JP2013043209A - Welding power source - Google Patents

Welding power source Download PDF

Info

Publication number
JP2013043209A
JP2013043209A JP2011183434A JP2011183434A JP2013043209A JP 2013043209 A JP2013043209 A JP 2013043209A JP 2011183434 A JP2011183434 A JP 2011183434A JP 2011183434 A JP2011183434 A JP 2011183434A JP 2013043209 A JP2013043209 A JP 2013043209A
Authority
JP
Japan
Prior art keywords
welding
current
signal
low level
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011183434A
Other languages
Japanese (ja)
Inventor
Yang Xi
熙 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011183434A priority Critical patent/JP2013043209A/en
Priority to CN201210173105.8A priority patent/CN102950364B/en
Publication of JP2013043209A publication Critical patent/JP2013043209A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a welding power source PS1 capable of cooling a base material to prevent a penetration bead from melting down without decreasing work efficiency.SOLUTION: In a welding power source PS1 for penetration welding using a coated electrode 2, a welding current setting circuit IWR outputs a welding current setting signal Iwr and a low-level current setting circuit LWR outputs a low-level current setting signal Lwr which is composed of a high-speed pulse. A current setting conversion circuit SW outputs a low-level current setting signal Lwr while a conversion starting switch BS outputs a high-level signal and outputs the welding current setting signal Iwr while the conversion starting switch BS outputs a low-level signal as a current setting control signal Ir respectively. A power source main circuit PM supplies power based on the current setting control signal Ir between coated electrode 2 and a base material 4. Thus, work efficiency can be greatly improved and skill of welding operator is not required.

Description

本発明は、被覆アーク溶接棒を用いて裏波溶接を行うための溶接電源に関するものである。   The present invention relates to a welding power source for performing back wave welding using a coated arc welding rod.

被覆アーク溶接棒と母材との間にアークを発生させて溶接する被覆アーク溶接が簡便な溶接方法として広く行われている。(例えば、特許文献1参照。)。パイプ等の突合せ継手の溶接として被覆アーク溶接による片側溶接が行われるが、片側溶接において整った波形の溶接ビードを開先側と反対の裏側に形成する裏波溶接が行われる。   Covered arc welding, in which an arc is generated between a covered arc welding rod and a base material, is widely used as a simple welding method. (For example, refer to Patent Document 1). One-side welding by covering arc welding is performed as welding of a butt joint such as a pipe, but back-surface welding is performed in which a corrugated weld bead formed in one-side welding is formed on the back side opposite to the groove side.

被覆アーク溶接棒を用いた裏波溶接は、溶接作業者が溶接中に溶融池の状態を観察し、アークを数秒間継続して裏側まで溶融したと判断すると、母材への入熱が過多になることによって裏波ビードが溶け落ちることを防ぐために、被覆アーク溶接棒を母材から素早く離す。アーク長を長くしてアーク電圧が電源の無負荷電圧を超えることによってアークが切れ、この状態で数秒間溶融池を冷却させる。溶け落ちの恐れが無くなってから、再度被覆アーク溶接棒を溶融池に短絡させてアークを発生させて数秒間溶接を行う。以後上記の動作を繰り返して裏波溶接を行う。 In reverse wave welding using a covered arc welding rod, the welder observes the state of the molten pool during welding and determines that the arc has melted to the backside for several seconds. The covered arc welding rod is quickly separated from the base metal to prevent the back bead from melting through. When the arc length is increased and the arc voltage exceeds the no-load voltage of the power source, the arc is cut, and in this state, the molten pool is cooled for several seconds. After there is no fear of melting, the coated arc welding rod is short-circuited to the molten pool again to generate an arc and welding is performed for several seconds. Thereafter, the above operation is repeated to perform back wave welding.

特開2003−88955号公報JP 2003-88955 A

上述した被覆アーク溶接棒を用いた裏波溶接は、裏波ビードの溶け落ちを防ぐために、被覆アーク溶接棒を母材から素早く遠くへ離してアークを切って母材を冷却させ、その後、被覆アーク溶接棒を母材に近づけて再度アークスタートを行うことを頻繁に行っている。また、再度アークスタートを行うとき、アークスタートを失敗することがある。従って、作業効率が低下し、溶接作業者の技量も必要である。   In the reverse wave welding using the above-described covered arc welding rod, in order to prevent the reverse bead from being burned out, the covered arc welding rod is moved away from the base material quickly and the arc is cut to cool the base material. Frequently, the arc start is performed again by bringing the arc welding rod close to the base material. Further, when the arc start is performed again, the arc start may fail. Therefore, work efficiency is reduced and the skill of the welding operator is also required.

本発明は、被覆アーク溶接棒を用いた裏波溶接において、作業効率を低下させないで、アークを切ることなく、裏波ビードの溶け落ちを防ぐために母材を冷却することができる溶接電源を提供することを目的としている。   The present invention provides a welding power source capable of cooling the base metal in order to prevent the back bead from being melted without cutting the arc without reducing the work efficiency in the back wave welding using the coated arc welding rod. The purpose is to do.

