JP2013048196A - Component mounting device and component mounting method - Google Patents

Component mounting device and component mounting method Download PDF

Info

Publication number
JP2013048196A
JP2013048196A JP2011186605A JP2011186605A JP2013048196A JP 2013048196 A JP2013048196 A JP 2013048196A JP 2011186605 A JP2011186605 A JP 2011186605A JP 2011186605 A JP2011186605 A JP 2011186605A JP 2013048196 A JP2013048196 A JP 2013048196A
Authority
JP
Japan
Prior art keywords
component
image
optical path
component image
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011186605A
Other languages
Japanese (ja)
Inventor
Osamu Okuda
修 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011186605A priority Critical patent/JP2013048196A/en
Publication of JP2013048196A publication Critical patent/JP2013048196A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an approximation to the aspect ratio of an area sensor (the size of an imaging element) by recombining images.SOLUTION: An component mounting device includes: first optical path conversion means 181 of shifting a first component image 191 as an image of a plurality of components arranged successively from one end part of a first component array by a first displacement length 211; second optical path conversion means 182 of shifting a second component image 192 as an image of the remaining components by a second displacement length 212; third optical path conversion means 183 of shifting the second component image 192 by a second displacement length 213 to the side where the second component image is placed side by side with the first component image 191; an area sensor 174 which picks up the first component image 191 and second component image 192 together; and a lens system which converges the first component image 191 and second component image 192 on the area sensor 174. The sum of the second displacement length 212 and third displacement length 213 is equal to the first displacement length 211.

Description

本願発明は、部品などの対象物の像を撮像し、当該像に基づき部品を実装する部品実装装置に関する。   The present invention relates to a component mounting apparatus that captures an image of an object such as a component and mounts the component based on the image.

部品実装装置において、部品を吸着して保持するノズルを用い、部品供給部において部品を保持し、保持された部品を撮像して部品の状態を取得し、取得された部品の状態に基づいて基板に部品を実装することが行われている。   In a component mounting apparatus, a nozzle that sucks and holds a component is used, the component is held in a component supply unit, the held component is imaged to acquire the component state, and the board is based on the acquired component state The parts are mounted on the board.

昨今の部品実装装置に対しては実装速度を向上させ、正確かつ高い生産効率で実装基板を生産できることが望まれている。従って、部品の実装工程の一つである部品の撮像工程に要する時間も短縮化する必要がある。   For recent component mounting apparatuses, it is desired to improve the mounting speed and to produce mounting boards with high accuracy and high production efficiency. Therefore, it is also necessary to shorten the time required for the component imaging process, which is one of the component mounting processes.

例えば、特許文献1には、円周上に配置される複数のノズルにそれぞれ保持される部品の像をプリズムなどを用いて前記円周の中心にずらし、見かけ上部品が配置される領域を縮小することで、高分解能かつ広視野の高額なカメラを使用すること無く一度に複数の部品を撮像することを可能とする発明が記載されており、当該発明により撮像工程の短縮化も可能となっている。   For example, in Patent Document 1, an image of a component held by each of a plurality of nozzles arranged on the circumference is shifted to the center of the circumference using a prism or the like, and an area where the components are apparently arranged is reduced. Thus, an invention that enables imaging of a plurality of parts at a time without using an expensive camera with high resolution and wide field of view is described, and the imaging process can be shortened by the invention. ing.

一方、マトリクス状に配置される複数のノズルにそれぞれ保持される部品を撮像する場合、撮像用のエリアセンサのアスペクト比と部品が配置される領域のアスペクト比とが大きく異なるためエリアセンサは採用されず、ノズルを正確に移動させることができる装置の特性を利用して、長尺のラインセンサで部品をスキャンすることにより部品を撮像する構成が採用されている。   On the other hand, when imaging components that are respectively held by a plurality of nozzles arranged in a matrix, the area sensor is used because the aspect ratio of the area sensor for imaging differs greatly from the aspect ratio of the area where the components are arranged. First, a configuration is employed in which a part is imaged by scanning the part with a long line sensor using the characteristic of the apparatus that can move the nozzle accurately.

特開2009−272325号公報JP 2009-272325 A

昨今では、部品実装装置に対し、より高い生産効率を達成することが望まれており、撮像工程の短縮化のためマトリクス状に配置されるノズルを撮像する場合でも、一度に複数の部品を撮像する技術が望まれている。   In recent years, it has been desired to achieve higher production efficiency for component mounting devices, and even when imaging nozzles arranged in a matrix to shorten the imaging process, multiple components can be imaged at once. The technology to do is desired.

ところが、マトリクス状に配置されるノズルの場合、円周上に配置されるノズルのように中心部分に広く空いた空間が存在するわけではないので、離れて配置される部品の像をアスペクト比を維持したまま隙間を無くすように移動させることは妥当ではない。   However, in the case of nozzles arranged in a matrix, there is no wide open space at the center like nozzles arranged on the circumference. It is not appropriate to move so as to eliminate the gap while maintaining it.

そもそも、一度に撮像するための矩形状の撮像素子であるエリアセンサのアスペクト比と部品が配置される領域のアスペクト比とが大きく異なるため、プリズムなどを用いて部品が配置される領域を縮小できたとしても、全ての部品を一度に撮像する場合は、高分解能かつ広視野のエリアセンサを用いたカメラが必要となってしまう。   In the first place, since the aspect ratio of the area sensor, which is a rectangular image sensor for capturing images at once, and the aspect ratio of the area where the parts are placed are significantly different, the area where the parts are placed can be reduced using a prism or the like. Even so, a camera using an area sensor with a high resolution and a wide field of view is required when imaging all parts at once.

本願発明は上記課題を解決するためになされたものであり、部品が配置される領域を見かけ上縮小するのでは無く、部品が配置される領域を見かけ上組み替えることでエリアセンサのアスペクト比に近づけ、列状やマトリクス状に配置されるノズルに保持される部品を一度に撮像する部品実装装置、および、部品実装方法の提供を目的とする。   The present invention has been made in order to solve the above-mentioned problems. Instead of apparently reducing the area in which the parts are arranged, the aspect ratio of the area sensor can be approximated by apparently rearranging the areas in which the parts are arranged. An object of the present invention is to provide a component mounting apparatus and a component mounting method for capturing images of components held by nozzles arranged in a row or matrix at a time.

上記目的を達成するために、本願発明にかかる部品実装装置は、列状に並ぶ複数のノズルを備えるヘッドを移動させて前記ノズルに保持される部品を基板に実装する部品実装装置であって、一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第一部品列の一端部から連続して並ぶ複数個の部品の像である第一部品像を前記第一部品列の延在方向の中央向きに第一変位長分ずらす第一光路変換手段と、前記第一部品列の他端部から連続して並ぶ複数個の部品の像である第二部品像を前記第一部品列の延在方向と交差する方向に第二変位長分ずらす第二光路変換手段と、前記第一光路変換手段によりずらされた第一部品像と並ぶ側に第二部品像を第三変位長分ずらす第三光路変換手段と、前記第一部品像と前記第二部品像とを一度に撮像するエリアセンサと、前記第一部品像と前記第二部品像とを前記エリアセンサに集光するレンズ系とを備え、前記第二変位長と前記第三変位長との和は、前記第一変位長と等しいことを特徴としている。   In order to achieve the above object, a component mounting apparatus according to the present invention is a component mounting apparatus that moves a head including a plurality of nozzles arranged in a row and mounts a component held by the nozzle on a substrate. A first component image, which is an image of a plurality of components arranged continuously from one end of a first component row that is a row of a plurality of components respectively held by the plurality of nozzles arranged in a row, is the first component. A first optical path conversion means for shifting the first displacement length toward the center in the extending direction of the row, and a second component image that is an image of a plurality of components continuously arranged from the other end of the first component row. A second optical path conversion means for shifting by a second displacement length in a direction intersecting the extending direction of the first part row, and a second part image on the side aligned with the first component image shifted by the first optical path conversion means. Third optical path conversion means for shifting by three displacement lengths, the first part image and the second part An area sensor that captures an image at a time, and a lens system that condenses the first component image and the second component image on the area sensor, and includes the second displacement length and the third displacement length. The sum is equal to the first displacement length.

これにより、第一部品列の像を第一部品像と第二部品像とに分解し、第一部品像と第二部品像とが第一部品列の延在方向と交差する方向に並べて配置されるため、第一部品像および第二部品像全体の見かけ上のアスペクト比をエリアセンサのアスペクト比に近づけることができる。   Thereby, the image of the first component row is decomposed into the first component image and the second component image, and the first component image and the second component image are arranged side by side in the direction intersecting the extending direction of the first component row. Therefore, the apparent aspect ratio of the first part image and the entire second part image can be brought close to the aspect ratio of the area sensor.

従って、分解能を犠牲にしてエリアセンサを有する広視野のカメラを用いること無く、第一部品列の部品の像を一度に撮像することが可能となる。   Therefore, it is possible to capture the images of the components in the first component row at a time without using a wide-field camera having an area sensor at the expense of resolution.

