JP2013036969A - Radar cross section (rcs) measurement system - Google Patents

Radar cross section (rcs) measurement system Download PDF

Info

Publication number
JP2013036969A
JP2013036969A JP2011184133A JP2011184133A JP2013036969A JP 2013036969 A JP2013036969 A JP 2013036969A JP 2011184133 A JP2011184133 A JP 2011184133A JP 2011184133 A JP2011184133 A JP 2011184133A JP 2013036969 A JP2013036969 A JP 2013036969A
Authority
JP
Japan
Prior art keywords
sample
rcs
antenna
field
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011184133A
Other languages
Japanese (ja)
Inventor
Osipov Andray
オジポフ アンドレイ
Koichi Kobayashi
弘一 小林
Yosuke Suzuki
洋介 鈴木
Hidehiko Fujii
秀彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keycom Corp
Original Assignee
Keycom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keycom Corp filed Critical Keycom Corp
Priority to JP2011184133A priority Critical patent/JP2013036969A/en
Publication of JP2013036969A publication Critical patent/JP2013036969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in measuring a radar cross section (RCS) that when measuring in a far field, it is necessary to place the sample at a distant place for measurement, and when measuring in a compact range method, a large antenna three times larger than the sample or more is necessary and the measurement is limited in the mono-static measurement.SOLUTION: A small antenna is used for each of a transmission antenna and receiving antenna. The antennas are placed in a near field of the sample. A calibration factor is introduced into a focusing operator in a near field to far field conversion algorithm.

Description

レーダークロスセクションを測定する際、近傍界で測定し、その後遠方界に変換する測定法に関するものである。The present invention relates to a measurement method in which a radar cross section is measured in the near field and then converted into a far field.

レーダ断面積(RCS)の散乱パターンを測定評価する場合、通常、遠方領域で特性を取得する。
その際、不要な反射波を軽減するため多くは電波暗室の中で測定するが、ターゲットの大きさ、あるいは測定周波数によっては遠方領域から外れる場合がある。一方、この遠方領域でのRCS測定法を用いることができないか、用いないときは、コンパクトレンジを利用する方法、近傍界データを遠方界に変換処理するなどの方法を用いる。ここでは後者すなわち、ターゲット近傍の円周上で取得した近傍界データからレーダ断面積(RCS)を遠方に変換する解析理論を用いるがRCSの算出には、周波数と方位角を変数とする取得データを元にしたレーダ反射波に対応する反射率分布画像が必要である。この反射分布の生成に対し新しくフォーカス化演算ファクターを導入する。このことによってRCSの近傍界遠方界変換精度が向上した。
When measuring and evaluating the scattering pattern of the radar cross section (RCS), the characteristic is usually acquired in a far region.
At that time, in order to reduce unnecessary reflected waves, most of the measurement is performed in an anechoic chamber, but depending on the size of the target or the measurement frequency, there are cases where the measurement is out of the far field. On the other hand, when the RCS measurement method in the far field cannot be used or not used, a method using a compact range, a method of converting near field data into a far field, or the like is used. Here, the latter, that is, the analysis theory that converts the radar cross section (RCS) into the distance from the near-field data acquired on the circumference in the vicinity of the target, is used. The reflectance distribution image corresponding to the radar reflected wave based on the above is required. A new focus calculation factor is introduced for the generation of the reflection distribution. This improved the near field far field conversion accuracy of the RCS.

なしNone

[1]I.J.LaHaie,”Overview of an Image−Based Technique for Predicting Far−Field Radar Cross Section from Near−Field Measurements,”IEEE Antennas and Propagation Magazine,45,December 2003,pp.159−169. [2]A.Broquetas,J.Palau,L.Jofre and A.Cardama,”Spherical Wave Near−Field Imaging and Radar Cross Section Measurement,”IEEE Transactions on Antennas and Propagation,46,May 1998,pp.730−735. [3]T.Vaupel and T.F.Eibert,”Comparison and Application of Near−Field ISAR Imaging Techniques for Far−Field Radar Cross Section Determination,”IEEE Transactions on Antennas and Propagation,54,January 2006,pp.144−151. [4]K.J.Nicholson and C.H.Wang,”Improved Near−field Radar Cross Section Measurement Technique,”IEEE Antennas and Wireless Propagation Letters,8,2009,pp.1103−1106. [5]H.Kobayashi,A.Osipov and H.Suzuki,”An Improved Image−Based Near−Field−to−Far−Field Transfomation,”Proceedings of Asia−Pacific Microwave Conference 2010(APMC2010),Yokohama,Japan,Dec.2010,pp.1693−1696. [6]小林弘一,アンドレイオジポフ,鈴木洋介,”レーダ断面積(RCS)の近傍界遠方変換について,”信学技報(宇宙・航行エレクトロニクス研究会)SANE−2010−60,2010年8月. [7]G.T.Ruck,D.E.Barrick,W.D.Stuart and C.K.Krichbaum,Radar Cross Section Handbook,Plenum,1970,sec.3.[1] I.I. J. et al. LaHaie, "Overview of an Image-Based Technique for Predicting Far-Field Radar Cross Section from Near-Field Measurement," IEEE Agen Measure. 159-169. [2] A. Broquetas, J. et al. Palau, L .; Jofre and A.J. Cardama, “Spherical Wave Near-Field Imaging and Radar Cross Section Measurement,” IEEE Transactions on Antenna and Propagation, 46, May 1998. 730-735. [3] T. Vaupel and T.W. F. Eibert, “Comparison and Application of Near-Field ISAR Imaging Techniques for Far-Field Radar Cross Section and Dangeration,” IEEE Transactions on Agen. 144-151. [4] K.K. J. et al. Nicholson and C.I. H. Wang, “Improved Near-field Radar Cross Section Measurement Technique Technique,” IEEE Antennas and Wireless Propagation Letters, 8, 2009, pp. 1103-1106. [5] H.I. Kobayashi, A .; Osipov and H.M. Suzuki, “An Improved Image-Based Near-Field-to-Far-Field Transformation,” Proceedings of Asia-Pacific Microwave Conference 2010, APMC 2010ap. 2010, pp. 1693-1696. [6] Koichi Kobayashi, Andrei Odipov, Yosuke Suzuki, “On the near-field far-field transformation of the radar cross section (RCS),” IEICE Technical Report (Space and Navigation Electronics Research Group) SANE-2010-60, August 2010 . [7] G. T.A. Ruck, D.C. E. Barrick, W.M. D. Stuart and C.I. K. Krichbaum, Radar Cross Section Handbook, Plenum, 1970, sec. 3.

