting lamp 7 is provided. The shelf cultivation space 6 is efficiently illuminated by reflecting the object facing away.

栽培照明灯7は、下向き凹部11の上底部近くで厚板状ブロック体9の下面部に埋没状態で沿わせた棒状フレーム12に支持させてあり、この棒状フレーム12は厚板状ブロック体9とともに金具を介して上段の棚格子3に支持させてある。   The cultivation lamp 7 is supported by a rod-shaped frame 12 that is buried in the lower surface portion of the thick plate-like block body 9 near the upper bottom portion of the downward concave portion 11, and the rod-shaped frame 12 is supported by the thick plate-like block body 9. At the same time, it is supported by the upper shelf grid 3 via metal fittings.

図2及び図4〜図6に示すように、天井部を形成する厚板状ブロック体9の内部には、櫛歯状に分岐して厚板状ブロック体9の面方向(本例では長手方向)に延びる複数の内部給気路13、及び、同じく櫛歯状に分岐して厚板状ブロック体9の面方向に延びる複数の内部排気路14を、平面視で噛み合せ状に交互配置して形成してあり、厚板状ブロック体9の一側面における長手方向一端部には、内部給気路13の入口となる給気接続口13aを形成し、厚板状ブロック体9の他側面における長手方向他端部には、内部排気路14の出口となる排気接続口14aを形成してある。   As shown in FIG. 2 and FIG. 4 to FIG. 6, the thick plate-like block body 9 forming the ceiling portion has a comb-teeth-like shape, and the surface direction of the thick plate-like block body 9 (longitudinal in this example) A plurality of internal air supply passages 13 extending in the direction) and a plurality of internal exhaust passages 14 branching in a comb-like shape and extending in the surface direction of the thick plate-like block body 9 are alternately arranged in mesh. An air supply connection port 13a serving as an inlet of the internal air supply path 13 is formed at one end in the longitudinal direction on one side surface of the thick plate-like block body 9, and the other side surface of the thick plate-like block body 9 is formed. An exhaust connection port 14 a serving as an outlet of the internal exhaust passage 14 is formed at the other end in the longitudinal direction.

また、厚板状ブロック体9には、内部給気路13と棚上栽培空間6とを連通させる複数の天井給気孔13b、及び、内部排気路14と棚上栽培空間6とを連通させる複数の天井排気孔14bの夫々を、厚板状ブロック体9の面方向に分散させて形成してある。   The thick plate-like block body 9 has a plurality of ceiling air holes 13b that allow the internal air supply passage 13 and the shelf cultivation space 6 to communicate with each other, and a plurality that allows the internal exhaust passage 14 and the shelf cultivation space 6 to communicate with each other. Each of the ceiling exhaust holes 14b is dispersed in the surface direction of the thick plate-like block body 9 and formed.

つまり、後述する気液熱交換器15(気体調温用の熱交換手段の一例)により冷却した空間調整空気G(空間調整気体の一例)を、給気接続口13a、内部給気路13,天井給気孔13bを通じて天井部から均一に棚上栽培空間6に供給し、また、これに併行して棚上栽培空間6の空間内空気G′を、天井排気孔14b、内部排気路14、排気接続口14aを通じて天井部から均一に排出し、これにより、棚上栽培空間6に対し集中的かつ均一に調温(冷房)を施して、棚上栽培空間6の全体を栽培植物の育成に適した均一な温度状態に調整する。   That is, a space adjustment air G (an example of a space adjustment gas) cooled by a gas-liquid heat exchanger 15 (an example of a heat exchanger for gas temperature control), which will be described later, is supplied to an air supply connection port 13a, an internal supply passage 13, Through the ceiling air supply holes 13b, the air is uniformly supplied from the ceiling to the shelf cultivation space 6, and in parallel with this, the air G 'in the shelf cultivation space 6 is supplied to the ceiling exhaust holes 14b, the internal exhaust passage 14, and the exhaust. It discharges uniformly from the ceiling through the connection port 14a, thereby giving a concentrated and uniform temperature control (cooling) to the shelf cultivation space 6 and suitable for growing the cultivation plant on the entire shelf cultivation space 6 Adjust to a uniform temperature state.

天井排気孔14bは、栽培照明灯7を装備する下向き凹部11の上底部で下向き凹部11の内部に開口させてあり、これにより、栽培照明灯7の大量の発生熱を空間内空気G′とともに棚上栽培空間6から速やかに排出して棚上栽培空間6の調温負荷(冷房負荷)を効果的に軽減する。   The ceiling exhaust hole 14b is opened to the inside of the downward recessed portion 11 at the upper bottom portion of the downward recessed portion 11 equipped with the cultivation lighting lamp 7, and thereby, a large amount of generated heat of the cultivation lighting lamp 7 together with the air G 'in the space. By quickly discharging from the shelf cultivation space 6, the temperature control load (cooling load) of the shelf cultivation space 6 is effectively reduced.

図2、図3及び図7に示すように、空間調整空気Gを冷却する気液熱交換器15は、空間調整空気Gを各段の棚上栽培空間6に供給する循環ファン16とともに最下段の栽培棚5の下に配置し、この気液熱交換器15の空気出口を、縦姿勢で各段の栽培棚5にわたる給気縦ダクト17を通じて各段の厚板状ブロック体9における給気接続口13aに接続するとともに、この気液熱交換器15の空気入口を、同じく縦姿勢で各段の栽培棚5にわたる排気縦ダクト18を通じて各段の厚板状ブロック体9における排気接続口14aに接続してある。   As shown in FIGS. 2, 3, and 7, the gas-liquid heat exchanger 15 that cools the space adjustment air G includes the lowermost stage together with the circulation fan 16 that supplies the space adjustment air G to the shelf cultivation space 6 of each stage. The air outlet of the gas-liquid heat exchanger 15 is arranged in a vertical posture and the air supply in the thick block-like block body 9 through the air supply vertical duct 17 extending over the cultivation shelf 5 in each stage in a vertical posture. While connecting to the connection port 13a, the air inlet of this gas-liquid heat exchanger 15 is similarly connected to the exhaust port 14a in the thick block-like block body 9 of each stage through the exhaust vertical duct 18 over the cultivation shelf 5 of each stage in the vertical posture. Is connected to.