しかも、光路長が統一されているため、焦点距離の相違によるぼやけが発生しにくく、高い分解能で部品を撮像することが可能となる。   In addition, since the optical path length is uniform, blurring due to the difference in focal length is unlikely to occur, and it is possible to image a part with high resolution.

さらに、他の一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第二部品列の一端部から連続して並ぶ複数個の部品の像である第三部品像を前記第一光路変換手段により前記第一部品列の延在方向の中央向きにずらされた前記第一部品像と並ぶ側に第四変位長分ずらす第四光路変換手段と、前記第二部品列の他端部から連続して並ぶ複数個の部品の像である第四部品像を前記第二部品列の延在方向と交差する方向に第五変位長分ずらす第五光路変換手段と、前記第四光路変換手段によりずらされた第三部品像と並ぶ側に第四部品像を第六変位長分ずらす第六光路変換手段とを備え、前記エリアセンサは、前記第三部品像と前記第四部品像とを前記第一部品像と前記第二部品像とともに一度に撮像し、前記レンズ系は、前記第三部品像と前記第四部品像とを前記エリアセンサに集光し、前記第五変位長と前記第六変位長との和は、前記第一変位長と等しく、前記第四変位長は前記第一変位長と等しいものでもよい。   Furthermore, a third component image that is an image of a plurality of components that are continuously arranged from one end of a second component row that is a row of a plurality of components that are respectively held by the plurality of nozzles arranged in another row. Fourth optical path conversion means for shifting by a fourth displacement length on the side aligned with the first part image shifted toward the center in the extending direction of the first part array by the first optical path conversion means, and the second part array A fifth optical path conversion means for shifting a fourth component image, which is an image of a plurality of components arranged continuously from the other end of the second component row, by a fifth displacement length in a direction intersecting the extending direction of the second component row; Sixth optical path conversion means for shifting the fourth part image by a sixth displacement length on the side aligned with the third part image shifted by the fourth optical path conversion means, and the area sensor includes the third part image and the first part image. The four-component image is captured at a time together with the first component image and the second component image, and the lens system The third component image and the fourth component image are condensed on the area sensor, and the sum of the fifth displacement length and the sixth displacement length is equal to the first displacement length, and the fourth displacement The length may be equal to the first displacement length.

これにより、第一部品列の像を第一部品像と第二部品像とに分解し、第二部品列の像を第三部品像と第四部品像とに分解し、第一部品像と第二部品像と第三部品像と第四部品像とが第一部品列の延在方向と交差する方向に並べて配置されるため、第一部品像および第二部品像および第三部品像および第四部品像全体の見かけ上のアスペクト比をエリアセンサのアスペクト比に近づけることができる。   Thereby, the image of the first component row is decomposed into the first component image and the second component image, the image of the second component row is decomposed into the third component image and the fourth component image, and the first component image and Since the second component image, the third component image, and the fourth component image are arranged side by side in the direction intersecting the extending direction of the first component row, the first component image, the second component image, the third component image, and The apparent aspect ratio of the entire fourth component image can be brought close to the aspect ratio of the area sensor.

従って、分解能を犠牲にしてエリアセンサを有する広視野のカメラを用いること無く、第一部品列および第二部品列の部品の像を一度に撮像することが可能となる。   Therefore, it is possible to capture the images of the parts in the first part row and the second part row at a time without using a wide-field camera having an area sensor at the expense of resolution.

しかも、光路長が第二部品列において統一され、さらに、第一部品列において統一された光路長とも等しいため、全体の部品像を一度に撮像した場合でも焦点距離の相違によるぼやけが発生しにくく、高い分解能で部品を撮像することが可能となる。   Moreover, since the optical path length is unified in the second component row and is also equal to the unified optical path length in the first component row, blurring due to the difference in focal length is less likely to occur even when the entire component image is captured at once. It is possible to image a part with high resolution.

また、前記第一光路変換手段は、第一部品像の入射角が45度となるように配置される反射面が平面の第一反射鏡と、前記第一反射鏡で反射された第一部品像の入射角が45度となるように配置される反射面が平面の第二反射鏡とを備え、前記第三光路変換手段は、第二部品像の入射角が45度となるように配置される反射面が平面の第三反射鏡と、前記第三反射鏡で反射された第二部品像の入射角が45度となるように配置される反射面が平面の第四反射鏡とを備え、さらに、前記第一反射鏡の端部と前記第二反射鏡の端部とを起立状に一面に保持し、前記第三反射鏡の端部と前記第四反射鏡の端部とを起立状に他面に保持する板状の基体を備えてもよい。   Further, the first optical path changing means includes a first reflecting mirror having a flat reflecting surface arranged so that an incident angle of the first component image is 45 degrees, and a first component reflected by the first reflecting mirror. The reflecting surface arranged so that the incident angle of the image is 45 degrees includes a second reflecting mirror having a flat surface, and the third optical path changing means is arranged so that the incident angle of the second component image is 45 degrees. A third reflecting mirror having a flat reflecting surface and a fourth reflecting mirror having a flat reflecting surface arranged so that the incident angle of the second component image reflected by the third reflecting mirror is 45 degrees. And holding the end portion of the first reflecting mirror and the end portion of the second reflecting mirror in an upright manner on one surface, and connecting the end portion of the third reflecting mirror and the end portion of the fourth reflecting mirror. You may provide the plate-shaped base | substrate hold | maintained on the other surface in an upright form.

これによれば、分解された部品像の位置を変更する光学系である第一反射鏡と第二反射鏡と第三反射鏡と第四反射鏡とを容易かつ正確に組み立てることができ、一つの部品像を分解して複雑な光路を通過させるにもかかわらず、正確に結像させることができる。   According to this, it is possible to easily and accurately assemble the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror, which are optical systems that change the position of the decomposed component image. Although one component image is decomposed and passed through a complicated optical path, it can be accurately formed.

また、前記第三光路変換手段は、第二部品像を分担して直接反射する複数の第三反射鏡と、一の前記第三反射鏡の裏面に配置され、他の前記第三反射鏡で反射された第二部品像を反射する第四反射鏡とを備えてもよい。   Further, the third optical path conversion means is arranged on the back surface of the third reflecting mirror, and a plurality of third reflecting mirrors that share and directly reflect the second component image. You may provide the 4th reflective mirror which reflects the reflected 2nd component image.

これによれば、第三反射鏡の裏面に第四反射鏡が配置されることで、光路変換手段における反射鏡が配置される体積が小さくなり、第三反射鏡や第四反射鏡が部品像を通過する障害となることを抑止でき、撮像される部品像が反射鏡により欠けることを抑止できる。   According to this, by arranging the fourth reflecting mirror on the back surface of the third reflecting mirror, the volume in which the reflecting mirror is arranged in the optical path changing means is reduced, and the third reflecting mirror and the fourth reflecting mirror are part images. It is possible to prevent the obstacle from passing through, and it is possible to prevent the captured component image from being lost by the reflecting mirror.

また、前記第三光路変換手段の反射面側が対向する第三反射鏡と第四反射鏡とは第二部品像が通過する光路を広くする方向にずれて配置され、第三反射鏡、および、第四反射鏡の少なくとも一方の端縁部は、これとは別体で、前記エリアセンサへ部品像が入光する側により近い側に配置された同方向側の第三反射鏡の反射面側の端縁と第四反射鏡の反射面側の端縁とをZ軸方向に結ぶ面より第三反射鏡による部品像のずらし方向側に対して突出しない形状となっているものでもよい。   Further, the third reflecting mirror and the fourth reflecting mirror facing the reflecting surface side of the third optical path changing means are arranged shifted in the direction of widening the optical path through which the second component image passes, and the third reflecting mirror, and At least one edge portion of the fourth reflecting mirror is separate from this, and the reflecting surface side of the third reflecting mirror on the same direction side disposed closer to the side on which the component image enters the area sensor. The shape which does not protrude with respect to the shift direction side of the component image by the third reflecting mirror from the surface connecting the edge of the fourth reflecting mirror and the edge on the reflecting surface side of the fourth reflecting mirror in the Z-axis direction may be used.

これによれば、さらに第三反射鏡と第四反射鏡との配置状態、および、端縁部形状により部品像が通過する光路幅を広く確保することができ、かつ、通過する部品像の障害となることを抑止できる。   According to this, it is possible to secure a wide optical path width through which the component image passes due to the arrangement state of the third reflecting mirror and the fourth reflecting mirror and the edge shape, and obstruction of the passing component image. Can be deterred.