背景技術で述べたように、レーダークロスセクションを測定する際、遠方界で測定する方法では遠方界で測定しなければならない。コンパクトレンジ法で測定する方法では、コンパクトレンジ用の試料の3倍以上大きなアンテナが必要であり、また、モノスタティックだけの測定に限られてしまう。遠方からではなく、また、モノスタティックでもバイスタティックでもレーダークロスセクション(RCS)を測定したい、また、大きなアンテナを用いたくないという要望を解決するものである。As described in the background art, when measuring the radar cross section, the method of measuring in the far field must be measured in the far field. The method of measuring by the compact range method requires an antenna that is three times larger than the sample for the compact range, and is limited to monostatic measurement. It solves the desire to measure radar cross section (RCS) not from a distance, monostatic or bistatic, and not to use a large antenna.

上下に動くアンテナから周波数を変化させながら試料に照射する。試料から反射してきた電磁波を同じアンテナで受信し、振幅と位相および伝播遅延時間等を入手する。次に試料を少し回転する。測定した振幅と位相および伝播遅延時間などから解析理論を用いた数値を用いて遠方界のモノスタティックレーダークロスセクション(RCS)を計算する。なお、別の角度に配置したアンテナで受信し、バイスタティックレーダークロスセクション(RCS)も求めることができる。The sample is irradiated while changing the frequency from the vertically moving antenna. The electromagnetic wave reflected from the sample is received by the same antenna, and the amplitude, phase, propagation delay time, etc. are obtained. Next, rotate the sample a little. The far-field monostatic radar cross section (RCS) is calculated from the measured amplitude, phase, propagation delay time, etc., using numerical values using analytical theory. In addition, it can receive with the antenna arrange | positioned at another angle, and can also obtain | require bistatic radar cross section (RCS).

試料を1回回転するだけで、近傍においてモノスタティック、バイスタティックなど希望するレーダークロスセクションが求められる。なお、試料を平面状で回転しないで、アンテナ側から見たときに、例えば腹が見えるように手前で上の方、後方で下の方になるように回転させると、試料を下から見た全周のRCSを測定することができる。なお、上から見下ろしても同様のRCS測定ができる。By rotating the sample once, the desired radar cross section such as monostatic or bistatic is obtained in the vicinity. When the sample is viewed from the antenna side without rotating in a flat shape, for example, if the sample is rotated so that the stomach is visible, the sample is viewed from the bottom when rotated in the front and the rear in the rear. The RCS of the entire circumference can be measured. The same RCS measurement can be performed even when looking down from above.

本発明の全体構成の一例Example of overall configuration of the present invention 円筒走査する場合の記号Symbol for cylindrical scanning 円筒走査における改善効果Improvement effect in cylindrical scanning レーダー反射率分布Radar reflectance distribution 半径の異なる2つの導体球の遠方界RCS変換Far-field RCS transformation of two conductor spheres with different radii 半径の異なる2つの導体球を垂直面に配置したときのRCS変換RCS transformation when two conductor spheres with different radii are arranged on the vertical plane バイスタティック測定Bistatic measurement

図1に示す構成にベクトルネットワークアナライザおよびプログラムの入ったコンピュータからの指令で試料を回転させ、また、プローブアンテナを上下に移動させながら、プローブアンテナから電波を放射し、反射波をプローブアンテナで受け、その振幅と位相および伝播遅延時間等を記録し、コンピュータで解析理論を用いて数値解析し、近傍界遠方界変換を行ってレーダークロスセクションを得る。The sample shown in Fig. 1 is rotated by a command from a computer with a vector network analyzer and a program, and the probe antenna is moved up and down to radiate radio waves from the probe antenna and receive reflected waves at the probe antenna. The amplitude, phase, propagation delay time, etc. are recorded, and numerical analysis is performed by a computer using analysis theory, and near-field far-field conversion is performed to obtain a radar cross section.