つまり、気液熱交換器15で冷却した空間調整空気Gの供給に伴い各段の棚上栽培空間6から排出される空間内空気G′を排気縦ダクト18を通じて集合状態で気液熱交換器15に戻して冷却し、この冷却空気を再び空間調整空気Gとして給気縦ダクト17を通じ各段の棚上栽培空間6に分配供給するようにしてある。   That is, the air-liquid heat exchanger in the aggregated state through the exhaust vertical duct 18 collects the in-space air G ′ discharged from the shelf cultivation space 6 of each stage with the supply of the space adjustment air G cooled by the gas-liquid heat exchanger 15. The cooling air is returned to 15 and cooled, and this cooling air is again distributed and supplied to the on-shelf cultivation space 6 through the supply vertical duct 17 as the space adjustment air G.

即ち、本例において、循環ファン16及び給気縦ダクト17は、厚板状ブロック体9の内部給気路13を通じて棚上栽培空間6に空間調整空気Gを供給する給気手段を構成する。   That is, in this example, the circulation fan 16 and the air supply vertical duct 17 constitute an air supply means for supplying the space adjustment air G to the shelf cultivation space 6 through the internal air supply passage 13 of the thick plate-like block body 9.

また、循環ファン16及び排気縦ダクト18は、厚板状ブロック体9の内部排気路14を通じて棚上栽培空間6の空間内空気G′を排出する排気手段を構成する。   Further, the circulation fan 16 and the exhaust vertical duct 18 constitute exhaust means for exhausting the air G ′ in the shelf cultivation space 6 through the internal exhaust path 14 of the thick plate block 9.

各段の棚上栽培空間6はトンネル状の空間にしてあるため、各段の棚上栽培空間6に供給した空間調整空気Gの外部への逸散は効果的に抑制され、これにより、各段の棚上栽培空間6だけを集中的かつ効率的に調温(冷房)することができて、その調温に要するエネルギや運転コストを効果的に低減することができる。   Since the shelf cultivation space 6 at each stage is a tunnel-like space, the outside of the space-conditioned air G supplied to the shelf cultivation space 6 at each stage is effectively suppressed. Only the on-shelf cultivation space 6 can be temperature-controlled (cooled) intensively and energy and operation costs required for the temperature adjustment can be effectively reduced.

図4及び図5に示すように、厚板状ブロック体9は上側板状部分9aと下側板状部分9bとからなる二分割構造にしてあり、上側板状部分9aの分割面部(下面部)には、給気路用溝13cと排気路用溝14cとを形成してある。   As shown in FIGS. 4 and 5, the thick plate-like block body 9 has a two-part structure comprising an upper plate-like portion 9a and a lower plate-like portion 9b, and a divided surface portion (lower surface portion) of the upper plate-like portion 9a. Are formed with an air supply channel groove 13c and an exhaust channel groove 14c.

また、下側板状部分9bの分割面部(上面部)には、同じく給気路用溝13dと排気路用溝14dとを形成するとともに、天井給気孔13b及び天井排気孔14bを形成してあり、これら上側板状部分9aと下側板状部分9bとを結合して厚板状ブロック体9を形成すると、それに伴い、上側板状部分9aの給気路用溝13cと下側板状部分9bの給気路用溝13dとが合わさって内部給気路13が厚板状ブロック体9の内部に形成されるとともに、上側板状部分9aの排気路用溝14cと下側板状部分9bの排気路用溝14dとが合わさって内部排気路14が厚板状ブロック体9の内部に形成される。   Further, on the dividing surface portion (upper surface portion) of the lower plate-like portion 9b, an air supply channel groove 13d and an exhaust channel groove 14d are formed, and a ceiling air supply hole 13b and a ceiling exhaust hole 14b are formed. When the upper plate-like portion 9a and the lower plate-like portion 9b are combined to form the thick plate-like block body 9, the air passage groove 13c of the upper plate-like portion 9a and the lower plate-like portion 9b The internal air supply path 13 is formed inside the thick plate-like block body 9 by combining with the air supply path groove 13d, and the exhaust path groove 14c of the upper plate-like portion 9a and the exhaust passage of the lower plate-like portion 9b. The internal exhaust passage 14 is formed inside the thick plate block body 9 together with the groove for use 14d.

図1は植物栽培棚装置の単位構成U(換言すれば1ユニット)を示すものであり、図7に示すように、この単位構成Uを一列状に連ねて複数配置することで所要長の植物栽培棚装置を構築する。   FIG. 1 shows a unit configuration U (in other words, one unit) of a plant cultivation shelf apparatus. As shown in FIG. 7, a plurality of unit configurations U are arranged in a line to arrange a plant having a required length. Build a cultivation shelf device.

そして、この場合、複数の厚板状ブロック体9が装置長手方向に一列状に連なる装置構成となることで、装置の全長にわたって連続する各段の棚上栽培空間6も形式的には厚板状ブロック体9ごとの栽培領域6aに区分され、それら栽培領域6aごとに、気液熱交換器15、循環ファン16、給気縦ダクト17、排気縦ダクト18からなる給排気システムを配備した装置構成になる。   In this case, the plurality of thick plate-like block bodies 9 are arranged in a row in the longitudinal direction of the device so that the shelf cultivation space 6 on each shelf continuous over the entire length of the device is also formally thick plate. The apparatus is provided with a supply / exhaust system that is divided into cultivation areas 6a for each block 9 and that includes a gas-liquid heat exchanger 15, a circulation fan 16, an air supply vertical duct 17, and an exhaust vertical duct 18 for each of the cultivation areas 6a. It becomes a composition.