また、上記目的を達成するために本願発明にかかる部品実装方法は、列状に並ぶ複数のノズルを備えるヘッドの前記ノズルに保持される部品を撮像し、得られた画像に基づき基板に部品を実装する部品実装方法であって、一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第一部品列の一端部から連続して並ぶ複数個の部品の像である第一部品像を前記第一部品列の延在方向の中央向きに第一光路変換手段を用いて第一変位長分ずらし、前記第一部品列の他端部から連続して並ぶ複数個の部品の像である第二部品像を前記第一部品列の延在方向と交差する方向に第二光路変換手段を用いて第二変位長分ずらし、前記第一光路変換手段によりずらされた第一部品像と並ぶ側に第二部品像を第三光路変換手段を用いて第三変位長分ずらし、前記第一部品像と前記第二部品像とをレンズ系を用いて集光し、前記第一部品像と前記第二部品像とをエリアセンサを用いて一度に撮像することを特徴としている。   Further, in order to achieve the above object, the component mounting method according to the present invention images a component held by the nozzle of a head having a plurality of nozzles arranged in a line, and mounts the component on the substrate based on the obtained image. A component mounting method for mounting, which is an image of a plurality of components arranged continuously from one end of a first component row, which is a row of a plurality of components respectively held by a plurality of nozzles arranged in a row. The first component image is shifted by the first displacement length toward the center in the extending direction of the first component row by the first displacement length, and a plurality of rows arranged continuously from the other end of the first component row The second part image, which is an image of the part, is shifted by a second displacement length in the direction intersecting the extending direction of the first part row by the second displacement length, and the second part image is shifted by the first optical path conversion part. Use the third optical path conversion means to place the second part image on the side of the one part image. The first part image and the second part image are condensed using a lens system, and the first part image and the second part image are captured at once using an area sensor. It is characterized by that.

これにより、第一部品列の像を第一部品像と第二部品像とに分解し、第一部品像と第二部品像とが第一部品列の延在方向と交差する方向に並べて配置されるため、第一部品像および第二部品像全体の見かけ上のアスペクト比をエリアセンサのアスペクト比に近づけることができる。   Thereby, the image of the first component row is decomposed into the first component image and the second component image, and the first component image and the second component image are arranged side by side in the direction intersecting the extending direction of the first component row. Therefore, the apparent aspect ratio of the first part image and the entire second part image can be brought close to the aspect ratio of the area sensor.

従って、分解能を犠牲にしてエリアセンサを有する広視野のカメラを用いること無く、第一部品列の部品の像を一度に撮像することが可能となる。   Therefore, it is possible to capture the images of the components in the first component row at a time without using a wide-field camera having an area sensor at the expense of resolution.

しかも、光路長が統一されているため、焦点距離の相違によるぼやけが発生しにくく、高い分解能で部品を撮像することが可能となる。   In addition, since the optical path length is uniform, blurring due to the difference in focal length is unlikely to occur, and it is possible to image a part with high resolution.

本願発明によれば、列状やマトリクス状に配置されるノズルに保持される部品の像を高解像度で一度に撮像することが可能となる。   According to the present invention, it is possible to pick up images of components held by nozzles arranged in a row or matrix at a high resolution at a time.

図1は、部品実装装置を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a component mounting apparatus. 図2は、組替部の一部を省略して撮像装置を示す斜視図である。FIG. 2 is a perspective view showing the imaging apparatus with a part of the rearrangement unit omitted. 図3は、組替部の第一光路変換手段側をノズルとともに示す平面図である。FIG. 3 is a plan view showing the first optical path changing means side of the rearrangement unit together with the nozzle. 図4は、第二光路変換手段が正面を向く姿勢でノズルとともに組替部を示す平面図である。FIG. 4 is a plan view showing the rearrangement unit together with the nozzle in a posture in which the second optical path conversion unit faces the front. 図5は、組替部の第三光路変換手段側をノズルとともに示す平面図である。FIG. 5 is a plan view showing the third optical path changing means side of the rearrangement unit together with the nozzle. 図6は、撮像装置全体を示す斜視図である。FIG. 6 is a perspective view showing the entire imaging apparatus. 図7は、像取得部で取得された像を模式的に示す図である。FIG. 7 is a diagram schematically illustrating an image acquired by the image acquisition unit. 図8は、像取得部で取得された像の別例を模式的に示す図である。FIG. 8 is a diagram schematically illustrating another example of the image acquired by the image acquisition unit.

次に、本願発明に係る部品実装装置、および、部品実装方法の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本願発明に係る部品実装装置、および、部品実装方法の一例を示したものに過ぎない。従って本願発明は、以下の実施の形態を参考に請求の範囲の文言によって範囲が画定されるものであり、以下の実施の形態のみに限定されるものではない。   Next, an embodiment of a component mounting apparatus and a component mounting method according to the present invention will be described with reference to the drawings. The following embodiments are merely examples of the component mounting apparatus and the component mounting method according to the present invention. Accordingly, the scope of the present invention is defined by the wording of the claims with reference to the following embodiments, and is not limited to the following embodiments.

図1は、部品実装装置を模式的に示す斜視図である。   FIG. 1 is a perspective view schematically showing a component mounting apparatus.

部品実装装置100は、上下方向(Z軸方向)に延びて配置されるノズル111を複数備えるヘッド101を水平面内(XY平面内)で移動させ、ノズル111に吸着保持される部品201を基板202に実装する装置である。   The component mounting apparatus 100 moves a head 101 including a plurality of nozzles 111 arranged extending in the vertical direction (Z-axis direction) in a horizontal plane (in an XY plane), and a component 201 sucked and held by the nozzle 111 is mounted on a substrate 202. It is a device to be mounted on.

部品実装装置100は、複数のテープフィーダ203などが着脱可能に備えられる部品供給部204を備え、テープフィーダ203により供給される部品201を真空吸着により保持する複数のノズル111を備えるヘッド101を移動させて部品201を基板202に実装する装置であり、ヘッド101と、Xビーム103と、Yビーム104と、基礎体106と、撮像装置107とを備えている。   The component mounting apparatus 100 includes a component supply unit 204 in which a plurality of tape feeders 203 and the like are detachably mounted, and moves a head 101 including a plurality of nozzles 111 that hold the component 201 supplied by the tape feeder 203 by vacuum suction. The component 201 is mounted on a substrate 202, and includes a head 101, an X beam 103, a Y beam 104, a base body 106, and an imaging device 107.

Yビーム104は、Xビーム103をY軸方向に摺動自在に案内する部材である。本実施の形態の場合、2本のYビーム104が平行に配置されており、各Yビーム104は、基礎体106にY軸方向に延びた状態で固定されている。   The Y beam 104 is a member that guides the X beam 103 slidably in the Y-axis direction. In the case of the present embodiment, two Y beams 104 are arranged in parallel, and each Y beam 104 is fixed to the base body 106 in a state of extending in the Y axis direction.

Xビーム103は、ヘッド101のX軸方向の往復動を案内するレールを保持する部材であり、X軸方向に延びて配置される部材である。また、Xビーム103は、ヘッド101と共にYビーム104に沿って直線的に往復動する。   The X beam 103 is a member that holds a rail that guides the reciprocation of the head 101 in the X-axis direction, and is a member that extends in the X-axis direction. The X beam 103 reciprocates linearly along the Y beam 104 together with the head 101.

ヘッド101は、ノズル111を16本備えており、一列に並んだ8本のノズル111が2列に平行に並んでマトリクス状に配置されている。   The head 101 includes 16 nozzles 111, and eight nozzles 111 arranged in a row are arranged in a matrix in parallel in two rows.

以上のように、部品実装装置100は、水平面(XY平面)の所定領域内においてヘッド101を自在に移動させることができるものとなっている。   As described above, the component mounting apparatus 100 can freely move the head 101 within a predetermined area on the horizontal plane (XY plane).

また、部品実装装置100は、ヘッド101を部品供給部204の上方に移動させ、テープフィーダ203などから部品201をノズル111で保持し、保持した部品201を撮像装置107の上方まで搬送して撮像し、撮像結果に基づきノズル111を基板202の上方に移動させ、ノズル111を基板202の近傍まで降下させて部品201を基板202に実装する工程を繰り返し行うことで、実装基板を製造する。   Further, the component mounting apparatus 100 moves the head 101 above the component supply unit 204, holds the component 201 with the nozzle 111 from the tape feeder 203 or the like, and conveys the held component 201 to above the imaging device 107 to perform imaging. Then, the mounting substrate is manufactured by repeatedly performing the process of moving the nozzle 111 above the substrate 202 based on the imaging result, lowering the nozzle 111 to the vicinity of the substrate 202, and mounting the component 201 on the substrate 202.

図2は、組替部の一部を省略して撮像装置を示す斜視図である。   FIG. 2 is a perspective view showing the imaging apparatus with a part of the rearrangement unit omitted.

撮像装置107は、ノズル111に保持される部品201の像を撮像する装置であって、組替部171と、集光部172と、像取得部173とを備えている。   The imaging device 107 is a device that captures an image of the component 201 held by the nozzle 111, and includes a rearrangement unit 171, a condensing unit 172, and an image acquisition unit 173.

なお、図中において、ノズル111やノズル111に保持される部品201から伸びる一点鎖線は、像の進む方向を示したものである。   In the figure, the alternate long and short dash line extending from the nozzle 111 and the component 201 held by the nozzle 111 indicates the direction in which the image travels.

組替部171は、列状に並ぶ複数のノズル111に保持される部品201が配置される領域の像を分解し、列状に並ぶ部品列の延在方向の実際の部品201の並び(部品201が配置される領域の形状)を組み替えて、見かけ上実際の並び(形状)と異なる並び(形状)で像を組み替えることができる部材であり、第一光路変換手段181と、第二光路変換手段182と、第三光路変換手段183と基体108とを備えている。   The rearrangement unit 171 disassembles the image of the region where the components 201 held by the plurality of nozzles 111 arranged in a row are arranged, and arranges the actual components 201 in the extending direction of the component rows arranged in a row (components). The first optical path conversion means 181 and the second optical path conversion are members that can rearrange the images in a different arrangement (shape) from the actual arrangement (shape). Means 182, third optical path changing means 183, and base 108 are provided.