多くの場合、電気的に大きな物体のRCS(レーダ断面積)を直接測るのは大きな困難を伴う。
というのは、RCSはターゲット全域で入射波が平面波と見なせれる程十分遠方で定義されるからである。
この遠方領域は関係式2D/λで与えられる。ここで、Dは被測定物となるターゲットの寸法であり、λは測定周波数の波長である。このような問題を解決する一つのアプローチとして近傍界の遠方界変換(NF−FFT)が知られている。
波動が伝搬しているとき、その波動は波源から生じた結果だとしてもよいし、波源と観測領域の間に等価的な二次波源を考え、これから新たに生じた波動であると考えてもよい。波源に近い領域での電磁界を何らかの方法で知ると、それより他の領域での界を理論的に予測することができる。つまりNF−FFTでは、ターゲットの近傍でプローブアンテナを走査することにより測定した散乱電磁界を計算処理して、ターゲットRCSとなる遠方散乱界を予測評価するものである[1]。このNF−FFTの中でも最も効率の良い変換手法が散乱体ターゲットの反射率分布となるレーダイメージ法である。レーダイメージからはターゲットの重要な散乱情報が得られ、RCSが算出できる[2]。レーダイメージに基づくNF−FFTの実際的な考察に関しては、文献[3]に記述されている。
図1に測定系を示す。また、図2にターゲット近傍での円周走査あるいは円筒走査における測定の座標系を示す。プローブの走査範囲は円周面と垂直な方向のターゲットサイズDに応じて、これが十分遠方とな
ような近傍界遠方変換を円周走査法と呼んでいる[1]−[6]。モノスタティックモードにおいて入力信号をU(k,φ)とすると、一般的な焦点化オペレータ(レーダ反射率の分布関数)
φ+(y−ρsin φ1/2,k=2πf/c(c:光速)である。また、測定時の周波数依存性を軽減するため、U(k,φ)をターゲットからの散乱界と校正用散乱体からの散乱界の比で定義することもできる[4]。
レーダイメージが得られると、z=0での水平面におけるRCSは
で求められる。σは校正用ターゲットのRCSである。
内に配置する。
図2に示す円周走査法において、そのプローブ位置の動径が短い場合とか、あるいはイメージ取得領域の幾何学的中心と所謂散乱中心がずれている場合、焦点化オペレータ(1)式のままでは、RCSの結果は著しい誤差となることが本発明者等によって示されている。さらに、これを補正するために新たな校正因子g
を導入し、大きな改善効果を確認している[5],[6]。図3はイメージング領域内の中心から0.5m離れた所に一個の小さな完全導体球を配置し、半径1.5mの円周内上で周波数1GHzの近傍界を測定したときのRCS計算例である。この特殊な例より、通常の焦点化オペレータによる結果(g=1)では、厳密な計算結果(Exact)から大きく逸脱しているのが読み取れる。一方、第(3)式を導入した結果(improved NF−FFT)では、十分改善していることが分かる。なお、図3はイメージング領域の中心からオフセットした場所に小さな導体球がある場合のRCSを示すし、従来法と改善したNF−FFTによる結果を理論的な厳密解からの差で示す。なお、σは小さな導体球のRCS理論値である。
次元の円周走査法では誤差を十分保証することが不可能になる。つまり、プローブの走査面はターゲットを包むようにする必要がある(球あるいは円筒)。円筒走査法の場合については、文献[5],[6]の2次元的アプローチを3次元に拡張することを考える。キーポイントは適切な焦点化オペレータを求めることであり、2次元の場合と同じように、電気的に小さな導体球のレーダイメージが数学的にデルタ関数で与えられるという条件で、これは実現できる。ここでは以下、点状のプローブを持つモノスタティックモードで議論を進める。
円筒走査の処理アルゴリズム
れている。プローブアンテナは方位方向φでステップδφ、垂直方向zでステップδzずつ走査させる。
述したように、入力信号U(k,φ,z)はターゲットからの散乱界E ter(f,φ,z)と、z=0の平面の中心に置かれた校正用導体球からの散乱界E cal(f,φ,0)の比で与える。円筒走査における焦点化オペレータは、円周走査の第(1)式に対して、垂直方向のzに関する積分を考慮すべきである。この時の適切な
で与え、
とする。直接これを代入することにより、円筒走査におけるオペレータは次式のように求められる。
ここに
試料の3次元位置を示す。
になる。レーダ断面積RCSは、例えばz=0の平面では、
で評価できる。
計算結果例
本稿で示したNF−FFTの有効性を示すため、あるいはサンプリングレートなどの変換パラメータの影響を検討するため、今2つの電気的に小さな導体球で構成される測定系を考える。走査系のサイズはターゲットの大きさDによって決定される。今の場合、プローブが近傍領域となるように2個の球の座標を選ぶことができる。球の間の多重散乱は無視することができ、このときの2つの球のRCSは容易に解析的な表示で求められる[7]。この理論値をNF−FFTの比較検証に用いる。今、測定シミュレーションの計算例として、
z=0に置かれたときのδφとδfの影響を示したものである。他のパラメータはδz=0.25m,δ1=δx=δy=δz=0.25mである。δφとδfはxy面におけるスプリアス強度に関係していると予測できる。サンプリングレートが細かいほど、イメージの質は良くなっている。当然、この水平面のイメージの質にはz軸方向のδzの影響も含まれている。
なお、図4は半径の異なる2個の小さな導体球による反射率イメージ。左側は周波数ステップδf=200MHz,方位角ステップδφ=18°でz=0の面内の分布。右側の図は周波数ステップδf=50MHz,方位角ステップδφ=3°の場合。なお、左図はΨ(x,y)の最大値から35%以上の高レベル領域をカットしている。
図4と同じようにx=0,y=±0.5m,z=0に二つの導体球を置き、周波数範囲を1GHzとしたときの遠方RCS変換を図5に、これから配置だけをx=0,y=0,z=±0.5mとしたときの垂直面での結果を図6に示す。水平面内に置いたときに比べ、配置方向を垂直面にした場合には、方位角φに対するRCSは大きく変化している。同図では、サンプリングレート(δf=50MHz,δf=50MHz,δφ=3°,δz=0.25mで固定していング間隔を細かくすれば、さらなる改善が見込まれるが、当然ながら計算時間の増加につながることになる。
ここでは2次元の円周走査での変換理論を基に、3次元の円筒走査変換に拡張した。これにより、扁平な物体のみならず垂直方向にもサイズを持つ一般的な形状をした電気長の大きな物体に対する遠方のRCSを評価できることになった。この特長は物体との焦点化に際し、従来の方法に比べてよりクリアなイメージを構築できることである。数値的に確認しているように、非対称な物体に対するこの焦点化オペレータの効果は大きい。変換理論的には、小さな導体球はデルタ関数となるという事実を基に、反射率分布関数を誘導した。
In many cases, it is very difficult to directly measure the RCS (radar cross section) of an electrically large object.
This is because the RCS is defined far enough so that the incident wave can be regarded as a plane wave throughout the target.
This far region is given by the relation 2D 2 / λ. Here, D is the dimension of the target to be measured, and λ is the wavelength of the measurement frequency. As one approach for solving such a problem, near-field far-field transformation (NF-FFT) is known.
When a wave is propagating, the wave may be the result of a wave source, or an equivalent secondary wave source between the wave source and the observation region, and a new wave generated in the future. Good. If the electromagnetic field in the region near the wave source is known by some method, the field in other regions can be predicted theoretically. In other words, in NF-FFT, the scattered electromagnetic field measured by scanning the probe antenna in the vicinity of the target is calculated and processed to predict and evaluate the far scattered field that becomes the target RCS [1]. The most efficient conversion method among the NF-FFTs is the radar image method in which the reflectance distribution of the scatterer target is obtained. From the radar image, important scattering information of the target can be obtained, and the RCS can be calculated [2]. The practical consideration of NF-FFT based on radar images is described in document [3].
FIG. 1 shows a measurement system. FIG. 2 shows a measurement coordinate system in circumferential scanning or cylindrical scanning in the vicinity of the target. The scanning range of the probe is far enough depending on the target size D 方向 in the direction perpendicular to the circumferential surface.
Such near-field far-field transformation is called a circumferential scanning method [1]-[6]. When the input signal is U (k, φ 0 ) in the monostatic mode, a general focusing operator (radar reflectance distribution function)
φ 0 ) 2 + (y−ρ 0 sin φ 0 ) 2 } 1/2 , k = 2πf / c (c: speed of light). Further, in order to reduce the frequency dependence at the time of measurement, U (k, φ 0 ) can also be defined by the ratio of the scattered field from the target to the scattered field from the calibration scatterer [4].
Once the radar image is obtained, the RCS in the horizontal plane at z = 0 is
Is required. σ 0 is the RCS of the calibration target.
Place in.