上述した課題を解決するために、請求項1の発明は、
本溶接電流を設定して本溶接電流設定信号を出力する本溶接電流設定回路と、
前記本溶接電流よりも平均電流値が小さくかつ100Hz以上の高速パルスからなる低レベル電流を設定して低レベル電流設定信号を出力する低レベル電流設定回路と、
溶接作業者によってHighレベル信号とLowレベル信号とが切り替えられて出力される切り替え起動手段と、
前記Highレベル信号によって低レベル電流設定信号を電流設定制御信号として出力し、前記Lowレベル信号によって前記本溶接電流設定信号を前記電流設定制御信号として出力する電流設定切り替え回路と、
溶接電流を検出して電流検出信号を出力する電流検出回路と、
前記電流設定制御信号と前記電流検出信号との誤差を増幅して、電流誤差増幅信号を出力する電流誤差増幅回路と、
前記電流設定制御信号に基づいて被覆アーク溶接棒と母材との間に電力を供給する電源主回路と、
を備えたことを特徴とする溶接電源である。
In order to solve the above-described problems, the invention of claim 1
A main welding current setting circuit for setting the main welding current and outputting a main welding current setting signal;
A low level current setting circuit for setting a low level current consisting of a high-speed pulse having an average current value smaller than the main welding current and 100 Hz or more and outputting a low level current setting signal;
A switching activation means for switching a high level signal and a low level signal to be output by a welding operator;
A current setting switching circuit that outputs a low level current setting signal as a current setting control signal by the High level signal, and outputs the main welding current setting signal as the current setting control signal by the Low level signal;
A current detection circuit for detecting a welding current and outputting a current detection signal;
A current error amplification circuit that amplifies an error between the current setting control signal and the current detection signal and outputs a current error amplification signal;
A power supply main circuit for supplying power between the coated arc welding rod and the base material based on the current setting control signal;
A welding power source comprising:

請求項2の発明は、
前記切り替え起動手段が、
前記溶接作業者がONにしたときに前記Highレベル信号を出力し、OFFにしたときに前記Lowレベル信号を出力する切り替え起動スイッチであることを特徴とする請求項1記載の溶接電源である。
The invention of claim 2
The switching activation means is
2. The welding power source according to claim 1, wherein the welding power source is a switching start switch that outputs the high level signal when the welding operator is turned on and outputs the low level signal when the welding operator is turned off.

請求項3の発明は、
溶接電圧を検出して電圧検出信号を出力する電圧検出回路を備え、
前記切り替え起動手段が、
前記溶接作業者が前記被覆アーク溶接棒を前記母材から離して前記電圧検出信号が予め設定した低レベル電流通電閾値以上になったときに前記Highレベル信号を出力し、前記被覆アーク溶接棒を前記母材に近づけて前記電圧検出信号が予め設定した本溶接電流通電閾値以下になったときに前記Lowレベル信号を出力する切り替え判別回路であることを特徴とする請求項1記載の溶接電源である。
The invention of claim 3
A voltage detection circuit that detects the welding voltage and outputs a voltage detection signal is provided.
The switching activation means is
When the welding operator moves the covered arc welding rod away from the base material and the voltage detection signal exceeds a preset low level current conduction threshold, the High level signal is output, and the covered arc welding rod is 2. The welding power source according to claim 1, wherein the welding power source is a switching determination circuit that outputs the Low level signal when the voltage detection signal approaches the base material and becomes equal to or less than a preset main welding current energization threshold. is there.

請求項4の発明は、
前記低レベル電流のデューティ比を設定する低レベル電流デューティ比設定回路を備え、
前記低レベル電流デューティ比設定回路が前記低レベル電流のデューティ比を10〜30%に設定することを特徴とする請求項1〜3のいずれか1項記載の溶接電源である。
The invention of claim 4
A low level current duty ratio setting circuit for setting a duty ratio of the low level current;
The welding power supply according to any one of claims 1 to 3, wherein the low level current duty ratio setting circuit sets the duty ratio of the low level current to 10 to 30%.

本発明の溶接電源は、被覆アーク溶接棒を用いた裏波溶接において裏波ビードの溶け落ちを防ぐために、従来技術のように被覆アーク溶接棒を母材から素早く遠くへ離してアークを切って母材を冷却させたり、その後、被覆アーク溶接棒を母材に近づけて再度アークスタートを行ったりする必要がない。従って、作業の効率を大幅に向上させることができ、溶接作業者の技量も不要である。   The welding power source of the present invention cuts off the arc by quickly separating the coated arc welding rod from the base metal as in the prior art in order to prevent the welding of the back bead in the reverse welding using the coated arc welding rod. There is no need to cool the base metal and then start the arc again with the covered arc welding rod close to the base material. Therefore, the work efficiency can be greatly improved, and the skill of the welding operator is not required.

本発明の実施の形態1の溶接電源のブロック図である。It is a block diagram of the welding power supply of Embodiment 1 of the present invention. 本発明の実施の形態1の溶接電源の各信号のタイミングチャートである。It is a timing chart of each signal of the welding power supply of Embodiment 1 of the present invention. 本発明の実施の形態2の溶接電源のブロック図である。It is a block diagram of the welding power supply of Embodiment 2 of this invention. 本発明の実施の形態2の溶接電源の各信号のタイミングチャートであるIt is a timing chart of each signal of the welding power supply of Embodiment 2 of the present invention.