図3は、組替部の第一光路変換手段側をノズルとともに示す平面図である。   FIG. 3 is a plan view showing the first optical path changing means side of the rearrangement unit together with the nozzle.

第一光路変換手段181は、一列(図中X軸方向)に並べて配置される複数のノズル111にそれぞれ保持される複数の部品201の列である第一部品列の一端部から連続して並ぶ複数個の部品の像である第一部品像191を第一部品列の延在方向の中央向き(または、第二部品像192に向かって)に第一変位長211分ずらすものである。   The first optical path conversion means 181 is continuously arranged from one end of the first component row that is a row of the plurality of components 201 respectively held by the plurality of nozzles 111 arranged in a row (X-axis direction in the drawing). A first component image 191 that is an image of a plurality of components is shifted by the first displacement length 211 toward the center in the extending direction of the first component row (or toward the second component image 192).

ここで、部品像を変位長分ずらすとは、第一光路変換手段181と、第二光路変換手段182と、第三光路変換手段183とを含む光路変換手段により部品の像を集光部172が望む方向である光軸対して垂直方向に像をシフトさせることであり、集光部172の視野範囲外にある像(部品像)を視野範囲内にずらすことである。   Here, shifting the component image by the displacement length means that the image of the component is condensed by the optical path conversion unit including the first optical path conversion unit 181, the second optical path conversion unit 182, and the third optical path conversion unit 183. Is to shift the image in the direction perpendicular to the optical axis, which is the desired direction, and to shift the image (part image) outside the field of view of the light condensing unit 172 into the field of view.

本実施の形態の場合、第一光路変換手段181は、第一反射鏡221と、第二反射鏡222とを基体108に立設された状態で備えている。   In the case of the present embodiment, the first optical path conversion means 181 includes a first reflecting mirror 221 and a second reflecting mirror 222 in a state where they are erected on the base 108.

第一反射鏡221は、矩形板状の部材の一面が反射面となっている部材であり、第一部品像191の入射角が45度となり、第一部品列の延在方向の中央向きに反射するように基体108に取り付けられている。また、第一反射鏡221は、一端縁部のみが基体108に接続しており、基体108に対し起立状態で取り付けられている。   The first reflecting mirror 221 is a member in which one surface of a rectangular plate-shaped member is a reflecting surface, and the incident angle of the first component image 191 is 45 degrees toward the center in the extending direction of the first component row. It is attached to the base 108 so as to reflect. Further, the first reflecting mirror 221 is connected to the base 108 only at one end edge, and is attached to the base 108 in an upright state.

本実施の形態の場合、第一光路変換手段181は、第一反射鏡221を二つ備えており、第一部品像191を隣同士で並んだ二つの部品に対応する像毎に分割してそれぞれの像を分担して反射するものとなっている。   In the case of the present embodiment, the first optical path conversion means 181 includes two first reflecting mirrors 221 and divides the first part image 191 into images corresponding to two parts arranged next to each other. Each image is shared and reflected.

第二反射鏡222は、矩形板状の部材の一面が反射面となっている部材であり、第一反射鏡221で反射された第一部品像191の入射角が45度であり、Z軸上の下方に反射するように基体108に取り付けられている。なお、基体108への取付態様は第一反射鏡221と同じである。   The second reflecting mirror 222 is a member in which one surface of a rectangular plate-shaped member is a reflecting surface, the incident angle of the first component image 191 reflected by the first reflecting mirror 221 is 45 degrees, and the Z axis It is attached to the base body 108 so as to be reflected downward. Note that the manner of attachment to the base 108 is the same as that of the first reflecting mirror 221.

本実施の形態の場合、第一光路変換手段181は、第一反射鏡221と対応するように第二反射鏡222を二つ備えている。   In the case of the present embodiment, the first optical path changing means 181 includes two second reflecting mirrors 222 so as to correspond to the first reflecting mirror 221.

第一反射鏡221と第二反射鏡222とは、反射面が平行となるように配置されており、第一反射鏡221と、第二反射鏡222との距離を設定することで、第一変位長211を任意(構造上の制約はある)に定めることができる。   The first reflecting mirror 221 and the second reflecting mirror 222 are arranged so that the reflecting surfaces are parallel to each other. By setting the distance between the first reflecting mirror 221 and the second reflecting mirror 222, the first reflecting mirror 221 and the second reflecting mirror 222 are set. The displacement length 211 can be arbitrarily determined (there is a structural restriction).

また、隣同士で並んだ少なくとも二つの部品に対応する像を一枚の反射鏡で反射するため、部品点数が減少して組み立てや、光路の調整が容易となる。   Further, since an image corresponding to at least two parts arranged next to each other is reflected by a single reflecting mirror, the number of parts is reduced, and assembly and adjustment of the optical path are facilitated.

図4は、第二光路変換手段が列状に並ぶ複数のノズルの延在方向(X軸方向)の正面を向く姿勢でノズルとともに組替部を示す平面図である。   FIG. 4 is a plan view showing the rearrangement unit together with the nozzles in a posture in which the second optical path conversion unit faces the front in the extending direction (X-axis direction) of the plurality of nozzles arranged in a line.

第二光路変換手段182は、第一部品列の他端部から連続して並ぶ第一部品列の残りの複数個の部品の像である第二部品像192を第一部品列の延在方向(X軸方向)と交差する方向(Y軸方向)に第二変位長212分ずらすものである。   The second optical path conversion means 182 extends the second component image 192, which is an image of the remaining plurality of components in the first component row continuously arranged from the other end of the first component row, in the extending direction of the first component row. The second displacement length is shifted by 212 in the direction intersecting (X-axis direction) (Y-axis direction).

本実施の形態の場合、第二光路変換手段182は、第五反射鏡225と、第六反射鏡226とを備えている。   In the case of the present embodiment, the second optical path conversion means 182 includes a fifth reflecting mirror 225 and a sixth reflecting mirror 226.

第五反射鏡225は、第二部品像192全体を一度に反射する反射面を有する矩形板状の部材である。第五反射鏡225は、第二部品像192の入射角が45度であり、Y軸上外向きに反射するように基体108に取り付けられている。   The fifth reflecting mirror 225 is a rectangular plate-like member having a reflecting surface that reflects the entire second component image 192 at a time. The fifth reflecting mirror 225 has the incident angle of the second component image 192 of 45 degrees, and is attached to the base 108 so as to reflect outward on the Y axis.

第六反射鏡226は、第二部品像192全体を一度に反射する反射面を有する矩形板状の部材である。第五反射鏡225で反射された第二部品像192の入射角が45度となるよう基体108に取り付けられている。   The sixth reflecting mirror 226 is a rectangular plate-like member having a reflecting surface that reflects the entire second component image 192 at a time. The second component image 192 reflected by the fifth reflecting mirror 225 is attached to the base 108 so that the incident angle is 45 degrees.

なお、第五反射鏡225、および、第六反射鏡226の基体108への取付態様は、第一反射鏡221と同じである。   The fifth reflector 225 and the sixth reflector 226 are attached to the base 108 in the same manner as the first reflector 221.

また、第五反射鏡225と第六反射鏡226とは、反射面が平行となるように配置されており、第五反射鏡225と、第六反射鏡226との距離を設定することで、第二変位長212を任意の長さ(構造上の制約はある)に定めることができる。これにより組み替えられた像のアスペクト比を調整することができる。   Further, the fifth reflecting mirror 225 and the sixth reflecting mirror 226 are arranged so that the reflecting surfaces are parallel, and by setting the distance between the fifth reflecting mirror 225 and the sixth reflecting mirror 226, The second displacement length 212 can be set to an arbitrary length (with structural limitations). Thereby, the aspect ratio of the rearranged image can be adjusted.

図5は、組替部の第三光路変換手段側をノズルとともに示す平面図である。   FIG. 5 is a plan view showing the third optical path changing means side of the rearrangement unit together with the nozzle.

第三光路変換手段183は、第二部品像192を第一部品列の延在方向の中央向き(または、一列に配置された第一部品像191の延在方向に向かって)に第三変位長213分ずらすものである。   The third optical path conversion means 183 displaces the second component image 192 in the third direction toward the center in the extending direction of the first component row (or toward the extending direction of the first component images 191 arranged in a row). The length is shifted by 213 minutes.

本実施の形態の場合、第三光路変換手段183は、第三反射鏡223と、第四反射鏡224とを基体108に立設された状態で備えており、第一部品像191と第二部品像とを撮像するエリアセンサ(撮像素子)に対して第一部品像191と第二部品像192とが平行に並び、かつ、第一部品像191の両端部と第二部品像192の両端部とがそろうように第二部品像192をずらすものとなっている。   In the case of the present embodiment, the third optical path conversion means 183 includes a third reflecting mirror 223 and a fourth reflecting mirror 224 that are erected on the base 108, and the first part image 191 and the second part image 191. The first component image 191 and the second component image 192 are arranged in parallel to an area sensor (imaging device) that captures the component image, and both ends of the first component image 191 and both ends of the second component image 192 are arranged. The second part image 192 is shifted so that the parts are aligned.