図7において、19は各段の棚上栽培槽4に供給する栽培養液Lを冷却する熱源側熱交換器であり、この熱源側熱交換器19では、冷凍機20との間での冷水循環路21を通じた冷水循環おいて冷凍機20から供給される低温冷水Cと、還液路22を通じて各段の棚上栽培槽4から戻る栽培養液L′とを熱交換させて、その栽培養液L′を所定温度to(熱源側出口温度)まで冷却する。   In FIG. 7, reference numeral 19 denotes a heat source side heat exchanger that cools the cultivation nutrient solution L supplied to the shelf cultivation tank 4 of each stage. In the heat source side heat exchanger 19, cold water is connected to the refrigerator 20. The low temperature cold water C supplied from the refrigerator 20 in the cold water circulation through the circulation path 21 and the cultivation nutrient solution L ′ returning from the shelf cultivation tank 4 of each stage through the return liquid path 22 are subjected to heat exchange, and the cultivation is performed. The nutrient solution L ′ is cooled to a predetermined temperature to (heat source side outlet temperature).

還液路22には、補給水路23及び補給液路24を接続した補給槽25を介装してあり、この補給槽25において、各段の棚上栽培槽4から戻る栽培養液L′に対し、所要量の水Wを補給水路23から補給するとともに所要量の原養液LLを補給液路24から補給することで、常時一定濃度の栽培養液Lを各段の棚上栽培槽4に供給する。   The return liquid path 22 is provided with a replenishment tank 25 to which a replenishment water path 23 and a replenishment liquid path 24 are connected. In this replenishment tank 25, the cultivation nutrient solution L ′ returns from the shelf cultivation tank 4 of each stage. On the other hand, by supplying the required amount of water W from the replenishing water channel 23 and supplying the required amount of raw nutrient solution LL from the replenishing solution channel 24, the cultivation nutrient solution L having a constant concentration at all times on the shelf cultivation tank 4 at each stage. To supply.

熱源側熱交換器19で冷却した栽培養液Lは定水量型の循環ポンプ26により主給液路27を通じて栽培領域6aごとの気液熱交換器15に分配送給し、これら気液熱交換器15では、対応の排気縦ダクト18を通じて各段棚上栽培空間6の対応栽培領域6aから戻る空間内空気G′を、主給液路27から供給される冷却後の栽培養液Lと対向流方式で熱交換させて所定温度tgiまで冷却し、この冷却空気を空間調整空気Gとして対応の給気縦ダクト17を通じて各段棚上栽培空間6の対応栽培領域6aに供給する。   The cultivation nutrient solution L cooled by the heat source side heat exchanger 19 is distributed and supplied to the gas-liquid heat exchanger 15 for each cultivation area 6a through the main liquid supply path 27 by the constant water type circulation pump 26, and these gas-liquid heat exchanges. In the vessel 15, the in-space air G ′ returning from the corresponding cultivation area 6 a of each terraced cultivation space 6 through the corresponding exhaust vertical duct 18 is opposed to the cooled cultivation nutrient liquid L supplied from the main liquid supply path 27. Heat is exchanged by a flow method to cool to a predetermined temperature tgi, and this cooling air is supplied as space adjustment air G to the corresponding cultivation area 6a of the cultivation space 6 on each shelf shelf through the corresponding supply vertical duct 17.

また、栽培領域6aごとの気液熱交換器15の夫々を通過した熱交換後の栽培養液L(即ち、空間調整空気Gとの熱交換で熱源側出口温度toから所定温度幅Δtだけ昇温した栽培養液)は、栽培領域6aごとの縦給液路28を通じて各段棚上栽培空間6の対応栽培領域6aにおいて各段の棚上栽培槽4に分配供給する。   Further, the cultivation nutrient solution L after the heat exchange that has passed through each of the gas-liquid heat exchangers 15 for each cultivation region 6a (that is, the heat exchange with the space adjustment air G increases by a predetermined temperature width Δt from the heat source side outlet temperature to. Warmed cultivation nutrient solution) is distributed and supplied to the shelf cultivation tank 4 at each stage in the corresponding cultivation area 6a of each stage shelf cultivation space 6 through the vertical liquid supply path 28 for each cultivation area 6a.

即ち、循環ポンプ26、主給液路27、並びに、上記栽培領域6aごとの縦給液路28は棚上栽培槽4に栽培養液Lを供給する給液手段を構成する。   That is, the circulation pump 26, the main liquid supply path 27, and the vertical liquid supply path 28 for each cultivation area 6a constitute a liquid supply means for supplying the cultivation nutrient solution L to the shelf cultivation tank 4.

各段の棚上栽培槽4には、棚上栽培槽4の液位を所定液位に保つオーバーフロー排液口29を装置長手方向の一端部に配置して装備してあり、各段の棚上栽培空間6において上記の如く栽培領域6aごとに栽培養液Lを棚上栽培槽4に供給するのに伴い、各段の棚上栽培槽4における槽内の栽培養液L′は各段のオーバーフロー排液口29へオーバーフローにより流出させ、これら各段のオーバーフロー排液口29から排出される栽培養液L′を還液路22を通じて熱源側熱交換器19に戻すようにしてある。   The shelf cultivation tank 4 at each stage is equipped with an overflow drain port 29 that keeps the liquid level of the shelf cultivation tank 4 at a predetermined liquid level at one end in the longitudinal direction of the apparatus. As the cultivation nutrient solution L is supplied to the shelf cultivation tank 4 for each cultivation region 6a in the upper cultivation space 6 as described above, the cultivation nutrient solution L ′ in the vessel in the shelf cultivation tank 4 of each step is each stage. The cultivating nutrient solution L ′ discharged from the overflow drain port 29 of each stage is returned to the heat source side heat exchanger 19 through the return liquid path 22.