[実施の形態1]
発明の実施の形態を実施例に基づき図面を参照して説明する。図1は本発明の実施の形態1の溶接電源のブロック図である。本発明の実施の形態1の溶接電源は、従来技術における裏波ビードの溶け落ちを防ぐために、被覆アーク溶接棒を母材から素早く離してアークを切って母材を冷却させる代わりに、低レベル電流を通電する。即ち、本溶接電流を通電させて裏波溶接を行い、低レベル電流を通電させて母材を冷却するようにし、これらの電流を溶接作業者の判断によって交互に通電させる。裏波溶接を行うときの本溶接電流の平均電流値を150Aとすると、低レベル電流は母材を冷却するために、本溶接電流よりも小さい平均電流値として30〜50Aとする。また低レベル電流は、溶接電流が小さいことによるアーク切れを防止するために、高速パルスを通電し、そのピーク電流とベース電流との差を大きくするために、ピーク電流をベース電流の3倍以上として、かつ平均電流値を上げないためにデューティ比を10〜30%として、周波数を100〜500Hzとすることによってアークの指向性を高めている。
[Embodiment 1]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a block diagram of a welding power source according to Embodiment 1 of the present invention. The welding power source according to the first embodiment of the present invention has a low level instead of cooling the base metal by quickly separating the covered arc welding rod from the base metal to cut off the arc in order to prevent the back-through bead from being burned out. Energize current. That is, reverse welding is performed by applying the main welding current, and the base material is cooled by supplying a low-level current, and these currents are alternately supplied according to the judgment of the welding operator. Assuming that the average current value of the main welding current when performing back wave welding is 150 A, the low level current is set to 30 to 50 A as an average current value smaller than the main welding current in order to cool the base metal. In addition, the low level current is applied with a high-speed pulse to prevent arc breaks due to a small welding current, and the peak current is more than three times the base current to increase the difference between the peak current and the base current. In order not to increase the average current value, the directivity of the arc is enhanced by setting the duty ratio to 10 to 30% and the frequency to 100 to 500 Hz.

図1において、溶接電源PS1の電源主回路PMは、3相200V等の商用電源(図示せず)を入力として、後述する電流誤差増幅信号Eiに従ってインバータ制御による出力制御を行い、被覆アーク溶接棒2と母材4との間に溶接電圧Vw及び溶接電流Iwを出力する。被覆アーク溶接棒2と母材4との間でアーク3が発生し、被覆アーク溶接棒2の心線が溶融して母材4を溶接する。このとき被覆剤がアーク熱でとけてガスを発生してアーク3と溶融金属周辺をおおい、またスラグとなって溶融金属の表面をおおって大気から溶融部を保護する。 In FIG. 1, a power source main circuit PM of a welding power source PS1 receives a commercial power source (not shown) such as a three-phase 200V and performs output control by inverter control in accordance with a current error amplification signal Ei described later, and a covered arc welding rod A welding voltage Vw and a welding current Iw are output between 2 and the base material 4. An arc 3 is generated between the coated arc welding rod 2 and the base material 4, and the core wire of the coated arc welding rod 2 is melted to weld the base material 4. At this time, the coating material is melted by the arc heat to generate gas to cover the arc 3 and the molten metal periphery, and also to form a slag to cover the surface of the molten metal to protect the molten portion from the atmosphere.

図示しないが、電源主回路PMは、例えば、商用電源を整流する1次整流器と、整流された直流を平滑するコンデンサと、平滑された直流を高周波交流に変換するインバータ回路と、高周波交流をアーク溶接に適した電圧値に降圧する高周波変圧器と、降圧された高周波交流を整流する2次整流器と、電流誤差増幅信号Eiを入力としてパルス幅変調制御を行い、この結果に基づいて上記のインバータ回路を駆動する駆動回路とを含んで構成される。 Although not shown, the power supply main circuit PM includes, for example, a primary rectifier that rectifies commercial power, a capacitor that smoothes the rectified direct current, an inverter circuit that converts the smoothed direct current into high frequency alternating current, and arcs the high frequency alternating current A high-frequency transformer that steps down to a voltage value suitable for welding, a secondary rectifier that rectifies the stepped-down high-frequency alternating current, and pulse width modulation control using current error amplification signal Ei as input, and based on this result, the inverter described above And a driving circuit for driving the circuit.

本溶接電流設定回路IWRは裏波溶接を行うときの溶接電流Iwを設定して本溶接電流設定信号Iwrを出力する。ピーク電流設定回路IPRは、低レベル電流のピーク電流を設定してピーク電流設定信号Iprを出力する。ベース電流設定回路IBRは、低レベル電流のベース電流を設定してベース電流設定信号Ibrを出力する。周波数設定回路FRは、低レベル電流の周波数を設定して周波数設定信号Frを出力する。デューティ比設定回路DRは、低レベル電流のデューティ比を設定してデューティ比設定信号Drを出力する。低レベル電流設定回路LWRは、設定された周波数とデューティ比とに基づいてピーク電流設定信号Iprとベース電流設定信号Ibrとを切り替えた低レベル電流設定信号Lwrを出力する。   The main welding current setting circuit IWR sets a welding current Iw when performing reverse wave welding and outputs a main welding current setting signal Iwr. The peak current setting circuit IPR sets a peak current of a low level current and outputs a peak current setting signal Ipr. The base current setting circuit IBR sets a base current of a low level current and outputs a base current setting signal Ibr. The frequency setting circuit FR sets the frequency of the low level current and outputs the frequency setting signal Fr. The duty ratio setting circuit DR sets the duty ratio of the low level current and outputs the duty ratio setting signal Dr. The low level current setting circuit LWR outputs a low level current setting signal Lwr in which the peak current setting signal Ipr and the base current setting signal Ibr are switched based on the set frequency and duty ratio.