なお、第一部品像191と第二部品像192とは平行に並び、かつ、両端部がそろうようにずらすとしたが、列状の部品像の並びを各列の並びに近づくようにして組み替えられた像のアスペクト比を調整して、一度に撮像するエリアセンサの視野内に入るものであれば、例えば図8に示すように、必ずしも各部品像の列の並びがそろってなくともよい。   Although the first component image 191 and the second component image 192 are arranged in parallel and shifted so that both ends thereof are aligned, the arrangement of the columnar component images can be rearranged so as to approach each other. For example, as shown in FIG. 8, it is not always necessary to arrange the rows of the component images as long as the aspect ratio of the captured image is adjusted to fall within the field of view of the area sensor that captures images at once.

第三反射鏡223は、矩形板状の部材の一面が反射面となっている部材であり、第二部品像192の入射角が45度となり、第一部品列の中央向きに反射するように基体108に取り付けられている。また、第三反射鏡223は、一端縁部のみが基体108に接続しており、基体108に対し起立状態で取り付けられている。   The third reflecting mirror 223 is a member in which one surface of a rectangular plate-like member is a reflecting surface, and the incident angle of the second component image 192 is 45 degrees so that it is reflected toward the center of the first component row. It is attached to the base 108. In addition, the third reflecting mirror 223 is connected to the base 108 only at one end edge and is attached to the base 108 in an upright state.

本実施の形態の場合、第三光路変換手段183は、第三反射鏡223をノズル111の数(本実施の形態の場合4個)だけ備えており、第二部品像192に含まれる部品201の像をそれぞれ分担して反射するものとなっている。   In the case of the present embodiment, the third optical path conversion means 183 includes the third reflecting mirror 223 by the number of nozzles 111 (four in the case of the present embodiment), and the component 201 included in the second component image 192. Each image is shared and reflected.

第四反射鏡224は、矩形板状の部材の一面が反射面となっている部材であり、第三反射鏡223で反射された第二部品像192の入射角が45度であり、Z軸上の下方に反射するように基体108に取り付けられている。なお、基体108への取付態様は第三反射鏡223と同じである。   The fourth reflecting mirror 224 is a member in which one surface of a rectangular plate-shaped member is a reflecting surface, the incident angle of the second component image 192 reflected by the third reflecting mirror 223 is 45 degrees, and the Z axis It is attached to the base body 108 so as to be reflected downward. Note that the manner of attachment to the base 108 is the same as that of the third reflecting mirror 223.

本実施の形態の場合、第三光路変換手段183は、第三反射鏡223と対応するように第四反射鏡224を四つ備えている。   In the case of the present embodiment, the third optical path conversion means 183 includes four fourth reflecting mirrors 224 so as to correspond to the third reflecting mirror 223.

第三反射鏡223と第四反射鏡224とは、反射面が平行となるように配置されており、第三反射鏡223と、第四反射鏡224との距離を設定することで、第三変位長213を任意の長さ(構造上の制約はある)に定めることができる。   The third reflecting mirror 223 and the fourth reflecting mirror 224 are arranged so that the reflecting surfaces are parallel to each other, and by setting the distance between the third reflecting mirror 223 and the fourth reflecting mirror 224, the third reflecting mirror 223 and the fourth reflecting mirror 224 are set. The displacement length 213 can be set to an arbitrary length (there is a structural restriction).

また本実施の形態の場合、第四反射鏡224は、4個の第三反射鏡223の内の三個の裏面に一体的にあるいは近接して配置され、配置されている以外の第三反射鏡223で反射された第二部品像192を反射するものとなっている。   Further, in the case of the present embodiment, the fourth reflecting mirror 224 is disposed on or in close proximity to the three back surfaces of the four third reflecting mirrors 223, and the third reflecting mirrors other than those disposed. The second part image 192 reflected by the mirror 223 is reflected.

さらに、コンパクトに矩形板状の部材の表裏に一体的に設けられる第三反射鏡223と第四反射鏡224とは第二部品像192が通過する光路幅Wを広くする方向、本実施の形態の場合、第三反射鏡223の反射面側と第三反射鏡223の反射面側に対向する第四反射鏡224の反射面側とそれぞれの端縁がZ軸方向の集光部172の光軸に沿うようにずれて配置されている。第三反射鏡223、および、第四反射鏡224の少なくとも一方の端縁部は、これとは別体で、エリアセンサ174へ部品像が入光する側により近い側に配置され、一体的、あるいは、隣接して配置された、第三反射鏡223の反射面側の端縁と第四反射鏡224の反射面側の同方向側でかつ、エリアセンサ174への入光する側の端縁とをZ軸方向側に結ぶ面より第三反射鏡223による部品像のずらし方向側に突出しない形状となっている。   Further, the third reflecting mirror 223 and the fourth reflecting mirror 224 which are provided integrally on the front and back of a rectangular plate-shaped member in a compact manner are the directions in which the optical path width W through which the second component image 192 passes is increased, this embodiment. In this case, the light of the condensing part 172 in which the reflecting surface side of the third reflecting mirror 223, the reflecting surface side of the fourth reflecting mirror 224 facing the reflecting surface side of the third reflecting mirror 223, and the respective edges are in the Z-axis direction. It is displaced so as to be along the axis. The edge part of at least one of the third reflecting mirror 223 and the fourth reflecting mirror 224 is a separate body and is arranged closer to the side where the component image enters the area sensor 174, and is integrated. Alternatively, the edge on the reflection surface side of the third reflecting mirror 223 and the edge in the same direction on the reflection surface side of the fourth reflecting mirror 224 and the edge on the side where light enters the area sensor 174 are disposed adjacently. Is formed so as not to protrude toward the shifting direction side of the component image by the third reflecting mirror 223 from the surface connecting to the Z-axis direction side.

以上により光路幅Wをできる限り広く確保することができ、反射面が対向する第三反射鏡223と第四反射鏡224との間を通過する第二部品像192の一部が第三反射鏡223の端縁部、第四反射鏡224の端縁部の少なくともいずれか一方により侵食されることを抑止できる。   As described above, the optical path width W can be ensured as wide as possible, and a part of the second component image 192 passing between the third reflecting mirror 223 and the fourth reflecting mirror 224 whose reflecting surfaces face each other is the third reflecting mirror. It is possible to prevent erosion by at least one of the edge portion of 223 and the edge portion of the fourth reflecting mirror 224.

基体108は、各光路をシフトして組み替える組替部171の第一光路変換手段181の第一反射鏡221の端部と第二反射鏡222の端部とを起立状に一面に保持し、第三光路変換手段183の第三反射鏡223の端部と第四反射鏡224の端部とを起立状に他面に保持する板状の部材である。基体108の材質は特に限定されるものではないが、反射鏡の一端縁部としっかりと接続でき、振動に強い金属が好ましいと考えられる。   The base 108 holds the end portion of the first reflecting mirror 221 and the end portion of the second reflecting mirror 222 of the first optical path conversion means 181 of the rearrangement unit 171 that shifts and rearranges the optical paths on one surface in an upright manner, This is a plate-like member that holds the end of the third reflecting mirror 223 and the end of the fourth reflecting mirror 224 of the third optical path changing means 183 upright on the other surface. Although the material of the base | substrate 108 is not specifically limited, It is thought that the metal strong to a vibration which can be firmly connected with the one end edge part of a reflective mirror is preferable.

組替部171において、光路をシフトするように第二光路変換手段182がずらす第二変位長212と第三光路変換手段183がずらす第三変位長213との和は、第一光路変換手段181がずらす第一変位長211と等しいものとなっている。これにより、集光部172から部品201までの光路長を統一することができ、焦点距離を統一することができる。従って、いずれの部品201についてもぼやけないクリアな像を撮像することが可能となる。   In the rearrangement unit 171, the sum of the second displacement length 212 shifted by the second optical path conversion unit 182 and the third displacement length 213 shifted by the third optical path conversion unit 183 so as to shift the optical path is the first optical path conversion unit 181. Is equal to the first displacement length 211 to be shifted. Thereby, the optical path length from the condensing part 172 to the components 201 can be unified, and a focal distance can be unified. Accordingly, it is possible to capture a clear image that is not blurred for any of the components 201.

なお、第一光路変換手段181、第二光路変換手段182、第三光路変換手段183は、複数枚の鏡を用いて像を反射させて、像をずらすものばかりでなく、プリズムを用いてプリズム内部で像を反射させて、像をずらすものなどが例示でき、また、鏡とプリズムとを組み合わせるなど任意の光学部品を組み合わせて像をずらすものでもよい。   The first optical path conversion unit 181, the second optical path conversion unit 182 and the third optical path conversion unit 183 reflect not only the image by using a plurality of mirrors and shifting the image, but also a prism using a prism. For example, the image can be reflected by reflecting the image inside, and the image can be shifted by combining arbitrary optical components such as a combination of a mirror and a prism.