つまり、この植物栽培棚装置であれば、各気液熱交換器15における熱交換条件(例えば、栽培養液L及び空間調整空気G夫々の温度、流量、流速など)を栽培条件や調温負荷などに応じて設定しておくことで、それら気液熱交換器15での栽培養液Lと空間調整空気Gとの熱交換をもって、各段の棚上栽培空間6に供給する空間調整空気Gの温度tgi(給気温度)を、栽培植物の育成に適した温度(即ち、各段の棚上栽培空間6の調温負荷を処理して各段の棚上栽培空間6を栽培植物の育成に適した温度状態に保ち得る空気温度)に調整すると同時に、各段の棚上栽培槽4に供給する栽培養液Lの温度ti[=to+Δt](給液温度)も、栽培植物の育成に適した温度(即ち、各段の棚上栽培槽4内における養液Lの調温負荷を処理して各段の棚上栽培槽4内における養液Lを栽培植物の育成に適した温度状態に保つことができる養液温度)に調整することができる。   That is, if it is this plant cultivation shelf device, the heat exchange conditions (for example, the temperature, flow rate, flow velocity, etc. of the cultivation nutrient solution L and the space adjustment air G, respectively) in each gas-liquid heat exchanger 15 are the cultivation conditions and the temperature control load. The space adjustment air G supplied to the shelf cultivation space 6 on each stage by heat exchange between the cultivation nutrient solution L and the space adjustment air G in the gas-liquid heat exchanger 15 The temperature tgi (air supply temperature) is set to a temperature suitable for the cultivation of the cultivated plant (that is, the temperature adjustment load of the shelf cultivation space 6 on each shelf is processed to grow the cultivation space 6 on the shelf on each shelf) The temperature ti [= to + Δt] (feed temperature) of the cultivation nutrient solution L supplied to the shelf cultivation tank 4 at each stage is also used for growing the cultivated plant. Appropriate temperature (that is, the temperature control load of the nutrient solution L in the shelf cultivation tank 4 at each stage is treated. Can be adjusted to the nutrient solution temperature) of the nutrient solution L can be kept to a temperature state suitable for growth of cultivated plants in the rack on the culture tank 4 of each stage.

そして、熱源側熱交換器19で冷却した栽培養液Lを気液熱交換器15での空間調整空気Gの冷却に用いて、栽培養液Lを空間調整空気Gに対する冷却用熱媒として兼用する形態を採ることで、また、熱源側熱交換器19及び冷凍機20からなる養液用の熱源手段Nを空間調整空気Gに対する空気用の熱源手段に兼ねる形態を採ることで、装置構成の効果的な簡素化及び小型化を可能にしている。   Then, the cultivation nutrient solution L cooled by the heat source side heat exchanger 19 is used for cooling the space adjustment air G in the gas-liquid heat exchanger 15, and the cultivation nutrient solution L is also used as a cooling heat medium for the space adjustment air G. In addition, the heat source means N for the nutrient solution composed of the heat source side heat exchanger 19 and the refrigerator 20 is also used as the heat source means for air with respect to the space adjustment air G. It enables effective simplification and miniaturization.

なお、レタスなどの一般葉野菜を栽培する場合、気液熱交換器15に供給する栽培養液Lの熱源側出口温度to、及び、気液熱交換器15での熱交換による栽培養液Lの温度上昇幅Δt(=ti−to)の好適な設計値例としては、to=10℃〜14℃,Δt=3℃deg〜7℃deg、最も望ましくはto=12℃,Δt=5℃を挙げることができる。   In addition, when cultivating common leafy vegetables such as lettuce, the heat source side outlet temperature to the cultivation nutrient solution L supplied to the gas-liquid heat exchanger 15 and the cultivation nutrient solution L by heat exchange in the gas-liquid heat exchanger 15 Examples of suitable design values of the temperature rise width Δt (= ti-to) of: to = 10 ° C. to 14 ° C., Δt = 3 ° C. deg to 7 ° C., most preferably to = 12 ° C., Δt = 5 ° C. Can be mentioned.

30は各段の棚上栽培空間6における温度trを検出する温度センサ、Vは冷凍機20から熱源側熱交換器19に供給する冷水Cの流量を調整して熱源側熱交換器19の冷却出力を調整するための流量調整弁、31は各段の温度センサ30による検出温度trに基づき流量調整弁Vを操作する制御装置(空間制御手段の一例)である。   30 is a temperature sensor for detecting the temperature tr in the shelf cultivation space 6 of each stage, and V is a cooling of the heat source side heat exchanger 19 by adjusting the flow rate of the cold water C supplied from the refrigerator 20 to the heat source side heat exchanger 19. A flow rate adjustment valve 31 for adjusting the output is a control device (an example of a space control means) that operates the flow rate adjustment valve V based on the temperature tr detected by the temperature sensor 30 of each stage.

そして、この制御装置31は、各段の温度センサ30による検出温度trに基づき流量調整弁Vの操作して熱源側熱交換器19の冷却出力を調整することで、気液熱交換器15に供給する栽培養液Lの熱源側出口温度toを調整し、この熱源側出口温度toの調整により、各段の棚上栽培空間6における温度trを平均的に設定空間温度trs(つまり、栽培植物の育成に適した空間温度として設定された温度)に調整するよう動作する構成にしてある。   The control device 31 operates the flow rate adjustment valve V based on the temperature tr detected by the temperature sensor 30 at each stage to adjust the cooling output of the heat source side heat exchanger 19, thereby allowing the gas-liquid heat exchanger 15 to By adjusting the heat source side outlet temperature to of the cultivation nutrient solution L to be supplied and adjusting the heat source side outlet temperature to, the temperature tr in the shelf cultivation space 6 on each stage is averaged to the set space temperature trs (that is, the cultivated plant). The temperature is set to a temperature that is set as a space temperature suitable for the growth of the plant).

なお、この制御装置31は、擬似夜間としての照明消灯時と擬似昼間としての照明点灯時とで設定空間温度trsを自動的に変更し、そのことで栽培植物に対し光と温度との両面から昼夜を擬似体験させるものにしてもよい。   The control device 31 automatically changes the set space temperature trs between when the illumination is turned off as a simulated night and when the illumination is turned on as a simulated daytime. You may make it a day and night simulated experience.