切り替え起動スイッチBSは、被覆アーク溶接棒2又は遮光保護面に取り付けられた押しボタンスイッチやトグルスイッチ、又は足踏みスイッチであり、溶接作業者がONにしたときにHighレベル信号を切り替え起動信号Bsとして出力し、OFFにしたときにLowレベル信号を切り替え起動信号Bsとして出力する。電流設定切り替え回路SWは、切り替え起動信号BsがHighレベル信号のとき入力端子がb側に切り替わり、低レベル電流設定信号Lwrを電流設定制御信号Irとして出力し、切り替え起動信号BsがLowレベル信号のとき入力端子がa側に切り替わり、本溶接電流設定信号Iwrを電流設定制御信号Irとして出力する。 The switching start switch BS is a push button switch, a toggle switch, or a foot switch attached to the covering arc welding rod 2 or the light shielding protective surface. When the welding operator turns on, the high level signal is used as the switching start signal Bs. When the signal is output and turned OFF, the Low level signal is output as the switching activation signal Bs. When the switching activation signal Bs is a high level signal, the current setting switching circuit SW switches the input terminal to the b side, outputs the low level current setting signal Lwr as the current setting control signal Ir, and the switching activation signal Bs is the low level signal. When the input terminal is switched to the a side, the main welding current setting signal Iwr is output as the current setting control signal Ir.

電流検出回路IDは、溶接電流Iwを検出して電流検出信号Idを出力する。電流誤差増幅回路EIは、電流設定制御信号Irと上記の電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。この電流誤差が電源主回路PMにフィードバックされるので、定電流制御が行われる。 The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The current error amplification circuit EI amplifies an error between the current setting control signal Ir and the current detection signal Id and outputs a current error amplification signal Ei. Since this current error is fed back to the power supply main circuit PM, constant current control is performed.

図2は本発明の実施の形態1の溶接電源の各信号のタイミングチャートである。同図(A)は出力電圧Eの時間変化を示し、同図(B)は切り替え起動信号Bsの時間変化を示し、同図(C)は溶接電流Iwの時間変化を示す。以下、同図を参照して説明する。   FIG. 2 is a timing chart of each signal of the welding power source according to the first embodiment of the present invention. FIG. 4A shows the time change of the output voltage E, FIG. 2B shows the time change of the switching activation signal Bs, and FIG. 4C shows the time change of the welding current Iw. Hereinafter, a description will be given with reference to FIG.

時刻t1において、図示を省略した起動信号が電源主回路PMに入力されると、同図(A)に示すように電源主回路PMが起動して出力電圧Eが出力されて、被覆アーク溶接棒2と母材4との間に無負荷電圧が印加される。時刻t2において、溶接作業者が被覆アーク溶接棒2の被覆筒を叩いて心線を露出させて溶融池に短絡させる。このとき同図(B)に示すように切り替え起動スイッチBSがOFFでLowレベル信号を切り替え起動信号Bsとして出力しているので、電流設定切り替え回路SWは、入力端子はa側にあって、本溶接電流設定回路IWRによって例えば150Aに設定された本溶接電流設定信号Iwrを電流設定制御信号Irとして出力する。この結果、同図(C)に示すように本溶接電流設定信号Iwrの値に基づく溶接電流Iwが通電してアークスタートが行われる。   When a start signal (not shown) is input to the power supply main circuit PM at time t1, the power supply main circuit PM is started and an output voltage E is output as shown in FIG. A no-load voltage is applied between 2 and the base material 4. At time t2, the welding worker strikes the coated cylinder of the coated arc welding rod 2 to expose the core wire and short-circuit the molten pool. At this time, as shown in FIG. 5B, since the switching start switch BS is OFF and the Low level signal is output as the switching start signal Bs, the current setting switching circuit SW has the input terminal on the a side, For example, the main welding current setting signal Iwr set to 150 A by the welding current setting circuit IWR is output as the current setting control signal Ir. As a result, as shown in FIG. 6C, the welding current Iw based on the value of the main welding current setting signal Iwr is energized to start the arc.

そして溶接作業者が溶融池の状態を観察しながら被覆アーク溶接を数秒間継続して行って裏側まで溶融したと判断すると、時刻t3において、母材4への入熱が過多になることによって裏波ビードが溶け落ちることを防ぐために、同図(B)に示すように溶接作業者が切り替え起動スイッチBSをONにすると切り替え起動スイッチはHighレベル信号を切り替え起動信号Bsとして出力する。電流設定切り替え回路SWはこのHighレベル信号によって入力端子がb側に切り替わり、低レベル電流設定信号Lwrを電流設定制御信号Irとして出力する。この低レベル電流設定信号Lwrは、例えばピーク電流設定回路IPRによってピーク電流Ipが60Aに設定され、ベース電流設定回路IBRによってベース電流Ibが20Aに設定され、周波数設定回路FRによって周波数が200Hzに設定され、デューティ比設定回路DRによってデューティ比が30%に設定される。この結果、同図(C)に示すように低レベル電流設定信号Lwrの値に基づく溶接電流Iwが通電して、母材4が冷やされる。 When the welding operator observes the state of the molten pool and determines that the covered arc welding has been continued for several seconds and has melted to the back side, the heat input to the base material 4 becomes excessive at time t3. In order to prevent the wave beads from melting, when the welding operator turns on the switching start switch BS as shown in FIG. 5B, the switching start switch outputs a high level signal as the switching start signal Bs. The current setting switching circuit SW switches the input terminal to the b side by this High level signal, and outputs the low level current setting signal Lwr as the current setting control signal Ir. For example, the peak current Ip is set to 60A by the peak current setting circuit IPR, the base current Ib is set to 20A by the base current setting circuit IBR, and the frequency is set to 200 Hz by the frequency setting circuit FR. The duty ratio is set to 30% by the duty ratio setting circuit DR. As a result, the welding current Iw based on the value of the low level current setting signal Lwr is applied as shown in FIG.