In the circumferential scanning method shown in FIG. 2, when the radius of the probe position is short, or when the geometric center of the image acquisition region and the so-called scattering center are deviated, the focusing operator (1) remains as it is. It has been shown by the present inventors that the RCS result is a significant error. Furthermore, in order to correct this, a new calibration factor g
Has been confirmed and a significant improvement effect has been confirmed [5], [6]. FIG. 3 is an example of RCS calculation when a small perfect conductor sphere is arranged at a distance of 0.5 m from the center in the imaging region and a near field with a frequency of 1 GHz is measured on the circumference of a radius of 1.5 m. is there. From this special example, it can be seen that the result by the normal focusing operator (g = 1) deviates greatly from the exact calculation result (Exact). On the other hand, it can be seen that the result of introducing the expression (3) (improved NF-FFT) is sufficiently improved. FIG. 3 shows the RCS when there is a small conductor sphere at a location offset from the center of the imaging region, and shows the result of the conventional method and the improved NF-FFT by the difference from the theoretical exact solution. Here, σ 0 is the RCS theoretical value of a small conductor sphere.
With the dimensional circumferential scanning method, it becomes impossible to sufficiently guarantee the error. In other words, the scanning surface of the probe needs to wrap around the target (sphere or cylinder). As for the case of the cylindrical scanning method, consider extending the two-dimensional approach of documents [5] and [6] to three dimensions. The key point is to find an appropriate focusing operator, and this can be achieved provided that the radar image of an electrically small conductor sphere is mathematically given by a delta function, as in the two-dimensional case. In the following, the discussion proceeds in monostatic mode with a point probe.
Cylindrical scan processing algorithm
It is. Probe antenna Step .delta..phi 0 in azimuth phi 0, is scanned in the vertical direction z 0 by step .delta.z 0.
As mentioned calibration, the input signal U (k, φ 0, z 0) is E scattered field from the target s ter (f, φ 0, z 0) and, placed in the center of the plane of z 0 = 0 It is given by the ratio of the scattering field E s cal (f, φ 0 , 0) from the conductor sphere for use. The focusing operator in the cylindrical scan should take into account the integral with respect to z 0 in the vertical direction for the circumferential scan equation (1). Appropriate at this time
Given in
And By directly substituting this, the operator in the cylindrical scan is obtained as follows.
here
The three-dimensional position of the sample is shown.
become. For example, in the plane where z = 0, the radar cross section RCS is
Can be evaluated.
Example of calculation results In order to show the effectiveness of the NF-FFT shown in this paper, or in order to examine the influence of conversion parameters such as the sampling rate, a measurement system composed of two electrically small conductive spheres is now considered. The size of the scanning system is determined by the target size D. In this case, the coordinates of the two spheres can be selected so that the probe is in the vicinity region. Multiple scattering between the spheres can be ignored, and the RCS of the two spheres at this time can be easily determined by analytical display [7]. This theoretical value is used for comparative verification of NF-FFT. Now, as a calculation example of measurement simulation,
This shows the influence of δφ 0 and δf when placed at z = 0. Other parameters are δz 0 = 0.25 m and δ1 0 = δx = δy = δz = 0.25 m. It can be predicted that δφ 0 and δf are related to the spurious intensity in the xy plane. The finer the sampling rate, the better the image quality. Naturally, the image quality of the horizontal plane includes the influence of δz 0 in the z-axis direction.
FIG. 4 is an image of the reflectance of two small conductive spheres with different radii. On the left side, in-plane distribution with frequency step δf = 200 MHz, azimuth step δφ 0 = 18 ° and z = 0. The figure on the right shows a frequency step δf = 50 MHz and an azimuth step δφ 0 = 3 °. In the left figure, a high level region of 35% or more is cut from the maximum value of Ψ (x, y).
As in FIG. 4, two conductor spheres are placed at x = 0, y = ± 0.5 m, and z = 0, and the far-field RCS transform when the frequency range is 1 GHz is shown in FIG. FIG. 6 shows the result on the vertical plane when 0, y = 0 and z = ± 0.5 m. RCS with respect to the azimuth angle φ is greatly changed when the arrangement direction is a vertical plane as compared with the case in which it is placed in a horizontal plane. In the figure, further improvement is expected if the sampling rate (δf = 50 MHz, δf = 50 MHz, δφ 0 = 3 °, δz 0 = 0.25 m is fixed and the gap interval is made finer. Will lead to an increase.
Here, based on the conversion theory in the two-dimensional circumferential scanning, it is extended to the three-dimensional cylindrical scanning conversion. As a result, it has become possible to evaluate a remote RCS for an object having a large electric length having a general shape having a size in the vertical direction as well as a flat object. This feature is that, when focusing on an object, a clearer image can be constructed compared to the conventional method. As confirmed numerically, the effect of this focusing operator on asymmetric objects is significant. In terms of conversion theory, the reflectance distribution function was derived based on the fact that a small conductor sphere is a delta function.