また、栽培植物の生育状態に応じて設定空間温度trsを自動的に変更するものにしてもよい。   Further, the set space temperature trs may be automatically changed according to the growth state of the cultivated plant.

〔別実施形態〕
前述の実施形態では、栽培養液L及び空間調整空気Gを冷却する装置構成を示したが、寒冷地などでは、また、栽培植物種によっては、加熱用の熱源手段Nを用いて栽培養液L及び空間調整空気Gを加熱するようにしてもよく、また、栽培養液L及び空間調整空気Gを冷却する冷却運転と栽培養液L及び空間調整空気Gを加熱する加熱運転との切り換え実施を可能にしてもよい。
[Another embodiment]
In the above-mentioned embodiment, although the apparatus structure which cools cultivation nutrient solution L and space adjustment air G was shown, cultivation nutrient solution using the heat source means N for heating depending on the plant species in cold districts etc. L and space adjustment air G may be heated, and switching between cooling operation for cooling cultivation nutrient solution L and space adjustment air G and heating operation for heating cultivation nutrient solution L and space adjustment air G is performed. May be possible.

前述の実施形態では、熱源手段Nで冷却(又は加熱)した栽培養液Lの全量を気液熱交換器15を通じて栽培槽4に供給する装置構成を示したが、図8に示す如く、熱源手段Nで冷却(又は加熱)した栽培養液Lの一部を気液熱交換器15に対し迂回させて栽培槽4に供給する迂回給液路27aを設けるとともに、熱源手段Nで冷却(又は加熱)した栽培養液Lのうち迂回給液路27を通じて栽培槽4に供給する栽培養液Laが占める流量比率を調整するための給液比率調整弁Vaを設けてもよい。   In the above-described embodiment, the apparatus configuration in which the entire amount of the cultivation nutrient solution L cooled (or heated) by the heat source means N is supplied to the cultivation tank 4 through the gas-liquid heat exchanger 15 is shown. As shown in FIG. A bypass supply liquid path 27a that bypasses a part of the cultivation nutrient solution L cooled (or heated) by the means N to the gas-liquid heat exchanger 15 and supplies it to the cultivation tank 4 and is cooled by the heat source means N (or You may provide the liquid supply ratio adjustment valve Va for adjusting the flow rate ratio which the cultivation nutrient solution La supplied to the cultivation tank 4 through the detour supply fluid path 27 among the culture nutrient solutions L heated).

即ち、この構成によれば、給液比率調整弁Vaを操作して、迂回給液路27を通じて栽培槽4に供給する栽培養液Laの流量比率を調整することにより、栽培槽4に供給する栽培養液Lの温度ti(給液温度)を調整することができる。   That is, according to this structure, it supplies to the cultivation tank 4 by operating the liquid supply ratio adjustment valve Va and adjusting the flow rate ratio of the cultivation nutrient solution La supplied to the cultivation tank 4 through the bypass supply path 27. The temperature ti (liquid supply temperature) of the cultivation nutrient solution L can be adjusted.

なお、給液比率調整弁Vaは、三方弁又は二方弁の組み合わせなど、どのような装備形態を採るものであってもよい。   The liquid supply ratio adjusting valve Va may take any form of equipment such as a three-way valve or a combination of two-way valves.

前述の実施形態では、栽培槽4から排出される栽培養液L′の全量を還液路22を通じて熱源手段Nに戻す装置構成を示したが、図9に示す如く、栽培槽4から排出される栽培養液L′の一部を、熱源手段N及び気液熱交換器15に対し迂回させて栽培槽4に供給する迂回循環路22aを設け、栽培槽4から排出される栽培養液L′のうち迂回循環路22aを通じて栽培槽4に供給する栽培養液Lbが占める流量比率を調整するための循環液比率調整弁Vbを設けてもよい。   In the above-described embodiment, the apparatus configuration in which the entire amount of the cultivation nutrient solution L ′ discharged from the cultivation tank 4 is returned to the heat source means N through the return liquid path 22 is shown. However, as shown in FIG. A detour circulation path 22a that bypasses a part of the cultivation nutrient solution L ′ with respect to the heat source means N and the gas-liquid heat exchanger 15 and supplies it to the cultivation tank 4 is provided, and the cultivation nutrient solution L discharged from the cultivation tank 4 is provided. ′ May be provided with a circulating fluid ratio adjusting valve Vb for adjusting the flow rate ratio occupied by the cultivation nutrient solution Lb supplied to the cultivation tank 4 through the detour circulation path 22a.

即ち、この構成によれば、循環液比率調整弁Vbを操作して、迂回循環路22aを通じて栽培槽4に再供給する栽培養液Lbの流量比率を調整することにより、栽培槽4に供給する栽培養液Lの温度ti(給液温度)を調整することができる。   That is, according to this structure, it supplies to the cultivation tank 4 by operating the circulating fluid ratio adjustment valve Vb, and adjusting the flow rate ratio of the cultivation nutrient solution Lb re-supplied to the cultivation tank 4 through the detour circulation path 22a. The temperature ti (liquid supply temperature) of the cultivation nutrient solution L can be adjusted.

なお、循環液比率調整弁Vbも、三方弁又は二方弁の組み合わせなど、どのような装備形態を採るものであってもよい。   Note that the circulating fluid ratio adjusting valve Vb may take any form of equipment such as a three-way valve or a combination of two-way valves.

前述の実施形態では、栽培養液Lを空気調温用の熱媒に兼用する装置構成を示したが、図10に示す如く、熱源手段Nで冷却又は加熱した空間調整空気Gを気液熱交換器15(この場合は養液調温用熱交換手段の一例)で栽培養液Lと熱交換させ、この熱交換後の栽培養液Lを栽培槽4に供給すると共に、熱交換後の空間調整空気Gを栽培槽4上の栽培空間6に供給するようにしてもよい。   In the above-described embodiment, the device configuration in which the cultivation nutrient solution L is also used as a heat medium for air temperature control is shown. However, as shown in FIG. 10, the space adjustment air G cooled or heated by the heat source means N is gas-liquid heat. The exchanger 15 (in this case, an example of heat exchange means for adjusting the temperature of the nutrient solution) is exchanged with the cultivation nutrient solution L, and the cultured nutrient solution L after the heat exchange is supplied to the cultivation tank 4 and after the heat exchange. The space adjustment air G may be supplied to the cultivation space 6 on the cultivation tank 4.