低レベル電流が通電されることによって母材4が冷やされて、溶接作業者が溶け落ちの恐れが無いと判断すると、時刻t4において、同図(B)に示すように溶接作業者が切り替え起動スイッチBSをOFFにすると、切り替え起動スイッチBSはLowレベル信号を切り替え起動信号Bsとして出力する。電流設定切り替え回路SWはLowレベル信号によって入力端子がa側に切り替わり、本溶接電流設定信号Iwrを電流設定制御信号Irとして出力する。以後、上述した時刻t2〜t4の動作を繰り返して裏波溶接を行って溶接を終了する。   When the base metal 4 is cooled by applying the low-level current and the welding operator determines that there is no risk of melting, the welding operator starts switching at time t4 as shown in FIG. When the switch BS is turned OFF, the switching activation switch BS outputs a Low level signal as the switching activation signal Bs. The current setting switching circuit SW switches the input terminal to the a side by the Low level signal, and outputs the main welding current setting signal Iwr as the current setting control signal Ir. Thereafter, the operation at the times t2 to t4 described above is repeated to perform back wave welding, and the welding is finished.

この結果、本発明の実施の形態1の溶接電源PS1は、被覆アーク溶接棒を用いた裏波溶接において裏波ビードの溶け落ちを防ぐために、従来技術のように被覆アーク溶接棒を母材から素早く遠くへ離してアークを切って母材を冷却させたり、その後、被覆アーク溶接棒を母材に近づけて再度アークスタートを行ったりする必要がない。従って、作業の効率を大幅に向上させることができ、溶接作業者の技量も不要である。   As a result, the welding power source PS1 according to the first embodiment of the present invention uses the covered arc welding rod from the base material as in the prior art in order to prevent the penetration of the back bead in back welding using the covered arc welding rod. There is no need to quickly distant and cut the arc to cool the base metal, and then to start the arc again with the covered arc welding rod close to the base metal. Therefore, the work efficiency can be greatly improved, and the skill of the welding operator is not required.

[実施の形態2]
本発明の実施の形態2の溶接電源は、本発明の実施の形態1の溶接電源の切り替え起動スイッチBSをON又はOFFさせて低レベル電流を通電する代わりに、被覆アーク溶接棒2を母材4からわずかに引き離したり近づけたりすることによって低レベル電流を通電したり停止したりする。即ち、本溶接電流を通電するときのアーク長を例えば5mmとすると、低レベル電流を通電するためのアーク長を本溶接電流を通電するときのアーク長よりも長く、かつアーク切れをしないアーク長として、8〜10mmに設定する。
[Embodiment 2]
The welding power source according to the second embodiment of the present invention uses the coated arc welding rod 2 as a base material instead of turning on or off the welding power source switching start switch BS according to the first embodiment of the present invention to energize a low level current. The low level current is energized or stopped by slightly pulling it away from 4 or approaching it. That is, if the arc length when energizing the main welding current is, for example, 5 mm, the arc length for energizing the low level current is longer than the arc length when energizing the main welding current, and the arc length that does not cause arc breakage Is set to 8 to 10 mm.

図3は本発明の実施の形態2の溶接電源のブロック図である。同図において、溶接電源PS2の電圧検出回路VDは、溶接電圧Vwを検出して電圧検出信号Vdを出力する。低レベル電流通電閾値設定回路LTHは、低レベル電流を通電させるために溶接作業者が被覆アーク溶接棒2を母材4から引き離したときのアーク長を例えば8mmとして、このアーク長に対応する溶接電圧が低レベル電流通電閾値として設定され、低レベル電流通電閾値設定信号Lthを出力する。溶接電流通電閾値設定回路WTHは、溶接電流を通電させるために溶接作業者が被覆アーク溶接棒2を母材4に近づけたときのアーク長を例えば5mmとして、このアーク長に対応する溶接電圧が溶接電流通電閾値として設定され、溶接電流通電閾値設定信号Wthを出力する。 FIG. 3 is a block diagram of a welding power source according to Embodiment 2 of the present invention. In the figure, a voltage detection circuit VD of the welding power source PS2 detects a welding voltage Vw and outputs a voltage detection signal Vd. The low level current energization threshold setting circuit LTH sets the arc length when the welding operator pulls the covered arc welding rod 2 away from the base material 4 in order to energize the low level current, for example, 8 mm, and performs welding corresponding to this arc length. The voltage is set as a low level current conduction threshold value, and a low level current conduction threshold setting signal Lth is output. The welding current energization threshold setting circuit WTH sets the arc length when the welding worker brings the coated arc welding rod 2 close to the base material 4 to energize the welding current, for example, 5 mm, and the welding voltage corresponding to this arc length is set. It is set as a welding current energization threshold, and a welding current energization threshold setting signal Wth is output.

切り替え判別回路BVは、溶接電流Iwが通電されているときに、電圧検出信号Vdと溶接電流通電閾値設定信号Wthと低レベル電流通電閾値設定信号Lthとを入力して、電圧検出信号Vdの値が低レベル電流通電閾値設定信号Lthの値以上となったときにHighレベル信号を切り替え判別信号Bvとして出力し、電圧検出信号Vdの値が溶接電流通電閾値設定信号Wthの値以下となったときにLowレベル信号を切り替え判別信号Bvとして出力する。その他の機能は、図1に示した本発明の実施の形態1の溶接電源PS1のブロック図の機能と同機能に同符号を付して説明を省略する。 The switching determination circuit BV inputs the voltage detection signal Vd, the welding current energization threshold setting signal Wth, and the low level current energization threshold setting signal Lth when the welding current Iw is energized, and the value of the voltage detection signal Vd When the value becomes equal to or greater than the value of the low level current conduction threshold setting signal Lth, the High level signal is output as the switching determination signal Bv, and the value of the voltage detection signal Vd becomes equal to or less than the value of the welding current conduction threshold setting signal Wth The low level signal is output as the switching determination signal Bv. The other functions are denoted by the same reference numerals as those in the block diagram of the welding power source PS1 according to the first embodiment of the present invention shown in FIG.