バイスタティックのRCSパターンへ拡張した実施例を図7に示す。
送信アンテナAと受信アンテナBを別の位置へ置き、これらの位置関係をd,d,α,α,βで示した。なお、通常はアンテナの上下の動きはA,Bを同期させる。なお、双方のアンテナは試料を十分に照射するとする。
(なお、受信アンテナの場合も照射という表現をした。)また、表示式は局所的な入射波と反射(散乱)波の経路を独立して定式化し誘導した。なお、プローブが指向性を持つ一般的なアンテナの場合も、入射波と反射波に利得パターンの重み付けをすれば良い。
An embodiment extended to a bistatic RCS pattern is shown in FIG.
The transmitting antenna A and the receiving antenna B are placed at different positions, and their positional relationships are indicated by d 1 , d 2 , α 1 , α 2 , β. Normally, the vertical movement of the antenna synchronizes A and B. Both antennas irradiate the sample sufficiently.
(In the case of the receiving antenna, it was also expressed as irradiation.) In addition, the display formula was formulated by independently formulating and guiding the path of the local incident wave and the reflected (scattered) wave. Even when the probe is a general antenna having directivity, the gain pattern may be weighted to the incident wave and the reflected wave.

アンテナプローブの走査面は試料を包むようにする必要があるが、ここでは試料を球状に包むことも可能である。座標は球面座標として式を展開し、円筒走査と同様に、校正因子を導入し、精度の高いRCS測定システムを確立した。The scanning surface of the antenna probe needs to wrap the sample, but the sample can also be wrapped in a spherical shape here. Coordinates were developed as spherical coordinates, and a calibration factor was introduced in the same way as in cylindrical scanning to establish a highly accurate RCS measurement system.

RCSを遠方界で測定できない場合にコンパクトレンジ法を用いることが出来るが、コンパクトレンジ法を用いる場合は、通常、寸法にして試料の幅の3倍の幅のアンテナが必要である。この場合、実物大の航空機を測定するのは実際上不可能である。また、測定法はモノスタティック法に限られている。
しかし、本発明の方法によると、アンテナとしてプローブアンテナなどを用いても良く、大きなアンテナは不要である。また、バイスタティック法も測定可能であり、産業上の利用可能性は大きい。
When the RCS cannot be measured in the far field, the compact range method can be used. However, when the compact range method is used, an antenna having a width three times the width of the sample is usually required. In this case, it is practically impossible to measure a full-scale aircraft. Moreover, the measuring method is limited to the monostatic method.
However, according to the method of the present invention, a probe antenna or the like may be used as an antenna, and a large antenna is unnecessary. In addition, the bistatic method can be measured, and the industrial applicability is great.

A アンテナ(プローブタイプが主)
X,Y 直角座標系の水平面のXおよびY座標
Z 直角座標系の垂直座標
T ターゲット
VNA ベクトルネットワークアナライザ
PC パーソナルコンピュータ
GPIB 制御および収集インターフェイス
ρ アンテナの波源の位置
ρ 試料の位置
φ 試料の回転角
A Antenna (mainly probe type)
X, Y X and Y coordinates in the horizontal coordinate system Z and Z coordinates in the rectangular coordinate system T Target VNA Vector network analyzer PC Personal computer GPIB Control and acquisition interface ρ 0 Antenna wave source position ρ Sample position φ 0 Sample rotation Corner

Claims (5)