この装置構成においても、気液熱交換器15における熱交換条件を栽培条件や調温負荷などに応じて設定しておくことで、気液熱交換器15での栽培養液Lと空間調整空気Gとの熱交換をもって、栽培空間6に供給する空間調整空気Gの温度tgi(給気温度)を、栽培植物の育成に適した温度(栽培空間6の調温負荷を処理して栽培空間6を栽培植物の育成に適した温度状態に保ち得る空気温度)に調整すると同時に、栽培槽4に供給する栽培養液Lの温度ti(給液温度)も、栽培植物の育成に適した温度(栽培槽4内における養液Lの調温負荷を処理して栽培槽4内における養液Lを栽培植物の育成に適した温度状態に保ち得る養液温度)に調整することができる。   Also in this device configuration, by setting the heat exchange conditions in the gas-liquid heat exchanger 15 according to the cultivation conditions, the temperature control load, etc., the cultivation nutrient solution L and the space adjustment air in the gas-liquid heat exchanger 15 The temperature tgi (supply air temperature) of the space adjustment air G supplied to the cultivation space 6 through heat exchange with the G is adjusted to a temperature suitable for the cultivation of the cultivated plant (the cultivation space 6 by processing the temperature control load of the cultivation space 6). Is adjusted to an air temperature that can be maintained at a temperature suitable for the cultivation of cultivated plants), and at the same time, the temperature ti (liquid supply temperature) of the cultivation nutrient solution L supplied to the cultivation tank 4 is also a temperature suitable for the cultivation of cultivated plants ( The temperature control load of the nutrient solution L in the cultivation tank 4 can be processed, and the nutrient solution L in the cultivation tank 4 can be adjusted to the nutrient solution temperature which can be maintained in a temperature state suitable for growing a cultivated plant.

前述の実施形態では、空間調整気体Gを空気とする場合を示したが、栽培空間6に供給する空間調整気体Gは、空気に限らず、二酸化炭素ガスや二酸化炭素ガス富裕空気などの栽培用ガスであってもよい。   In the above-described embodiment, the case where the space adjustment gas G is air is shown. However, the space adjustment gas G supplied to the cultivation space 6 is not limited to air, but for cultivation such as carbon dioxide gas or carbon dioxide gas rich air. Gas may be used.

本発明による植物栽培装置は、前述の実施例の如き上下複数段の棚構造のものに限らず、栽培槽4及び栽培槽4上の栽培空間6を一段だけ備えるものであってもよい。   The plant cultivation apparatus according to the present invention is not limited to the one having a plurality of upper and lower shelf structures as in the above-described embodiment, and may include only one stage of the cultivation tank 4 and the cultivation space 6 on the cultivation tank 4.

本発明による植物栽培装置は種々の植物の栽培に使用することができる。   The plant cultivation apparatus according to the present invention can be used for cultivation of various plants.

L 栽培養液
4 栽培槽
26,27,28 給液手段
6 栽培空間
16,17 給気手段
N 熱源手段
G 空間調整気体
15 気体調温用(又は養液調温用)の熱交換手段
30 温度センサ
tr 空間温度
31 空間制御手段
to 熱源側出口温度
trs 設定空間温度
La 栽培養液の一部
27a 迂回給液路
Va 給液比率調整弁
22 還液路
Lb 栽培養液の一部
22a 迂回循環路
Vb 循環液比率調整弁
L Culture nutrient solution 4 Cultivation tank 26, 27, 28 Liquid supply means 6 Cultivation space 16, 17 Air supply means N Heat source means G Space adjustment gas 15 Heat exchange means for gas temperature adjustment (or nutrient solution temperature adjustment) 30 Temperature Sensor tr space temperature 31 space control means to heat source side outlet temperature trs set space temperature La part of cultivation nutrient solution 27a detour supply fluid path Va feeding solution ratio adjustment valve 22 return fluid path Lb part of cultivation nutrient solution 22a bypass circulation circuit Vb Circulating fluid ratio adjustment valve

Claims (7)