図4は本発明の実施の形態2の溶接電源の各信号のタイミングチャートである。同図(A)は出力電圧Eの時間変化を示し、同図(B)は溶接電圧Vwの時間変化を示し、同図(C)は切り替え判別信号Bvの時間変化を示し、同図(D)は溶接電流Iwの時間変化を示す。以下、同図を参照して説明する。   FIG. 4 is a timing chart of each signal of the welding power source according to the second embodiment of the present invention. (A) shows the time change of the output voltage E, (B) shows the time change of the welding voltage Vw, (C) shows the time change of the switching determination signal Bv, (D) ) Shows the time change of the welding current Iw. Hereinafter, a description will be given with reference to FIG.

時刻t1において、図示を省略した起動信号が電源主回路PMに入力されると、同図(A)に示すように電源主回路PMが起動して出力電圧Eを出力し、同図(B)に示すように被覆アーク溶接棒2と母材4との間に無負荷電圧が印加される。時刻t2において、溶接作業者が被覆アーク溶接棒2の被覆筒を叩いて心線を露出させて溶融池に短絡させて、同図(D)に示すように溶接電流の通電が開始する。このときアーク長は5mm以下であるので、電圧検出信号Vdの値が溶接電流通電閾値設定信号Wthの値以下であって、同図(C)に示すように切り替え判別回路BVがLowレベル信号を切り替え判別信号Bvとして出力する。電流設定切り替え回路SWは、Lowレベル信号によって入力端子はa側にあり、本溶接電流設定回路IWRによって例えば150Aに設定された本溶接電流設定信号Iwrを電流設定制御信号Irとして出力する。この結果、同図(D)に示すように本溶接電流設定信号Iwrに基づく溶接電流Iwが通電してアークスタートが行われる。   When a start signal (not shown) is input to the power supply main circuit PM at time t1, the power supply main circuit PM is started to output the output voltage E as shown in FIG. As shown, a no-load voltage is applied between the coated arc welding rod 2 and the base material 4. At time t2, the welding worker strikes the coated cylinder of the coated arc welding rod 2 to expose the core wire and short-circuit the molten pool, and the welding current starts to flow as shown in FIG. At this time, since the arc length is 5 mm or less, the value of the voltage detection signal Vd is equal to or less than the value of the welding current conduction threshold setting signal Wth, and the switching determination circuit BV outputs the Low level signal as shown in FIG. It outputs as a switching determination signal Bv. The current setting switching circuit SW has an input terminal on the a side by a Low level signal, and outputs a main welding current setting signal Iwr set to, for example, 150 A by the main welding current setting circuit IWR as a current setting control signal Ir. As a result, as shown in FIG. 3D, the welding current Iw based on the main welding current setting signal Iwr is energized to start the arc.

そして溶接作業者が溶融池の状態を観察しながら被覆アーク溶接を数秒間継続して行って裏側まで溶融したと判断すると、時刻t3において、母材4への入熱が過多になることによって裏波ビードが溶け落ちることを防ぐために、被覆アーク溶接棒2を母材4からわずかに引き離してアーク長が8mm以上になると、同図(B)に示すように溶接電圧Iwが低レベル電流通電閾値設定信号Lthの値以上になるので、切り替え判別回路BVがHighレベル信号を切り替え判別信号Bvとして出力する。電流設定切り替え回路SWは、このHighレベル信号によって入力端子がb側に切り替わり、低レベル電流設定信号Lwrを電流設定制御信号Irとして出力する。この低レベル電流の溶接条件は、本発明の実施の形態1の溶接電源の低レベル電流の溶接条件と同様であるので説明を省略する。この結果、同図(D)に示すように低レベル電流設定信号Lwrの値に基づく溶接電流Iwが通電して、母材4が冷やされる。 When the welding operator observes the state of the molten pool and determines that the covered arc welding has been continued for several seconds and has melted to the back side, the heat input to the base material 4 becomes excessive at time t3. In order to prevent the wave bead from melting, when the arc length becomes 8 mm or more by slightly separating the coated arc welding rod 2 from the base material 4, the welding voltage Iw becomes a low level current conduction threshold as shown in FIG. Since it becomes equal to or greater than the value of the setting signal Lth, the switching determination circuit BV outputs a High level signal as the switching determination signal Bv. The current setting switching circuit SW switches the input terminal to the b side by this High level signal, and outputs the low level current setting signal Lwr as the current setting control signal Ir. Since this low level current welding condition is the same as the low level current welding condition of the welding power source according to the first embodiment of the present invention, the description thereof will be omitted. As a result, the welding current Iw based on the value of the low level current setting signal Lwr is energized as shown in FIG.