送信および受信アンテナに少なくとも試料全体を照射できる開口角のアンテナを用い、試料の近傍で試料を囲む円筒面上の送信および受信アンテナの走査を用いたレーダークロスセクション(RCS)測定時の近傍界−遠方界変換アルゴリズムの中の焦点化オペレータに、校正因子を導入したことを特徴とするRCS測定システム。Near field at the time of radar cross section (RCS) measurement using transmission and reception antenna scanning on a cylindrical surface surrounding the sample in the vicinity of the sample using an antenna having an aperture angle capable of irradiating at least the entire sample to the transmission and reception antennas. An RCS measurement system characterized by introducing a calibration factor into a focusing operator in a far-field transformation algorithm. 送信および受信アンテナに少なくとも試料全体を照射できる開口角のアンテナを用い、試料の近傍で試料を囲む円筒面上の送信および受信アンテナの走査を用いたレーダークロスセクション(RCS)測定時の近傍界−遠方界変換アルゴリズムの中の焦点化オペレータに、試料の位置とアンテナの位置の関数である校正因子を導入したことを特徴とするRCS測定システム。Near field at the time of radar cross section (RCS) measurement using transmission and reception antenna scanning on a cylindrical surface surrounding the sample in the vicinity of the sample using an antenna having an aperture angle capable of irradiating at least the entire sample to the transmission and reception antennas. An RCS measurement system, wherein a calibration factor that is a function of a sample position and an antenna position is introduced into a focusing operator in a far-field conversion algorithm. 送信アンテナと受信アンテナが共用か、隣接して同一に移動することを特徴とする請求項1または請求項2のRCS測定システム。3. The RCS measurement system according to claim 1, wherein the transmitting antenna and the receiving antenna are shared or move adjacently in the same manner. 送信アンテナと受信アンテナが個別に移動することを特徴とする請求項1または請求項2のRCS測定システム。The RCS measurement system according to claim 1 or 2, wherein the transmitting antenna and the receiving antenna move separately. 試料の近傍で試料を囲む球面上の送信および受信アンテナの走査を用いた、請求項1および請求項3、または請求項2および請求項3 または請求項1および請求項4、または請求項2および請求項4のRCS測定システム。Claims 1 and 3, or Claims 2 and 3 or Claims 1 and 4, or Claims 2 and 3, or scans of transmit and receive antennas on a spherical surface surrounding the sample in the vicinity of the sample. The RCS measurement system according to claim 4.
JP2011184133A 2011-08-09 2011-08-09 Radar cross section (rcs) measurement system Pending JP2013036969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184133A JP2013036969A (en) 2011-08-09 2011-08-09 Radar cross section (rcs) measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184133A JP2013036969A (en) 2011-08-09 2011-08-09 Radar cross section (rcs) measurement system

Publications (1)

Publication Number Publication Date
JP2013036969A true JP2013036969A (en) 2013-02-21

Family

ID=47886697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184133A Pending JP2013036969A (en) 2011-08-09 2011-08-09 Radar cross section (rcs) measurement system

Country Status (1)