また、プリズム内部において像を反射している面は、鏡とみなすこともできる。   The surface reflecting the image inside the prism can also be regarded as a mirror.

集光部172は、組替部171で組み替えられた第一部品像191と第二部品像192とを像取得部173に向かって集光するレンズ系を有する装置である。レンズ系は、例えば、主光線が焦点を通るように配列された光学系であるテレセントリックレンズが好適に採用される。これは、テレセントリックレンズが視差による画像の歪みが生じにくいレンズ系であり、視野いっぱいに広がる第一部品像191や第二部品像192をほぼ歪みの無い状態で集光し像取得部173に送ることができるためである。   The condensing unit 172 is a device having a lens system that condenses the first component image 191 and the second component image 192 recombined by the recombination unit 171 toward the image acquisition unit 173. As the lens system, for example, a telecentric lens which is an optical system arranged so that the chief ray passes through the focal point is suitably employed. This is a lens system in which the telecentric lens is unlikely to cause image distortion due to parallax, and the first component image 191 and the second component image 192 that extend to the full field of view are condensed and sent to the image acquisition unit 173 with almost no distortion. Because it can.

なお、テレセントリックレンズは例示であり、他の種類のレンズ系の採用を妨げるものではない。   The telecentric lens is merely an example, and does not hinder the use of other types of lens systems.

また、集光部172は、レンズ系を収容する筐体などを備えている。   In addition, the light collecting unit 172 includes a housing that houses a lens system.

像取得部173は、第一部品像191と第二部品像192とを一度に撮像する矩形状の撮像素子であるエリアセンサ174を有する装置である。エリアセンサ174は、例えば、CMOSイメージセンサ(Complementary Metal Oxide Semiconductor Image Sensor)が好適に採用される。これは、CMOSイメージセンサが比較的高速にデータを読み出すことができるからであり、また、またマトリクス状に配置されたセルの一部のみのデータを読み出すことができるからである。   The image acquisition unit 173 is an apparatus that includes an area sensor 174 that is a rectangular imaging element that captures the first component image 191 and the second component image 192 at a time. As the area sensor 174, for example, a CMOS image sensor (Complementary Metal Oxide Semiconductor Image Sensor) is preferably employed. This is because the CMOS image sensor can read out data at a relatively high speed and can read out data from only a part of cells arranged in a matrix.

なお、CMOSイメージセンサは例示であり、CCDイメージセンサなど他の撮像素子の採用を妨げるものではない。   Note that the CMOS image sensor is an example, and does not hinder the use of other imaging elements such as a CCD image sensor.

また、像取得部173は、エリアセンサ174の他、CMOSイメージセンサを収容する筐体、CMOSイメージセンサからデータを取得したり、CMOSイメージセンサを駆動するためのドライバ回路などを備えている。   In addition to the area sensor 174, the image acquisition unit 173 includes a housing for housing the CMOS image sensor, a driver circuit for acquiring data from the CMOS image sensor, and driving the CMOS image sensor.

図6は、撮像装置全体を示す斜視図である。   FIG. 6 is a perspective view showing the entire imaging apparatus.

本実施の形態の場合、部品実装装置100はさらに、他の一列に配置される複数のノズル111にそれぞれ保持される複数の部品201の列である第二部品列の一端部から連続して並ぶ複数個の部品の像である第三部品像193を第一光路変換手段181により第一部品列の延在方向の中央向きにずらされた第一部品像191と並ぶ側に第四変位長214分(図示せず)ずらす第四光路変換手段184と、第二部品列の他端部から連続して並ぶ第二部品列の残りの複数個の部品の像である第四部品像194を第二部品列の延在方向と交差する方向であって第二光路変換手段182の光路のずらし方向と逆方向に第五変位長215(図示せず)分ずらす第五光路変換手段185と、第四光路変換手段184によりずらされた第三部品像193と並ぶ側に第四部品像194を第六変位長216(図示せず)分ずらす第六光路変換手段186とを備えている。   In the case of the present embodiment, the component mounting apparatus 100 is further continuously arranged from one end portion of the second component row that is a row of the plurality of components 201 respectively held by the plurality of nozzles 111 arranged in another row. The fourth displacement length 214 is arranged on the side where the third component image 193, which is an image of a plurality of components, is aligned with the first component image 191 shifted toward the center in the extending direction of the first component row by the first optical path conversion unit 181. A fourth optical path conversion means 184 that shifts by a minute (not shown) and a fourth component image 194 that is an image of the remaining plurality of components in the second component row continuously arranged from the other end of the second component row. A fifth optical path changing means 185 that is shifted by a fifth displacement length 215 (not shown) in a direction that intersects the extending direction of the two-part row and is opposite to the optical path shifting direction of the second optical path changing means 182; The third part image 193 shifted by the four optical path conversion means 184 And a sixth optical path conversion means 186 for shifting the fourth component image 194 by a sixth displacement length 216 (not shown).

なお、第一光路変換手段181、および、第二光路変換手段182、および、第三光路変換手段183と、第四光路変換手段184、および、第五光路変換手段185、および、第六光路変換手段186とは、第一部品列と第二部品列との中央を仮想的に通過するXZ平面を基準とする鏡面対称の関係にあり、第四光路変換手段184、および、第五光路変換手段185、および、第六光路変換手段186は、第一光路変換手段181、および、第二光路変換手段182、および、第三光路変換手段183と機能および構造が同じであるため、その説明を省略する。   The first optical path conversion means 181, the second optical path conversion means 182, the third optical path conversion means 183, the fourth optical path conversion means 184, the fifth optical path conversion means 185, and the sixth optical path conversion. The means 186 is in a mirror-symmetrical relationship with respect to the XZ plane that virtually passes through the center of the first part row and the second part row, and includes a fourth optical path conversion means 184 and a fifth optical path conversion means. 185 and the sixth optical path conversion means 186 have the same functions and structures as the first optical path conversion means 181, the second optical path conversion means 182, and the third optical path conversion means 183, and thus the description thereof is omitted. To do.

また、第四光路変換手段184、および、第五光路変換手段185、および、第六光路変換手段186は、第一光路変換手段181、および、第二光路変換手段182、および、第三光路変換手段183と構造が同じであるため、第五光路変換手段185がずらす第五変位長215と、第六光路変換手段186がずらす第六変位長216との和は、第一変位長211と等しく、第四光路変換手段184がずらす第四変位長214は第一変位長211と等しい。これにより、本実施の形態では、第一部品像191、第二部品像192、第三部品像193、第四部品像194は、端部がそろった状態で平行に並んで配置される。   The fourth optical path conversion means 184, the fifth optical path conversion means 185, and the sixth optical path conversion means 186 are the first optical path conversion means 181, the second optical path conversion means 182 and the third optical path conversion. Since the structure is the same as that of the means 183, the sum of the fifth displacement length 215 shifted by the fifth optical path conversion means 185 and the sixth displacement length 216 shifted by the sixth optical path conversion means 186 is equal to the first displacement length 211. The fourth displacement length 214 shifted by the fourth optical path changing means 184 is equal to the first displacement length 211. Thereby, in this Embodiment, the 1st component image 191, the 2nd component image 192, the 3rd component image 193, and the 4th component image 194 are arrange | positioned along with the edge part in parallel.

なお、第一部品像191と第二部品像192とは平行に並び、かつ、両端部がそろうようにずらすとしたが、列状の部品像の並びを各列の並びに近づくようにして組み替えられた像のアスペクト比を調整して、一度に撮像するエリアセンサの視野内に入るものであれば、例えば図8に示すように、必ずしも各部品像の列の並びがそろってなくともよい。   Although the first component image 191 and the second component image 192 are arranged in parallel and are shifted so that both ends thereof are aligned, the arrangement of the columnar component images can be rearranged so that they are arranged closer to each other. For example, as shown in FIG. 8, it is not always necessary to arrange the rows of the component images as long as the aspect ratio of the captured image is adjusted to fall within the field of view of the area sensor that captures images at once.

図7は、像取得部で取得された像を模式的に示す図である。   FIG. 7 is a diagram schematically illustrating an image acquired by the image acquisition unit.

集光部172のレンズ系は、長尺状の第一部品像191と第二部品像192と第三部品像193と第四部品像194とを像取得部173の矩形状の撮像素子であるエリアセンサ174に一度に集光し、像取得部173が有するエリアセンサ174は、第三部品像193と第四部品像194とを第一部品像191と第二部品像192とともに一度に撮像する。以上により、同図に示すように、列状の部品像の並びを各列の並びが近づくようにして組み替えられた第一部品像191と第二部品像192と第三部品像193と第四部品像194との全体のアスペクト比をエリアセンサ174のアスペクト比に近づけた状態で一度に撮像することができ、部品201の像を高解像度で取得することが可能となる。   The lens system of the condensing unit 172 is a rectangular imaging element of the image acquisition unit 173 that has a long first component image 191, second component image 192, third component image 193, and fourth component image 194. The area sensor 174 that focuses on the area sensor 174 at a time and captures the third component image 193 and the fourth component image 194 together with the first component image 191 and the second component image 192 at once. . As described above, as shown in the figure, the first part image 191, the second part image 192, the third part image 193, and the fourth part image are rearranged so that the arrangement of the columnar part images approaches each other. The entire aspect ratio of the component image 194 can be captured at a time close to the aspect ratio of the area sensor 174, and the image of the component 201 can be acquired with high resolution.