低レベル電流が通電されることによって母材4が冷やされて、溶接作業者が溶け落ちの恐れが無いと判断すると、時刻t4において、被覆アーク溶接棒2を母材4にわずかに近づけて、アーク長が5mm以下となると、同図(B)に示すように溶接電圧Iwが溶接電流通電閾値設定信号Wthの値以下になるので、切り替え判別回路BVがLowレベル信号を切り替え判別信号Bv出力する。これによって電流設定切り替え回路SWは、入力端子がa側に切り替わり、本溶接電流設定信号Iwrを電流設定制御信号Irとして出力する。以後、上述した時刻t2〜t4の動作を繰り返して裏波溶接を行って溶接を終了する。   When the base metal 4 is cooled by energizing the low-level current and the welding operator determines that there is no risk of melting, the coated arc welding rod 2 is brought slightly closer to the base material 4 at time t4. When the arc length is 5 mm or less, the welding voltage Iw becomes equal to or less than the value of the welding current energization threshold setting signal Wth as shown in FIG. 5B, so that the switching determination circuit BV outputs the low level signal and the switching determination signal Bv. . As a result, the current setting switching circuit SW switches the input terminal to the a side and outputs the main welding current setting signal Iwr as the current setting control signal Ir. Thereafter, the operation at the times t2 to t4 described above is repeated to perform back wave welding, and the welding is finished.

この結果、本発明の実施の形態2の溶接電源PS2は、本発明の実施の形態1の溶接電源PS1が奏する効果に加えて、溶接作業者が被覆アーク溶接棒2をわずかに移動させるだけで電流設定切り替え回路SWを切り替えることができるので、さらに作業の効率を大幅に向上させることができる。   As a result, the welding power source PS2 according to the second embodiment of the present invention has the effect that the welding power source PS1 according to the first embodiment of the present invention exhibits the effect that the welding operator moves the covered arc welding rod 2 slightly. Since the current setting switching circuit SW can be switched, the work efficiency can be greatly improved.

2 被覆アーク溶接棒
3 アーク
4 母材
BS 切り替え起動スイッチ
Bs 切り替え起動信号
BV 切り替え判別回路
Bv 切り替え判別信号
DR デューティ比設定回路
Dr デューティ比設定信号
E 出力電圧
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
FR 周波数設定回路
Fr 周波数設定信号
Ib ベース電流
IBR ベース電流設定回路
Ibr ベース電流設定信号
ID 電流検出回路
Id 電流検出信号
Ip ピーク電流
IPR ピーク電流設定回路
Ipr ピーク電流設定信号
Ir 電流設定制御信号
Iw 溶接電流
IWR 本溶接電流設定回路
Iwr 本溶接電流設定信号
LTH 低レベル電流通電閾値設定回路
Lth 低レベル電流通電閾値設定信号
LWR 低レベル電流設定回路
Lwr 低レベル電流設定信号
PM 電源主回路
PS1 溶接電源
PS2 溶接電源
SW 電流設定切り替え回路
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
WTH 溶接電流通電閾値設定回路
Wth 溶接電流通電閾値設定信号
2 Covered arc welding rod 3 Arc
4 base material BS switching start switch Bs switching start signal BV switching determination circuit Bv switching determination signal DR duty ratio setting circuit Dr duty ratio setting signal E output voltage EI current error amplification circuit Ei current error amplification signal FR frequency setting circuit Fr frequency setting signal Ib base current IBR base current setting circuit Ibr base current setting signal ID current detection circuit Id current detection signal Ip peak current IPR peak current setting circuit Ipr peak current setting signal Ir current setting control signal Iw welding current IWR main welding current setting circuit Iwr main Welding current setting signal LTH Low level current conduction threshold setting circuit Lth Low level current conduction threshold setting signal LWR Low level current setting circuit Lwr Low level current setting signal PM Power supply main circuit PS1 Welding power supply PS2 Welding power supply SW Current setting switching times VD voltage detection circuit Vd voltage detection signal Vw welding voltages WTH welding currents energizing threshold setting circuit Wth welding currents energizing threshold setting signal

Claims (4)