Country Link
JP (1) JP2013036969A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215949A (en) * 2014-08-26 2014-12-17 上海无线电设备研究所 Target RCS (radar cross section) calibration method based on automatic gain control voltage correction
JP2015179035A (en) * 2014-03-19 2015-10-08 富士通株式会社 Radar reflection cross section measuring device, radar reflection cross section measuring method, and program
CN105044695A (en) * 2015-07-21 2015-11-11 北京环境特性研究所 Method using point targets to carry out onboard RCS measurement calibration
CN105242250A (en) * 2015-11-25 2016-01-13 北京机电工程研究所 Calibration device capable of facing very low radar cross-section (RCS) targets to measure
CN105572652A (en) * 2016-03-18 2016-05-11 西北工业大学 Method of using extrapolation to acquire far field RCS possessing multiple scattering objects
CN105928448A (en) * 2016-04-18 2016-09-07 北京理工大学 Insect dimension measurement method based on Rayleigh region analysis scattering modeling
CN107064897A (en) * 2017-01-03 2017-08-18 北京环境特性研究所 A kind of RCS is tested with vehicle-mounted scanning frame control system
CN107064830A (en) * 2017-06-01 2017-08-18 深圳凌波近场科技有限公司 Three-dimensional microwave near field imaging system and its imaging method
CN108061883A (en) * 2017-11-28 2018-05-22 上海无线电设备研究所 The method of the near-field scattering function conversion missile target encounter echo of locally scattered source inverting
CN108254729A (en) * 2018-04-09 2018-07-06 北京环境特性研究所 A kind of double fit phase unwrapping methods and double fit phase unwrapping devices
JP2018141724A (en) * 2017-02-28 2018-09-13 株式会社Ihi Measurement device and measurement method
CN108717181A (en) * 2018-06-27 2018-10-30 成都飞机工业(集团)有限责任公司 A kind of preposition linkage calibration test methods of novel outdoor field static state RCS
CN109283525A (en) * 2018-09-13 2019-01-29 山西大学 Terahertz radar cross section test macro and radar cross section extracting method
JP2019100772A (en) * 2017-11-29 2019-06-24 富士通株式会社 Estimation program, estimation device and estimation method
CN109991599A (en) * 2019-03-21 2019-07-09 西安电子科技大学 A kind of microwave imaging system and method for receiving confocal imaging based on single-shot list
CN110146859A (en) * 2019-05-30 2019-08-20 中国人民解放军63921部队 A kind of method and apparatus for radar cross section RCS calibration
WO2019233037A1 (en) * 2018-06-08 2019-12-12 深圳市华讯方舟太赫兹科技有限公司 Rotary scanning system
CN111948616A (en) * 2020-07-28 2020-11-17 中国人民解放军63921部队 Phased array radar target RCS measurement accuracy identification method
CN112230209A (en) * 2020-09-28 2021-01-15 北京环境特性研究所 Remote double-station RCS measuring device and method
CN110441745B (en) * 2019-08-16 2021-04-30 北京环境特性研究所 Method and system for overlooking and measuring target RCS (radar cross section) based on broadband radar
CN112764001A (en) * 2020-12-25 2021-05-07 中国航空工业集团公司沈阳飞机设计研究所 Outfield RCS test field
CN113381187A (en) * 2021-05-31 2021-09-10 西南电子技术研究所(中国电子科技集团公司第十研究所) Spherical phased array antenna coordinate far and near field comparison and correction method
CN113687446A (en) * 2021-07-19 2021-11-23 西安空间无线电技术研究所 Near-field external calibration method based on satellite-borne synthetic aperture microwave radiometer
CN114756045A (en) * 2022-05-18 2022-07-15 电子科技大学 Unmanned aerial vehicle control method for meteorological radar calibration
WO2022168213A1 (en) * 2021-02-04 2022-08-11 三菱電機株式会社 Radar cross section measurement device
CN115079112A (en) * 2022-07-21 2022-09-20 中国航发四川燃气涡轮研究院 Near-ground dynamic RCS test system and method for aircraft engine
RU2815895C1 (en) * 2023-10-25 2024-03-25 Виталий Сергеевич Грибков Device for measuring effective scattering area of radar objects
CN117805754A (en) * 2024-02-29 2024-04-02 西安瀚博电子科技有限公司 Efficient near-field RCS test method and system based on amplitude and phase electric control technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933245A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Measuring apparatus for scattering cross section
JPH1152043A (en) * 1997-08-08 1999-02-26 Mitsubishi Electric Corp Apparatus for measuring scattering cross section
JP2001183452A (en) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp Method and device for measuring radar cross section
JP2009276187A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Radar cross section measuring method and measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933245A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Measuring apparatus for scattering cross section
JPH1152043A (en) * 1997-08-08 1999-02-26 Mitsubishi Electric Corp Apparatus for measuring scattering cross section
JP2001183452A (en) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp Method and device for measuring radar cross section
JP2009276187A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Radar cross section measuring method and measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015005424; 小林弘一,アンドレイオジポフ,鈴木洋介: 'レーダ断面積(RCS)の近傍界遠方変換について' 信学技報(宇宙・航行エレクトロニクス研究会) SANE-2010-60, 201008 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179035A (en) * 2014-03-19 2015-10-08 富士通株式会社 Radar reflection cross section measuring device, radar reflection cross section measuring method, and program
CN104215949A (en) * 2014-08-26 2014-12-17 上海无线电设备研究所 Target RCS (radar cross section) calibration method based on automatic gain control voltage correction
CN105044695A (en) * 2015-07-21 2015-11-11 北京环境特性研究所 Method using point targets to carry out onboard RCS measurement calibration
CN105242250A (en) * 2015-11-25 2016-01-13 北京机电工程研究所 Calibration device capable of facing very low radar cross-section (RCS) targets to measure
CN105572652B (en) * 2016-03-18 2018-01-05 西北工业大学 It is a kind of to obtain the method with Multiple Scattering target far-field RCS using extrapolation
CN105572652A (en) * 2016-03-18 2016-05-11 西北工业大学 Method of using extrapolation to acquire far field RCS possessing multiple scattering objects
CN105928448A (en) * 2016-04-18 2016-09-07 北京理工大学 Insect dimension measurement method based on Rayleigh region analysis scattering modeling
CN105928448B (en) * 2016-04-18 2018-06-22 北京理工大学 A kind of insect dimension measurement method that scattering modeling is parsed based on Rayleigh region
CN107064897A (en) * 2017-01-03 2017-08-18 北京环境特性研究所 A kind of RCS is tested with vehicle-mounted scanning frame control system
CN107064897B (en) * 2017-01-03 2019-08-23 北京环境特性研究所 A kind of vehicle-mounted scanning frame control system of RCS test
JP2018141724A (en) * 2017-02-28 2018-09-13 株式会社Ihi Measurement device and measurement method
CN107064830A (en) * 2017-06-01 2017-08-18 深圳凌波近场科技有限公司 Three-dimensional microwave near field imaging system and its imaging method
CN108061883A (en) * 2017-11-28 2018-05-22 上海无线电设备研究所 The method of the near-field scattering function conversion missile target encounter echo of locally scattered source inverting
CN108061883B (en) * 2017-11-28 2021-06-04 上海无线电设备研究所 Method for converting missile-eye intersection echo by near-field scattering function of local scattering source inversion
JP2019100772A (en) * 2017-11-29 2019-06-24 富士通株式会社 Estimation program, estimation device and estimation method
CN108254729B (en) * 2018-04-09 2020-03-27 北京环境特性研究所 Double-fitting phase unwrapping method and double-fitting phase unwrapping device
CN108254729A (en) * 2018-04-09 2018-07-06 北京环境特性研究所 A kind of double fit phase unwrapping methods and double fit phase unwrapping devices
WO2019233037A1 (en) * 2018-06-08 2019-12-12 深圳市华讯方舟太赫兹科技有限公司 Rotary scanning system
CN108717181B (en) * 2018-06-27 2022-05-06 成都飞机工业(集团)有限责任公司 Novel outdoor field static RCS preposed linkage calibration test method
CN108717181A (en) * 2018-06-27 2018-10-30 成都飞机工业(集团)有限责任公司 A kind of preposition linkage calibration test methods of novel outdoor field static state RCS
CN109283525A (en) * 2018-09-13 2019-01-29 山西大学 Terahertz radar cross section test macro and radar cross section extracting method
CN109283525B (en) * 2018-09-13 2023-06-02 山西大学 Terahertz radar scattering cross section test system and radar scattering cross section extraction method
CN109991599A (en) * 2019-03-21 2019-07-09 西安电子科技大学 A kind of microwave imaging system and method for receiving confocal imaging based on single-shot list
CN109991599B (en) * 2019-03-21 2023-09-08 西安电子科技大学 Microwave imaging system and method based on single-shot confocal imaging
CN110146859A (en) * 2019-05-30 2019-08-20 中国人民解放军63921部队 A kind of method and apparatus for radar cross section RCS calibration
CN110441745B (en) * 2019-08-16 2021-04-30 北京环境特性研究所 Method and system for overlooking and measuring target RCS (radar cross section) based on broadband radar
CN111948616A (en) * 2020-07-28 2020-11-17 中国人民解放军63921部队 Phased array radar target RCS measurement accuracy identification method
CN111948616B (en) * 2020-07-28 2024-02-06 中国人民解放军63921部队 Phased array radar target RCS measurement accuracy identification method
CN112230209A (en) * 2020-09-28 2021-01-15 北京环境特性研究所 Remote double-station RCS measuring device and method
CN112230209B (en) * 2020-09-28 2023-06-16 北京环境特性研究所 Remote double-station RCS measuring device and method
CN112764001A (en) * 2020-12-25 2021-05-07 中国航空工业集团公司沈阳飞机设计研究所 Outfield RCS test field
CN112764001B (en) * 2020-12-25 2024-01-30 中国航空工业集团公司沈阳飞机设计研究所 External field RCS test field
WO2022168213A1 (en) * 2021-02-04 2022-08-11 三菱電機株式会社 Radar cross section measurement device
CN113381187A (en) * 2021-05-31 2021-09-10 西南电子技术研究所(中国电子科技集团公司第十研究所) Spherical phased array antenna coordinate far and near field comparison and correction method
CN113381187B (en) * 2021-05-31 2022-04-12 西南电子技术研究所(中国电子科技集团公司第十研究所) Spherical phased array antenna coordinate far and near field comparison and correction method
CN113687446A (en) * 2021-07-19 2021-11-23 西安空间无线电技术研究所 Near-field external calibration method based on satellite-borne synthetic aperture microwave radiometer
CN113687446B (en) * 2021-07-19 2024-02-09 西安空间无线电技术研究所 Near field external calibration method based on satellite-borne synthetic aperture microwave radiometer
CN114756045A (en) * 2022-05-18 2022-07-15 电子科技大学 Unmanned aerial vehicle control method for meteorological radar calibration
CN115079112A (en) * 2022-07-21 2022-09-20 中国航发四川燃气涡轮研究院 Near-ground dynamic RCS test system and method for aircraft engine
CN115079112B (en) * 2022-07-21 2022-12-20 中国航发四川燃气涡轮研究院 Test system and test method for near-earth dynamic RCS (Radar Cross section) test of aero-engine
RU2815895C1 (en) * 2023-10-25 2024-03-25 Виталий Сергеевич Грибков Device for measuring effective scattering area of radar objects
CN117805754A (en) * 2024-02-29 2024-04-02 西安瀚博电子科技有限公司 Efficient near-field RCS test method and system based on amplitude and phase electric control technology
CN117805754B (en) * 2024-02-29 2024-06-04 西安瀚博电子科技有限公司 Efficient near-field RCS test method and system based on amplitude and phase electric control technology