以上のような撮像装置107を備えた部品実装装置100は、ヘッド101を部品供給部204の上方に移動させ、テープフィーダ203などから複数の部品201を各ノズル111で保持し、保持した部品201を撮像装置107の上方まで搬送して撮像する際に、全ての部品201を一度に取得することができるため、各ノズル111に保持された複数の部品201を順次撮像することや、撮像装置107に対しヘッド101を静止させること無く撮像が可能となる。従って、静止のためのヘッド101の加速および原則が不要となり、部品201を撮像するために要する時間を可及的に短縮することができ、ひいては、実装基板の製造効率を向上させることが可能となる。   In the component mounting apparatus 100 including the imaging device 107 as described above, the head 101 is moved above the component supply unit 204, a plurality of components 201 are held by the nozzles 111 from the tape feeder 203 and the like, and the held components 201 are retained. Since all the components 201 can be acquired at the same time when the image is conveyed to the upper side of the imaging device 107, a plurality of components 201 held by each nozzle 111 can be sequentially imaged, or the imaging device 107 can be captured. On the other hand, imaging can be performed without making the head 101 stationary. Therefore, the acceleration and principle of the head 101 for stationary are not necessary, and the time required to image the component 201 can be shortened as much as possible, and as a result, the manufacturing efficiency of the mounting board can be improved. Become.

また、高い解像度の像を解析してノズル111に対する部品201の位置または回転状態などを取得できるため、より正確に部品201を基板202に実装することができる。従って、実装基板の品質を向上することができる。   Further, since the high resolution image can be analyzed to acquire the position or rotation state of the component 201 with respect to the nozzle 111, the component 201 can be mounted on the substrate 202 more accurately. Therefore, the quality of the mounting board can be improved.

なお、本願発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本願発明の実施の形態としてもよい。また、上記実施の形態に対して本願発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本願発明に含まれる。   In addition, this invention is not limited to the said embodiment. For example, another embodiment realized by arbitrarily combining the components described in this specification and excluding some of the components may be used as an embodiment of the present invention. In addition, the present invention includes modifications obtained by making various modifications conceivable by those skilled in the art without departing from the gist of the present invention, that is, the meaning described in the claims. It is.

例えば、上記実施の形態では、第一光路変換手段181、第二光路変換手段182、第三光路変換手段183を一つの基体108に取り付けるものを示したが、基体108は、必ずしも一体である必要は無い。基体108は、複数の部材から構成されるものでもよい。   For example, in the above embodiment, the first optical path conversion unit 181, the second optical path conversion unit 182 and the third optical path conversion unit 183 are attached to one base 108, but the base 108 is not necessarily integral. There is no. The base 108 may be composed of a plurality of members.

また、「等しい」や「平行」などの文言は本願発明の趣旨を逸脱しない程度の誤差(ひろがり)を許容する意味で使用している。   In addition, terms such as “equal” and “parallel” are used to allow an error (expansion) that does not depart from the spirit of the present invention.

例えば「等しい」は、部品201の位置の解析において部品201の像のぼけが許容される範囲内であれば、「等しい」に含まれる。また、変位長の違いが集光部172のレンズ系における被写界深度の範囲に収まっているのであれば、これも「等しい」に含まれる。   For example, “equal” is included in “equal” if the blur of the image of the component 201 is allowed in the analysis of the position of the component 201. Further, if the difference in the displacement length is within the range of the depth of field in the lens system of the condenser 172, this is also included in “equal”.

また、本実施の形態では部品の像を撮像するとしたが、部品を吸着保持する各ノズルの吸着面の像を同様に撮像するものでもよい。   In the present embodiment, an image of a component is captured. However, an image of a suction surface of each nozzle that sucks and holds a component may be captured in the same manner.

本願発明は、部品を基板に実装する部品実装装置に利用可能であり、特に、マトリクス状に配置される複数のノズルに複数の部品を保持し、複数のノズルを同時に水平面内に移動させて基板の表面に部品を実装する表面実装装置に利用可能である。   The present invention can be used for a component mounting apparatus for mounting components on a substrate, and in particular, a plurality of components are held by a plurality of nozzles arranged in a matrix, and the plurality of nozzles are simultaneously moved in a horizontal plane to form a substrate. It can be used for a surface mounting apparatus that mounts components on the surface of the surface.

100 部品実装装置
101 ヘッド
103 ビーム
104 ビーム
106 基礎体
107 撮像装置
108 基体
111 ノズル
171 組替部
172 集光部
173 像取得部
174 エリアセンサ
181 第一光路変換手段
182 第二光路変換手段
183 第三光路変換手段
184 第四光路変換手段
185 第五光路変換手段
186 第六光路変換手段
191 第一部品像
192 第二部品像
193 第三部品像
194 第四部品像
201 部品
202 基板
203 テープフィーダ
204 部品供給部
211 第一変位長
212 第二変位長
213 第三変位長
214 第四変位長
215 第五変位長
216 第六変位長
221 第一反射鏡
222 第二反射鏡
223 第三反射鏡
224 第四反射鏡
225 第五反射鏡
226 第六反射鏡
DESCRIPTION OF SYMBOLS 100 Component mounting apparatus 101 Head 103 Beam 104 Beam 106 Base body 107 Imaging apparatus 108 Base | substrate 111 Nozzle 171 Rearrangement part 172 Condensing part 173 Image acquisition part 174 Area sensor 181 1st optical path conversion means 182 2nd optical path conversion means 183 3rd Optical path conversion means 184 Fourth optical path conversion means 185 Fifth optical path conversion means 186 Sixth optical path conversion means 191 First part image 192 Second part image 193 Third part image 194 Fourth part image 201 Part 202 Substrate 203 Tape feeder 204 Part Supply unit 211 First displacement length 212 Second displacement length 213 Third displacement length 214 Fourth displacement length 215 Fifth displacement length 216 Sixth displacement length 221 First reflecting mirror 222 Second reflecting mirror 223 Third reflecting mirror 224 Fourth Reflector 225 Fifth reflector 226 Sixth reflector

Claims (6)

列状に並ぶ複数のノズルを備えるヘッドを移動させて前記ノズルに保持される部品を基板に実装する部品実装装置であって、
一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第一部品列の一端部から連続して並ぶ複数個の部品の像である第一部品像を前記第一部品列の延在方向の中央向きに第一変位長分ずらす第一光路変換手段と、
前記第一部品列の他端部から連続して並ぶ複数個の部品の像である第二部品像を前記第一部品列の延在方向と交差する方向に第二変位長分ずらす第二光路変換手段と、
前記第一光路変換手段によりずらされた第一部品像と並ぶ側に第二部品像を第三変位長分ずらす第三光路変換手段と、
前記第一部品像と前記第二部品像とを一度に撮像するエリアセンサと、
前記第一部品像と前記第二部品像とを前記エリアセンサに集光するレンズ系とを備え、
前記第二変位長と前記第三変位長との和は、前記第一変位長と等しい
部品実装装置。
A component mounting apparatus for mounting a component held by the nozzle by moving a head including a plurality of nozzles arranged in a row,
A first component image, which is an image of a plurality of components arranged continuously from one end of a first component row that is a row of a plurality of components respectively held by the plurality of nozzles arranged in a row, is the first component. First optical path conversion means for shifting the first displacement length toward the center of the extending direction of the rows;
A second optical path for shifting a second component image, which is an image of a plurality of components arranged continuously from the other end of the first component row, by a second displacement length in a direction intersecting the extending direction of the first component row. Conversion means;
Third optical path conversion means for shifting the second component image by the third displacement length on the side aligned with the first component image shifted by the first optical path conversion means;
An area sensor that captures the first component image and the second component image at a time;
A lens system for condensing the first component image and the second component image on the area sensor;
The component mounting apparatus, wherein the sum of the second displacement length and the third displacement length is equal to the first displacement length.
さらに、他の一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第二部品列の一端部から連続して並ぶ複数個の部品の像である第三部品像を前記第一光路変換手段により前記第一部品列の延在方向中央向きにずらされた前記第一部品像と並ぶ側に第四変位長分ずらす第四光路変換手段と、
前記第二部品列の他端部から連続して並ぶ複数個の部品の像である第四部品像を前記第二部品列の延在方向と交差する方向に第五変位長分ずらす第五光路変換手段と、
前記第四光路変換手段によりずらされた第三部品像と並ぶ側に第四部品像を第六変位長分ずらす第六光路変換手段とを備え、
前記エリアセンサは、前記第三部品像と前記第四部品像とを前記第一部品像と前記第二部品像とともに一度に撮像し、
前記レンズ系は、前記第三部品像と前記第四部品像とを前記エリアセンサに集光し、
前記第五変位長と前記第六変位長との和は、前記第一変位長と等しく、
前記第四変位長は前記第一変位長と等しい
請求項1に記載の部品実装装置。
Furthermore, a third component image that is an image of a plurality of components that are continuously arranged from one end of a second component row that is a row of a plurality of components that are respectively held by the plurality of nozzles arranged in another row. A fourth optical path conversion means for shifting by a fourth displacement length on the side aligned with the first part image shifted toward the center in the extending direction of the first part row by the first optical path conversion means;
A fifth optical path for shifting a fourth component image, which is an image of a plurality of components continuously arranged from the other end of the second component row, by a fifth displacement length in a direction intersecting the extending direction of the second component row; Conversion means;
A sixth optical path conversion means for shifting the fourth component image by a sixth displacement length on the side aligned with the third component image shifted by the fourth optical path conversion means;
The area sensor captures the third component image and the fourth component image together with the first component image and the second component image at a time,
The lens system condenses the third component image and the fourth component image on the area sensor,
The sum of the fifth displacement length and the sixth displacement length is equal to the first displacement length,
The component mounting apparatus according to claim 1, wherein the fourth displacement length is equal to the first displacement length.
前記第一光路変換手段は、
第一部品像の入射角が45度となるように配置される反射面が平面の第一反射鏡と、
前記第一反射鏡で反射された第一部品像の入射角が45度となるように配置される反射面が平面の第二反射鏡とを備え、
前記第三光路変換手段は、
第二部品像の入射角が45度となるように配置される反射面が平面の第三反射鏡と、
前記第三反射鏡で反射された第二部品像の入射角が45度となるように配置される反射面が平面の第四反射鏡とを備え、
さらに、
前記第一反射鏡の端部と前記第二反射鏡の端部とを起立状に一面に保持し、前記第三反射鏡の端部と前記第四反射鏡の端部とを起立状に他面に保持する板状の基体を備える
請求項1または2に記載の部品実装装置。
The first optical path changing means is
A first reflecting mirror having a flat reflecting surface arranged so that the incident angle of the first component image is 45 degrees;
A second reflecting mirror having a flat reflecting surface arranged so that the incident angle of the first component image reflected by the first reflecting mirror is 45 degrees;
The third optical path changing means is
A third reflecting mirror having a flat reflecting surface arranged so that the incident angle of the second component image is 45 degrees;
A reflecting surface arranged so that an incident angle of the second component image reflected by the third reflecting mirror is 45 degrees includes a fourth reflecting mirror having a flat surface;
further,
The end portion of the first reflecting mirror and the end portion of the second reflecting mirror are held on one surface in an upright manner, and the end portion of the third reflecting mirror and the end portion of the fourth reflecting mirror are held in an upright manner. The component mounting apparatus of Claim 1 or 2 provided with the plate-shaped base | substrate hold | maintained on a surface.
前記第三光路変換手段は、
第二部品像を分担して直接反射する複数の第三反射鏡と、
一の前記第三反射鏡の裏面に配置され、他の前記第三反射鏡で反射された第二部品像を反射する第四反射鏡とを備える
請求項1〜3のいずれか1項に記載の部品実装装置。
The third optical path changing means is
A plurality of third reflecting mirrors that share and directly reflect the second component image;
The 4th reflective mirror which is arrange | positioned on the back surface of one said 3rd reflective mirror, and reflects the 2nd component image reflected by the other said 3rd reflective mirror is described in any one of Claims 1-3. Component mounting equipment.
前記第三光路変換手段の反射面側が対向する第三反射鏡と第四反射鏡とは第二部品像が通過する光路を広くする方向にずれて配置され、
第三反射鏡、および、第四反射鏡の少なくとも一方の端縁部は、これとは別体で、前記エリアセンサへ部品像が入光する側により近い側に配置された同方向側の第三反射鏡の反射面側の端縁と第四反射鏡の反射面側の端縁とをZ軸方向に結ぶ面より第三反射鏡による部品像のずらし方向側に対して突出しない形状となっている
請求項4に記載の部品実装装置。
The third reflecting mirror and the fourth reflecting mirror facing the reflecting surface side of the third optical path conversion means are arranged shifted in the direction of widening the optical path through which the second component image passes,
At least one edge portion of the third reflecting mirror and the fourth reflecting mirror is a separate body, and is arranged on the same direction side disposed on the side closer to the side where the component image enters the area sensor. It has a shape that does not protrude from the surface connecting the edge of the reflecting surface of the third reflecting mirror and the edge of the reflecting surface of the fourth reflecting mirror in the Z-axis direction with respect to the component image shifting direction by the third reflecting mirror. The component mounting apparatus according to claim 4.
列状に並ぶ複数のノズルを備えるヘッドの前記ノズルに保持される部品を撮像し、得られた画像に基づき基板に部品を実装する部品実装方法であって、
一列に配置される複数の前記ノズルにそれぞれ保持される複数の部品の列である第一部品列の一端部から連続して並ぶ複数個の部品の像である第一部品像を前記第一部品列の延在方向の中央向きに第一光路変換手段を用いて第一変位長分ずらし、
前記第一部品列の他端部から連続して並ぶ複数個の部品の像である第二部品像を前記第一部品列の延在方向と交差する方向に第二光路変換手段を用いて第二変位長分ずらし、
前記第一光路変換手段によりずらされた第一部品像と並ぶ側に第二部品像を第三光路変換手段を用いて第三変位長分ずらし、
前記第一部品像と前記第二部品像とをレンズ系を用いて集光し、
前記第一部品像と前記第二部品像とをエリアセンサを用いて一度に撮像する
部品実装方法。
A component mounting method for imaging a component held by the nozzle of a head having a plurality of nozzles arranged in a row, and mounting the component on a substrate based on the obtained image,
A first component image, which is an image of a plurality of components arranged continuously from one end of a first component row that is a row of a plurality of components respectively held by the plurality of nozzles arranged in a row, is the first component. Shift the first displacement length by using the first optical path changing means toward the center of the extending direction of the row,
A second part image, which is an image of a plurality of parts arranged in succession from the other end of the first part row, is obtained by using a second optical path changing means in a direction intersecting the extending direction of the first part row. Shift by two displacement lengths,
The second part image is shifted by the third displacement length by using the third optical path conversion unit on the side aligned with the first component image shifted by the first optical path conversion unit,
Condensing the first component image and the second component image using a lens system,
A component mounting method for imaging the first component image and the second component image at once using an area sensor.
JP2011186605A 2011-08-29 2011-08-29 Component mounting device and component mounting method Withdrawn JP2013048196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186605A JP2013048196A (en) 2011-08-29 2011-08-29 Component mounting device and component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186605A JP2013048196A (en) 2011-08-29 2011-08-29 Component mounting device and component mounting method

Publications (1)

Publication Number Publication Date
JP2013048196A true JP2013048196A (en) 2013-03-07

Family

ID=48011039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186605A Withdrawn JP2013048196A (en) 2011-08-29 2011-08-29 Component mounting device and component mounting method

Country Status (1)

Country Link
JP (1) JP2013048196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054945A (en) * 2015-09-10 2017-03-16 ヤマハ発動機株式会社 Component mounting device and imaging method in component mounting device
CN111781800A (en) * 2020-06-22 2020-10-16 江苏影速集成电路装备股份有限公司 Multi-path light path calibration system and method in laser direct writing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054945A (en) * 2015-09-10 2017-03-16 ヤマハ発動機株式会社 Component mounting device and imaging method in component mounting device
CN111781800A (en) * 2020-06-22 2020-10-16 江苏影速集成电路装备股份有限公司 Multi-path light path calibration system and method in laser direct writing equipment
CN111781800B (en) * 2020-06-22 2022-06-03 江苏影速集成电路装备股份有限公司 Multi-path light path calibration system and method in laser direct writing equipment

Similar Documents

Publication Publication Date Title
JP5134740B2 (en) Component mounting apparatus and component mounting method
US10291852B2 (en) Multi-aperture imaging device, imaging system and method for providing a multi-aperture imaging device
US10362229B2 (en) Multi-aperture imaging device, portable device and method of producing a multi-aperture imaging device
JP6388136B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP4315536B2 (en) Electronic component mounting method and apparatus
US9370135B2 (en) Electronic component mounting device and image reading method used by electronic component mounting device
KR20080005410A (en) Work position information acquisition method and device
JP6388133B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP4728181B2 (en) Component mounting equipment
JP2013048196A (en) Component mounting device and component mounting method
JP2015023176A (en) Part mount device and part mount method
JP2012248728A (en) Die bonder and bonding method
JP2009094295A (en) Apparatus for measuring height of electronic component
JP5875676B2 (en) Imaging apparatus and image processing apparatus
JP4495069B2 (en) Imaging device, component mounting machine
JP6388134B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP6388135B2 (en) Electronic component mounting apparatus and electronic component mounting method
KR20080005413A (en) Drawing apparatus and drawing method
WO2013111550A1 (en) Component mounting device and method therefor
JP2013172353A (en) Imaging device and mounting board manufacturing apparatus
JP2013143544A (en) Surface mounting machine
KR100627052B1 (en) Chip mounter
JPH09282464A (en) Image recognition device and its method
JP2012247720A (en) Camera for use in semiconductor manufacturing device
JP2022120244A (en) Component imaging device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104