本溶接電流を設定して本溶接電流設定信号を出力する本溶接電流設定回路と、
前記本溶接電流よりも平均電流値が小さくかつ100Hz以上の高速パルスからなる低レベル電流を設定して低レベル電流設定信号を出力する低レベル電流設定回路と、
溶接作業者によってHighレベル信号とLowレベル信号とが切り替えられて出力される切り替え起動手段と、
前記Highレベル信号によって低レベル電流設定信号を電流設定制御信号として出力し、前記Lowレベル信号によって前記本溶接電流設定信号を前記電流設定制御信号として出力する電流設定切り替え回路と、
溶接電流を検出して電流検出信号を出力する電流検出回路と、
前記電流設定制御信号と前記電流検出信号との誤差を増幅して、電流誤差増幅信号を出力する電流誤差増幅回路と、
前記電流設定制御信号に基づいて被覆アーク溶接棒と母材との間に電力を供給する電源主回路と、
を備えたことを特徴とする溶接電源。
A main welding current setting circuit for setting the main welding current and outputting a main welding current setting signal;
A low level current setting circuit for setting a low level current consisting of a high-speed pulse having an average current value smaller than the main welding current and 100 Hz or more and outputting a low level current setting signal;
A switching activation means for switching a high level signal and a low level signal to be output by a welding operator;
A current setting switching circuit that outputs a low level current setting signal as a current setting control signal by the High level signal, and outputs the main welding current setting signal as the current setting control signal by the Low level signal;
A current detection circuit for detecting a welding current and outputting a current detection signal;
A current error amplification circuit that amplifies an error between the current setting control signal and the current detection signal and outputs a current error amplification signal;
A power supply main circuit for supplying power between the coated arc welding rod and the base material based on the current setting control signal;
A welding power source characterized by comprising:
前記切り替え起動手段が、
前記溶接作業者がONにしたときに前記Highレベル信号を出力し、OFFにしたときに前記Lowレベル信号を出力する切り替え起動スイッチであることを特徴とする請求項1記載の溶接電源。
The switching activation means is
The welding power source according to claim 1, wherein the welding power source is a switching start switch that outputs the high level signal when the welding operator is turned on and outputs the low level signal when the welding operator is turned off.
溶接電圧を検出して電圧検出信号を出力する電圧検出回路を備え、
前記切り替え起動手段が、
前記溶接作業者が前記被覆アーク溶接棒を前記母材から離して前記電圧検出信号が予め設定した低レベル電流通電閾値以上になったときに前記Highレベル信号を出力し、前記被覆アーク溶接棒を前記母材に近づけて前記電圧検出信号が予め設定した本溶接電流通電閾値以下になったときに前記Lowレベル信号を出力する切り替え判別回路であることを特徴とする請求項1記載の溶接電源。
A voltage detection circuit that detects the welding voltage and outputs a voltage detection signal is provided.
The switching activation means is
When the welding operator moves the covered arc welding rod away from the base material and the voltage detection signal exceeds a preset low level current conduction threshold, the High level signal is output, and the covered arc welding rod is 2. The welding power source according to claim 1, wherein the welding power source is a switching determination circuit that outputs the Low level signal when the voltage detection signal approaches a base metal and becomes equal to or less than a preset main welding current energization threshold.
前記低レベル電流のデューティ比を設定する低レベル電流デューティ比設定回路を備え、
前記低レベル電流デューティ比設定回路が前記低レベル電流のデューティ比を10〜30%に設定することを特徴とする請求項1〜3のいずれか1項記載の溶接電源。
A low level current duty ratio setting circuit for setting a duty ratio of the low level current;
The welding power supply according to any one of claims 1 to 3, wherein the low level current duty ratio setting circuit sets the duty ratio of the low level current to 10 to 30%.
JP2011183434A 2011-08-25 2011-08-25 Welding power source Withdrawn JP2013043209A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011183434A JP2013043209A (en) 2011-08-25 2011-08-25 Welding power source
CN201210173105.8A CN102950364B (en) 2011-08-25 2012-05-30 The source of welding current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183434A JP2013043209A (en) 2011-08-25 2011-08-25 Welding power source

Publications (1)

Publication Number Publication Date
JP2013043209A true JP2013043209A (en) 2013-03-04

Family

ID=47760075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183434A Withdrawn JP2013043209A (en) 2011-08-25 2011-08-25 Welding power source

Country Status (2)

Country Link
JP (1) JP2013043209A (en)
CN (1) CN102950364B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200122260A1 (en) * 2018-10-22 2020-04-23 Illinois Tool Works Inc. Systems and methods for controlling arc initiation and termination in a welding process
CN112828419A (en) * 2020-12-31 2021-05-25 唐山松下产业机器有限公司 Welding control method, device, medium and electronic equipment for forming fish scale pattern welding seam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319432B2 (en) * 2003-03-07 2009-08-26 株式会社ダイヘン Magnetic blow control method for consumable electrode pulse arc welding
JP4490088B2 (en) * 2003-09-12 2010-06-23 株式会社ダイヘン Output control method of pulse arc welding and output control method of arc length fluctuation pulse arc welding
CN100467183C (en) * 2004-01-16 2009-03-11 株式会社大亨 Current control method for arch welding
JP5090759B2 (en) * 2007-03-12 2012-12-05 株式会社ダイヘン Output control method for consumable electrode AC arc welding power supply
JP5090765B2 (en) * 2007-03-29 2012-12-05 株式会社ダイヘン Feed control method for consumable electrode AC arc welding
JP5350641B2 (en) * 2007-07-23 2013-11-27 株式会社ダイヘン Pulse arc welding method
JP2009195952A (en) * 2008-02-21 2009-09-03 Daihen Corp Method for discriminating short circuit in consumable electrode arc welding
CN101362245A (en) * 2008-09-12 2009-02-11 叶玲平 Full digit numerical control inversion welding machine
JP5506590B2 (en) * 2010-08-03 2014-05-28 株式会社ダイヘン Arc welding machine

Also Published As

Publication number Publication date
CN102950364A (en) 2013-03-06
CN102950364B (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP4652825B2 (en) Arc start control method for AC arc welding
JP2004114088A (en) Power supply device for short circuit arc welding, and robot welding equipment
JP2006142317A (en) Polarity switching short circuiting arc welding method
KR102149744B1 (en) Composite welder
JP5429356B2 (en) AC arc welding method and AC arc welding apparatus
JP2012030275A (en) Electric arc welder
JP2013043209A (en) Welding power source
JP5918021B2 (en) AC pulse arc welding control method
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP2007245190A (en) Consumable electrode type arc welding machine
JP5805952B2 (en) Arc start control method for plasma MIG welding
JP2014083553A (en) Pulsed arc welding control method
JP5758115B2 (en) Arc welding machine
JP6176785B2 (en) Two-wire welding end control method
JP4850638B2 (en) Polarity switching short-circuit arc welding method
KR101437827B1 (en) Multipurpose welding device and method thereof
JP4643236B2 (en) Polarity switching short-circuit arc welding method
JP2021020232A (en) Covered arc welding control method
JP2021037529A (en) Coating arc-welding control method
JP5773478B2 (en) Arc start control method for plasma MIG welding
JP2021120162A (en) Welding start method of shielded metal arc welding
JP4570444B2 (en) Arc welding equipment
JP5278563B2 (en) TIG welding method
JP2001105133A (en) Fusible electrode type gas shield arc welding method and power supply for welding
JP5499472B2 (en) Arc welding control method and arc welding apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104