槽内の栽培養液に根元部を浸漬させた状態で栽培植物を収容する栽培槽を備え、
栽培養液を前記栽培槽に供給する給液手段、及び、空間調整気体を前記栽培槽上の栽培空間に供給する給気手段を備える植物栽培装置であって、
前記給液手段により前記栽培槽に供給する栽培養液を冷却又は加熱する熱源手段を設けるとともに、
前記給気手段により前記栽培空間に供給する空間調整気体を熱媒と熱交換させて冷却又は加熱する気体調温用の熱交換手段を設け、
前記給液手段は、前記熱源手段により冷却又は加熱した栽培養液を前記熱媒として前記気体調温用の熱交換手段に通過させて空間調整気体と熱交換させ、この熱交換後の栽培養液を前記栽培槽に供給し、
前記給気手段は、前記気体調温用の熱交換手段で栽培養液と熱交換した後の空間調整気体を前記栽培空間に供給する構成にしてある植物栽培装置。
With a cultivation tank that accommodates cultivated plants in a state where the root part is immersed in the cultivation nutrient solution in the tank,
It is a plant cultivation device comprising a liquid supply means for supplying a cultivation nutrient solution to the cultivation tank, and an air supply means for supplying a space adjustment gas to the cultivation space on the cultivation tank,
While providing a heat source means for cooling or heating the cultivation nutrient solution supplied to the cultivation tank by the liquid supply means,
A heat exchange means for adjusting the temperature of the gas that is cooled or heated by heat exchange of the space adjustment gas supplied to the cultivation space by the air supply means with a heat medium,
The liquid supply means causes the cultivation nutrient solution cooled or heated by the heat source means to pass through the heat exchange means for gas temperature control as the heat medium to exchange heat with the space adjustment gas, and the cultivation cultivation after this heat exchange Supplying the liquid to the cultivation tank,
The plant cultivating apparatus, wherein the air supply means is configured to supply the cultivation space with a space adjustment gas after heat exchange with the cultivation nutrient solution by the heat exchange means for gas temperature control.
前記気体調温用の熱交換手段を、栽培養液の通液方向における上流側が空間調整気体の通気方向における下流側となる対向流方式の熱交換器にしてある請求項1記載の植物栽培装置。   The plant cultivation apparatus according to claim 1, wherein the heat exchange means for adjusting the temperature of the gas is a counter-flow heat exchanger in which the upstream side in the flow direction of the cultivation nutrient solution is the downstream side in the ventilation direction of the space adjustment gas. . 温度センサにより検出される前記栽培空間の温度に基づいて前記熱源手段の冷却出力又は加熱出力を調整する空間制御手段を設け、
この空間制御手段は、前記熱源手段の冷却出力又は加熱出力の調整により、前記熱源手段から前記気体調温用の熱交換手段に供給する栽培養液の温度を調整することで、前記栽培空間の温度を設定空間温度に調整する構成にしてある請求項1又は2記載の植物栽培装置。
Providing a space control means for adjusting the cooling output or heating output of the heat source means based on the temperature of the cultivation space detected by a temperature sensor;
This space control means adjusts the temperature of the cultivation nutrient solution supplied from the heat source means to the heat exchange means for gas temperature adjustment by adjusting the cooling output or heating output of the heat source means, thereby The plant cultivation apparatus according to claim 1, wherein the temperature is adjusted to a set space temperature.
前記熱源手段で冷却して前記気体調温用の熱交換手段に供給する栽培養液の温度toを10℃〜14℃とし、
前記気体調温用の熱交換手段での空間調整気体との熱交換による栽培養液の温度上昇幅Δtを3℃deg〜7℃degとしてある請求項1〜3のいずれか1項に記載の植物栽培装置。
The temperature to of the cultivation nutrient solution cooled by the heat source means and supplied to the heat exchange means for gas temperature control is set to 10 ° C. to 14 ° C.,
The temperature rise width Δt of the cultivation nutrient solution by heat exchange with the space adjustment gas in the heat exchange means for gas temperature control is set to 3 ° C deg to 7 ° C deg. Plant cultivation equipment.
前記熱源手段で冷却又は加熱した栽培養液の一部を、前記気体調温用の熱交換手段に対し迂回させて前記栽培槽に供給する迂回給液路を設けるとともに、
前記熱源手段で冷却又は加熱した栽培養液のうち前記迂回給液路を通じて前記栽培槽に供給する栽培養液が占める流量比率を調整するための給液比率調整弁を設けてある請求項1〜4のいずれか1項に記載の植物栽培装置。
While providing a detour supply liquid path for supplying a part of the cultivation nutrient solution cooled or heated by the heat source means to the cultivation tank by detouring to the heat exchange means for gas temperature control,
The liquid supply ratio adjustment valve for adjusting the flow rate ratio which the cultivation nutrient solution supplied to the said cultivation tank through the said detour supply fluid path among the cultivation nutrient solutions cooled or heated by the said heat-source means is provided. The plant cultivation apparatus according to any one of 4.
前記給液手段による栽培養液の供給に伴い前記栽培槽から排出される栽培養液を前記熱源手段に戻す還液路を設けるとともに、
前記栽培槽から排出される栽培養液の一部を、前記熱源手段及び前記気体調温用の熱交換手段に対し迂回させて前記栽培槽に供給する迂回循環路を設け、
前記栽培槽から排出される栽培養液のうち前記迂回循環路を通じて前記栽培槽に供給する栽培養液が占める流量比率を調整するための循環液比率調整弁を設けてある請求項1〜5のいずれか1項に記載の植物栽培装置。
While providing a return liquid path for returning the cultivation nutrient solution discharged from the cultivation tank with the supply of the cultivation nutrient solution by the liquid supply means to the heat source means,
Providing a detour circulation path for supplying a part of the cultivation nutrient solution discharged from the cultivation tank to the cultivation tank by bypassing the heat source means and the heat exchange means for gas temperature control;
The circulating fluid ratio adjustment valve for adjusting the flow rate ratio which the cultivation nutrient solution supplied to the said cultivation tank through the said bypass circulation path occupies among the cultivation nutrient solutions discharged | emitted from the said cultivation tank is provided. The plant cultivation apparatus of any one of Claims.
槽内の栽培養液に根元部を浸漬させた状態で栽培植物を収容する栽培槽を備え、
栽培養液を前記栽培槽に供給する給液手段、及び、空間調整気体を前記栽培槽上の栽培空間に供給する給気手段を備える植物栽培装置であって、
前記給気手段により前記栽培空間に供給する空調調整気体を冷却又は加熱する熱源手段を設けるとともに、
前記給液手段により前記栽培槽に供給する栽培養液を熱媒と熱交換させて冷却又は加熱する養液調温用の熱交換手段を設け、
前記給気手段は、前記熱源手段により冷却又は加熱した空間調整気体を前記熱媒として前記養液調温用の熱交換手段に通過させて栽培養液と熱交換させ、この熱交換後の空間調整気体を前記栽培空間に供給し、
前記給液手段は、前記養液調温用の熱交換手段で空間調整気体と熱交換した後の栽培養液を前記栽培槽に供給する構成にしてある植物栽培装置。
With a cultivation tank that accommodates cultivated plants in a state where the root part is immersed in the cultivation nutrient solution in the tank,
It is a plant cultivation device comprising a liquid supply means for supplying a cultivation nutrient solution to the cultivation tank, and an air supply means for supplying a space adjustment gas to the cultivation space on the cultivation tank,
While providing a heat source means for cooling or heating the air conditioning gas supplied to the cultivation space by the air supply means,
A heat exchange means for adjusting the temperature of the nutrient solution for cooling or heating the culture nutrient solution to be supplied to the cultivation tank by the liquid supply means and heat exchange with the heat medium,
The air supply means allows the space adjustment gas cooled or heated by the heat source means to pass through the heat exchange means for adjusting the nutrient solution temperature as the heat medium to exchange heat with the cultivation nutrient solution, and the space after this heat exchange Supplying a conditioning gas to the cultivation space;
The plant cultivating apparatus, wherein the liquid supply means is configured to supply a cultivation nutrient solution after the heat exchange with the space adjustment gas by the heat exchange means for adjusting the nutrient solution temperature to the cultivation tank.
JP2011194227A 2011-09-06 2011-09-06 Plant cultivation equipment Expired - Fee Related JP5839171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194227A JP5839171B2 (en) 2011-09-06 2011-09-06 Plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194227A JP5839171B2 (en) 2011-09-06 2011-09-06 Plant cultivation equipment