Similar Documents

Publication Publication Date Title
JP2013036969A (en) Radar cross section (rcs) measurement system
Horst et al. Design of a compact V-band transceiver and antenna for millimeter-wave imaging systems
Osipov et al. An improved image-based circular near-field-to-far-field transformation
Li et al. Low-cost millimeter wave frequency scanning based synthesis aperture imaging system for concealed weapon detection
JP6678554B2 (en) Antenna measuring device
Manzoor et al. Image distortion characterization due to equivalent monostatic approximation in near-field bistatic SAR imaging
Neitz et al. 3-D monostatic RCS determination from multistatic near-field measurements by plane-wave field synthesis
Hamberger et al. Setup and Characterization of a Volumetric $\boldsymbol {W} $-Band Near-Field Antenna Measurement System
Ghasr et al. SAR imaging for inspection of metallic surfaces at millimeter wave frequencies
Liu et al. Design and test of a 0.3 THz compact antenna test range
Kobayashi et al. Simple near-field to far-field transformation method using antenna array-factor
Kobayashi et al. An improved image-based near-field-to-far-field transformation for cylindrical scanning surfaces
Yan et al. A novel fast near-field electromagnetic imaging method for full rotation problem
Nesterova et al. Analytical study of 5G beamforming in the reactive near-field zone
JP6939981B2 (en) Object detection device and object detection method
Quan et al. Near-field radiation characteristics of shaped electrically large apertures in the spatial and angular domains
Neitz et al. Monostatic RCS prediction from irregularly distributed near-field samples using plane-wave field synthesis
Osipov et al. An improved image-based near-field-to-far-field transformation
Sun et al. Antenna planes based wall-clutter mitigation in through-wall-imaging applications
Ziehm et al. Near field focusing for nondestructive microwave testing at 24 GHz–Theory and experimental verification
Kobayashi et al. Near-field to far-field transformation by using antenna array factor
Salarkaleji et al. Metamaterial leaky wave antenna enabled efficient 3D spectrally-encoded microwave tomography using linear sampling method
WO2024033998A1 (en) Data processing method, measurement system, and program
Kim et al. Three-Dimensional Near-Field to Far-Field Transformation for Radar Cross Section Estimation of Elongated Targets via Subdimensional Hybrid Conversion
WO2024034000A1 (en) Data processing method, measurement system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623