Publications (2)

Publication Number Publication Date
JP2013051941A true JP2013051941A (en) 2013-03-21
JP5839171B2 JP5839171B2 (en) 2016-01-06

Family

ID=48129522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194227A Expired - Fee Related JP5839171B2 (en) 2011-09-06 2011-09-06 Plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP5839171B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155915A1 (en) * 2014-04-11 2015-10-15 パナソニックIpマネジメント株式会社 Hydroponic culturing apparatus and hydroponic culturing method
JP2016136919A (en) * 2015-01-29 2016-08-04 タイヨー電子株式会社 Hydroponic apparatus
WO2017122658A1 (en) * 2016-01-14 2017-07-20 オリンパス株式会社 Cell culture vessel, and culture medium exchange system
TWI691266B (en) * 2016-10-15 2020-04-21 大陸商福建省中科生物股份有限公司 Hydroponic cultivation unit
WO2022097447A1 (en) * 2020-11-06 2022-05-12 株式会社アイシン Culture apparatus and culture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201808664D0 (en) 2018-05-25 2018-07-11 Intelligent Growth Solutions Ltd Ventilation and lighting support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304819A (en) * 1991-03-31 1992-10-28 Mitsubishi Agricult Mach Co Ltd Method for cultivating plant
JPH06303861A (en) * 1993-04-26 1994-11-01 Nippon Keori Kk Method for temperature control of culture solution in water culture greenhouse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304819A (en) * 1991-03-31 1992-10-28 Mitsubishi Agricult Mach Co Ltd Method for cultivating plant
JPH06303861A (en) * 1993-04-26 1994-11-01 Nippon Keori Kk Method for temperature control of culture solution in water culture greenhouse

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155915A1 (en) * 2014-04-11 2015-10-15 パナソニックIpマネジメント株式会社 Hydroponic culturing apparatus and hydroponic culturing method
JP2015202059A (en) * 2014-04-11 2015-11-16 パナソニックIpマネジメント株式会社 Hydroponic apparatus and hydroponic method
CN106163264A (en) * 2014-04-11 2016-11-23 松下知识产权经营株式会社 Culturing apparatus in paddy and paddy field culture
CN106163264B (en) * 2014-04-11 2019-07-12 松下知识产权经营株式会社 Culturing apparatus in paddy and paddy field culture
JP2016136919A (en) * 2015-01-29 2016-08-04 タイヨー電子株式会社 Hydroponic apparatus
WO2017122658A1 (en) * 2016-01-14 2017-07-20 オリンパス株式会社 Cell culture vessel, and culture medium exchange system
JPWO2017122658A1 (en) * 2016-01-14 2018-11-08 オリンパス株式会社 Cell culture container and container holder
TWI691266B (en) * 2016-10-15 2020-04-21 大陸商福建省中科生物股份有限公司 Hydroponic cultivation unit
WO2022097447A1 (en) * 2020-11-06 2022-05-12 株式会社アイシン Culture apparatus and culture method
JP7452384B2 (en) 2020-11-06 2024-03-19 株式会社アイシン Culture device and culture method

Also Published As

Publication number Publication date
JP5839171B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5696848B2 (en) Plant cultivation shelf equipment
JP5839171B2 (en) Plant cultivation equipment
US10925219B2 (en) Climate control system and method for indoor horticulture
CN205481475U (en) Modularization refrigeration plant
US8789384B2 (en) Computer rack cooling using independently-controlled flow of coolants through a dual-section heat exchanger
JP5647766B2 (en) Greenhouse air conditioner
CN103175706A (en) Air cooled heating pump test system
US20180177140A1 (en) Controlled environment greenhouse
KR20140147385A (en) Greenhouse for Air conditioning unit installation Heat-pump system
JP2016136919A (en) Hydroponic apparatus
CN105973631B (en) All-in-one evaporative cooling handpiece Water Chilling Units property test platform
JP5937231B2 (en) Plant cultivation equipment
KR101351840B1 (en) Greenhouse for air conditioning unit installation heat-pump system
CN108562032A (en) A kind of radiate unifies end with convection
US20170205094A1 (en) Air handler apparatuses for evaporative fluid cooling and methods thereof
JP3209642U (en) Plant factory system using vaporized cold energy
CN101922772B (en) Multistage countercurrent flow heat exchange-evaporation-refrigeration device
CN213726561U (en) Integral type step-in constant temperature and humidity test box
KR20190064884A (en) Combined managing system using cold energy with hot energy
Zhang et al. Environmental control of PFALs
WO2012169880A1 (en) Greenhouse, air circulation system for a greenhouse and method for circulating air in a greenhouse
CN210036067U (en) Multifunctional greenhouse machine
CN109269133B (en) Cooling system and cooling device
WO2006078773A2 (en) Heat recovery system for hatcheries
CA3207533A1 (en) Energy management system and method in combined greenhouses and vertical farms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5839171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees